sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,503 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/compiler_interface.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import contextlib
         
     | 
| 
      
 4 
     | 
    
         
            +
            import copy
         
     | 
| 
      
 5 
     | 
    
         
            +
            import hashlib
         
     | 
| 
      
 6 
     | 
    
         
            +
            import os
         
     | 
| 
      
 7 
     | 
    
         
            +
            from contextlib import ExitStack
         
     | 
| 
      
 8 
     | 
    
         
            +
            from typing import Any, Callable, Optional
         
     | 
| 
      
 9 
     | 
    
         
            +
            from unittest.mock import patch
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 12 
     | 
    
         
            +
            import torch._inductor.compile_fx
         
     | 
| 
      
 13 
     | 
    
         
            +
            import torch.fx as fx
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.compilation.compilation_counter import compilation_counter
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.compilation.inductor_pass import pass_context
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
            class CompilerInterface:
         
     | 
| 
      
 20 
     | 
    
         
            +
                """
         
     | 
| 
      
 21 
     | 
    
         
            +
                The interface for a compiler that can be used by vLLM.
         
     | 
| 
      
 22 
     | 
    
         
            +
                """
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
                # The name of the compiler, e.g. inductor.
         
     | 
| 
      
 25 
     | 
    
         
            +
                # This is a class-level attribute.
         
     | 
| 
      
 26 
     | 
    
         
            +
                name: str
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
                def initialize_cache(
         
     | 
| 
      
 29 
     | 
    
         
            +
                    self, cache_dir: str, disable_cache: bool = False, prefix: str = ""
         
     | 
| 
      
 30 
     | 
    
         
            +
                ):
         
     | 
| 
      
 31 
     | 
    
         
            +
                    """
         
     | 
| 
      
 32 
     | 
    
         
            +
                    when the vLLM process uses `cache_dir` as the cache directory,
         
     | 
| 
      
 33 
     | 
    
         
            +
                    the compiler should initialize itself with the cache directory,
         
     | 
| 
      
 34 
     | 
    
         
            +
                    e.g. by re-directing its own cache directory to a sub-directory.
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
                    prefix can be used in combination with cache_dir to figure out the base
         
     | 
| 
      
 37 
     | 
    
         
            +
                    cache directory, e.g. there're multiple parts of model being compiled,
         
     | 
| 
      
 38 
     | 
    
         
            +
                    but we want to share the same cache directory for all of them.
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                    e.g.
         
     | 
| 
      
 41 
     | 
    
         
            +
                    cache_dir = "/path/to/dir/backbone", prefix = "backbone"
         
     | 
| 
      
 42 
     | 
    
         
            +
                    cache_dir = "/path/to/dir/eagle_head", prefix = "eagle_head"
         
     | 
| 
      
 43 
     | 
    
         
            +
                    """
         
     | 
| 
      
 44 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
                def compute_hash(self) -> str:
         
     | 
| 
      
 47 
     | 
    
         
            +
                    """
         
     | 
| 
      
 48 
     | 
    
         
            +
                    Gather all the relevant information from the vLLM config,
         
     | 
| 
      
 49 
     | 
    
         
            +
                    to compute a hash so that we can cache the compiled model.
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                    See [`VllmConfig.compute_hash`][vllm.config.VllmConfig.compute_hash]
         
     | 
| 
      
 52 
     | 
    
         
            +
                    to check what information
         
     | 
| 
      
 53 
     | 
    
         
            +
                    is already considered by default. This function should only
         
     | 
| 
      
 54 
     | 
    
         
            +
                    consider the information that is specific to the compiler.
         
     | 
| 
      
 55 
     | 
    
         
            +
                    """
         
     | 
| 
      
 56 
     | 
    
         
            +
                    return ""
         
     | 
| 
      
 57 
     | 
    
         
            +
             
     | 
| 
      
 58 
     | 
    
         
            +
                def compile(
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 61 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 62 
     | 
    
         
            +
                    compiler_config: dict[str, Any],
         
     | 
| 
      
 63 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 64 
     | 
    
         
            +
                    key: Optional[str] = None,
         
     | 
| 
      
 65 
     | 
    
         
            +
                ) -> tuple[Optional[Callable], Optional[Any]]:
         
     | 
| 
      
 66 
     | 
    
         
            +
                    """
         
     | 
| 
      
 67 
     | 
    
         
            +
                    Compile the graph with the given example inputs and compiler config,
         
     | 
| 
      
 68 
     | 
    
         
            +
                    with a runtime shape. If the `runtime_shape` is None, it means
         
     | 
| 
      
 69 
     | 
    
         
            +
                    the `example_inputs` have a dynamic shape. Otherwise, the
         
     | 
| 
      
 70 
     | 
    
         
            +
                    `runtime_shape` specifies the shape of the inputs. Right now we only
         
     | 
| 
      
 71 
     | 
    
         
            +
                    support one variable shape for all inputs, which is the batchsize
         
     | 
| 
      
 72 
     | 
    
         
            +
                    (number of tokens) during inference.
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
                    Dynamo will make sure `graph(*example_inputs)` is valid.
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                    The function should return a compiled callable function, as well as
         
     | 
| 
      
 77 
     | 
    
         
            +
                    a handle that can be used to directly load the compiled function.
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                    The handle should be a plain Python object, preferably a string or a
         
     | 
| 
      
 80 
     | 
    
         
            +
                    file path for readability.
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                    If the compiler doesn't support caching, it should return None for the
         
     | 
| 
      
 83 
     | 
    
         
            +
                    handle. If the compiler fails to compile the graph, it should return
         
     | 
| 
      
 84 
     | 
    
         
            +
                    None for the compiled function as well.
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
                    `key` is required for StandaloneInductorAdapter, it specifies where to
         
     | 
| 
      
 87 
     | 
    
         
            +
                    save the compiled artifact. The compiled artifact gets saved to
         
     | 
| 
      
 88 
     | 
    
         
            +
                    `cache_dir/key`.
         
