sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -3,7 +3,7 @@ from __future__ import annotations 
     | 
|
| 
       3 
3 
     | 
    
         | 
| 
       4 
4 
     | 
    
         
             
            import logging
         
     | 
| 
       5 
5 
     | 
    
         
             
            import warnings
         
     | 
| 
       6 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Any,  
     | 
| 
      
 6 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, List, Optional
         
     | 
| 
       7 
7 
     | 
    
         | 
| 
       8 
8 
     | 
    
         
             
            import torch
         
     | 
| 
       9 
9 
     | 
    
         | 
| 
         @@ -31,6 +31,7 @@ from sglang.srt.layers.quantization.marlin_utils import ( 
     | 
|
| 
       31 
31 
     | 
    
         
             
            )
         
     | 
| 
       32 
32 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
         
     | 
| 
       33 
33 
     | 
    
         
             
            from sglang.srt.layers.quantization.utils import get_scalar_types, replace_parameter
         
     | 
| 
      
 34 
     | 
    
         
            +
            from sglang.srt.layers.quantization.w8a8_int8 import npu_fused_experts
         
     | 
| 
       34 
35 
     | 
    
         | 
| 
       35 
36 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       36 
37 
     | 
    
         
             
                from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
         
     | 
| 
         @@ -39,10 +40,16 @@ if TYPE_CHECKING: 
     | 
|
| 
       39 
40 
     | 
    
         
             
                    CombineInput,
         
     | 
| 
       40 
41 
     | 
    
         
             
                )
         
     | 
| 
       41 
42 
     | 
    
         | 
| 
       42 
     | 
    
         
            -
            from sglang.srt.utils import is_cuda, is_hip
         
     | 
| 
      
 43 
     | 
    
         
            +
            from sglang.srt.utils import is_cuda, is_hip, is_npu, is_xpu
         
     | 
| 
       43 
44 
     | 
    
         | 
| 
       44 
45 
     | 
    
         
             
            _is_cuda = is_cuda()
         
     | 
| 
       45 
46 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
      
 47 
     | 
    
         
            +
            _is_xpu = is_xpu()
         
     | 
| 
      
 48 
     | 
    
         
            +
            _is_npu = is_npu()
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
            if _is_npu:
         
     | 
| 
      
 51 
     | 
    
         
            +
                import torch_npu
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
       46 
53 
     | 
    
         
             
            if _is_cuda:
         
     | 
| 
       47 
54 
     | 
    
         
             
                from sgl_kernel import (
         
     | 
| 
       48 
55 
     | 
    
         
             
                    awq_dequantize,
         
     | 
| 
         @@ -58,8 +65,12 @@ elif _is_hip: 
     | 
|
| 
       58 
65 
     | 
    
         
             
                )
         
     | 
| 
       59 
66 
     | 
    
         | 
| 
       60 
67 
     | 
    
         
             
                warnings.warn(f"HIP does not support fused_marlin_moe currently.")
         
     | 
| 
      
 68 
     | 
    
         
            +
            elif _is_xpu:
         
     | 
| 
      
 69 
     | 
    
         
            +
                from sgl_kernel import awq_dequantize
         
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
                warnings.warn(f"XPU does not support fused_marlin_moe currently.")
         
     | 
| 
       61 
72 
     | 
    
         
             
            else:
         
     | 
| 
       62 
     | 
    
         
            -
                warnings.warn(f"Only CUDA and  
     | 
| 
      
 73 
     | 
    
         
            +
                warnings.warn(f"Only CUDA, HIP and XPU support AWQ currently.")
         
     | 
| 
       63 
74 
     | 
    
         | 
| 
       64 
75 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       65 
76 
     | 
    
         | 
| 
         @@ -112,12 +123,17 @@ class AWQConfig(QuantizationConfig): 
     | 
|
| 
       112 
123 
     | 
    
         
             
                    return "awq"
         
     | 
| 
       113 
124 
     | 
    
         | 
| 
       114 
125 
     | 
    
         
             
                def get_supported_act_dtypes(self) -> List[torch.dtype]:
         
     | 
| 
       115 
     | 
    
         
            -
                    return [torch. 
     | 
| 
      
 126 
     | 
    
         
            +
                    return [torch.float16] if not _is_npu else [torch.float16, torch.bfloat16]
         
     | 
| 
       116 
127 
     | 
    
         | 
| 
       117 
128 
     | 
    
         
             
                @classmethod
         
     | 
| 
       118 
129 
     | 
    
         
             
                def get_min_capability(cls) -> int:
         
     | 
| 
       119 
130 
     | 
    
         
             
                    # The AWQ kernel only supports Turing or newer GPUs.
         
     | 
| 
       120 
     | 
    
         
            -
                     
     | 
| 
      
 131 
     | 
    
         
            +
                    if _is_npu:
         
     | 
| 
      
 132 
     | 
    
         
            +
                        raise NotImplementedError(
         
     | 
| 
      
 133 
     | 
    
         
            +
                            'NPU hardware does not support "get_min_capability" feature.'
         
     | 
| 
      
 134 
     | 
    
         
            +
                        )
         
     | 
| 
      
 135 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 136 
     | 
    
         
            +
                        return 75
         
     | 
| 
       121 
137 
     | 
    
         | 
| 
       122 
138 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       123 
139 
     | 
    
         
             
                def get_config_filenames() -> List[str]:
         
     | 
| 
         @@ -141,6 +157,16 @@ class AWQConfig(QuantizationConfig): 
     | 
|
| 
       141 
157 
     | 
    
         
             
                    self, layer: torch.nn.Module, prefix: str
         
     | 
| 
       142 
158 
     | 
    
         
             
