sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,186 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import copy
         
     | 
| 
      
 2 
     | 
    
         
            +
            from typing import Iterable, List, Optional, Set, Tuple
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 5 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 6 
     | 
    
         
            +
            from torch import nn
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.configs.points_v15_chat import POINTSV15ChatConfig
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.managers.mm_utils import (
         
     | 
| 
      
 11 
     | 
    
         
            +
                MultiModalityDataPaddingPatternMultimodalTokens,
         
     | 
| 
      
 12 
     | 
    
         
            +
                general_mm_embed_routine,
         
     | 
| 
      
 13 
     | 
    
         
            +
            )
         
     | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import (
         
     | 
| 
      
 15 
     | 
    
         
            +
                Modality,
         
     | 
| 
      
 16 
     | 
    
         
            +
                MultimodalDataItem,
         
     | 
| 
      
 17 
     | 
    
         
            +
                MultimodalInputs,
         
     | 
| 
      
 18 
     | 
    
         
            +
            )
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.models.qwen2 import Qwen2ForCausalLM
         
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.models.qwen2_vl import Qwen2VisionPatchMerger, Qwen2VisionTransformer
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.utils import add_prefix
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
            class Qwen2VisionTransformerForNavitPOINTS(Qwen2VisionTransformer):
         
     | 
| 
      
 27 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 28 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 29 
     | 
    
         
            +
                    vision_config: POINTSV15ChatConfig,
         
     | 
| 
      
 30 
     | 
    
         
            +
                    norm_eps: float = 1e-6,
         
     | 
| 
      
 31 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 32 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 33 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 34 
     | 
    
         
            +
                    super().__init__(
         
     | 
| 
      
 35 
     | 
    
         
            +
                        vision_config,
         
     | 
| 
      
 36 
     | 
    
         
            +
                        norm_eps=norm_eps,
         
     | 
| 
      
 37 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 38 
     | 
    
         
            +
                        prefix=prefix,
         
     | 
| 
      
 39 
     | 
    
         
            +
                    )
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 42 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 43 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    grid_thw: torch.Tensor,
         
     | 
| 
      
 45 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 46 
     | 
    
         
            +
                    # patchify
         
     | 
| 
      
 47 
     | 
    
         
            +
                    x = x.to(device=self.device, dtype=self.dtype)
         
     | 
| 
      
 48 
     | 
    
         
            +
                    x = self.patch_embed(x)
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
                    # compute position embedding
         
     | 
| 
      
 51 
     | 
    
         
            +
                    rotary_pos_emb = self.rot_pos_emb(grid_thw)
         
     | 
| 
      
 52 
     | 
    
         
            +
                    emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
         
     | 
| 
      
 53 
     | 
    
         
            +
                    position_embeddings = (emb.cos(), emb.sin())
         
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
                    # compute cu_seqlens
         
     | 
| 
      
 56 
     | 
    
         
            +
                    cu_seqlens = torch.repeat_interleave(
         
     | 
| 
      
 57 
     | 
    
         
            +
                        grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
         
     | 
| 
      
 58 
     | 
    
         
            +
                    ).cumsum(dim=0, dtype=torch.int32)
         
     | 
| 
      
 59 
     | 
    
         
            +
                    cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                    # transformers
         
     | 
| 
      
 62 
     | 
    
         
            +
                    x = x.unsqueeze(1)
         
     | 
| 
      
 63 
     | 
    
         
            +
                    for blk in self.blocks:
         
     | 
| 
      
 64 
     | 
    
         
            +
                        x = blk(x, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                    return x
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
            class POINTSV15ChatModel(nn.Module):
         
     | 
| 
      
 70 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 71 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 72 
     | 
    
         
            +
                    config: POINTSV15ChatConfig,
         
     | 
| 
      
 73 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 74 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 75 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 76 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 77 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 78 
     | 
    
         
            +
                    config.llm_config._attn_implementation = "flash_attention_2"
         
     | 
| 
      
 79 
     | 
    
         
            +
                    config._attn_implementation_autoset = False
         
     | 
| 
      
 80 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 81 
     | 
    
         
            +
                    self.quant_config = quant_config
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                    llm_config = copy.deepcopy(config.llm_config)
         
     | 
| 
      
 84 
     | 
    
         
            +
                    llm_config.architectures = ["Qwen2ForCausalLM"]
         
     | 
| 
      
 85 
     | 
    
         
            +
                    self.llm = Qwen2ForCausalLM(
         
     | 
| 
      
 86 
     | 
    
         
            +
                        config=llm_config,
         
     | 
| 
      
 87 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 88 
     | 
    
         
            +
                        prefix=add_prefix("llm", prefix),
         
     | 
| 
      
 89 
     | 
    
         
            +
                    )
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
                    self.vision_encoder = Qwen2VisionTransformerForNavitPOINTS(
         
     | 
| 
      
 92 
     | 
    
         
            +
                        config.vision_config,
         
     | 
| 
      
 93 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 94 
     | 
    
         
            +
                        prefix=add_prefix("vision_encoder", prefix),
         
     | 
| 
      
 95 
     | 
    
         
            +
                    )
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                    self.vision_projector = Qwen2VisionPatchMerger(
         
     | 
| 
      
 98 
     | 
    
         
            +
                        d_model=config.llm_config.hidden_size,
         
     | 
| 
      
 99 
     | 
    
         
            +
                        context_dim=1280,
         
     | 
| 
      
 100 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 101 
     | 
    
         
            +
                        prefix=add_prefix("vision_projector", prefix),
         
     | 
| 
      
 102 
     | 
    
         
            +
                    )
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
                def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
         
     | 
| 
      
 105 
     | 
    
         
            +
                    pattern = MultiModalityDataPaddingPatternMultimodalTokens()
         
     | 
| 
      
 106 
     | 
    
         
            +
                    return pattern.pad_input_tokens(input_ids, mm_inputs)
         
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
                def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
         
     | 
| 
      
 109 
     | 
    
         
            +
                    pixel_values = torch.cat([item.feature for item in items], dim=0).type(
         
     | 
| 
      
 110 
     | 
    
         
            +
                        self.vision_encoder.dtype
         
     | 
| 
      
 111 
     | 
    
         
            +
                    )
         
     | 
| 
      
 112 
     | 
    
         
            +
                    image_grid_thw = torch.concat([item.image_grid_thw for item in items], dim=0)
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                    assert pixel_values.dim() == 2, pixel_values.dim()
         
     | 
| 
      
 115 
     | 
    
         
            +
                    assert image_grid_thw.dim() == 2, image_grid_thw.dim()
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                    image_features = self.vision_encoder(pixel_values, grid_thw=image_grid_thw)
         
     | 
| 
      
 118 
     | 
    
         
            +
                    image_features = self.vision_projector(image_features)
         
     | 
| 
      
 119 
     | 
    
         
            +
                    return image_features
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 122 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 123 
     | 
    