     | 
| 
      
 89 
     | 
    
         
            +
                    """
         
     | 
| 
      
 90 
     | 
    
         
            +
                    return None, None
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                def load(
         
     | 
| 
      
 93 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 94 
     | 
    
         
            +
                    handle: Any,
         
     | 
| 
      
 95 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 96 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 97 
     | 
    
         
            +
                    graph_index: int,
         
     | 
| 
      
 98 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 99 
     | 
    
         
            +
                ) -> Callable:
         
     | 
| 
      
 100 
     | 
    
         
            +
                    """
         
     | 
| 
      
 101 
     | 
    
         
            +
                    Load the compiled function from the handle.
         
     | 
| 
      
 102 
     | 
    
         
            +
                    Raises an error if the handle is invalid.
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
                    The handle is the second return value of the `compile` function.
         
     | 
| 
      
 105 
     | 
    
         
            +
                    """
         
     | 
| 
      
 106 
     | 
    
         
            +
                    raise NotImplementedError("caching is not supported")
         
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
            def get_inductor_factors() -> list[Any]:
         
     | 
| 
      
 110 
     | 
    
         
            +
                factors: list[Any] = []
         
     | 
| 
      
 111 
     | 
    
         
            +
                # summarize system state
         
     | 
| 
      
 112 
     | 
    
         
            +
                from torch._inductor.codecache import CacheBase
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                system_factors = CacheBase.get_system()
         
     | 
| 
      
 115 
     | 
    
         
            +
                factors.append(system_factors)
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                # summarize pytorch state
         
     | 
| 
      
 118 
     | 
    
         
            +
                from torch._inductor.codecache import torch_key
         
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
                torch_factors = torch_key()
         
     | 
| 
      
 121 
     | 
    
         
            +
                factors.append(torch_factors)
         
     | 
| 
      
 122 
     | 
    
         
            +
                return factors
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
            class AlwaysHitShapeEnv:
         
     | 
| 
      
 126 
     | 
    
         
            +
                """
         
     | 
| 
      
 127 
     | 
    
         
            +
                Why do we need this class:
         
     | 
| 
      
 128 
     | 
    
         
            +
             
     | 
| 
      
 129 
     | 
    
         
            +
                For normal `torch.compile` usage, every compilation will have
         
     | 
| 
      
 130 
     | 
    
         
            +
                one Dynamo bytecode compilation and one Inductor compilation.
         
     | 
| 
      
 131 
     | 
    
         
            +
                The Inductor compilation happens under the context of the
         
     | 
| 
      
 132 
     | 
    
         
            +
                Dynamo bytecode compilation, and that context is used to
         
     | 
| 
      
 133 
     | 
    
         
            +
                determine the dynamic shape information, etc.
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                For our use case, we only run Dynamo bytecode compilation once,
         
     | 
| 
      
 136 
     | 
    
         
            +
                and run Inductor compilation multiple times with different shapes
         
     | 
| 
      
 137 
     | 
    
         
            +
                plus a general shape. The compilation for specific shapes happens
         
     | 
| 
      
 138 
     | 
    
         
            +
                outside of the context of the Dynamo bytecode compilation. At that
         
     | 
| 
      
 139 
     | 
    
         
            +
                time, we don't have shape environment to provide to Inductor, and
         
     | 
| 
      
 140 
     | 
    
         
            +
                it will fail the Inductor code cache lookup.
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                By providing a dummy shape environment that always hits, we can
         
     | 
| 
      
 143 
     | 
    
         
            +
                make the Inductor code cache lookup always hit, and we can
         
     | 
| 
      
 144 
     | 
    
         
            +
                compile the graph for different shapes as needed.
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                The following dummy methods are obtained by trial-and-error
         
     | 
| 
      
 147 
     | 
    
         
            +
                until it works.
         
     | 
| 
      
 148 
     | 
    
         
            +
                """
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                def __init__(self) -> None:
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self.guards: list[Any] = []
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                def evaluate_guards_expression(self, *args, **kwargs):
         
     | 
| 
      
 154 
     | 
    
         
            +
                    return True
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
                def get_pruned_guards(self, *args, **kwargs):
         
     | 
| 
      
 157 
     | 
    
         
            +
                    return []
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                def produce_guards_expression(self, *args, **kwargs):
         
     | 
| 
      
 160 
     | 
    
         
            +
                    return ""
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
      
 163 
     | 
    
         
            +
            class InductorAdaptor(CompilerInterface):
         
     | 
| 
      
 164 
     | 
    
         
            +
                """
         
     | 
| 
      
 165 
     | 
    
         
            +
                The adaptor for the Inductor compiler, version 2.5, 2.6, 2.7.
         
