sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,1028 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Optional
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.configs.model_config import AttentionArch
         
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.layers.attention.flashattention_backend import (
         
     | 
| 
      
 10 
     | 
    
         
            +
                FlashAttentionMetadata,
         
     | 
| 
      
 11 
     | 
    
         
            +
                make_local_attention_virtual_batches,
         
     | 
| 
      
 12 
     | 
    
         
            +
                merge_state_v2_wrapper,
         
     | 
| 
      
 13 
     | 
    
         
            +
                prepare_swa_spec_page_table_triton,
         
     | 
| 
      
 14 
     | 
    
         
            +
            )
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import get_global_server_args
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 19 
     | 
    
         
            +
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
      
 20 
     | 
    
         
            +
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            from sgl_kernel import merge_state_v2
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
            class XPUAttentionBackend(AttentionBackend):
         
     | 
| 
      
 27 
     | 
    
         
            +
                """XPU FlashAttention backend, currently based on FlashAttentionBackend, will be refactored later.
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
                TODO:
         
     | 
| 
      
 30 
     | 
    
         
            +
                - Prefill and Decode disaggregation, currently only chunked prefill is supported
         
     | 
| 
      
 31 
     | 
    
         
            +
                - Speculative Decoding support
         
     | 
| 
      
 32 
     | 
    
         
            +
                - XPU Graph support, see https://github.com/pytorch/pytorch/issues/162143
         
     | 
| 
      
 33 
     | 
    
         
            +
                - MLA support
         
     | 
| 
      
 34 
     | 
    
         
            +
                """
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 37 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 38 
     | 
    
         
            +
                    model_runner: ModelRunner,
         
     | 
| 
      
 39 
     | 
    
         
            +
                    skip_prefill: bool = False,
         
     | 
| 
      
 40 
     | 
    
         
            +
                    speculative_step_id=0,
         
     | 
| 
      
 41 
     | 
    
         
            +
                    topk=0,
         
     | 
| 
      
 42 
     | 
    
         
            +
                    speculative_num_steps=0,
         
     | 
| 
      
 43 
     | 
    
         
            +
                ):
         
     | 
| 
      
 44 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
                    assert not (
         
     | 
| 
      
 47 
     | 
    
         
            +
                        model_runner.sliding_window_size is not None
         
     | 
| 
      
 48 
     | 
    
         
            +
                        and model_runner.model_config.is_encoder_decoder
         
     | 
| 
      
 49 
     | 
    
         
            +
                    ), "Sliding window and cross attention are not supported together"
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                    self.forward_metadata: FlashAttentionMetadata = None
         
     | 
| 
      
 52 
     | 
    
         
            +
                    # extra metadata for handling speculative decoding topk > 1, extended draft decode and verify
         
     | 
| 
      
 53 
     | 
    
         
            +
                    self.forward_metadata_spec_decode_expand: FlashAttentionMetadata = None
         
     | 
| 
      
 54 
     | 
    
         
            +
                    self.max_context_len = model_runner.model_config.context_len
         
     | 
| 
      
 55 
     | 
    
         
            +
                    self.device = model_runner.device
         
     | 
| 
      
 56 
     | 
    
         
            +
                    self.decode_cuda_graph_metadata = {}
         
     | 
| 
      
 57 
     | 
    
         
            +
                    self.target_verify_metadata = {}
         
     | 
| 
      
 58 
     | 
    
         
            +
                    self.req_to_token = model_runner.req_to_token_pool.req_to_token
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self.kv_cache_dtype = model_runner.kv_cache_dtype
         
     | 
| 
      
 60 
     | 
    
         
            +
                    self.kv_cache_dtype_str = model_runner.server_args.kv_cache_dtype
         
     | 
| 
      
 61 
     | 
    
         
            +
                    self.page_size = model_runner.page_size
         
     | 
| 
      
 62 
     | 
    
         
            +
                    self.use_mla = model_runner.model_config.attention_arch == AttentionArch.MLA
         
     | 
| 
      
 63 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 64 
     | 
    
         
            +
                        self.use_mla is False
         
     | 
| 
      
 65 
     | 
    
         
            +
                    ), "XPUAttentionBackend doesn't support MLA yet, please use --attention-backend triton instead."
         
     | 
| 
      
 66 
     | 
    
         
            +
                    self.skip_prefill = skip_prefill
         
     | 
| 
      
 67 
     | 
    
         
            +
                    self.is_hybrid = model_runner.is_hybrid
         
     | 
| 
      
 68 
     | 
    
         
            +
                    if self.is_hybrid:
         
     | 
| 
      
 69 
     | 
    
         
            +
                        self.full_to_swa_index_mapping = (
         
     | 
| 
      
 70 
     | 
    
         
            +
                            model_runner.token_to_kv_pool.full_to_swa_index_mapping
         
     | 
| 
      
 71 
     | 
    
         
            +
                        )
         
     | 
| 
      
 72 
     | 
    
         
            +
                    self.topk = model_runner.server_args.speculative_eagle_topk or 0
         
     | 
| 
      
 73 
     | 
    
         
            +
                    self.speculative_num_steps = speculative_num_steps
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self.speculative_num_draft_tokens = (
         
     | 
| 
      
 75 
     | 
    
         
            +
                        model_runner.server_args.speculative_num_draft_tokens
         
     | 
| 
      
 76 
     | 
    
         
            +
                    )
         
     | 
| 
      
 77 
     | 
    
         
            +
                    self.speculative_step_id = speculative_step_id
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                    # Local attention settings
         
     | 
| 
      
 80 
     | 
    
         
            +
                    self.attention_chunk_size = (
         
     | 
| 
      
 81 
     | 
    
         
            +
                        model_runner.attention_chunk_size
         
     | 
| 
      
 82 
     | 
    
         
            +
                        if hasattr(model_runner, "attention_chunk_size")
         
     | 
| 
      
 83 
     | 
    
         
            +
                        else None
         
     | 
| 
      
 84 
     | 
    
         
            +
                    )
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
                    # For each layer, the sliding_window_size can be different. This is only used for preparing SWA metadata.
         