         
            +
                    input_ids: torch.Tensor,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    get_embedding: bool = False,
         
     | 
| 
      
 127 
     | 
    
         
            +
                ):
         
     | 
| 
      
 128 
     | 
    
         
            +
                    hidden_states = general_mm_embed_routine(
         
     | 
| 
      
 129 
     | 
    
         
            +
                        input_ids=input_ids,
         
     | 
| 
      
 130 
     | 
    
         
            +
                        forward_batch=forward_batch,
         
     | 
| 
      
 131 
     | 
    
         
            +
                        language_model=self.llm,
         
     | 
| 
      
 132 
     | 
    
         
            +
                        data_embedding_funcs={
         
     | 
| 
      
 133 
     | 
    
         
            +
                            Modality.IMAGE: self.get_image_feature,
         
     | 
| 
      
 134 
     | 
    
         
            +
                        },
         
     | 
| 
      
 135 
     | 
    
         
            +
                        positions=positions,
         
     | 
| 
      
 136 
     | 
    
         
            +
                    )
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
                    return hidden_states
         
     | 
| 
      
 139 
     | 
    
         
            +
             
     | 
| 
      
 140 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
      
 141 
     | 
    
         
            +
                    stacked_params_mapping = [
         
     | 
| 
      
 142 
     | 
    
         
            +
                        # (param_name, shard_name, shard_id)
         
     | 
| 
      
 143 
     | 
    
         
            +
                        ("qkv_proj", "q_proj", "q"),
         
     | 
| 
      
 144 
     | 
    
         
            +
                        ("qkv_proj", "k_proj", "k"),
         
     | 
| 
      
 145 
     | 
    
         
            +
                        ("qkv_proj", "v_proj", "v"),
         
     | 
| 
      
 146 
     | 
    
         
            +
                        ("gate_up_proj", "gate_proj", 0),
         
     | 
| 
      
 147 
     | 
    
         
            +
                        ("gate_up_proj", "up_proj", 1),
         
     | 
| 
      
 148 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 149 
     | 
    
         
            +
                    params_dict = dict(self.named_parameters())
         
     | 
| 
      
 150 
     | 
    
         
            +
                    loaded_params: Set[str] = set()
         
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
                    for name, loaded_weight in weights:
         
     | 
| 
      
 153 
     | 
    
         
            +
                        if "rotary_emb.inv_freq" in name:
         
     | 
| 
      
 154 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 155 
     | 
    
         
            +
             
     | 
| 
      
 156 
     | 
    
         
            +
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         
     | 
| 
      
 157 
     | 
    
         
            +
                            if weight_name not in name:
         
     | 
| 
      
 158 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 159 
     | 
    
         
            +
                            name = name.replace(weight_name, param_name)
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
      
 162 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 165 
     | 
    
         
            +
                            weight_loader = param.weight_loader
         
     | 
| 
      
 166 
     | 
    
         
            +
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
      
 167 
     | 
    
         
            +
                            break
         
     | 
| 
      
 168 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 169 
     | 
    
         
            +
                            if "vision_encoder" in name:
         
     | 
| 
      
 170 
     | 
    
         
            +
                                # adapt to VisionAttention
         
     | 
| 
      
 171 
     | 
    
         
            +
                                name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
         
     | 
| 
      
 172 
     | 
    
         
            +
             
     | 
| 
      
 173 
     | 
    
         
            +
                            try:
         
     | 
| 
      
 174 
     | 
    
         
            +
                                # Skip loading extra bias for GPTQ models.
         
     | 
| 
      
 175 
     | 
    
         
            +
                                if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
      
 176 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 177 
     | 
    
         
            +
                                param = params_dict[name]
         
     | 
| 
      
 178 
     | 
    
         
            +
                            except KeyError:
         
     | 
| 
      
 179 
     | 
    
         
            +
                                print(params_dict.keys())
         
     | 
| 
      
 180 
     | 
    
         
            +
                                raise
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                            weight_loader = getattr(param, "weight_loader", default_weight_loader)
         
     | 
| 
      
 183 
     | 
    
         
            +
                            weight_loader(param, loaded_weight)
         
     | 
| 
      
 184 
     | 
    
         
            +
             
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
            EntryClass = [POINTSV15ChatModel]
         
     | 
    
        sglang/srt/models/qwen.py
    CHANGED
    
    
    
        sglang/srt/models/qwen2_5_vl.py
    CHANGED
    
    | 
         @@ -59,6 +59,7 @@ from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInp 
     | 
|
| 
       59 
59 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       60 
60 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       61 
61 
     | 
    
         
             
            from sglang.srt.models.qwen2 import Qwen2Model
         
     | 
| 
      
 62 
     | 
    
         
            +
            from sglang.srt.models.utils import permute_inv
         
     | 
| 
       62 
63 
     | 
    
         
             
            from sglang.srt.utils import add_prefix
         
     | 
| 
       63 
64 
     | 
    
         
             
            from sglang.srt.utils.hf_transformers_utils import get_processor
         
     | 
| 
       64 
65 
     | 
    
         | 
| 
         @@ -405,6 +406,7 @@ class Qwen2_5_VisionTransformer(nn.Module): 
     | 
|
| 
       405 
406 
     | 
    
         | 
| 
       406 
407 
     | 
    
         
             
                    # Move window_index to the same device as x before using it to index x
         
     | 
| 
       407 
408 
     | 
    
         
             
                    window_index = window_index.to(device=x.device)
         
     | 
| 
      
 409 
     | 
    
         
            +
                    reverse_indices = permute_inv(window_index)
         
     | 
| 
       408 
410 
     | 
    
         | 
| 
       409 
411 
     | 
    
         
             
                    # Ensure rotary_pos_emb is on the same device/dtype as x
         
     | 
| 
       410 
412 
     | 
    
         
             
                    rotary_pos_emb = rotary_pos_emb.to(device=x.device, dtype=x.dtype)
         
     | 
| 
         @@ -436,7 +438,7 @@ class Qwen2_5_VisionTransformer(nn.Module): 
     | 
|
| 
       436 
438 
     | 
    