     | 
| 
      
 166 
     | 
    
         
            +
                """
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                name = "inductor"
         
     | 
| 
      
 169 
     | 
    
         
            +
             
     | 
| 
      
 170 
     | 
    
         
            +
                def compute_hash(self) -> str:
         
     | 
| 
      
 171 
     | 
    
         
            +
                    factors = get_inductor_factors()
         
     | 
| 
      
 172 
     | 
    
         
            +
                    hash_str = hashlib.md5(
         
     | 
| 
      
 173 
     | 
    
         
            +
                        str(factors).encode(), usedforsecurity=False
         
     | 
| 
      
 174 
     | 
    
         
            +
                    ).hexdigest()[:10]
         
     | 
| 
      
 175 
     | 
    
         
            +
                    return hash_str
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
                def initialize_cache(
         
     | 
| 
      
 178 
     | 
    
         
            +
                    self, cache_dir: str, disable_cache: bool = False, prefix: str = ""
         
     | 
| 
      
 179 
     | 
    
         
            +
                ):
         
     | 
| 
      
 180 
     | 
    
         
            +
                    self.cache_dir = cache_dir
         
     | 
| 
      
 181 
     | 
    
         
            +
                    self.prefix = prefix
         
     | 
| 
      
 182 
     | 
    
         
            +
                    self.base_cache_dir = cache_dir[: -len(prefix)] if prefix else cache_dir
         
     | 
| 
      
 183 
     | 
    
         
            +
                    if disable_cache:
         
     | 
| 
      
 184 
     | 
    
         
            +
                        return
         
     | 
| 
      
 185 
     | 
    
         
            +
                    # redirect the cache directory to a sub-directory
         
     | 
| 
      
 186 
     | 
    
         
            +
                    # set flags so that Inductor and Triton store their cache
         
     | 
| 
      
 187 
     | 
    
         
            +
                    # in the cache_dir, then users only need to copy the cache_dir
         
     | 
| 
      
 188 
     | 
    
         
            +
                    # to another machine to reuse the cache.
         
     | 
| 
      
 189 
     | 
    
         
            +
                    inductor_cache = os.path.join(self.base_cache_dir, "inductor_cache")
         
     | 
| 
      
 190 
     | 
    
         
            +
                    os.makedirs(inductor_cache, exist_ok=True)
         
     | 
| 
      
 191 
     | 
    
         
            +
                    os.environ["TORCHINDUCTOR_CACHE_DIR"] = inductor_cache
         
     | 
| 
      
 192 
     | 
    
         
            +
                    triton_cache = os.path.join(self.base_cache_dir, "triton_cache")
         
     | 
| 
      
 193 
     | 
    
         
            +
                    os.makedirs(triton_cache, exist_ok=True)
         
     | 
| 
      
 194 
     | 
    
         
            +
                    os.environ["TRITON_CACHE_DIR"] = triton_cache
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                def compile(
         
     | 
| 
      
 197 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 198 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 199 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 200 
     | 
    
         
            +
                    compiler_config: dict[str, Any],
         
     | 
| 
      
 201 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 202 
     | 
    
         
            +
                    key: Optional[str] = None,
         
     | 
| 
      
 203 
     | 
    
         
            +
                ) -> tuple[Optional[Callable], Optional[Any]]:
         
     | 
| 
      
 204 
     | 
    
         
            +
                    compilation_counter.num_inductor_compiles += 1
         
     | 
| 
      
 205 
     | 
    
         
            +
                    from torch._inductor.compile_fx import compile_fx
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
                    current_config = {}
         
     | 
| 
      
 208 
     | 
    
         
            +
                    if compiler_config is not None:
         
     | 
| 
      
 209 
     | 
    
         
            +
                        current_config.update(compiler_config)
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
                    # disable remote cache
         
     | 
| 
      
 212 
     | 
    
         
            +
                    current_config["fx_graph_cache"] = True
         
     | 
| 
      
 213 
     | 
    
         
            +
                    current_config["fx_graph_remote_cache"] = False
         
     | 
| 
      
 214 
     | 
    
         
            +
             
     | 
| 
      
 215 
     | 
    
         
            +
                    set_inductor_config(current_config, runtime_shape)
         
     | 
| 
      
 216 
     | 
    
         
            +
             
     | 
| 
      
 217 
     | 
    
         
            +
                    # inductor can inplace modify the graph, so we need to copy it
         
     | 
| 
      
 218 
     | 
    
         
            +
                    # see https://github.com/pytorch/pytorch/issues/138980
         
     | 
| 
      
 219 
     | 
    
         
            +
                    graph = copy.deepcopy(graph)
         
     | 
| 
      
 220 
     | 
    
         
            +
             
     | 
| 
      
 221 
     | 
    
         
            +
                    # it's the first time we compile this graph
         
     | 
| 
      
 222 
     | 
    
         
            +
                    # the assumption is that we don't have nested Inductor compilation.
         
     | 
| 
      
 223 
     | 
    
         
            +
                    # compiled_fx_graph_hash will only be called once, and we can hook
         
     | 
| 
      
 224 
     | 
    
         
            +
                    # it to get the hash of the compiled graph directly.
         