                ) -> Optional[LinearMethodBase]:
         
     | 
| 
       143 
159 
     | 
    
         
             
                    from sglang.srt.layers.linear import LinearBase
         
     | 
| 
      
 160 
     | 
    
         
            +
                    from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    if _is_npu:
         
     | 
| 
      
 163 
     | 
    
         
            +
                        if isinstance(layer, LinearBase):
         
     | 
| 
      
 164 
     | 
    
         
            +
                            if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
         
     | 
| 
      
 165 
     | 
    
         
            +
                                return UnquantizedLinearMethod()
         
     | 
| 
      
 166 
     | 
    
         
            +
                            return AWQLinearAscendMethod(self)
         
     | 
| 
      
 167 
     | 
    
         
            +
                        elif isinstance(layer, FusedMoE):
         
     | 
| 
      
 168 
     | 
    
         
            +
                            return AWQMoEAscendMethod(self)
         
     | 
| 
      
 169 
     | 
    
         
            +
                        return None
         
     | 
| 
       144 
170 
     | 
    
         | 
| 
       145 
171 
     | 
    
         
             
                    if isinstance(layer, LinearBase):
         
     | 
| 
       146 
172 
     | 
    
         
             
                        if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
         
     | 
| 
         @@ -570,6 +596,64 @@ class AWQMarlinLinearMethod(LinearMethodBase): 
     | 
|
| 
       570 
596 
     | 
    
         
             
                    )
         
     | 
| 
       571 
597 
     | 
    
         | 
| 
       572 
598 
     | 
    
         | 
| 
      
 599 
     | 
    
         
            +
            class AWQLinearAscendMethod(AWQLinearMethod):
         
     | 
| 
      
 600 
     | 
    
         
            +
                """Linear method for AWQ on Ascend.
         
     | 
| 
      
 601 
     | 
    
         
            +
             
     | 
| 
      
 602 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 603 
     | 
    
         
            +
                    quant_config: The AWQ quantization config.
         
     | 
| 
      
 604 
     | 
    
         
            +
                """
         
     | 
| 
      
 605 
     | 
    
         
            +
             
     | 
| 
      
 606 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
      
 607 
     | 
    
         
            +
                    layer.scales = torch.nn.Parameter(layer.scales.data, requires_grad=False)
         
     | 
| 
      
 608 
     | 
    
         
            +
                    qweight_tmp = torch.zeros_like(layer.qweight.data)
         
     | 
| 
      
 609 
     | 
    
         
            +
                    qzeros_tmp = layer.qzeros.data
         
     | 
| 
      
 610 
     | 
    
         
            +
                    qzeros_list = []
         
     | 
| 
      
 611 
     | 
    
         
            +
                    shifts = [0, 4, 1, 5, 2, 6, 3, 7]
         
     | 
| 
      
 612 
     | 
    
         
            +
             
     | 
| 
      
 613 
     | 
    
         
            +
                    for i in range(0, self.quant_config.pack_factor):
         
     | 
| 
      
 614 
     | 
    
         
            +
                        shift_num = shifts[i] * 4
         
     | 
| 
      
 615 
     | 
    
         
            +
                        qzeros_list.append((qzeros_tmp.reshape(-1, 1) >> shift_num) & 0xF)
         
     | 
| 
      
 616 
     | 
    
         
            +
                        qweight_tmp.bitwise_or_(
         
     | 
| 
      
 617 
     | 
    
         
            +
                            ((layer.qweight.data >> shift_num) * (2 ** (4 * i))) & (0xF << (4 * i))
         
     | 
| 
      
 618 
     | 
    
         
            +
                        )
         
     | 
| 
      
 619 
     | 
    
         
            +
             
     | 
| 
      
 620 
     | 
    
         
            +
                    qweight_tmp.bitwise_xor_(0x88888888)
         
     | 
| 
      
 621 
     | 
    
         
            +
             
     | 
| 
      
 622 
     | 
    
         
            +
                    qzeros_tmp = torch.cat(qzeros_list, dim=-1).reshape(qzeros_tmp.shape[0], -1)
         
     | 
| 
      
 623 
     | 
    
         
            +
                    qzeros_tmp = -(qzeros_tmp - 8)
         
     | 
| 
      
 624 
     | 
    
         
            +
                    qzeros_tmp = qzeros_tmp.to(layer.scales.data.dtype)
         
     | 
| 
      
 625 
     | 
    
         
            +
             
     | 
| 
      
 626 
     | 
    
         
            +
                    layer.qzeros = torch.nn.Parameter(qzeros_tmp, requires_grad=False)
         
     | 
| 
      
 627 
     | 
    
         
            +
                    layer.qweight = torch.nn.Parameter(qweight_tmp, requires_grad=False)
         
     | 
| 
      
 628 
     | 
    
         
            +
             
     | 
| 
      
 629 
     | 
    
         
            +
                def apply(
         
     | 
| 
      
 630 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 631 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 632 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 633 
     | 
    