         
             
                            .to(device=x.device, dtype=torch.int32),
         
     | 
| 
       437 
439 
     | 
    
         
             
                        ]
         
     | 
| 
       438 
440 
     | 
    
         
             
                    )
         
     | 
| 
       439 
     | 
    
         
            -
                    cu_seqlens =  
     | 
| 
      
 441 
     | 
    
         
            +
                    cu_seqlens = torch.cat([cu_seqlens.new_zeros(1), cu_seqlens])
         
     | 
| 
       440 
442 
     | 
    
         | 
| 
       441 
443 
     | 
    
         
             
                    # transformers
         
     | 
| 
       442 
444 
     | 
    
         
             
                    x = x.unsqueeze(1)
         
     | 
| 
         @@ -451,8 +453,6 @@ class Qwen2_5_VisionTransformer(nn.Module): 
     | 
|
| 
       451 
453 
     | 
    
         | 
| 
       452 
454 
     | 
    
         
             
                    # adapter
         
     | 
| 
       453 
455 
     | 
    
         
             
                    x = self.merger(x)
         
     | 
| 
       454 
     | 
    
         
            -
             
     | 
| 
       455 
     | 
    
         
            -
                    reverse_indices = torch.argsort(window_index)
         
     | 
| 
       456 
456 
     | 
    
         
             
                    x = x[reverse_indices, :]
         
     | 
| 
       457 
457 
     | 
    
         | 
| 
       458 
458 
     | 
    
         
             
                    return x
         
     | 
    
        sglang/srt/models/qwen2_audio.py
    CHANGED
    
    | 
         @@ -23,30 +23,18 @@ 
     | 
|
| 
       23 
23 
     | 
    
         
             
            # limitations under the License.
         
     | 
| 
       24 
24 
     | 
    
         
             
            """Inference-only Qwen2-Audio model compatible with HuggingFace weights."""
         
     | 
| 
       25 
25 
     | 
    
         
             
            import logging
         
     | 
| 
       26 
     | 
    
         
            -
            import  
     | 
| 
       27 
     | 
    
         
            -
            from functools import lru_cache, partial
         
     | 
| 
       28 
     | 
    
         
            -
            from typing import Any, Iterable, List, Optional, Tuple, Type, TypedDict
         
     | 
| 
      
 26 
     | 
    
         
            +
            from typing import Any, Iterable, List, Optional, Tuple
         
     | 
| 
       29 
27 
     | 
    
         | 
| 
       30 
28 
     | 
    
         
             
            import torch
         
     | 
| 
       31 
29 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       32 
     | 
    
         
            -
            import  
     | 
| 
       33 
     | 
    
         
            -
            from einops import rearrange
         
     | 
| 
       34 
     | 
    
         
            -
            from transformers import AutoTokenizer, Qwen2AudioEncoderConfig, Qwen2Config
         
     | 
| 
       35 
     | 
    
         
            -
            from transformers.activations import ACT2FN
         
     | 
| 
      
 30 
     | 
    
         
            +
            from transformers import Qwen2AudioEncoderConfig, Qwen2Config
         
     | 
| 
       36 
31 
     | 
    
         
             
            from transformers.models.qwen2_audio.configuration_qwen2_audio import Qwen2AudioConfig
         
     | 
| 
       37 
32 
     | 
    
         
             
            from transformers.models.qwen2_audio.modeling_qwen2_audio import (
         
     | 
| 
       38 
33 
     | 
    
         
             
                Qwen2AudioEncoder,
         
     | 
| 
       39 
34 
     | 
    
         
             
                Qwen2AudioMultiModalProjector,
         
     | 
| 
       40 
35 
     | 
    
         
             
            )
         
     | 
| 
       41 
36 
     | 
    
         | 
| 
       42 
     | 
    
         
            -
            from sglang.srt.layers.activation import QuickGELU
         
     | 
| 
       43 
     | 
    
         
            -
            from sglang.srt.layers.attention.vision import VisionAttention
         
     | 
| 
       44 
     | 
    
         
            -
            from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
         
     | 
| 
       45 
     | 
    
         
            -
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
       46 
     | 
    
         
            -
            from sglang.srt.layers.pooler import Pooler, PoolingType
         
     | 
| 
       47 
37 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       48 
     | 
    
         
            -
            from sglang.srt.layers.utils import get_layer_id
         
     | 
| 
       49 
     | 
    
         
            -
            from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
         
     | 
| 
       50 
38 
     | 
    
         
             
            from sglang.srt.managers.mm_utils import (
         
     | 
| 
       51 
39 
     | 
    
         
             
                MultiModalityDataPaddingPatternMultimodalTokens,
         
     | 
| 
       52 
40 
     | 
    
         
             
                general_mm_embed_routine,
         
     | 
| 
         @@ -60,7 +48,6 @@ from sglang.srt.model_executor.forward_batch_info import ForwardBatch 
     | 
|
| 
       60 
48 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
       61 
49 
     | 
    
         
             
            from sglang.srt.models.qwen2 import Qwen2ForCausalLM
         
     | 
| 
       62 
50 
     | 
    
         
             
            from sglang.srt.utils import add_prefix
         
     | 
| 
       63 
     | 
    
         
            -
            from sglang.srt.utils.hf_transformers_utils import get_processor
         
     | 
| 
       64 
51 
     | 
    
         | 
| 
       65 
52 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       66 
53 
     | 
    
         | 
    
        sglang/srt/models/qwen2_moe.py
    CHANGED
    
    | 
         @@ -17,6 +17,7 @@ 
     | 
|
| 
       17 
17 
     | 
    
         
             
            """Inference-only Qwen2MoE model compatible with HuggingFace weights."""
         
     | 
| 
       18 
18 
     | 
    
         | 
| 
       19 
19 
     | 
    
         
             
            import logging
         
     | 
| 
      
 20 
     | 
    
         
            +
            from contextlib import nullcontext
         
     | 
| 
       20 
21 
     | 
    
         
             
            from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
         
     | 
| 
       21 
22 
     | 
    
         | 
| 
       22 
23 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -64,10 +65,10 @@ from sglang.srt.layers.vocab_parallel_embedding import ( 
     | 
|
| 
       64 
65 
     | 
    
         
             
                ParallelLMHead,
         
     | 
| 
       65 
66 
     | 
    
         
             
                VocabParallelEmbedding,
         
     | 
| 
       66 
67 
     | 
    
         
             