     | 
| 
      
 225 
     | 
    
         
            +
             
     | 
| 
      
 226 
     | 
    
         
            +
                    hash_str, file_path = None, None
         
     | 
| 
      
 227 
     | 
    
         
            +
                    from torch._inductor.codecache import FxGraphCache, compiled_fx_graph_hash
         
     | 
| 
      
 228 
     | 
    
         
            +
             
     | 
| 
      
 229 
     | 
    
         
            +
                    if torch.__version__.startswith("2.5"):
         
     | 
| 
      
 230 
     | 
    
         
            +
                        original_load = FxGraphCache.load
         
     | 
| 
      
 231 
     | 
    
         
            +
                        original_load_name = "torch._inductor.codecache.FxGraphCache.load"
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
      
 233 
     | 
    
         
            +
                        def hijack_load(*args, **kwargs):
         
     | 
| 
      
 234 
     | 
    
         
            +
                            inductor_compiled_graph = original_load(*args, **kwargs)
         
     | 
| 
      
 235 
     | 
    
         
            +
                            nonlocal file_path
         
     | 
| 
      
 236 
     | 
    
         
            +
                            compiled_fn = inductor_compiled_graph.current_callable
         
     | 
| 
      
 237 
     | 
    
         
            +
                            file_path = compiled_fn.__code__.co_filename  # noqa
         
     | 
| 
      
 238 
     | 
    
         
            +
                            if not file_path.startswith(self.base_cache_dir):
         
     | 
| 
      
 239 
     | 
    
         
            +
                                # hooked in the align_inputs_from_check_idxs function
         
     | 
| 
      
 240 
     | 
    
         
            +
                                # in torch/_inductor/utils.py
         
     | 
| 
      
 241 
     | 
    
         
            +
                                for cell in compiled_fn.__closure__:
         
     | 
| 
      
 242 
     | 
    
         
            +
                                    if not callable(cell.cell_contents):
         
     | 
| 
      
 243 
     | 
    
         
            +
                                        continue
         
     | 
| 
      
 244 
     | 
    
         
            +
                                    if cell.cell_contents.__code__.co_filename.startswith(
         
     | 
| 
      
 245 
     | 
    
         
            +
                                        self.base_cache_dir
         
     | 
| 
      
 246 
     | 
    
         
            +
                                    ):
         
     | 
| 
      
 247 
     | 
    
         
            +
                                        # this is the real file path compiled from Inductor
         
     | 
| 
      
 248 
     | 
    
         
            +
                                        file_path = cell.cell_contents.__code__.co_filename
         
     | 
| 
      
 249 
     | 
    
         
            +
                                        break
         
     | 
| 
      
 250 
     | 
    
         
            +
                            return inductor_compiled_graph
         
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
                        hijacked_compile_fx_inner = (
         
     | 
| 
      
 253 
     | 
    
         
            +
                            torch._inductor.compile_fx.compile_fx_inner
         
     | 
| 
      
 254 
     | 
    
         
            +
                        )  # noqa
         
     | 
| 
      
 255 
     | 
    
         
            +
                    elif torch.__version__ >= "2.6":
         
     | 
| 
      
 256 
     | 
    
         
            +
                        # function renamed in 2.6
         
     | 
| 
      
 257 
     | 
    
         
            +
                        original_load_name = None
         
     | 
| 
      
 258 
     | 
    
         
            +
             
     | 
| 
      
 259 
     | 
    
         
            +
                        def hijacked_compile_fx_inner(*args, **kwargs):
         
     | 
| 
      
 260 
     | 
    
         
            +
                            output = torch._inductor.compile_fx.compile_fx_inner(*args, **kwargs)
         
     | 
| 
      
 261 
     | 
    
         
            +
                            nonlocal hash_str
         
     | 
| 
      
 262 
     | 
    
         
            +
                            inductor_compiled_graph = output
         
     | 
| 
      
 263 
     | 
    
         
            +
                            if inductor_compiled_graph is not None:
         
     | 
| 
      
 264 
     | 
    
         
            +
                                nonlocal file_path
         
     | 
| 
      
 265 
     | 
    
         
            +
                                compiled_fn = inductor_compiled_graph.current_callable
         
     | 
| 
      
 266 
     | 
    
         
            +
                                file_path = compiled_fn.__code__.co_filename  # noqa
         
     | 
| 
      
 267 
     | 
    
         
            +
                                if not file_path.startswith(self.base_cache_dir):
         
     | 
| 
      
 268 
     | 
    
         
            +
                                    # hooked in the align_inputs_from_check_idxs function
         
     | 
| 
      
 269 
     | 
    
         
            +
                                    # in torch/_inductor/utils.py
         
     | 
| 
      
 270 
     | 
    
         
            +
                                    for cell in compiled_fn.__closure__:
         
     | 
| 
      
 271 
     | 
    
         
            +
                                        if not callable(cell.cell_contents):
         
     | 
| 
      
 272 
     | 
    
         
            +
                                            continue
         
     | 
| 
      
 273 
     | 
    
         
            +
                                        code = cell.cell_contents.__code__
         
     | 
| 
      
 274 
     | 
    
         
            +
                                        if code.co_filename.startswith(self.base_cache_dir):
         