         
            +
                    bias: Optional[torch.Tensor] = None,
         
     | 
| 
      
 634 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 635 
     | 
    
         
            +
                    qweight = layer.qweight
         
     | 
| 
      
 636 
     | 
    
         
            +
                    scales = layer.scales
         
     | 
| 
      
 637 
     | 
    
         
            +
                    qzeros = layer.qzeros
         
     | 
| 
      
 638 
     | 
    
         
            +
                    pack_factor = self.quant_config.pack_factor
         
     | 
| 
      
 639 
     | 
    
         
            +
                    out_shape = x.shape[:-1] + (qweight.shape[-1] * pack_factor,)
         
     | 
| 
      
 640 
     | 
    
         
            +
                    reshaped_x = x.reshape(-1, x.shape[-1])
         
     | 
| 
      
 641 
     | 
    
         
            +
             
     | 
| 
      
 642 
     | 
    
         
            +
                    if bias is not None and bias.dtype == torch.bfloat16:
         
     | 
| 
      
 643 
     | 
    
         
            +
                        bias = bias.float()
         
     | 
| 
      
 644 
     | 
    
         
            +
             
     | 
| 
      
 645 
     | 
    
         
            +
                    out = torch_npu.npu_weight_quant_batchmatmul(
         
     | 
| 
      
 646 
     | 
    
         
            +
                        reshaped_x,
         
     | 
| 
      
 647 
     | 
    
         
            +
                        qweight,
         
     | 
| 
      
 648 
     | 
    
         
            +
                        antiquant_scale=scales,
         
     | 
| 
      
 649 
     | 
    
         
            +
                        antiquant_offset=qzeros,
         
     | 
| 
      
 650 
     | 
    
         
            +
                        antiquant_group_size=self.quant_config.group_size,
         
     | 
| 
      
 651 
     | 
    
         
            +
                        bias=bias,
         
     | 
| 
      
 652 
     | 
    
         
            +
                    )
         
     | 
| 
      
 653 
     | 
    
         
            +
             
     | 
| 
      
 654 
     | 
    
         
            +
                    return out.reshape(out_shape)
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
      
 656 
     | 
    
         
            +
             
     | 
| 
       573 
657 
     | 
    
         
             
            class AWQMoEMethod(FusedMoEMethodBase):
         
     | 
| 
       574 
658 
     | 
    
         | 
| 
       575 
659 
     | 
    
         
             
                def __init__(self, quant_config: AWQMarlinConfig):
         
     | 
| 
         @@ -672,7 +756,8 @@ class AWQMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       672 
756 
     | 
    
         
             
                    set_weight_attrs(w2_qzeros, extra_weight_attrs)
         
     | 
| 
       673 
757 
     | 
    
         | 
| 
       674 
758 
     | 
    
         
             
                    device = layer.w13_qweight.device
         
     | 
| 
       675 
     | 
    
         
            -
                     
     | 
| 
      
 759 
     | 
    
         
            +
                    if not _is_npu:
         
     | 
| 
      
 760 
     | 
    
         
            +
                        layer.workspace = marlin_make_workspace(device, 4)
         
     | 
| 
       676 
761 
     | 
    
         | 
| 
       677 
762 
     | 
    
         
             
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
       678 
763 
     | 
    
         
             
                    num_experts = layer.w13_qweight.shape[0]
         
     | 
| 
         @@ -780,3 +865,95 @@ class AWQMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       780 
865 
     | 
    
         
             
                        num_bits=self.quant_config.weight_bits,
         
     | 
| 
       781 
866 
     | 
    
         
             
                    ).to(orig_dtype)
         
     | 
| 
       782 
867 
     | 
    
         
             
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 868 
     | 
    
         
            +
             
     | 
| 
      
 869 
     | 
    
         
            +
             
     | 
| 
      
 870 
     | 
    
         
            +
            class AWQMoEAscendMethod(AWQMoEMethod):
         
     | 
| 
      
 871 
     | 
    
         
            +
                def __init__(self, quant_config: AWQConfig):
         
     | 
| 
      
 872 
     | 
    
         
            +
                    self.quant_config = quant_config
         
     | 
| 
      
 873 
     | 
    
         
            +
             
     | 
| 
      
 874 
     | 
    
         
            +
                def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
         
     | 
| 
      
 875 
     | 
    
         
            +
                    w13_qweight_tmp = torch.zeros_like(layer.w13_qweight.data)
         
     | 
| 
      
 876 
     | 
    
         
            +
                    w2_qweight_tmp = torch.zeros_like(layer.w2_qweight.data)
         
     | 
| 
      
 877 
     | 
    
         
            +
                    w13_qzeros_list = []
         
     | 
| 
      
 878 
     | 
    
         
            +
                    w2_qzeros_list = []
         
     | 
| 
      
 879 
     | 
    
         
            +
                    shifts = [0, 4, 1, 5, 2, 6, 3, 7]
         
     | 
| 
      
 880 
     | 
    
         
            +
                    for i in range(0, self.quant_config.pack_factor):
         
     | 
| 
      
 881 
     | 
    
         
            +
                        shift_num = shifts[i] * 4
         
     | 
| 
      
 882 
     | 
    
         
            +
                        w13_qzeros_list.append(
         
     | 
| 
      
 883 
     | 
    
         
            +
                            (layer.w13_qzeros.data.reshape(-1, 1) >> shift_num) & 0xF
         
     | 
| 
      
 884 
     | 
    
         
            +
                        )
         
     | 
| 
      
 885 
     | 
    
         
            +
                        w2_qzeros_list.append(
         
     | 
| 
      
 886 
     | 
    
         
            +
                            (layer.w2_qzeros.data.reshape(-1, 1) >> shift_num) & 0xF
         
     | 
| 
      
 887 
     | 
    
         
            +
                        )
         
     | 
| 
      
 888 
     | 
    
         
            +
                        w13_qweight_tmp.bitwise_or_(
         
     | 
| 
      
 889 
     | 
    
         
            +
                            ((layer.w13_qweight.data >> shift_num) * (2 ** (4 * i)))
         
     | 
| 
      
 890 
     | 
    
         
            +
                            & (0xF << (4 * i))
         