            )
         
     | 
| 
       67 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       68 
68 
     | 
    
         
             
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
         
     | 
| 
       69 
69 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
       70 
70 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
      
 71 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       71 
72 
     | 
    
         
             
            from sglang.srt.two_batch_overlap import model_forward_maybe_tbo
         
     | 
| 
       72 
73 
     | 
    
         
             
            from sglang.srt.utils import add_prefix, is_cuda, make_layers
         
     | 
| 
       73 
74 
     | 
    
         | 
| 
         @@ -156,7 +157,7 @@ class Qwen2MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       156 
157 
     | 
    
         
             
                        layer_id=self.layer_id,
         
     | 
| 
       157 
158 
     | 
    
         
             
                        top_k=config.num_experts_per_tok,
         
     | 
| 
       158 
159 
     | 
    
         
             
                        num_experts=config.num_experts
         
     | 
| 
       159 
     | 
    
         
            -
                        +  
     | 
| 
      
 160 
     | 
    
         
            +
                        + get_global_server_args().ep_num_redundant_experts,
         
     | 
| 
       160 
161 
     | 
    
         
             
                        hidden_size=config.hidden_size,
         
     | 
| 
       161 
162 
     | 
    
         
             
                        intermediate_size=config.moe_intermediate_size,
         
     | 
| 
       162 
163 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
         @@ -192,7 +193,7 @@ class Qwen2MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       192 
193 
     | 
    
         
             
                        # TODO: we will support tp < ep in the future
         
     | 
| 
       193 
194 
     | 
    
         
             
                        self.ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
       194 
195 
     | 
    
         
             
                        self.num_experts = (
         
     | 
| 
       195 
     | 
    
         
            -
                            config.num_experts +  
     | 
| 
      
 196 
     | 
    
         
            +
                            config.num_experts + get_global_server_args().ep_num_redundant_experts
         
     | 
| 
       196 
197 
     | 
    
         
             
                        )
         
     | 
| 
       197 
198 
     | 
    
         
             
                        self.top_k = config.num_experts_per_tok
         
     | 
| 
       198 
199 
     | 
    
         | 
| 
         @@ -219,7 +220,7 @@ class Qwen2MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       219 
220 
     | 
    
         
             
                        # router_logits: (num_tokens, n_experts)
         
     | 
| 
       220 
221 
     | 
    
         
             
                        router_logits, _ = self.gate(hidden_states)
         
     | 
| 
       221 
222 
     | 
    
         
             
                        shared_output = self._forward_shared_experts(hidden_states)
         
     | 
| 
       222 
     | 
    
         
            -
                         
     | 
| 
      
 223 
     | 
    
         
            +
                        topk_output = self.topk(
         
     | 
| 
       223 
224 
     | 
    
         
             
                            hidden_states,
         
     | 
| 
       224 
225 
     | 
    
         
             
                            router_logits,
         
     | 
| 
       225 
226 
     | 
    
         
             
                            num_token_non_padded=forward_batch.num_token_non_padded,
         
     | 
| 
         @@ -228,14 +229,10 @@ class Qwen2MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       228 
229 
     | 
    
         
             
                            ),
         
     | 
| 
       229 
230 
     | 
    
         
             
                        )
         
     | 
| 
       230 
231 
     | 
    
         
             
                    else:
         
     | 
| 
       231 
     | 
    
         
            -
                         
     | 
| 
       232 
     | 
    
         
            -
                            hidden_states.device
         
     | 
| 
       233 
     | 
    
         
            -
                        )
         
     | 
| 
      
 232 
     | 
    
         
            +
                        topk_output = self.topk.empty_topk_output(hidden_states.device)
         
     | 
| 
       234 
233 
     | 
    
         
             
                    final_hidden_states = self.experts(
         
     | 
| 
       235 
234 
     | 
    
         
             
                        hidden_states=hidden_states,
         
     | 
| 
       236 
     | 
    
         
            -
                         
     | 
| 
       237 
     | 
    
         
            -
                        topk_weights=topk_weights,
         
     | 
| 
       238 
     | 
    
         
            -
                        forward_batch=forward_batch,
         
     | 
| 
      
 235 
     | 
    
         
            +
                        topk_output=topk_output,
         
     | 
| 
       239 
236 
     | 
    
         
             
                    )
         
     | 
| 
       240 
237 
     | 
    
         | 
| 
       241 
238 
     | 
    
         
             
                    if shared_output is not None:
         
     | 
| 
         @@ -518,6 +515,7 @@ class Qwen2MoeModel(nn.Module): 
     | 
|
| 
       518 
515 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       519 
516 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       520 
517 
     | 
    
         
             
                    self.config = config
         
     | 
| 
      
 518 
     | 
    
         
            +
             
     | 
| 
       521 
519 
     | 
    
         
             
                    self.padding_idx = config.pad_token_id
         
     | 
| 
       522 
520 
     | 
    
         
             
                    self.vocab_size = config.vocab_size
         
     | 
| 
       523 
521 
     | 
    
         
             
                    self.pp_group = get_pp_group()
         
     | 
| 
         @@ -593,7 +591,12 @@ class Qwen2MoeModel(nn.Module): 
     | 
|
| 
       593 
591 
     | 
    
         
             
                                    if residual is not None
         
     | 
| 
       594 
592 
     | 
    
         
             
                                    else hidden_states
         
     | 
| 
       595 
593 
     | 
    
         
             
                                )
         
     | 
| 
       596 
     | 
    
         
            -
                             
     | 
| 
      
 594 
     | 
    
         
            +
                            ctx = (
         
     | 
| 
      
 595 
     | 
    
         
            +
                                nullcontext()
         
     | 
| 
      
 596 
     | 
    
         
            +
                                if get_global_server_args().enable_piecewise_cuda_graph
         
     | 
| 
      
 597 
     | 
    
         
            +
                                else get_global_expert_distribution_recorder().with_current_layer(i)
         
     | 
| 
      
 598 
     | 
    
         
            +
                            )
         
     | 
| 
      
 599 
     | 
    
         
            +
                            with ctx:
         
     | 
| 
       597 
600 
     | 
    
         
             
                                layer = self.layers[i]
         
     | 
| 
       598 
601 
     | 
    
         
             
                                hidden_states, residual = layer(
         
     | 
| 
       599 
602 
     | 
    
         
             
                                    positions, hidden_states, forward_batch, residual
         
     | 
| 
         @@ -643,7 +646,7 @@ class Qwen2MoeForCausalLM(nn.Module): 
     | 
|
| 
       643 
646 
     | 
    