     | 
| 
      
 275 
     | 
    
         
            +
                                            # this is the real file path
         
     | 
| 
      
 276 
     | 
    
         
            +
                                            # compiled from Inductor
         
     | 
| 
      
 277 
     | 
    
         
            +
                                            file_path = code.co_filename
         
     | 
| 
      
 278 
     | 
    
         
            +
                                            break
         
     | 
| 
      
 279 
     | 
    
         
            +
                                hash_str = inductor_compiled_graph._fx_graph_cache_key
         
     | 
| 
      
 280 
     | 
    
         
            +
                            return output
         
     | 
| 
      
 281 
     | 
    
         
            +
             
     | 
| 
      
 282 
     | 
    
         
            +
                    def hijack_compiled_fx_graph_hash(*args, **kwargs):
         
     | 
| 
      
 283 
     | 
    
         
            +
                        out = compiled_fx_graph_hash(*args, **kwargs)
         
     | 
| 
      
 284 
     | 
    
         
            +
                        nonlocal hash_str
         
     | 
| 
      
 285 
     | 
    
         
            +
                        hash_str = out[0]
         
     | 
| 
      
 286 
     | 
    
         
            +
                        return out
         
     | 
| 
      
 287 
     | 
    
         
            +
             
     | 
| 
      
 288 
     | 
    
         
            +
                    def _check_can_cache(*args, **kwargs):
         
     | 
| 
      
 289 
     | 
    
         
            +
                        # no error means it can be cached.
         
     | 
| 
      
 290 
     | 
    
         
            +
                        # Inductor refuses to cache the graph outside of Dynamo
         
     | 
| 
      
 291 
     | 
    
         
            +
                        # tracing context, and also disables caching for graphs
         
     | 
| 
      
 292 
     | 
    
         
            +
                        # with high-order ops.
         
     | 
| 
      
 293 
     | 
    
         
            +
                        # For vLLM, in either case, we want to cache the graph.
         
     | 
| 
      
 294 
     | 
    
         
            +
                        # see https://github.com/pytorch/pytorch/blob/9f5ebf3fc609105a74eab4ccc24932d6353ff566/torch/_inductor/codecache.py#L1221 # noqa
         
     | 
| 
      
 295 
     | 
    
         
            +
                        return
         
     | 
| 
      
 296 
     | 
    
         
            +
             
     | 
| 
      
 297 
     | 
    
         
            +
                    def _get_shape_env() -> AlwaysHitShapeEnv:
         
     | 
| 
      
 298 
     | 
    
         
            +
                        return AlwaysHitShapeEnv()
         
     | 
| 
      
 299 
     | 
    
         
            +
             
     | 
| 
      
 300 
     | 
    
         
            +
                    with ExitStack() as stack:
         
     | 
| 
      
 301 
     | 
    
         
            +
                        # hijack to get the compiled graph itself
         
     | 
| 
      
 302 
     | 
    
         
            +
                        if original_load_name is not None:
         
     | 
| 
      
 303 
     | 
    
         
            +
                            stack.enter_context(patch(original_load_name, hijack_load))
         
     | 
| 
      
 304 
     | 
    
         
            +
             
     | 
| 
      
 305 
     | 
    
         
            +
                        # for hijacking the hash of the compiled graph
         
     | 
| 
      
 306 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 307 
     | 
    
         
            +
                            patch(
         
     | 
| 
      
 308 
     | 
    
         
            +
                                "torch._inductor.codecache.compiled_fx_graph_hash",
         
     | 
| 
      
 309 
     | 
    
         
            +
                                hijack_compiled_fx_graph_hash,
         
     | 
| 
      
 310 
     | 
    
         
            +
                            )
         
     | 
| 
      
 311 
     | 
    
         
            +
                        )
         
     | 
| 
      
 312 
     | 
    
         
            +
             
     | 
| 
      
 313 
     | 
    
         
            +
                        # for providing a dummy shape environment
         
     | 
| 
      
 314 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 315 
     | 
    
         
            +
                            patch(
         
     | 
| 
      
 316 
     | 
    
         
            +
                                "torch._inductor.codecache.FxGraphCache._get_shape_env",
         
     | 
| 
      
 317 
     | 
    
         
            +
                                _get_shape_env,
         
     | 
| 
      
 318 
     | 
    
         
            +
                            )
         
     | 
| 
      
 319 
     | 
    
         
            +
                        )
         
     | 
| 
      
 320 
     | 
    
         
            +
             
     | 
| 
      
 321 
     | 
    
         
            +
                        from torch._functorch._aot_autograd.autograd_cache import AOTAutogradCache
         
     | 
| 
      
 322 
     | 
    
         
            +
             
     | 
| 
      
 323 
     | 
    
         
            +
                        # torch 2.8+ on main uses _get_shape_env in AOTAutogradCache
         
     | 
| 
      
 324 
     | 
    
         
            +
                        if hasattr(AOTAutogradCache, "_get_shape_env"):
         
     | 
| 
      
 325 
     | 
    
         
            +
                            stack.enter_context(
         
     | 
| 
      
 326 
     | 
    
         
            +
                                patch(
         
     | 
| 
      
 327 
     | 
    
         
            +
                                    "torch._functorch._aot_autograd.autograd_cache.AOTAutogradCache._get_shape_env",
         
     | 
| 
      
 328 
     | 
    
         
            +
                                    _get_shape_env,
         
     | 
| 
      
 329 
     | 
    
         
            +
                                )
         
     | 
| 
      
 330 
     | 
    
         
            +
                            )
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
                        # for forcing the graph to be cached
         
     | 
| 
      
 333 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 334 
     | 
    
         
            +
                            patch(
         
     | 
| 
      
 335 
     | 
    
         
            +
                                "torch._inductor.codecache.FxGraphCache._check_can_cache",
         
     | 
| 
      
 336 
     | 
    
         
            +
                                _check_can_cache,
         
     | 
| 
      
 337 
     | 
    
         
            +
                            )
         
     | 
| 
      
 338 
     | 
    
         
            +
                        )
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
                        # Dynamo metrics context, see method for more details.
         