     | 
| 
      
 891 
     | 
    
         
            +
                        )
         
     | 
| 
      
 892 
     | 
    
         
            +
                        w2_qweight_tmp.bitwise_or_(
         
     | 
| 
      
 893 
     | 
    
         
            +
                            ((layer.w2_qweight.data >> shift_num) * (2 ** (4 * i)))
         
     | 
| 
      
 894 
     | 
    
         
            +
                            & (0xF << (4 * i))
         
     | 
| 
      
 895 
     | 
    
         
            +
                        )
         
     | 
| 
      
 896 
     | 
    
         
            +
             
     | 
| 
      
 897 
     | 
    
         
            +
                    w13_qweight_tmp.bitwise_xor_(0x88888888)
         
     | 
| 
      
 898 
     | 
    
         
            +
                    w2_qweight_tmp.bitwise_xor_(0x88888888)
         
     | 
| 
      
 899 
     | 
    
         
            +
             
     | 
| 
      
 900 
     | 
    
         
            +
                    w13_qzeros_tmp = torch.cat(w13_qzeros_list, dim=-1).reshape(
         
     | 
| 
      
 901 
     | 
    
         
            +
                        layer.w13_qzeros.shape[0], layer.w13_qzeros.shape[1], -1
         
     | 
| 
      
 902 
     | 
    
         
            +
                    )
         
     | 
| 
      
 903 
     | 
    
         
            +
                    w13_qzeros_tmp = -(w13_qzeros_tmp - 8)
         
     | 
| 
      
 904 
     | 
    
         
            +
                    w13_qzeros_tmp = w13_qzeros_tmp.to(layer.w13_scales.data.dtype)
         
     | 
| 
      
 905 
     | 
    
         
            +
                    w2_qzeros_tmp = torch.cat(w2_qzeros_list, dim=-1).reshape(
         
     | 
| 
      
 906 
     | 
    
         
            +
                        layer.w2_qzeros.shape[0], layer.w2_qzeros.shape[1], -1
         
     | 
| 
      
 907 
     | 
    
         
            +
                    )
         
     | 
| 
      
 908 
     | 
    
         
            +
                    w2_qzeros_tmp = -(w2_qzeros_tmp - 8)
         
     | 
| 
      
 909 
     | 
    
         
            +
                    w2_qzeros_tmp = w2_qzeros_tmp.to(layer.w2_scales.data.dtype)
         
     | 
| 
      
 910 
     | 
    
         
            +
             
     | 
| 
      
 911 
     | 
    
         
            +
                    layer.register_parameter(
         
     | 
| 
      
 912 
     | 
    
         
            +
                        "w13_qzeros", torch.nn.Parameter(w13_qzeros_tmp, requires_grad=False)
         
     | 
| 
      
 913 
     | 
    
         
            +
                    )
         
     | 
| 
      
 914 
     | 
    
         
            +
                    layer.register_parameter(
         
     | 
| 
      
 915 
     | 
    
         
            +
                        "w13_qweight", torch.nn.Parameter(w13_qweight_tmp, requires_grad=False)
         
     | 
| 
      
 916 
     | 
    
         
            +
                    )
         
     | 
| 
      
 917 
     | 
    
         
            +
                    layer.register_parameter(
         
     | 
| 
      
 918 
     | 
    
         
            +
                        "w2_qzeros", torch.nn.Parameter(w2_qzeros_tmp, requires_grad=False)
         
     | 
| 
      
 919 
     | 
    
         
            +
                    )
         
     | 
| 
      
 920 
     | 
    
         
            +
                    layer.register_parameter(
         
     | 
| 
      
 921 
     | 
    
         
            +
                        "w2_qweight", torch.nn.Parameter(w2_qweight_tmp, requires_grad=False)
         
     | 
| 
      
 922 
     | 
    
         
            +
                    )
         
     | 
| 
      
 923 
     | 
    
         
            +
             
     | 
| 
      
 924 
     | 
    
         
            +
                def create_moe_runner(
         
     | 
| 
      
 925 
     | 
    
         
            +
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
      
 926 
     | 
    
         
            +
                ):
         
     | 
| 
      
 927 
     | 
    
         
            +
                    self.moe_runner_config = moe_runner_config
         
     | 
| 
      
 928 
     | 
    
         
            +
             
     | 
| 
      
 929 
     | 
    
         
            +
                def apply(
         
     | 
| 
      
 930 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 931 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 932 
     | 
    
         
            +
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 933 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 934 
     | 
    
         
            +
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
      
 935 
     | 
    
         
            +
             
     | 
| 
      
 936 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 937 
     | 
    
         
            +
                        self.moe_runner_config.activation == "silu"
         
     | 
| 
      
 938 
     | 
    
         
            +
                    ), "Only SiLU activation is supported."
         
     | 
| 
      
 939 
     | 
    
         
            +
             
     | 
| 
      
 940 
     | 
    
         
            +
                    x = dispatch_output.hidden_states
         
     | 
| 
      
 941 
     | 
    
         
            +
                    topk_output = dispatch_output.topk_output
         
     | 
| 
      
 942 
     | 
    
         
            +
             
     | 
| 
      
 943 
     | 
    
         
            +
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 944 
     | 
    
         
            +
                    topk_ids = topk_ids.to(torch.int32)
         
     | 
| 
      
 945 
     | 
    
         
            +
                    topk_weights = topk_weights.to(x.dtype)
         