         
             
                        config.hidden_size,
         
     | 
| 
       644 
647 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       645 
648 
     | 
    
         
             
                        prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       646 
     | 
    
         
            -
                        use_attn_tp_group= 
     | 
| 
      
 649 
     | 
    
         
            +
                        use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
         
     | 
| 
       647 
650 
     | 
    
         
             
                    )
         
     | 
| 
       648 
651 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
       649 
652 
     | 
    
         
             
                    # For EAGLE3 support
         
     | 
    
        sglang/srt/models/qwen2_vl.py
    CHANGED
    
    | 
         @@ -28,7 +28,6 @@ from typing import Iterable, List, Optional, Tuple, Type, TypedDict 
     | 
|
| 
       28 
28 
     | 
    
         | 
| 
       29 
29 
     | 
    
         
             
            import torch
         
     | 
| 
       30 
30 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       31 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       32 
31 
     | 
    
         
             
            from einops import rearrange
         
     | 
| 
       33 
32 
     | 
    
         
             
            from transformers import Qwen2VLConfig
         
     | 
| 
       34 
33 
     | 
    
         
             
            from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
         
     | 
| 
         @@ -407,7 +406,7 @@ class Qwen2VisionTransformer(nn.Module): 
     | 
|
| 
       407 
406 
     | 
    
         
             
                    cu_seqlens = torch.repeat_interleave(
         
     | 
| 
       408 
407 
     | 
    
         
             
                        grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
         
     | 
| 
       409 
408 
     | 
    
         
             
                    ).cumsum(dim=0, dtype=torch.int32)
         
     | 
| 
       410 
     | 
    
         
            -
                    cu_seqlens =  
     | 
| 
      
 409 
     | 
    
         
            +
                    cu_seqlens = torch.cat([cu_seqlens.new_zeros(1), cu_seqlens])
         
     | 
| 
       411 
410 
     | 
    
         | 
| 
       412 
411 
     | 
    
         
             
                    # transformers
         
     | 
| 
       413 
412 
     | 
    
         
             
                    x = x.unsqueeze(1)
         
     | 
| 
         @@ -514,6 +513,10 @@ class Qwen2VLForConditionalGeneration(nn.Module): 
     | 
|
| 
       514 
513 
     | 
    
         
             
                def get_input_embeddings(self):
         
     | 
| 
       515 
514 
     | 
    
         
             
                    return self.model.embed_tokens
         
     | 
| 
       516 
515 
     | 
    
         | 
| 
      
 516 
     | 
    
         
            +
                def should_apply_lora(self, module_name: str) -> bool:
         
     | 
| 
      
 517 
     | 
    
         
            +
                    # skip visual tower
         
     | 
| 
      
 518 
     | 
    
         
            +
                    return not module_name.startswith("visual")
         
     | 
| 
      
 519 
     | 
    
         
            +
             
     | 
| 
       517 
520 
     | 
    
         
             
                def forward(
         
     | 
| 
       518 
521 
     | 
    
         
             
                    self,
         
     | 
| 
       519 
522 
     | 
    
         
             
                    input_ids: torch.Tensor,
         
     | 
    
        sglang/srt/models/qwen3_moe.py
    CHANGED
    
    | 
         @@ -54,7 +54,6 @@ from sglang.srt.layers.radix_attention import RadixAttention 
     | 
|
| 
       54 
54 
     | 
    
         
             
            from sglang.srt.layers.rotary_embedding import MRotaryEmbedding, get_rope
         
     | 
| 
       55 
55 
     | 
    
         
             
            from sglang.srt.layers.utils import get_layer_id
         
     | 
| 
       56 
56 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
         
     | 
| 
       57 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       58 
57 
     | 
    
         
             
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
         
     | 
| 
       59 
58 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
         
     | 
| 
       60 
59 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
         @@ -64,6 +63,7 @@ from sglang.srt.models.utils import ( 
     | 
|
| 
       64 
63 
     | 
    
         
             
                create_fused_set_kv_buffer_arg,
         
     | 
| 
       65 
64 
     | 
    
         
             
                enable_fused_set_kv_buffer,
         
     | 
| 
       66 
65 
     | 
    
         
             
            )
         
     | 
| 
      
 66 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       67 
67 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       68 
68 
     | 
    
         
             
                add_prefix,
         
     | 
| 
       69 
69 
     | 
    
         
             
                is_cuda,
         
     | 
| 
         @@ -104,7 +104,7 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       104 
104 
     | 
    
         | 
| 
       105 
105 
     | 
    
         
             
                    self.experts = get_moe_impl_class(quant_config)(
         
     | 
| 
       106 
106 
     | 
    
         
             
                        num_experts=config.num_experts
         
     | 
| 
       107 
     | 
    
         
            -
                        +  
     | 
| 
      
 107 
     | 
    
         
            +
                        + get_global_server_args().ep_num_redundant_experts,
         
     | 
| 
       108 
108 
     | 
    
         
             
                        top_k=config.num_experts_per_tok,
         
     | 
| 
       109 
109 
     | 
    
         
             
                        layer_id=layer_id,
         
     | 
| 
       110 
110 
     | 
    
         
             
                        hidden_size=config.hidden_size,
         
     | 
| 
         @@ -125,7 +125,7 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       125 
125 
     | 
    
         
             
                        # TODO: we will support tp < ep in the future
         
     | 
| 
       126 
126 
     | 
    
         
             
                        self.ep_size = get_moe_expert_parallel_world_size()
         
     | 
| 
       127 
127 
     | 
    
         
             
                        self.num_experts = (
         
     | 
| 
       128 
     | 
    
         
            -
                            config.num_experts +  
     | 
| 
      
 128 
     | 
    
         
            +
                            config.num_experts + get_global_server_args().ep_num_redundant_experts
         
     | 
| 
       129 
129 
     | 
    
         
             
                        )
         
     | 
| 
       130 
130 
     | 
    
         
             
                        self.top_k = config.num_experts_per_tok
         
     | 
| 
       131 
131 
     | 
    
         | 
| 
         @@ -180,7 +180,7 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       180 
180 
     | 
    
         
             
                    if hidden_states.shape[0] > 0:
         
     | 
| 
       181 
181 
     | 
    
         
             
                        # router_logits: (num_tokens, n_experts)
         
     | 
| 
       182 
182 
     | 
    
         
             