     | 
| 
      
 87 
     | 
    
         
            +
                    # We use `layer.sliding_window_size` to decide whether to use SWA for each layer.
         
     | 
| 
      
 88 
     | 
    
         
            +
                    self.sliding_window_size = model_runner.sliding_window_size
         
     | 
| 
      
 89 
     | 
    
         
            +
                    self.has_swa = (
         
     | 
| 
      
 90 
     | 
    
         
            +
                        self.sliding_window_size is not None and self.sliding_window_size > -1
         
     | 
| 
      
 91 
     | 
    
         
            +
                    )
         
     | 
| 
      
 92 
     | 
    
         
            +
             
     | 
| 
      
 93 
     | 
    
         
            +
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 94 
     | 
    
         
            +
                    """Initialize forward metadata hence all layers in the forward pass can reuse it."""
         
     | 
| 
      
 95 
     | 
    
         
            +
                    metadata = FlashAttentionMetadata()
         
     | 
| 
      
 96 
     | 
    
         
            +
                    seqlens_in_batch = forward_batch.seq_lens
         
     | 
| 
      
 97 
     | 
    
         
            +
                    batch_size = forward_batch.batch_size
         
     | 
| 
      
 98 
     | 
    
         
            +
                    device = seqlens_in_batch.device
         
     | 
| 
      
 99 
     | 
    
         
            +
             
     | 
| 
      
 100 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_decode_or_idle():
         
     | 
| 
      
 101 
     | 
    
         
            +
                        # Draft Decode
         
     | 
| 
      
 102 
     | 
    
         
            +
                        if forward_batch.spec_info is not None:
         
     | 
| 
      
 103 
     | 
    
         
            +
                            assert (
         
     | 
| 
      
 104 
     | 
    
         
            +
                                False
         
     | 
| 
      
 105 
     | 
    
         
            +
                            ), "XPUAttentionBackend doesn't support speculative decoding yet, please use --attention-backend triton instead."
         
     | 
| 
      
 106 
     | 
    
         
            +
                            if self.topk <= 1:
         
     | 
| 
      
 107 
     | 
    
         
            +
                                metadata.cache_seqlens_int32 = (
         
     | 
| 
      
 108 
     | 
    
         
            +
                                    seqlens_in_batch + (self.speculative_step_id + 1)
         
     | 
| 
      
 109 
     | 
    
         
            +
                                ).to(torch.int32)
         
     | 
| 
      
 110 
     | 
    
         
            +
                                metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item() + (
         
     | 
| 
      
 111 
     | 
    
         
            +
                                    self.speculative_step_id + 1
         
     | 
| 
      
 112 
     | 
    
         
            +
                                )
         
     | 
| 
      
 113 
     | 
    
         
            +
                                metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 114 
     | 
    
         
            +
                                    0, batch_size + 1, dtype=torch.int32, device=device
         
     | 
| 
      
 115 
     | 
    
         
            +
                                )
         
     | 
| 
      
 116 
     | 
    
         
            +
                                metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 117 
     | 
    
         
            +
                                    torch.cumsum(
         
     | 
| 
      
 118 
     | 
    
         
            +
                                        metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
         
     | 
| 
      
 119 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 120 
     | 
    
         
            +
                                    (1, 0),
         
     | 
| 
      
 121 
     | 
    
         
            +
                                )
         
     | 
| 
      
 122 
     | 
    
         
            +
                                metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 123 
     | 
    
         
            +
                                    forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 124 
     | 
    
         
            +
                                ]
         
     | 
| 
      
 125 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 126 
     | 
    
         
            +
                                metadata.cache_seqlens_int32 = (seqlens_in_batch).to(torch.int32)
         
     | 
| 
      
 127 
     | 
    
         
            +
                                metadata.max_seq_len_q = self.topk
         
     | 
| 
      
 128 
     | 
    
         
            +
                                metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 129 
     | 
    
         
            +
                                metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 130 
     | 
    
         
            +
                                    0,
         
     | 
| 
      
 131 
     | 
    
         
            +
                                    batch_size * self.topk + 1,
         
     | 
| 
      
 132 
     | 
    
         
            +
                                    step=self.topk,
         
     | 
| 
      
 133 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 134 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 135 
     | 
    
         
            +
                                )
         
     | 
| 
      
 136 
     | 
    
         
            +
                                metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 137 
     | 
    
         
            +
                                    torch.cumsum(
         
     | 
| 
      
 138 
     | 
    
         
            +
                                        metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
         
     | 
| 
      
 139 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 140 
     | 
    
         
            +
                                    (1, 0),
         
     | 
| 
      
 141 
     | 
    
         
            +
                                )
         
     | 
| 
      
 142 
     | 
    
         
            +
                                metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 143 
     | 
    
         
            +
                                    forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 144 
     | 
    
         
            +
                                ]
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                                metadata_expand = FlashAttentionMetadata()
         
     | 
| 
      
 147 
     | 
    
         
            +
                                decode_length = self.speculative_step_id + 1
         
     | 
| 
      
 148 
     | 
    
         
            +
                                metadata_expand.cache_seqlens_int32 = torch.full(
         
     | 
| 
      
 149 
     | 
    
         
            +
                                    (seqlens_in_batch.numel() * self.topk,),
         
     | 
| 
      
 150 
     | 
    
         
            +
                                    decode_length,
         
     | 
| 
      
 151 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 152 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 153 
     | 
    