     | 
| 
      
 946 
     | 
    
         
            +
                    output = npu_fused_experts(
         
     | 
| 
      
 947 
     | 
    
         
            +
                        hidden_states=x,
         
     | 
| 
      
 948 
     | 
    
         
            +
                        w13=layer.w13_qweight,
         
     | 
| 
      
 949 
     | 
    
         
            +
                        w13_scale=layer.w13_scales,
         
     | 
| 
      
 950 
     | 
    
         
            +
                        w13_offset=layer.w13_qzeros,
         
     | 
| 
      
 951 
     | 
    
         
            +
                        w2=layer.w2_qweight,
         
     | 
| 
      
 952 
     | 
    
         
            +
                        w2_scale=layer.w2_scales,
         
     | 
| 
      
 953 
     | 
    
         
            +
                        w2_offset=layer.w2_qzeros,
         
     | 
| 
      
 954 
     | 
    
         
            +
                        topk_weights=topk_weights,
         
     | 
| 
      
 955 
     | 
    
         
            +
                        topk_ids=topk_ids,
         
     | 
| 
      
 956 
     | 
    
         
            +
                        top_k=topk_ids.shape[1],
         
     | 
| 
      
 957 
     | 
    
         
            +
                        use_wna16=True,
         
     | 
| 
      
 958 
     | 
    
         
            +
                    )
         
     | 
| 
      
 959 
     | 
    
         
            +
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
         @@ -337,3 +337,32 @@ def awq_gemm_triton( 
     | 
|
| 
       337 
337 
     | 
    
         
             
                result = result.sum(0)
         
     | 
| 
       338 
338 
     | 
    
         | 
| 
       339 
339 
     | 
    
         
             
                return result
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
             
     | 
| 
      
 342 
     | 
    
         
            +
            def awq_dequantize_decomposition(
         
     | 
| 
      
 343 
     | 
    
         
            +
                qweight: torch.Tensor,
         
     | 
| 
      
 344 
     | 
    
         
            +
                scales: torch.Tensor,
         
     | 
| 
      
 345 
     | 
    
         
            +
                zeros: torch.Tensor,
         
     | 
| 
      
 346 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 347 
     | 
    
         
            +
                qweight_tmp = qweight
         
     | 
| 
      
 348 
     | 
    
         
            +
                qzeros_tmp = zeros
         
     | 
| 
      
 349 
     | 
    
         
            +
                qweight_list = []
         
     | 
| 
      
 350 
     | 
    
         
            +
                qzeros_list = []
         
     | 
| 
      
 351 
     | 
    
         
            +
                shifts = [0, 4, 1, 5, 2, 6, 3, 7]
         
     | 
| 
      
 352 
     | 
    
         
            +
                for i in range(0, 8):
         
     | 
| 
      
 353 
     | 
    
         
            +
                    shift_num = shifts[i] * 4
         
     | 
| 
      
 354 
     | 
    
         
            +
                    qzeros_list.append((qzeros_tmp.reshape(-1, 1) >> shift_num) & 0xF)
         
     | 
| 
      
 355 
     | 
    
         
            +
                    qweight_list.append((qweight_tmp.reshape(-1, 1) >> shift_num) & 0xF)
         
     | 
| 
      
 356 
     | 
    
         
            +
                qzeros_tmp = (
         
     | 
| 
      
 357 
     | 
    
         
            +
                    torch.cat(qzeros_list, dim=-1).reshape(qzeros_tmp.shape[0], -1).to(scales.dtype)
         
     | 
| 
      
 358 
     | 
    
         
            +
                )
         
     | 
| 
      
 359 
     | 
    
         
            +
                qweight_tmp = (
         
     | 
| 
      
 360 
     | 
    
         
            +
                    torch.cat(qweight_list, dim=-1)
         
     | 
| 
      
 361 
     | 
    
         
            +
                    .reshape(qweight_tmp.shape[0], -1)
         
     | 
| 
      
 362 
     | 
    
         
            +
                    .to(scales.dtype)
         
     | 
| 
      
 363 
     | 
    
         
            +
                )
         
     | 
| 
      
 364 
     | 
    
         
            +
                res = (
         
     | 
| 
      
 365 
     | 
    
         
            +
                    qweight_tmp.reshape(qzeros_tmp.shape[0], -1, qzeros_tmp.shape[1])
         
     | 
| 
      
 366 
     | 
    
         
            +
                    - qzeros_tmp.unsqueeze(1)
         
     | 
| 
      
 367 
     | 
    
         
            +
                ) * scales.unsqueeze(1)
         
     | 
| 
      
 368 
     | 
    
         
            +
                return res.reshape(qweight_tmp.shape[0], -1)
         
     | 
| 
         @@ -3,7 +3,6 @@ from __future__ import annotations 
     | 
|
| 
       3 
3 
     | 
    
         | 
| 
       4 
4 
     | 
    
         
             
            import inspect
         
     | 
| 
       5 
5 
     | 
    
         
             
            from abc import ABC, abstractmethod
         
     | 
| 
       6 
     | 
    
         
            -
            from dataclasses import dataclass
         
     | 
| 
       7 
6 
     | 
    
         
             
            from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
         
     | 
| 
       8 
7 
     | 
    
         | 
| 
       9 
8 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -162,6 +161,26 @@ class QuantizationConfig(ABC): 
     | 
|
| 
       162 
161 
     | 
    
         
             
                    """
         
     | 
| 
       163 
162 
     | 
    
         
             
                    return None
         
     | 
| 
       164 
163 
     | 
    
         | 
| 
      
 164 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 165 
     | 
    
         
            +
                def _modelopt_override_quantization_method(
         
     | 
| 
      
 166 
     | 
    
         
            +
                    cls, hf_quant_config, user_quant
         
     | 
| 
      
 167 
     | 
    
         
            +
                ) -> Optional[str]:
         
     | 
| 
      
 168 
     | 
    
         
            +
                    """Shared ModelOpt quantization method override logic."""
         