                        router_logits, _ = self.gate(hidden_states)
         
     | 
| 
       183 
     | 
    
         
            -
                         
     | 
| 
      
 183 
     | 
    
         
            +
                        topk_output = self.topk(
         
     | 
| 
       184 
184 
     | 
    
         
             
                            hidden_states,
         
     | 
| 
       185 
185 
     | 
    
         
             
                            router_logits,
         
     | 
| 
       186 
186 
     | 
    
         
             
                            num_token_non_padded=forward_batch.num_token_non_padded,
         
     | 
| 
         @@ -189,17 +189,10 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       189 
189 
     | 
    
         
             
                            ),
         
     | 
| 
       190 
190 
     | 
    
         
             
                        )
         
     | 
| 
       191 
191 
     | 
    
         
             
                    else:
         
     | 
| 
       192 
     | 
    
         
            -
                         
     | 
| 
       193 
     | 
    
         
            -
                            (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
         
     | 
| 
       194 
     | 
    
         
            -
                        )
         
     | 
| 
       195 
     | 
    
         
            -
                        topk_weights = torch.empty(
         
     | 
| 
       196 
     | 
    
         
            -
                            (0, self.top_k), dtype=torch.float32, device=hidden_states.device
         
     | 
| 
       197 
     | 
    
         
            -
                        )
         
     | 
| 
      
 192 
     | 
    
         
            +
                        topk_output = self.topk.empty_topk_output(hidden_states.device)
         
     | 
| 
       198 
193 
     | 
    
         
             
                    final_hidden_states = self.experts(
         
     | 
| 
       199 
194 
     | 
    
         
             
                        hidden_states=hidden_states,
         
     | 
| 
       200 
     | 
    
         
            -
                         
     | 
| 
       201 
     | 
    
         
            -
                        topk_weights=topk_weights,
         
     | 
| 
       202 
     | 
    
         
            -
                        forward_batch=forward_batch,
         
     | 
| 
      
 195 
     | 
    
         
            +
                        topk_output=topk_output,
         
     | 
| 
       203 
196 
     | 
    
         
             
                    )
         
     | 
| 
       204 
197 
     | 
    
         
             
                    return final_hidden_states
         
     | 
| 
       205 
198 
     | 
    
         | 
| 
         @@ -219,7 +212,7 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       219 
212 
     | 
    
         
             
                        with get_global_expert_distribution_recorder().with_current_layer(
         
     | 
| 
       220 
213 
     | 
    
         
             
                            self.layer_id
         
     | 
| 
       221 
214 
     | 
    
         
             
                        ):
         
     | 
| 
       222 
     | 
    
         
            -
                            state. 
     | 
| 
      
 215 
     | 
    
         
            +
                            state.topk_output = self.topk(
         
     | 
| 
       223 
216 
     | 
    
         
             
                                hidden_states=hidden_states,
         
     | 
| 
       224 
217 
     | 
    
         
             
                                router_logits=router_logits,
         
     | 
| 
       225 
218 
     | 
    
         
             
                                num_token_non_padded=state.forward_batch.num_token_non_padded,
         
     | 
| 
         @@ -228,20 +221,13 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       228 
221 
     | 
    
         
             
                                ),
         
     | 
| 
       229 
222 
     | 
    
         
             
                            )
         
     | 
| 
       230 
223 
     | 
    
         
             
                    else:
         
     | 
| 
       231 
     | 
    
         
            -
                        state. 
     | 
| 
       232 
     | 
    
         
            -
                            (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
         
     | 
| 
       233 
     | 
    
         
            -
                        )
         
     | 
| 
       234 
     | 
    
         
            -
                        state.topk_weights_local = torch.empty(
         
     | 
| 
       235 
     | 
    
         
            -
                            (0, self.top_k), dtype=torch.float32, device=hidden_states.device
         
     | 
| 
       236 
     | 
    
         
            -
                        )
         
     | 
| 
      
 224 
     | 
    
         
            +
                        state.topk_output = self.topk.empty_topk_output(hidden_states.device)
         
     | 
| 
       237 
225 
     | 
    
         | 
| 
       238 
226 
     | 
    
         
             
                def op_dispatch_a(self, state):
         
     | 
| 
       239 
227 
     | 
    
         
             
                    if self.ep_size > 1:
         
     | 
| 
       240 
     | 
    
         
            -
                        self.experts. 
     | 
| 
      
 228 
     | 
    
         
            +
                        self.experts.dispatcher.dispatch_a(
         
     | 
| 
       241 
229 
     | 
    
         
             
                            hidden_states=state.pop("hidden_states_mlp_input"),
         
     | 
| 
       242 
     | 
    
         
            -
                             
     | 
| 
       243 
     | 
    
         
            -
                            topk_weights=state.pop("topk_weights_local"),
         
     | 
| 
       244 
     | 
    
         
            -
                            forward_batch=state.forward_batch,
         
     | 
| 
      
 230 
     | 
    
         
            +
                            topk_output=state.pop("topk_output"),
         
     | 
| 
       245 
231 
     | 
    
         
             
                            tbo_subbatch_index=state.get("tbo_subbatch_index"),
         
     | 
| 
       246 
232 
     | 
    
         
             
                        )
         
     | 
| 
       247 
233 
     | 
    
         | 
| 
         @@ -250,32 +236,29 @@ class Qwen3MoeSparseMoeBlock(nn.Module): 
     | 
|
| 
       250 
236 
     | 
    
         
             
                        with get_global_expert_distribution_recorder().with_current_layer(
         
     | 
| 
       251 
237 
     | 
    
         
             
                            self.layer_id
         
     | 
| 
       252 
238 
     | 
    
         
             
                        ):
         
     | 
| 
       253 
     | 
    
         
            -
                            state.dispatch_output = self.experts. 
     | 
| 
      
 239 
     | 
    
         
            +
                            state.dispatch_output = self.experts.dispatcher.dispatch_b(
         
     | 
| 
       254 
240 
     | 
    
         
             
                                tbo_subbatch_index=state.get("tbo_subbatch_index"),
         
     | 
| 
       255 
241 
     | 
    
         
             
                            )
         
     | 
| 
       256 
242 
     | 
    
         | 
| 
       257 
243 
     | 
    
         
             
                def op_experts(self, state):
         
     | 
| 
       258 
     | 
    
         
            -
                    state.hidden_states_experts_output = self.experts. 
     | 
| 
      