         
            +
                                )
         
     | 
| 
      
 154 
     | 
    
         
            +
                                metadata_expand.max_seq_len_q = 1
         
     | 
| 
      
 155 
     | 
    
         
            +
                                metadata_expand.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 156 
     | 
    
         
            +
                                    0,
         
     | 
| 
      
 157 
     | 
    
         
            +
                                    metadata_expand.cache_seqlens_int32.numel() + 1,
         
     | 
| 
      
 158 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 159 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 160 
     | 
    
         
            +
                                )
         
     | 
| 
      
 161 
     | 
    
         
            +
                                metadata_expand.cu_seqlens_k = torch.arange(
         
     | 
| 
      
 162 
     | 
    
         
            +
                                    0,
         
     | 
| 
      
 163 
     | 
    
         
            +
                                    metadata_expand.cache_seqlens_int32.numel() * decode_length + 1,
         
     | 
| 
      
 164 
     | 
    
         
            +
                                    step=decode_length,
         
     | 
| 
      
 165 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 166 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 167 
     | 
    
         
            +
                                )
         
     | 
| 
      
 168 
     | 
    
         
            +
                                # shape: [bs, num_steps, topk] -> [bs x topk, num_steps]
         
     | 
| 
      
 169 
     | 
    
         
            +
                                cache_loc = forward_batch.out_cache_loc.view(
         
     | 
| 
      
 170 
     | 
    
         
            +
                                    -1, self.speculative_num_steps
         
     | 
| 
      
 171 
     | 
    
         
            +
                                )
         
     | 
| 
      
 172 
     | 
    
         
            +
                                metadata_expand.page_table = (
         
     | 
| 
      
 173 
     | 
    
         
            +
                                    cache_loc[:, :decode_length].contiguous().to(torch.int32)
         
     | 
| 
      
 174 
     | 
    
         
            +
                                )
         
     | 
| 
      
 175 
     | 
    
         
            +
                                self.forward_metadata_spec_decode_expand = metadata_expand
         
     | 
| 
      
 176 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 177 
     | 
    
         
            +
                            # Normal Decode
         
     | 
| 
      
 178 
     | 
    
         
            +
                            metadata.cache_seqlens_int32 = seqlens_in_batch.to(torch.int32)
         
     | 
| 
      
 179 
     | 
    
         
            +
                            metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 180 
     | 
    
         
            +
                            metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 181 
     | 
    
         
            +
                                0, batch_size + 1, dtype=torch.int32, device=device
         
     | 
| 
      
 182 
     | 
    
         
            +
                            )
         
     | 
| 
      
 183 
     | 
    
         
            +
                            metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 184 
     | 
    
         
            +
                                torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)
         
     | 
| 
      
 185 
     | 
    
         
            +
                            )
         
     | 
| 
      
 186 
     | 
    
         
            +
                            metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 187 
     | 
    
         
            +
                                forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 188 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 189 
     | 
    
         
            +
                        # TODO: we need to test this part for llama 4 eagle case
         
     | 
| 
      
 190 
     | 
    
         
            +
                        self._init_local_attn_metadata(forward_batch, metadata, device)
         
     | 
| 
      
 191 
     | 
    
         
            +
                    elif forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 192 
     | 
    
         
            +
                        if self.topk <= 1:
         
     | 
| 
      
 193 
     | 
    
         
            +
                            metadata.cache_seqlens_int32 = (
         
     | 
| 
      
 194 
     | 
    
         
            +
                                forward_batch.seq_lens + self.speculative_num_draft_tokens
         
     | 
| 
      
 195 
     | 
    
         
            +
                            ).to(torch.int32)
         
     | 
| 
      
 196 
     | 
    
         
            +
                            metadata.max_seq_len_q = self.speculative_num_draft_tokens
         
     | 
| 
      
 197 
     | 
    
         
            +
                            metadata.max_seq_len_k = (
         
     | 
| 
      
 198 
     | 
    
         
            +
                                forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 199 
     | 
    
         
            +
                                + self.speculative_num_draft_tokens
         
     | 
| 
      
 200 
     | 
    
         
            +
                            )
         
     | 
| 
      
 201 
     | 
    
         
            +
                            metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 202 
     | 
    
         
            +
                                0,
         
     | 
| 
      
 203 
     | 
    
         
            +
                                batch_size * self.speculative_num_draft_tokens + 1,
         
     | 
| 
      
 204 
     | 
    
         
            +
                                self.speculative_num_draft_tokens,
         
     | 
| 
      
 205 
     | 
    
         
            +
                                dtype=torch.int32,
         
     | 
| 
      
 206 
     | 
    
         
            +
                                device=device,
         
     | 
| 
      
 207 
     | 
    
         
            +
                            )
         
     | 
| 
      
 208 
     | 
    
         
            +
                            metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 209 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 210 
     | 
    
         
            +
                                    metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
         
     | 
| 
      
 211 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 212 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 213 
     | 
    
         
            +
                            )
         
     | 
| 
      
 214 
     | 
    
         
            +
                            metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 215 
     | 
    
         
            +
                                forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 216 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 217 
     | 
    
         
            +
             
     | 
| 
      
 218 
     | 
    
         
            +
                            self._init_local_attn_metadata(forward_batch, metadata, device)
         
     | 
| 
      
 219 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 220 
     | 
    
         
            +
                            metadata.cache_seqlens_int32 = forward_batch.seq_lens.to(torch.int32)
         
     | 
| 
      
 221 
     | 
    
         
            +
                            metadata.max_seq_len_q = self.speculative_num_draft_tokens
         
     | 
| 
      
 222 
     | 
    
         
            +
                            metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 223 
     | 
    