     | 
| 
      
 169 
     | 
    
         
            +
                    if hf_quant_config is None:
         
     | 
| 
      
 170 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
                    # Check if this is a ModelOpt config
         
     | 
| 
      
 173 
     | 
    
         
            +
                    quant_algo = hf_quant_config.get("quant_algo", "").upper()
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
                    # If user specified generic "modelopt", auto-detect the specific method
         
     | 
| 
      
 176 
     | 
    
         
            +
                    if user_quant == "modelopt":
         
     | 
| 
      
 177 
     | 
    
         
            +
                        if "FP8" in quant_algo:
         
     | 
| 
      
 178 
     | 
    
         
            +
                            return "modelopt_fp8"
         
     | 
| 
      
 179 
     | 
    
         
            +
                        elif "NVFP4" in quant_algo or "FP4" in quant_algo:
         
     | 
| 
      
 180 
     | 
    
         
            +
                            return "modelopt_fp4"
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
       165 
184 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       166 
185 
     | 
    
         
             
                def get_from_keys(config: Dict[str, Any], keys: List[str]) -> Any:
         
     | 
| 
       167 
186 
     | 
    
         
             
                    """Get a value from the model's quantization config."""
         
     | 
| 
         @@ -19,37 +19,32 @@ from compressed_tensors.quantization import ( 
     | 
|
| 
       19 
19 
     | 
    
         
             
            )
         
     | 
| 
       20 
20 
     | 
    
         
             
            from pydantic import BaseModel
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
       22 
23 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import (
         
     | 
| 
       23 
24 
     | 
    
         
             
                LinearMethodBase,
         
     | 
| 
       24 
25 
     | 
    
         
             
                QuantizationConfig,
         
     | 
| 
       25 
26 
     | 
    
         
             
                QuantizeMethodBase,
         
     | 
| 
       26 
27 
     | 
    
         
             
            )
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.layers.quantization.compressed_tensors import WNA16_SUPPORTED_BITS
         
     | 
| 
       27 
29 
     | 
    
         
             
            from sglang.srt.layers.quantization.compressed_tensors.compressed_tensors_moe import (  # noqa: E501
         
     | 
| 
       28 
30 
     | 
    
         
             
                CompressedTensorsMoEMethod,
         
     | 
| 
       29 
31 
     | 
    
         
             
            )
         
     | 
| 
       30 
32 
     | 
    
         
             
            from sglang.srt.layers.quantization.compressed_tensors.schemes import (
         
     | 
| 
      
 33 
     | 
    
         
            +
                WNA16_SUPPORTED_BITS,
         
     | 
| 
       31 
34 
     | 
    
         
             
                CompressedTensorsScheme,
         
     | 
| 
       32 
35 
     | 
    
         
             
                CompressedTensorsW8A8Fp8,
         
     | 
| 
       33 
36 
     | 
    
         
             
                CompressedTensorsW8A8Int8,
         
     | 
| 
       34 
37 
     | 
    
         
             
                CompressedTensorsW8A16Fp8,
         
     | 
| 
      
 38 
     | 
    
         
            +
                CompressedTensorsWNA16,
         
     | 
| 
       35 
39 
     | 
    
         
             
            )
         
     | 
| 
       36 
40 
     | 
    
         
             
            from sglang.srt.layers.quantization.compressed_tensors.utils import (
         
     | 
| 
       37 
41 
     | 
    
         
             
                find_matched_target,
         
     | 
| 
       38 
42 
     | 
    
         
             
                is_activation_quantization_format,
         
     | 
| 
       39 
43 
     | 
    
         
             
                should_ignore_layer,
         
     | 
| 
       40 
44 
     | 
    
         
             
            )
         
     | 
| 
      
 45 
     | 
    
         
            +
            from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
         
     | 
| 
       41 
46 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
         
     | 
| 
       42 
47 
     | 
    
         | 
| 
       43 
     | 
    
         
            -
            try:
         
     | 
| 
       44 
     | 
    
         
            -
                from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import (
         
     | 
| 
       45 
     | 
    
         
            -
                    WNA16_SUPPORTED_BITS,
         
     | 
| 
       46 
     | 
    
         
            -
                    CompressedTensorsWNA16,
         
     | 
| 
       47 
     | 
    
         
            -
                )
         
     | 
| 
       48 
     | 
    
         
            -
             
     | 
| 
       49 
     | 
    
         
            -
                VLLM_AVAILABLE = True
         
     | 
| 
       50 
     | 
    
         
            -
            except ImportError:
         
     | 
| 
       51 
     | 
    
         
            -
                VLLM_AVAILABLE = False
         
     | 
| 
       52 
     | 
    
         
            -
             
     | 
| 
       53 
48 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       54 
49 
     | 
    
         | 
| 
       55 
50 
     | 
    
         
             
            __all__ = ["CompressedTensorsLinearMethod"]
         
     | 
| 
         @@ -76,6 +71,7 @@ class DeviceCapability(NamedTuple): 
     | 
|
| 
       76 
71 
     | 
    
         | 
| 
       77 
72 
     | 
    
         | 
| 
       78 
73 
     | 
    
         
             
            class CompressedTensorsConfig(QuantizationConfig):
         
     | 
| 
      
 74 
     | 
    
         
            +
                DeepSeekFP8Config = None
         
     | 
| 
       79 
75 
     | 
    
         | 
| 
       80 
76 
     | 
    
         
             
                def __init__(
         
     | 
| 
       81 
77 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -86,7 +82,7 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       86 
82 
     | 
    