 244 
     | 
    
         
            +
                    state.hidden_states_experts_output = self.experts.run_moe_core(
         
     | 
| 
       259 
245 
     | 
    
         
             
                        dispatch_output=state.dispatch_output,
         
     | 
| 
       260 
246 
     | 
    
         
             
                    )
         
     | 
| 
       261 
247 
     | 
    
         | 
| 
       262 
248 
     | 
    
         
             
                def op_combine_a(self, state):
         
     | 
| 
       263 
249 
     | 
    
         
             
                    if self.ep_size > 1:
         
     | 
| 
       264 
     | 
    
         
            -
                        self.experts. 
     | 
| 
      
 250 
     | 
    
         
            +
                        self.experts.dispatcher.combine_a(
         
     | 
| 
       265 
251 
     | 
    
         
             
                            hidden_states=state.pop("hidden_states_experts_output"),
         
     | 
| 
       266 
     | 
    
         
            -
                             
     | 
| 
      
 252 
     | 
    
         
            +
                            topk_ids=state.dispatch_output.topk_ids,
         
     | 
| 
       267 
253 
     | 
    
         
             
                            topk_weights=state.dispatch_output.topk_weights,
         
     | 
| 
       268 
     | 
    
         
            -
                            forward_batch=state.forward_batch,
         
     | 
| 
       269 
254 
     | 
    
         
             
                            tbo_subbatch_index=state.get("tbo_subbatch_index"),
         
     | 
| 
       270 
255 
     | 
    
         
             
                        )
         
     | 
| 
       271 
256 
     | 
    
         
             
                        state.pop("dispatch_output")
         
     | 
| 
       272 
257 
     | 
    
         | 
| 
       273 
258 
     | 
    
         
             
                def op_combine_b(self, state):
         
     | 
| 
       274 
259 
     | 
    
         
             
                    if self.ep_size > 1:
         
     | 
| 
       275 
     | 
    
         
            -
                        state.hidden_states_after_combine = (
         
     | 
| 
       276 
     | 
    
         
            -
                             
     | 
| 
       277 
     | 
    
         
            -
                                tbo_subbatch_index=state.get("tbo_subbatch_index"),
         
     | 
| 
       278 
     | 
    
         
            -
                            )
         
     | 
| 
      
 260 
     | 
    
         
            +
                        state.hidden_states_after_combine = self.experts.dispatcher.combine_b(
         
     | 
| 
      
 261 
     | 
    
         
            +
                            tbo_subbatch_index=state.get("tbo_subbatch_index"),
         
     | 
| 
       279 
262 
     | 
    
         
             
                        )
         
     | 
| 
       280 
263 
     | 
    
         | 
| 
       281 
264 
     | 
    
         
             
                def op_output(self, state):
         
     | 
| 
         @@ -661,13 +644,14 @@ class Qwen3MoeModel(Qwen2MoeModel): 
     | 
|
| 
       661 
644 
     | 
    
         
             
                    config: Qwen3MoeConfig,
         
     | 
| 
       662 
645 
     | 
    
         
             
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
       663 
646 
     | 
    
         
             
                    prefix: str = "",
         
     | 
| 
      
 647 
     | 
    
         
            +
                    decoder_layer_type=Qwen3MoeDecoderLayer,
         
     | 
| 
       664 
648 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       665 
649 
     | 
    
         
             
                    alt_stream = torch.cuda.Stream() if _is_cuda else None
         
     | 
| 
       666 
650 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       667 
651 
     | 
    
         
             
                        config=config,
         
     | 
| 
       668 
652 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       669 
653 
     | 
    
         
             
                        prefix=prefix,
         
     | 
| 
       670 
     | 
    
         
            -
                        decoder_layer_type= 
     | 
| 
      
 654 
     | 
    
         
            +
                        decoder_layer_type=decoder_layer_type,
         
     | 
| 
       671 
655 
     | 
    
         
             
                        alt_stream=alt_stream,
         
     | 
| 
       672 
656 
     | 
    
         
             
                    )
         
     | 
| 
       673 
657 
     | 
    
         | 
| 
         @@ -693,7 +677,7 @@ class Qwen3MoeForCausalLM(nn.Module): 
     | 
|
| 
       693 
677 
     | 
    
         
             
                        config.hidden_size,
         
     | 
| 
       694 
678 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       695 
679 
     | 
    
         
             
                        prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       696 
     | 
    
         
            -
                        use_attn_tp_group= 
     | 
| 
      
 680 
     | 
    
         
            +
                        use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
         
     | 
| 
       697 
681 
     | 
    
         
             
                    )
         
     | 
| 
       698 
682 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
       699 
683 
     | 
    
         
             
                    self.capture_aux_hidden_states = False
         
     | 
    
        sglang/srt/models/qwen3_next.py
    CHANGED
    
    | 
         @@ -1,18 +1,12 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import enum
         
     | 
| 
       2 
2 
     | 
    
         
             
            import logging
         
     | 
| 
       3 
     | 
    
         
            -
            from typing import Any,  
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Any, Iterable, Optional, Set, Tuple
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import torch
         
     | 
| 
       6 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       7 
6 
     | 
    
         
             
            from torch import nn
         
     | 
| 
       8 
7 
     | 
    
         | 
| 
       9 
8 
     | 
    
         
             
            from sglang.srt.configs.qwen3_next import Qwen3NextConfig
         
     | 
| 
       10 
     | 
    
         
            -
            from sglang.srt.distributed import  
     | 
| 
       11 
     | 
    
         
            -
                divide,
         
     | 
| 
       12 
     | 
    
         
            -
                get_pp_group,
         
     | 
| 
       13 
     | 
    
         
            -
                get_tensor_model_parallel_rank,
         
     | 
| 
       14 
     | 
    
         
            -
                get_tensor_model_parallel_world_size,
         
     | 
| 
       15 
     | 
    
         
            -
            )
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.distributed import divide, get_pp_group
         
     | 
| 
       16 
10 
     | 
    
         
             
            from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
         
     | 
| 
       17 
11 
     | 
    
         
             
            from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
         
     | 
| 
       18 
12 
     | 
    
         
             
            from sglang.srt.layers.attention.fla.layernorm_gated import RMSNorm as RMSNormGated
         
     | 
| 
         @@ -23,10 +17,9 @@ from sglang.srt.layers.dp_attention import ( 
     | 
|
| 
       23 
17 
     | 
    
         
             
                get_attention_tp_size,
         
     | 
| 
       24 
18 
     | 
    
         
             
                is_dp_attention_enabled,
         
     | 
| 
       25 
19 
     | 
    
         
             