         
            +
                            metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 224 
     | 
    
         
            +
                                0,
         
     | 
| 
      
 225 
     | 
    
         
            +
                                batch_size * self.speculative_num_draft_tokens + 1,
         
     | 
| 
      
 226 
     | 
    
         
            +
                                step=self.speculative_num_draft_tokens,
         
     | 
| 
      
 227 
     | 
    
         
            +
                                dtype=torch.int32,
         
     | 
| 
      
 228 
     | 
    
         
            +
                                device=device,
         
     | 
| 
      
 229 
     | 
    
         
            +
                            )
         
     | 
| 
      
 230 
     | 
    
         
            +
                            metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 231 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 232 
     | 
    
         
            +
                                    metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
         
     | 
| 
      
 233 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 234 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 235 
     | 
    
         
            +
                            )
         
     | 
| 
      
 236 
     | 
    
         
            +
                            metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 237 
     | 
    
         
            +
                                forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 238 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
                            metadata_expand = FlashAttentionMetadata()
         
     | 
| 
      
 241 
     | 
    
         
            +
             
     | 
| 
      
 242 
     | 
    
         
            +
                            metadata_expand.max_seq_len_q = 1
         
     | 
| 
      
 243 
     | 
    
         
            +
                            metadata_expand.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 244 
     | 
    
         
            +
                                0,
         
     | 
| 
      
 245 
     | 
    
         
            +
                                forward_batch.seq_lens.numel() * self.speculative_num_draft_tokens
         
     | 
| 
      
 246 
     | 
    
         
            +
                                + 1,
         
     | 
| 
      
 247 
     | 
    
         
            +
                                dtype=torch.int32,
         
     | 
| 
      
 248 
     | 
    
         
            +
                                device=device,
         
     | 
| 
      
 249 
     | 
    
         
            +
                            )
         
     | 
| 
      
 250 
     | 
    
         
            +
             
     | 
| 
      
 251 
     | 
    
         
            +
                            # create expand page table
         
     | 
| 
      
 252 
     | 
    
         
            +
                            offsets = torch.arange(
         
     | 
| 
      
 253 
     | 
    
         
            +
                                self.speculative_num_draft_tokens, device=device
         
     | 
| 
      
 254 
     | 
    
         
            +
                            ).unsqueeze(
         
     | 
| 
      
 255 
     | 
    
         
            +
                                0
         
     | 
| 
      
 256 
     | 
    
         
            +
                            )  # shape: (1, self.speculative_num_draft_tokens)
         
     | 
| 
      
 257 
     | 
    
         
            +
                            cols = offsets.expand(
         
     | 
| 
      
 258 
     | 
    
         
            +
                                forward_batch.seq_lens.numel(), -1
         
     | 
| 
      
 259 
     | 
    
         
            +
                            ) + forward_batch.seq_lens.unsqueeze(1)
         
     | 
| 
      
 260 
     | 
    
         
            +
                            cum_len = torch.nn.functional.pad(
         
     | 
| 
      
 261 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 262 
     | 
    
         
            +
                                    (
         
     | 
| 
      
 263 
     | 
    
         
            +
                                        forward_batch.seq_lens + self.speculative_num_draft_tokens
         
     | 
| 
      
 264 
     | 
    
         
            +
                                    ).repeat_interleave(self.speculative_num_draft_tokens),
         
     | 
| 
      
 265 
     | 
    
         
            +
                                    dim=0,
         
     | 
| 
      
 266 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 267 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 268 
     | 
    
         
            +
                            )[:-1]
         
     | 
| 
      
 269 
     | 
    
         
            +
                            mask_extraction_indices = (
         
     | 
| 
      
 270 
     | 
    
         
            +
                                cols.repeat_interleave(self.speculative_num_draft_tokens, dim=0)
         
     | 
| 
      
 271 
     | 
    
         
            +
                                + cum_len[:, None]
         
     | 
| 
      
 272 
     | 
    
         
            +
                            ).view(1, -1)
         
     | 
| 
      
 273 
     | 
    
         
            +
                            mask = forward_batch.spec_info.custom_mask[
         
     | 
| 
      
 274 
     | 
    
         
            +
                                mask_extraction_indices
         
     | 
| 
      
 275 
     | 
    
         
            +
                            ].view(
         
     | 
| 
      
 276 
     | 
    
         
            +
                                -1, self.speculative_num_draft_tokens
         
     | 
| 
      
 277 
     | 
    
         
            +
                            )  # (bsz * draft_num, draft_num)
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                            # shift table indices to avoid padding
         
     | 
| 
      
 280 
     | 
    
         
            +
                            # non_masked_page_table [[8, 9, 10],   mask (display with int format) [[1, 0, 0],
         
     | 
| 
      
 281 
     | 
    
         
            +
                            #                        [8, 9, 10],                                   [1, 1, 0],
         
     | 
| 
      
 282 
     | 
    
         
            +
                            #                        [8, 9, 10]]                                   [1, 0, 1]]
         
     | 
| 
      
 283 
     | 
    
         
            +
                            # if masked with padding [[8, 0, 0],   our mask without padding       [[8, 9, 10],
         
     | 
| 
      
 284 
     | 
    
         
            +
                            #                        [8, 9, 0],                                    [8, 9, 10],
         
     | 
| 
      
 285 
     | 
    
         
            +
                            #                        [8, 0, 10]]                                   [8, 10, 9]]
         
     | 
| 
      
 286 
     | 
    
         
            +
                            # note here cache_seqlens_int32 is [1, 2, 2] so extra page indices will be ignored in each row
         
     | 
| 
      
 287 
     | 
    
         
            +
                            col_indices = offsets.expand(
         
     | 
| 
      
 288 
     | 
    
         
            +
                                mask.shape[0], self.speculative_num_draft_tokens
         
     | 
| 
      
 289 
     | 
    
         
            +
                            )
         
     | 
| 
      
 290 
     | 
    
         
            +
                            # Build keys: if an entry is valid (mask==True), keep its original index;
         
     | 
| 
      
 291 
     | 
    
         
            +
                            # if not, add self.speculative_num_draft_tokens so that it sorts after all valid entries.
         