         
             
                    sparsity_ignore_list: List[str],
         
     | 
| 
       87 
83 
     | 
    
         
             
                    kv_cache_scheme: Optional[Dict[str, Any]] = None,
         
     | 
| 
       88 
84 
     | 
    
         
             
                    config: Optional[Dict[str, Any]] = None,
         
     | 
| 
       89 
     | 
    
         
            -
                    packed_modules_mapping: Dict[str, List[str]] =  
     | 
| 
      
 85 
     | 
    
         
            +
                    packed_modules_mapping: Optional[Dict[str, List[str]]] = None,
         
     | 
| 
       90 
86 
     | 
    
         
             
                ):
         
     | 
| 
       91 
87 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       92 
88 
     | 
    
         
             
                    self.ignore = ignore
         
     | 
| 
         @@ -97,7 +93,7 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       97 
93 
     | 
    
         
             
                    self.sparsity_scheme_map = sparsity_scheme_map
         
     | 
| 
       98 
94 
     | 
    
         
             
                    self.sparsity_ignore_list = sparsity_ignore_list
         
     | 
| 
       99 
95 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       100 
     | 
    
         
            -
                    self.packed_modules_mapping = packed_modules_mapping
         
     | 
| 
      
 96 
     | 
    
         
            +
                    self.packed_modules_mapping = packed_modules_mapping or {}
         
     | 
| 
       101 
97 
     | 
    
         | 
| 
       102 
98 
     | 
    
         
             
                def get_linear_method(self) -> CompressedTensorsLinearMethod:
         
     | 
| 
       103 
99 
     | 
    
         
             
                    return CompressedTensorsLinearMethod(self)
         
     | 
| 
         @@ -129,6 +125,10 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       129 
125 
     | 
    
         
             
                    ):
         
     | 
| 
       130 
126 
     | 
    
         
             
                        return UnquantizedLinearMethod()
         
     | 
| 
       131 
127 
     | 
    
         
             
                    if isinstance(layer, LinearBase):
         
     | 
| 
      
 128 
     | 
    
         
            +
                        if CompressedTensorsConfig.DeepSeekFP8Config is not None:
         
     | 
| 
      
 129 
     | 
    
         
            +
                            return Fp8LinearMethod(CompressedTensorsConfig.DeepSeekFP8Config)
         
     | 
| 
      
 130 
     | 
    
         
            +
                        if envs.SGLANG_KT_MOE_AMX_WEIGHT_PATH.is_set():
         
     | 
| 
      
 131 
     | 
    
         
            +
                            return UnquantizedLinearMethod()
         
     | 
| 
       132 
132 
     | 
    
         
             
                        scheme = self.get_scheme(layer=layer, layer_name=prefix)
         
     | 
| 
       133 
133 
     | 
    
         
             
                        if scheme is None:
         
     | 
| 
       134 
134 
     | 
    
         
             
                            return UnquantizedLinearMethod()
         
     | 
| 
         @@ -137,7 +137,8 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       137 
137 
     | 
    
         
             
                    from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
       138 
138 
     | 
    
         | 
| 
       139 
139 
     | 
    
         
             
                    if isinstance(layer, FusedMoE):
         
     | 
| 
       140 
     | 
    
         
            -
                         
     | 
| 
      
 140 
     | 
    
         
            +
                        # Ktransformers use CompressedTensorsWNA16AMXMOEMethod if AMX weights are provided
         
     | 
| 
      
 141 
     | 
    
         
            +
                        return CompressedTensorsMoEMethod.get_moe_method(self, layer, prefix)
         
     | 
| 
       141 
142 
     | 
    
         
             
                    return None
         
     | 
| 
       142 
143 
     | 
    
         | 
| 
       143 
144 
     | 
    
         
             
                @classmethod
         
     | 
| 
         @@ -364,19 +365,6 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       364 
365 
     | 
    
         | 
| 
       365 
366 
     | 
    
         
             
                    # Detect If Mixed Precision
         
     | 
| 
       366 
367 
     | 
    
         
             
                    if self._is_wNa16_group_channel(weight_quant, input_quant):
         
     | 
| 
       367 
     | 
    
         
            -
                        if not VLLM_AVAILABLE:
         
     | 
| 
       368 
     | 
    
         
            -
                            raise ImportError(
         
     | 
| 
       369 
     | 
    
         
            -
                                "vllm is not installed, to use CompressedTensorsW4A16Sparse24 and CompressedTensorsWNA16, please install vllm"
         
     | 
| 
       370 
     | 
    
         
            -
                            )
         
     | 
| 
       371 
     | 
    
         
            -
                        if (
         
     | 
| 
       372 
     | 
    
         
            -
                            self.quant_format == CompressionFormat.marlin_24.value
         
     | 
| 
       373 
     | 
    
         
            -
                            and weight_quant.num_bits in W4A16SPARSE24_SUPPORTED_BITS
         
     | 
| 
       374 
     | 
    
         
            -
                        ):
         
     | 
| 
       375 
     | 
    
         
            -
                            return CompressedTensorsW4A16Sparse24(
         
     | 
| 
       376 
     | 
    
         
            -
                                strategy=weight_quant.strategy,
         
     | 
| 
       377 
     | 
    
         
            -
                                num_bits=weight_quant.num_bits,
         
     | 
| 
       378 
     | 
    
         
            -
                                group_size=weight_quant.group_size,
         
     | 
| 
       379 
     | 
    
         
            -
                            )
         
     | 
| 
       380 
368 
     | 
    
         
             