     | 
| 
      
 341 
     | 
    
         
            +
                        stack.enter_context(self.metrics_context())
         
     | 
| 
      
 342 
     | 
    
         
            +
             
     | 
| 
      
 343 
     | 
    
         
            +
                        # Disable remote caching. When these are on, on remote cache-hit,
         
     | 
| 
      
 344 
     | 
    
         
            +
                        # the monkey-patched functions never actually get called.
         
     | 
| 
      
 345 
     | 
    
         
            +
                        # vLLM today assumes and requires the monkey-patched functions to
         
     | 
| 
      
 346 
     | 
    
         
            +
                        # get hit.
         
     | 
| 
      
 347 
     | 
    
         
            +
                        # TODO(zou3519): we're going to replace this all with
         
     | 
| 
      
 348 
     | 
    
         
            +
                        # standalone_compile sometime.
         
     | 
| 
      
 349 
     | 
    
         
            +
             
     | 
| 
      
 350 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 351 
     | 
    
         
            +
                            torch._inductor.config.patch(fx_graph_remote_cache=False)
         
     | 
| 
      
 352 
     | 
    
         
            +
                        )
         
     | 
| 
      
 353 
     | 
    
         
            +
                        # InductorAdaptor (unfortunately) requires AOTAutogradCache
         
     | 
| 
      
 354 
     | 
    
         
            +
                        # to be turned off to run. It will fail to acquire the hash_str
         
     | 
| 
      
 355 
     | 
    
         
            +
                        # and error if not.
         
     | 
| 
      
 356 
     | 
    
         
            +
                        # StandaloneInductorAdaptor (PyTorch 2.8+) fixes this problem.
         
     | 
| 
      
 357 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 358 
     | 
    
         
            +
                            torch._functorch.config.patch(enable_autograd_cache=False)
         
     | 
| 
      
 359 
     | 
    
         
            +
                        )
         
     | 
| 
      
 360 
     | 
    
         
            +
                        stack.enter_context(
         
     | 
| 
      
 361 
     | 
    
         
            +
                            torch._functorch.config.patch(enable_remote_autograd_cache=False)
         
     | 
| 
      
 362 
     | 
    
         
            +
                        )
         
     | 
| 
      
 363 
     | 
    
         
            +
             
     | 
| 
      
 364 
     | 
    
         
            +
                        with pass_context(runtime_shape):
         
     | 
| 
      
 365 
     | 
    
         
            +
                            compiled_graph = compile_fx(
         
     | 
| 
      
 366 
     | 
    
         
            +
                                graph,
         
     | 
| 
      
 367 
     | 
    
         
            +
                                example_inputs,
         
     | 
| 
      
 368 
     | 
    
         
            +
                                inner_compile=hijacked_compile_fx_inner,
         
     | 
| 
      
 369 
     | 
    
         
            +
                                config_patches=current_config,
         
     | 
| 
      
 370 
     | 
    
         
            +
                            )
         
     | 
| 
      
 371 
     | 
    
         
            +
                    return compiled_graph, (hash_str, file_path)
         
     | 
| 
      
 372 
     | 
    
         
            +
             
     | 
| 
      
 373 
     | 
    
         
            +
                def load(
         
     | 
| 
      
 374 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 375 
     | 
    
         
            +
                    handle: Any,
         
     | 
| 
      
 376 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 377 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 378 
     | 
    
         
            +
                    graph_index: int,
         
     | 
| 
      
 379 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 380 
     | 
    
         
            +
                ) -> Callable:
         
     | 
| 
      
 381 
     | 
    
         
            +
                    assert isinstance(handle, tuple)
         
     | 
| 
      
 382 
     | 
    
         
            +
                    assert isinstance(handle[0], str)
         
     | 
| 
      
 383 
     | 
    
         
            +
                    assert isinstance(handle[1], str)
         
     | 
| 
      
 384 
     | 
    
         
            +
                    hash_str = handle[0]
         
     | 
| 
      
 385 
     | 
    
         
            +
             
     | 
| 
      
 386 
     | 
    
         
            +
                    from torch._functorch._aot_autograd.autograd_cache import AOTAutogradCache
         
     | 
| 
      
 387 
     | 
    
         
            +
                    from torch._inductor.codecache import FxGraphCache
         
     | 
| 
      
 388 
     | 
    
         
            +
             
     | 
| 
      
 389 
     | 
    
         
            +
                    with ExitStack() as exit_stack:
         
     | 
| 
      
 390 
     | 
    
         
            +
                        exit_stack.enter_context(
         
     | 
| 
      
 391 
     | 
    
         
            +
                            patch(
         
     | 
| 
      
 392 
     | 
    
         
            +
                                "torch._inductor.codecache.FxGraphCache._get_shape_env",
         