     | 
| 
      
 292 
     | 
    
         
            +
                            keys = torch.where(
         
     | 
| 
      
 293 
     | 
    
         
            +
                                mask, col_indices, col_indices + self.speculative_num_draft_tokens
         
     | 
| 
      
 294 
     | 
    
         
            +
                            )
         
     | 
| 
      
 295 
     | 
    
         
            +
                            _, sort_order = torch.sort(keys, dim=1)
         
     | 
| 
      
 296 
     | 
    
         
            +
                            non_masked_page_table = (
         
     | 
| 
      
 297 
     | 
    
         
            +
                                forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 298 
     | 
    
         
            +
                                    forward_batch.req_pool_indices, :
         
     | 
| 
      
 299 
     | 
    
         
            +
                                ]
         
     | 
| 
      
 300 
     | 
    
         
            +
                                .gather(1, cols)
         
     | 
| 
      
 301 
     | 
    
         
            +
                                .repeat_interleave(self.speculative_num_draft_tokens, dim=0)
         
     | 
| 
      
 302 
     | 
    
         
            +
                            )  # (bsz, draft_num)
         
     | 
| 
      
 303 
     | 
    
         
            +
                            metadata_expand.page_table = non_masked_page_table.gather(1, sort_order)
         
     | 
| 
      
 304 
     | 
    
         
            +
                            metadata_expand.cache_seqlens_int32 = mask.sum(dim=1).to(torch.int32)
         
     | 
| 
      
 305 
     | 
    
         
            +
                            metadata_expand.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 306 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 307 
     | 
    
         
            +
                                    metadata_expand.cache_seqlens_int32, dim=0, dtype=torch.int32
         
     | 
| 
      
 308 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 309 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 310 
     | 
    
         
            +
                            )
         
     | 
| 
      
 311 
     | 
    
         
            +
                            self.forward_metadata_spec_decode_expand = metadata_expand
         
     | 
| 
      
 312 
     | 
    
         
            +
             
     | 
| 
      
 313 
     | 
    
         
            +
                            if self.has_swa:
         
     | 
| 
      
 314 
     | 
    
         
            +
                                self._init_sliding_window_attn_spec_metadata(
         
     | 
| 
      
 315 
     | 
    
         
            +
                                    metadata, metadata_expand
         
     | 
| 
      
 316 
     | 
    
         
            +
                                )
         
     | 
| 
      
 317 
     | 
    
         
            +
             
     | 
| 
      
 318 
     | 
    
         
            +
                    elif forward_batch.forward_mode.is_extend_or_draft_extend_or_mixed():
         
     | 
| 
      
 319 
     | 
    
         
            +
                        metadata.cache_seqlens_int32 = seqlens_in_batch.to(torch.int32)
         
     | 
| 
      
 320 
     | 
    
         
            +
                        metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 321 
     | 
    
         
            +
                        metadata.cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 322 
     | 
    
         
            +
                            torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)
         
     | 
| 
      
 323 
     | 
    
         
            +
                        )
         
     | 
| 
      
 324 
     | 
    
         
            +
                        metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 325 
     | 
    
         
            +
                            forward_batch.req_pool_indices, : metadata.max_seq_len_k
         
     | 
| 
      
 326 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 327 
     | 
    
         
            +
             
     | 
| 
      
 328 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 329 
     | 
    
         
            +
                            any(forward_batch.extend_prefix_lens_cpu)
         
     | 
| 
      
 330 
     | 
    
         
            +
                            or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
         
     | 
| 
      
 331 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 332 
     | 
    
         
            +
                            extend_seq_lens = forward_batch.extend_seq_lens
         
     | 
| 
      
 333 
     | 
    
         
            +
                            metadata.max_seq_len_q = max(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 334 
     | 
    
         
            +
                            metadata.cu_seqlens_q = torch.nn.functional.pad(
         
     | 
| 
      
 335 
     | 
    
         
            +
                                torch.cumsum(extend_seq_lens, dim=0, dtype=torch.int32), (1, 0)
         
     | 
| 
      
 336 
     | 
    
         
            +
                            )
         
     | 
| 
      
 337 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 338 
     | 
    
         
            +
                            metadata.max_seq_len_q = metadata.max_seq_len_k
         
     | 
| 
      
 339 
     | 
    
         
            +
                            metadata.cu_seqlens_q = metadata.cu_seqlens_k
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                        # Setup local attention if enabled
         
     | 
| 
      
 342 
     | 
    
         
            +
                        if forward_batch.forward_mode == ForwardMode.EXTEND:
         
     | 
| 
      
 343 
     | 
    
         
            +
                            self._init_local_attn_metadata(forward_batch, metadata, device)
         
     | 
| 
      
 344 
     | 
    
         
            +
             
     | 
| 
      
 345 
     | 
    
         
            +
                    # Encoder metadata for cross attention
         
     | 
| 
      
 346 
     | 
    
         
            +
                    if forward_batch.encoder_lens is not None:
         
     | 
| 
      
 347 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 348 
     | 
    
         
            +
                            forward_batch.encoder_lens.numel() == 1
         
     | 
| 
      
 349 
     | 
    
         
            +
                        ), "Only encoder size 1 is supported for now"
         
     | 
| 
      
 350 
     | 
    
         
            +
             
     | 
| 
      
 351 
     | 
    
         
            +
                        metadata.encoder_lens_int32 = forward_batch.encoder_lens.to(torch.int32)
         
     | 
| 
      
 352 
     | 
    
         
            +
                        metadata.encoder_cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 353 
     | 
    