            )
         
     | 
| 
       26 
     | 
    
         
            -
            from sglang.srt.layers.layernorm import GemmaRMSNorm 
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.layernorm import GemmaRMSNorm
         
     | 
| 
       27 
21 
     | 
    
         
             
            from sglang.srt.layers.linear import (
         
     | 
| 
       28 
22 
     | 
    
         
             
                ColumnParallelLinear,
         
     | 
| 
       29 
     | 
    
         
            -
                MergedColumnParallelLinear,
         
     | 
| 
       30 
23 
     | 
    
         
             
                QKVParallelLinear,
         
     | 
| 
       31 
24 
     | 
    
         
             
                RowParallelLinear,
         
     | 
| 
       32 
25 
     | 
    
         
             
            )
         
     | 
| 
         @@ -39,7 +32,6 @@ from sglang.srt.layers.vocab_parallel_embedding import ( 
     | 
|
| 
       39 
32 
     | 
    
         
             
                ParallelLMHead,
         
     | 
| 
       40 
33 
     | 
    
         
             
                VocabParallelEmbedding,
         
     | 
| 
       41 
34 
     | 
    
         
             
            )
         
     | 
| 
       42 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       43 
35 
     | 
    
         
             
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
         
     | 
| 
       44 
36 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       45 
37 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
         @@ -47,6 +39,7 @@ from sglang.srt.model_loader.weight_utils import ( 
     | 
|
| 
       47 
39 
     | 
    
         
             
                sharded_weight_loader,
         
     | 
| 
       48 
40 
     | 
    
         
             
            )
         
     | 
| 
       49 
41 
     | 
    
         
             
            from sglang.srt.models.qwen2_moe import Qwen2MoeMLP, Qwen2MoeSparseMoeBlock
         
     | 
| 
      
 42 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       50 
43 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       51 
44 
     | 
    
         
             
                LazyValue,
         
     | 
| 
       52 
45 
     | 
    
         
             
                add_prefix,
         
     | 
| 
         @@ -527,6 +520,7 @@ class Qwen3HybridLinearDecoderLayer(nn.Module): 
     | 
|
| 
       527 
520 
     | 
    
         
             
                            config=config,
         
     | 
| 
       528 
521 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       529 
522 
     | 
    
         
             
                            alt_stream=alt_stream,
         
     | 
| 
      
 523 
     | 
    
         
            +
                            prefix=add_prefix("mlp", prefix),
         
     | 
| 
       530 
524 
     | 
    
         
             
                        )
         
     | 
| 
       531 
525 
     | 
    
         
             
                    else:
         
     | 
| 
       532 
526 
     | 
    
         
             
                        self.mlp = Qwen2MoeMLP(
         
     | 
| 
         @@ -680,6 +674,7 @@ class Qwen3HybridAttentionDecoderLayer(nn.Module): 
     | 
|
| 
       680 
674 
     | 
    
         
             
                            config=config,
         
     | 
| 
       681 
675 
     | 
    
         
             
                            quant_config=quant_config,
         
     | 
| 
       682 
676 
     | 
    
         
             
                            alt_stream=alt_stream,
         
     | 
| 
      
 677 
     | 
    
         
            +
                            prefix=add_prefix("mlp", prefix),
         
     | 
| 
       683 
678 
     | 
    
         
             
                        )
         
     | 
| 
       684 
679 
     | 
    
         
             
                    else:
         
     | 
| 
       685 
680 
     | 
    
         
             
                        self.mlp = Qwen2MoeMLP(
         
     | 
| 
         @@ -905,7 +900,7 @@ class Qwen3NextForCausalLM(nn.Module): 
     | 
|
| 
       905 
900 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       906 
901 
     | 
    
         
             
                        org_num_embeddings=config.vocab_size,
         
     | 
| 
       907 
902 
     | 
    
         
             
                        prefix=add_prefix("lm_head", prefix),
         
     | 
| 
       908 
     | 
    
         
            -
                        use_attn_tp_group= 
     | 
| 
      
 903 
     | 
    
         
            +
                        use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
         
     | 
| 
       909 
904 
     | 
    
         
             
                    )
         
     | 
| 
       910 
905 
     | 
    
         
             
                    self.lm_head = self.lm_head.float()
         
     | 
| 
       911 
906 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
         @@ -21,14 +21,13 @@ from torch import nn 
     | 
|
| 
       21 
21 
     | 
    
         
             
            from transformers import PretrainedConfig
         
     | 
| 
       22 
22 
     | 
    
         | 
| 
       23 
23 
     | 
    
         
             
            from sglang.srt.distributed import get_pp_group, get_tensor_model_parallel_world_size
         
     | 
| 
       24 
     | 
    
         
            -
            from sglang.srt.layers.layernorm import GemmaRMSNorm 
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.layers.layernorm import GemmaRMSNorm
         
     | 
| 
       25 
25 
     | 
    
         
             
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
       26 
26 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       27 
27 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
         
     | 
| 
       28 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       29 
28 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       30 
     | 
    
         
            -
            from sglang.srt.models.qwen3_moe import Qwen3MoeModel
         
     | 
| 
       31 
29 
     | 
    
         
             
            from sglang.srt.models.qwen3_next import Qwen3NextForCausalLM, Qwen3NextModel
         
     | 
| 
      
 30 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       32 
31 
     | 
    
         
             
            from sglang.srt.utils import add_prefix
         
     | 
| 
       33 
32 
     | 
    
         | 
| 
       34 
33 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
         @@ -69,7 +68,7 @@ class Qwen3NextForCausalLMMTP(Qwen3NextForCausalLM): 
     | 
|
| 
       69 
68 
     | 
    
         
             
                        config.hidden_size,
         
     | 
| 
       70 
69 
     | 
    
         
             
                        quant_config=quant_config,
         
     | 
| 
       71 
70 
     | 
    
         
             
                        prefix=add_prefix("model.shared_head.head", prefix),
         
     | 
| 
       72 
     | 
    
         
            -
                        use_attn_tp_group= 
     | 
| 
      
 71 
     | 
    
         
            +
                        use_attn_tp_group=get_global_server_args().enable_dp_lm_head,
         
     | 
| 
       73 
72 
     | 
    
         
             
                    )
         
     | 
| 
       74 
73 
     | 
    
         
             
                    self.logits_processor = LogitsProcessor(config)
         
     | 
| 
       75 
74 
     | 
    
         |