     | 
| 
      
 393 
     | 
    
         
            +
                                lambda *args, **kwargs: AlwaysHitShapeEnv(),
         
     | 
| 
      
 394 
     | 
    
         
            +
                            )
         
     | 
| 
      
 395 
     | 
    
         
            +
                        )
         
     | 
| 
      
 396 
     | 
    
         
            +
                        # torch 2.8+ on main uses _get_shape_env in AOTAutogradCache
         
     | 
| 
      
 397 
     | 
    
         
            +
                        if hasattr(AOTAutogradCache, "_get_shape_env"):
         
     | 
| 
      
 398 
     | 
    
         
            +
                            exit_stack.enter_context(
         
     | 
| 
      
 399 
     | 
    
         
            +
                                patch(
         
     | 
| 
      
 400 
     | 
    
         
            +
                                    "torch._functorch._aot_autograd.autograd_cache.AOTAutogradCache._get_shape_env",
         
     | 
| 
      
 401 
     | 
    
         
            +
                                    lambda *args, **kwargs: AlwaysHitShapeEnv(),
         
     | 
| 
      
 402 
     | 
    
         
            +
                                )
         
     | 
| 
      
 403 
     | 
    
         
            +
                            )
         
     | 
| 
      
 404 
     | 
    
         
            +
             
     | 
| 
      
 405 
     | 
    
         
            +
                        # Dynamo metrics context, see method for more details.
         
     | 
| 
      
 406 
     | 
    
         
            +
                        exit_stack.enter_context(self.metrics_context())
         
     | 
| 
      
 407 
     | 
    
         
            +
             
     | 
| 
      
 408 
     | 
    
         
            +
                        if torch.__version__.startswith("2.5"):
         
     | 
| 
      
 409 
     | 
    
         
            +
                            inductor_compiled_graph = FxGraphCache._lookup_graph(
         
     | 
| 
      
 410 
     | 
    
         
            +
                                hash_str, example_inputs, True, False
         
     | 
| 
      
 411 
     | 
    
         
            +
                            )
         
     | 
| 
      
 412 
     | 
    
         
            +
                            assert inductor_compiled_graph is not None, (
         
     | 
| 
      
 413 
     | 
    
         
            +
                                "Inductor cache lookup failed. Please remove"
         
     | 
| 
      
 414 
     | 
    
         
            +
                                f"the cache directory and try again."  # noqa
         
     | 
| 
      
 415 
     | 
    
         
            +
                            )
         
     | 
| 
      
 416 
     | 
    
         
            +
                        elif torch.__version__ >= "2.6":
         
     | 
| 
      
 417 
     | 
    
         
            +
                            from torch._inductor.output_code import CompiledFxGraphConstantsWithGm
         
     | 
| 
      
 418 
     | 
    
         
            +
             
     | 
| 
      
 419 
     | 
    
         
            +
                            constants = CompiledFxGraphConstantsWithGm(graph)
         
     | 
| 
      
 420 
     | 
    
         
            +
                            inductor_compiled_graph, _ = FxGraphCache._lookup_graph(
         
     | 
| 
      
 421 
     | 
    
         
            +
                                hash_str, example_inputs, True, None, constants
         
     | 
| 
      
 422 
     | 
    
         
            +
                            )
         
     | 
| 
      
 423 
     | 
    
         
            +
                            assert inductor_compiled_graph is not None, (
         
     | 
| 
      
 424 
     | 
    
         
            +
                                "Inductor cache lookup failed. Please remove"
         
     | 
| 
      
 425 
     | 
    
         
            +
                                f"the cache directory and try again."  # noqa
         
     | 
| 
      
 426 
     | 
    
         
            +
                            )
         
     | 
| 
      
 427 
     | 
    
         
            +
             
     | 
| 
      
 428 
     | 
    
         
            +
                    # Inductor calling convention (function signature):
         
     | 
| 
      
 429 
     | 
    
         
            +
                    # f(list) -> tuple
         
     | 
| 
      
 430 
     | 
    
         
            +
                    # Dynamo calling convention (function signature):
         
     | 
| 
      
 431 
     | 
    
         
            +
                    # f(*args) -> Any
         
     | 
| 
      
 432 
     | 
    
         
            +
             
     | 
| 
      
 433 
     | 
    
         
            +
                    # need to know if the graph returns a tuple
         
     | 
| 
      
 434 
     | 
    
         
            +
                    from torch._inductor.compile_fx import graph_returns_tuple
         
     | 
| 
      
 435 
     | 
    
         
            +
             
     | 
| 
      
 436 
     | 
    
         
            +
                    returns_tuple = graph_returns_tuple(graph)
         
     | 
| 
      
 437 
     | 
    
         
            +
             
     | 
| 
      
 438 
     | 
    
         
            +
                    # this is the callable we return to Dynamo to run
         
     | 
| 
      
 439 
     | 
    
         
            +
                    def compiled_graph(*args):
         
     | 
| 
      
 440 
     | 
    
         
            +
                        # convert args to list
         
     | 
| 
      
 441 
     | 
    
         
            +
                        list_args = list(args)
         
     | 
| 
      
 442 
     | 
    
         
            +
                        graph_output = inductor_compiled_graph(list_args)
         