                        if (
         
     | 
| 
       381 
369 
     | 
    
         
             
                            self.quant_format == CompressionFormat.pack_quantized.value
         
     | 
| 
       382 
370 
     | 
    
         
             
                            and weight_quant.num_bits in WNA16_SUPPORTED_BITS
         
     | 
| 
         @@ -387,6 +375,10 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       387 
375 
     | 
    
         
             
                                group_size=weight_quant.group_size,
         
     | 
| 
       388 
376 
     | 
    
         
             
                                actorder=weight_quant.actorder,
         
     | 
| 
       389 
377 
     | 
    
         
             
                            )
         
     | 
| 
      
 378 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 379 
     | 
    
         
            +
                            raise ImportError(
         
     | 
| 
      
 380 
     | 
    
         
            +
                                "Other method (CompressedTensorsW4A16Sparse24) is not supported now"
         
     | 
| 
      
 381 
     | 
    
         
            +
                            )
         
     | 
| 
       390 
382 
     | 
    
         | 
| 
       391 
383 
     | 
    
         
             
                    if is_activation_quantization_format(self.quant_format):
         
     | 
| 
       392 
384 
     | 
    
         
             
                        if self._is_fp8_w8a8(weight_quant, input_quant):
         
     | 
| 
         @@ -410,10 +402,6 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       410 
402 
     | 
    
         | 
| 
       411 
403 
     | 
    
         
             
                        # note: input_quant can be None
         
     | 
| 
       412 
404 
     | 
    
         
             
                        if self._is_fp8_w8a16(weight_quant, input_quant):
         
     | 
| 
       413 
     | 
    
         
            -
                            if not VLLM_AVAILABLE:
         
     | 
| 
       414 
     | 
    
         
            -
                                raise ImportError(
         
     | 
| 
       415 
     | 
    
         
            -
                                    "vllm is not installed, to use CompressedTensorsW8A16Fp8, please install vllm"
         
     | 
| 
       416 
     | 
    
         
            -
                                )
         
     | 
| 
       417 
405 
     | 
    
         
             
                            is_static_input_scheme = input_quant and not input_quant.dynamic
         
     | 
| 
       418 
406 
     | 
    
         
             
                            return CompressedTensorsW8A16Fp8(
         
     | 
| 
       419 
407 
     | 
    
         
             
                                strategy=weight_quant.strategy,
         
     | 
| 
         @@ -454,7 +442,7 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       454 
442 
     | 
    
         | 
| 
       455 
443 
     | 
    
         
             
                    # Find the "target" in the compressed-tensors config
         
     | 
| 
       456 
444 
     | 
    
         
             
                    # that our layer conforms to.
         
     | 
| 
       457 
     | 
    
         
            -
                    # TODO  
     | 
| 
      
 445 
     | 
    
         
            +
                    # TODO : add compressed-tensors as dep
         
     | 
| 
       458 
446 
     | 
    
         
             
                    # so we do not have to re-write these functions
         
     | 
| 
       459 
447 
     | 
    
         
             
                    # need to make accelerate optional in ct to do this
         
     | 
| 
       460 
448 
     | 
    
         | 
| 
         @@ -492,24 +480,7 @@ class CompressedTensorsConfig(QuantizationConfig): 
     | 
|
| 
       492 
480 
     | 
    
         
             
                        input_quant=input_quant,
         
     | 
| 
       493 
481 
     | 
    
         
             
                        sparsity_scheme=sparsity_scheme,
         
     | 
| 
       494 
482 
     | 
    
         
             
                    ):
         
     | 
| 
       495 
     | 
    
         
            -
                         
     | 
| 
       496 
     | 
    
         
            -
                            raise ImportError(
         
     | 
| 
       497 
     | 
    
         
            -
                                "vllm is not installed, to use CompressedTensors24, please install vllm"
         
     | 
| 
       498 
     | 
    
         
            -
                            )
         
     | 
| 
       499 
     | 
    
         
            -
                        # Have a valid sparsity scheme
         
     | 
| 
       500 
     | 
    
         
            -
                        # Validate layer is supported by Cutlass 2:4 Kernel
         
     | 
| 
       501 
     | 
    
         
            -
                        model_compression_config = (
         
     | 
| 
       502 
     | 
    
         
            -
                            None
         
     | 
| 
       503 
     | 
    
         
            -
                            if sparsity_scheme is None or sparsity_scheme.format == "dense"
         
     | 
| 
       504 
     | 
    
         
            -
                            else self.config
         
     | 
| 
       505 
     | 
    
         
            -
                        )
         
     | 
| 
       506 
     | 
    
         
            -
             
     | 
| 
       507 
     | 
    
         
            -
                        scheme = CompressedTensors24(
         
     | 
| 
       508 
     | 
    
         
            -
                            quantized=weight_quant is not None or input_quant is not None,
         
     | 
| 
       509 
     | 
    
         
            -
                            weight_quant=weight_quant,
         
     | 
| 
       510 
     | 
    
         
            -
                            input_quant=input_quant,
         
     | 
| 
       511 
     | 
    
         
            -
                            model_compression_config=model_compression_config,
         
     | 
| 
       512 
     | 
    
         
            -
                        )
         
     | 
| 
      
 483 
     | 
    
         
            +
                        raise ImportError("CompressedTensors24 is not supported now")
         
     | 
| 
       513 
484 
     | 
    
         
             
                    elif weight_quant is None:
         
     | 
| 
       514 
485 
     | 
    
         
             
                        logger.warning_once(
         
     | 
| 
       515 
486 
     | 
    
         
             
                            "Acceleration for non-quantized schemes is "
         
     |