         
            +
                            torch.cumsum(metadata.encoder_lens_int32, dim=0, dtype=torch.int32),
         
     | 
| 
      
 354 
     | 
    
         
            +
                            (1, 0),
         
     | 
| 
      
 355 
     | 
    
         
            +
                        )
         
     | 
| 
      
 356 
     | 
    
         
            +
                        metadata.encoder_max_seq_len_k = metadata.encoder_lens_int32.max().item()
         
     | 
| 
      
 357 
     | 
    
         
            +
                        metadata.encoder_page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 358 
     | 
    
         
            +
                            forward_batch.req_pool_indices, : metadata.encoder_max_seq_len_k
         
     | 
| 
      
 359 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                        # Currently only support forward_batch.encoder_lens.numel() == 1
         
     | 
| 
      
 362 
     | 
    
         
            +
                        metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 363 
     | 
    
         
            +
                            forward_batch.req_pool_indices,
         
     | 
| 
      
 364 
     | 
    
         
            +
                            metadata.encoder_max_seq_len_k : (
         
     | 
| 
      
 365 
     | 
    
         
            +
                                metadata.encoder_max_seq_len_k + metadata.max_seq_len_k
         
     | 
| 
      
 366 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 367 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
                    # Convert the page table to a strided format which is needed by FA3 API
         
     | 
| 
      
 370 
     | 
    
         
            +
                    if self.page_size > 1:
         
     | 
| 
      
 371 
     | 
    
         
            +
                        self.strided_indices = torch.arange(
         
     | 
| 
      
 372 
     | 
    
         
            +
                            0, metadata.page_table.shape[1], self.page_size, device=self.device
         
     | 
| 
      
 373 
     | 
    
         
            +
                        )
         
     | 
| 
      
 374 
     | 
    
         
            +
                        metadata.page_table = (
         
     | 
| 
      
 375 
     | 
    
         
            +
                            metadata.page_table[:, self.strided_indices] // self.page_size
         
     | 
| 
      
 376 
     | 
    
         
            +
                        )
         
     | 
| 
      
 377 
     | 
    
         
            +
             
     | 
| 
      
 378 
     | 
    
         
            +
                    self.forward_metadata = metadata
         
     | 
| 
      
 379 
     | 
    
         
            +
             
     | 
| 
      
 380 
     | 
    
         
            +
                def forward_extend(
         
     | 
| 
      
 381 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 382 
     | 
    
         
            +
                    q: torch.Tensor,
         
     | 
| 
      
 383 
     | 
    
         
            +
                    k: torch.Tensor,
         
     | 
| 
      
 384 
     | 
    
         
            +
                    v: torch.Tensor,
         
     | 
| 
      
 385 
     | 
    
         
            +
                    layer: RadixAttention,
         
     | 
| 
      
 386 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 387 
     | 
    
         
            +
                    save_kv_cache=True,
         
     | 
| 
      
 388 
     | 
    
         
            +
                    # For multi-head latent attention
         
     | 
| 
      
 389 
     | 
    
         
            +
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 390 
     | 
    
         
            +
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 391 
     | 
    
         
            +
                    sinks: Optional[torch.Tensor] = None,
         
     | 
| 
      
 392 
     | 
    
         
            +
                ):
         
     | 
| 
      
 393 
     | 
    
         
            +
                    if k is not None:
         
     | 
| 
      
 394 
     | 
    
         
            +
                        assert v is not None
         
     | 
| 
      
 395 
     | 
    
         
            +
                        if save_kv_cache:
         
     | 
| 
      
 396 
     | 
    
         
            +
                            cache_loc = (
         
     | 
| 
      
 397 
     | 
    
         
            +
                                forward_batch.out_cache_loc
         
     | 
| 
      
 398 
     | 
    
         
            +
                                if not layer.is_cross_attention
         
     | 
| 
      
 399 
     | 
    
         
            +
                                else forward_batch.encoder_out_cache_loc
         
     | 
| 
      
 400 
     | 
    
         
            +
                            )
         
     | 
| 
      
 401 
     | 
    
         
            +
                            if not self.use_mla:
         
     | 
| 
      
 402 
     | 
    
         
            +
                                forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
      
 403 
     | 
    
         
            +
                                    layer, cache_loc, k, v, layer.k_scale, layer.v_scale
         
     | 
| 
      
 404 
     | 
    
         
            +
                                )
         
     | 
| 
      
 405 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 406 
     | 
    
         
            +
                                forward_batch.token_to_kv_pool.set_mla_kv_buffer(
         
     | 
| 
      
 407 
     | 
    
         
            +
                                    layer,
         
     | 
| 
      
 408 
     | 
    
         
            +
                                    cache_loc,
         
     | 
| 
      
 409 
     | 
    
         
            +
                                    k,
         
     | 
| 
      
 410 
     | 
    
         
            +
                                    k_rope,
         
     | 
| 
      
 411 
     | 
    
         
            +
                                )
         
     | 
| 
      
 412 
     | 
    
         
            +
             
     | 
| 
      
 413 
     | 
    
         
            +
                    # Use precomputed metadata across all layers
         
     | 
| 
      
 414 
     | 
    
         
            +
                    metadata = self.forward_metadata
         
     | 
| 
      
 415 
     | 
    
         
            +
             
     | 
| 
      
 416 
     | 
    
         
            +
                    # Calculate window size (can be moved to metadata if layer properties don't change)
         