     | 
| 
      
 443 
     | 
    
         
            +
                        # unpack the tuple if needed
         
     | 
| 
      
 444 
     | 
    
         
            +
                        if returns_tuple:
         
     | 
| 
      
 445 
     | 
    
         
            +
                            return graph_output
         
     | 
| 
      
 446 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 447 
     | 
    
         
            +
                            return graph_output[0]
         
     | 
| 
      
 448 
     | 
    
         
            +
             
     | 
| 
      
 449 
     | 
    
         
            +
                    return compiled_graph
         
     | 
| 
      
 450 
     | 
    
         
            +
             
     | 
| 
      
 451 
     | 
    
         
            +
                def metrics_context(self) -> contextlib.AbstractContextManager:
         
     | 
| 
      
 452 
     | 
    
         
            +
                    """
         
     | 
| 
      
 453 
     | 
    
         
            +
                    This method returns the Dynamo metrics context (if it exists,
         
     | 
| 
      
 454 
     | 
    
         
            +
                    otherwise a null context). It is used by various compile components.
         
     | 
| 
      
 455 
     | 
    
         
            +
                    Present in torch>=2.6, it's used inside FxGraphCache in
         
     | 
| 
      
 456 
     | 
    
         
            +
                    torch==2.6 (but not after). It might also be used in various other
         
     | 
| 
      
 457 
     | 
    
         
            +
                    torch.compile internal functions.
         
     | 
| 
      
 458 
     | 
    
         
            +
             
     | 
| 
      
 459 
     | 
    
         
            +
                    Because it is re-entrant, we always set it (even if entering via Dynamo
         
     | 
| 
      
 460 
     | 
    
         
            +
                    and the context was already entered). We might want to revisit if it
         
     | 
| 
      
 461 
     | 
    
         
            +
                    should be set at a different level of compilation.
         
     | 
| 
      
 462 
     | 
    
         
            +
             
     | 
| 
      
 463 
     | 
    
         
            +
                    This is likely a bug in PyTorch: public APIs should not rely on
         
     | 
| 
      
 464 
     | 
    
         
            +
                    manually setting up internal contexts. But we also rely on non-public
         
     | 
| 
      
 465 
     | 
    
         
            +
                    APIs which might not provide these guarantees.
         
     | 
| 
      
 466 
     | 
    
         
            +
                    """
         
     | 
| 
      
 467 
     | 
    
         
            +
                    import torch._dynamo.utils
         
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
      
 469 
     | 
    
         
            +
                    return torch._dynamo.utils.get_metrics_context()
         
     | 
| 
      
 470 
     | 
    
         
            +
             
     | 
| 
      
 471 
     | 
    
         
            +
             
     | 
| 
      
 472 
     | 
    
         
            +
            def set_inductor_config(config, runtime_shape):
         
     | 
| 
      
 473 
     | 
    
         
            +
                if isinstance(runtime_shape, int):
         
     | 
| 
      
 474 
     | 
    
         
            +
                    # for a specific batchsize, tuning triton kernel parameters
         
     | 
| 
      
 475 
     | 
    
         
            +
                    # can be beneficial
         
     | 
| 
      
 476 
     | 
    
         
            +
                    config["max_autotune"] = True
         
     | 
| 
      
 477 
     | 
    
         
            +
                    config["coordinate_descent_tuning"] = True
         
     | 
| 
      
 478 
     | 
    
         
            +
             
     | 
| 
      
 479 
     | 
    
         
            +
             
     | 
| 
      
 480 
     | 
    
         
            +
            class EagerAdapter(CompilerInterface):
         
     | 
| 
      
 481 
     | 
    
         
            +
                name = "eager"
         
     | 
| 
      
 482 
     | 
    
         
            +
             
     | 
| 
      
 483 
     | 
    
         
            +
                def compile(
         
     | 
| 
      
 484 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 485 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 486 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 487 
     | 
    
         
            +
                    compiler_config: dict[str, Any],
         
     | 
| 
      
 488 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 489 
     | 
    
         
            +
                    key: Optional[str] = None,
         
     | 
| 
      
 490 
     | 
    
         
            +
                    num_graphs: int = 1,
         
     | 
| 
      
 491 
     | 
    
         
            +
                ) -> tuple[Optional[Callable], Optional[Any]]:
         
     | 
| 
      
 492 
     | 
    
         
            +
                    return graph, None
         
     | 
| 
      
 493 
     | 
    
         
            +
             
     | 
| 
      
 494 
     | 
    
         
            +
                def load(
         
     | 
| 
      
 495 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 496 
     | 
    
         
            +
                    handle: Any,
         
     | 
| 
      
 497 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 498 
     | 
    
         
            +
                    example_inputs: list[Any],
         
     | 
| 
      
 499 
     | 
    
         
            +
                    graph_index: int,
         
     | 
| 
      
 500 
     | 
    
         
            +
                    runtime_shape: Optional[int] = None,
         
     | 
| 
      
 501 
     | 
    
         
            +
                    num_graphs: int = 1,
         
     | 
| 
      
 502 
     | 
    
         
            +
                ) -> Callable:
         
     | 
| 
      
 503 
     | 
    
         
            +
                    raise NotImplementedError("eager compilation is not supported")
         
     |