     | 
| 
      
 417 
     | 
    
         
            +
                    # we don't do layer.sliding_window_size - 1 since in model.get_attention_sliding_window_size() we already - 1
         
     | 
| 
      
 418 
     | 
    
         
            +
                    # here is two side inclusive
         
     | 
| 
      
 419 
     | 
    
         
            +
                    is_swa = (
         
     | 
| 
      
 420 
     | 
    
         
            +
                        layer.sliding_window_size is not None and layer.sliding_window_size > -1
         
     | 
| 
      
 421 
     | 
    
         
            +
                    )
         
     | 
| 
      
 422 
     | 
    
         
            +
                    window_size = (layer.sliding_window_size, 0) if is_swa else (-1, -1)
         
     | 
| 
      
 423 
     | 
    
         
            +
             
     | 
| 
      
 424 
     | 
    
         
            +
                    # currently no FP8 KV cache supported
         
     | 
| 
      
 425 
     | 
    
         
            +
                    k_descale, v_descale = None, None
         
     | 
| 
      
 426 
     | 
    
         
            +
                    # # only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
         
     | 
| 
      
 427 
     | 
    
         
            +
                    # # has corresponding quantization method so that layer.k_scale is not None,
         
     | 
| 
      
 428 
     | 
    
         
            +
                    # # 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
         
     | 
| 
      
 429 
     | 
    
         
            +
                    # if self.kv_cache_dtype_str != "auto" and layer.head_dim <= 256:
         
     | 
| 
      
 430 
     | 
    
         
            +
                    #     if layer.k_scale is not None:
         
     | 
| 
      
 431 
     | 
    
         
            +
                    #         descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
         
     | 
| 
      
 432 
     | 
    
         
            +
                    #         k_descale = layer.k_scale.expand(descale_shape)
         
     | 
| 
      
 433 
     | 
    
         
            +
                    #         v_descale = layer.v_scale.expand(descale_shape)
         
     | 
| 
      
 434 
     | 
    
         
            +
                    #     q = q.to(self.kv_cache_dtype)
         
     | 
| 
      
 435 
     | 
    
         
            +
                    #     q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
         
     | 
| 
      
 436 
     | 
    
         
            +
                    #     k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
         
     | 
| 
      
 437 
     | 
    
         
            +
                    causal = not layer.is_cross_attention
         
     | 
| 
      
 438 
     | 
    
         
            +
             
     | 
| 
      
 439 
     | 
    
         
            +
                    # Check if we should use local attention
         
     | 
| 
      
 440 
     | 
    
         
            +
                    use_local_attn = (
         
     | 
| 
      
 441 
     | 
    
         
            +
                        self.attention_chunk_size is not None
         
     | 
| 
      
 442 
     | 
    
         
            +
                        and metadata.local_attn_metadata is not None
         
     | 
| 
      
 443 
     | 
    
         
            +
                        and (hasattr(layer, "use_irope") and layer.use_irope)
         
     | 
| 
      
 444 
     | 
    
         
            +
                    )
         
     | 
| 
      
 445 
     | 
    
         
            +
             
     | 
| 
      
 446 
     | 
    
         
            +
                    # We do cascade attention for Target Verify with topk > 1
         
     | 
| 
      
 447 
     | 
    
         
            +
                    # We don't use cascade attention for Sliding Window Attention:
         
     | 
| 
      
 448 
     | 
    
         
            +
                    # - Different window sizes should be passed in for each q in the first stage of cascade attention, but FA3 interface doesn't support pass in a list of window sizes.
         
     | 
| 
      
 449 
     | 
    
         
            +
                    # - The overhead of duplicated computation of the common prefix part is small for sliding window layers (seq_len <= window_size), so we can just expand it.
         
     | 
| 
      
 450 
     | 
    
         
            +
                    use_cascade_attn = (
         
     | 
| 
      
 451 
     | 
    
         
            +
                        forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 452 
     | 
    
         
            +
                        and self.topk > 1
         
     | 
| 
      
 453 
     | 
    
         
            +
                        and not is_swa
         
     | 
| 
      
 454 
     | 
    
         
            +
                    )
         
     | 
| 
      
 455 
     | 
    
         
            +
             
     | 
| 
      
 456 
     | 
    
         
            +
                    # For fa3 interface version compatibility, we put new fields into conditional keyword args
         
     | 
| 
      
 457 
     | 
    
         
            +
                    kwargs = {}
         
     | 
| 
      
 458 
     | 
    
         
            +
                    if sinks is not None:
         
     | 
| 
      
 459 
     | 
    
         
            +
                        kwargs["sinks"] = sinks
         
     | 
| 
      
 460 
     | 
    
         
            +
             
     | 
| 
      
 461 
     | 
    
         
            +
                    # Get the appropriate page table based on whether we're using local attention
         
     | 
| 
      
 462 
     | 
    
         
            +
                    if use_local_attn:
         
     | 
| 
      
 463 
     | 
    
         
            +
                        local_metadata = metadata.local_attn_metadata
         
     | 
| 
      
 464 
     | 
    
         
            +
                        page_table = local_metadata.local_block_table
         
     | 
| 
      
 465 
     | 
    
         
            +
                        cu_seqlens_q = local_metadata.local_query_start_loc
         
     | 
| 
      
 466 
     | 
    
         
            +
                        cache_seqlens = local_metadata.local_seqused_k
         
     | 
| 
      
 467 
     | 
    
         
            +
                        max_seqlen_q = local_metadata.local_max_query_len
         
     | 
| 
      
 468 
     | 
    
         
            +
                    elif is_swa and metadata.swa_spec_metadata is not None:
         
     | 
| 
      
 469 
     | 
    
         
            +
                        swa_spec_metadata = metadata.swa_spec_metadata
         
     | 
| 
      
 470 
     | 
    
         
            +
                        page_table = swa_spec_metadata.page_table
         
     | 
| 
      
 471 
     | 
    
         
            +
                        cu_seqlens_q = swa_spec_metadata.cu_seqlens_q
         
     | 
| 
      
 472 
     | 
    
         
            +
                        cache_seqlens = swa_spec_metadata.cache_seqlens_int32
         
     | 
| 
      
 473 
     | 
    
         
            +
                        max_seqlen_q = swa_spec_metadata.max_seq_len_q
         
     | 
| 
      
 474 
     | 
    
         
            +
                        cu_seqlens_k = swa_spec_metadata.cu_seqlens_k
         
     | 
| 
      
 475 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 476 
     | 
    
         
            +
                        page_table = metadata.page_table
         
     | 
| 
      
 477 
     | 
    
         
            +
                        cu_seqlens_q = metadata.cu_seqlens_q
         
     | 
| 
      
 478 
     | 
    
         
            +
                        cache_seqlens = metadata.cache_seqlens_int32
         
     | 
| 
      
 479 
     | 
    
         
            +
                        max_seqlen_q = metadata.max_seq_len_q
         
     | 
| 
      
 480 
     | 
    
         
            +
                        cu_seqlens_k = metadata.cu_seqlens_k
         
     | 
| 
      
 481 
     | 
    
         
            +
             
     | 
| 
      
 482 
     | 
    
         
            +
                    # Use Flash Attention for prefill
         
     | 
| 
      
 483 
     | 
    
         
            +
                    if not self.use_mla:
         
     | 
| 
      
 484 
     | 
    
         
            +
                        # Do multi-head attention
         
     | 
| 
      
 485 
     | 
    
         
            +
                        key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
         
     | 
| 
      
 486 
     | 
    
         
            +
                            layer.layer_id
         
     | 
| 
      
 487 
     | 
    
         
            +
                        )
         
     | 
| 
      
 488 
     | 
    
         
            +
                        key_cache = key_cache.view(
         
     | 
| 
      
 489 
     | 
    
         
            +
                            -1, self.page_size, layer.tp_k_head_num, layer.head_dim
         
     | 
| 
      
 490 
     | 
    
         
            +
                        )
         
     | 
| 
      
 491 
     | 
    
         
            +
                        value_cache = value_cache.view(
         
     | 
| 
      
 492 
     | 
    
         
            +
                            -1, self.page_size, layer.tp_v_head_num, layer.head_dim
         
     | 
| 
      
 493 
     | 
    
         
            +
                        )
         
     | 
| 
      
 494 
     | 
    
         
            +
                        if layer.is_cross_attention:
         
     | 
| 
      
 495 
     | 
    
         
            +
                            page_table = metadata.encoder_page_table
         
     | 
| 
      
 496 
     | 
    
         
            +
                            cache_seqlens = metadata.encoder_lens_int32
         
     | 
| 
      
 497 
     | 
    
         
            +
                            cu_seqlens_k = metadata.encoder_cu_seqlens_k
         
     | 
| 
      
 498 
     | 
    
         
            +
                            window_size = (-1, -1)
         
     | 
| 
      
 499 
     | 
    
         
            +
             
     | 
| 
      
 500 
     | 
    
         
            +
                        result = flash_attn_with_kvcache(
         
     | 
| 
      
 501 
     | 
    
         
            +
                            q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 502 
     | 
    
         
            +
                            k_cache=key_cache,
         
     | 
| 
      
 503 
     | 
    
         
            +
                            v_cache=value_cache,
         
     | 
| 
      
 504 
     | 
    
         
            +
                            page_table=page_table,
         
     | 
| 
      
 505 
     | 
    
         
            +
                            cache_seqlens=cache_seqlens,
         
     | 
| 
      
 506 
     | 
    
         
            +
                            cu_seqlens_q=cu_seqlens_q,
         
     | 
| 
      
 507 
     | 
    
         
            +
                            cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
         
     | 
| 
      
 508 
     | 
    
         
            +
                            max_seqlen_q=max_seqlen_q,
         
     | 
| 
      
 509 
     | 
    
         
            +
                            softmax_scale=layer.scaling,
         
     | 
| 
      
 510 
     | 
    
         
            +
                            causal=False if use_cascade_attn else causal,
         
     | 
| 
      
 511 
     | 
    
         
            +
                            window_size=window_size,
         
     | 
| 
      
 512 
     | 
    
         
            +
                            softcap=layer.logit_cap,
         
     | 
| 
      
 513 
     | 
    
         
            +
                            k_descale=k_descale,
         
     | 
| 
      
 514 
     | 
    
         
            +
                            v_descale=v_descale,
         
     | 
| 
      
 515 
     | 
    
         
            +
                            return_softmax_lse=use_cascade_attn,
         
     | 
| 
      
 516 
     | 
    
         
            +
                            **kwargs,
         
     | 
| 
      
 517 
     | 
    
         
            +
                        )
         
     | 
| 
      
 518 
     | 
    
         
            +
             
     | 
| 
      
 519 
     | 
    
         
            +
                        if use_cascade_attn:
         
     | 
| 
      
 520 
     | 
    
         
            +
                            o, softmax_lse, *rest = result
         
     | 
| 
      
 521 
     | 
    
         
            +
                            o_expand, softmax_lse_expand, *rest_expand = flash_attn_with_kvcache(
         
     | 
| 
      
 522 
     | 
    
         
            +
                                q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 523 
     | 
    
         
            +
                                k_cache=key_cache,
         
     | 
| 
      
 524 
     | 
    
         
            +
                                v_cache=value_cache,
         
     | 
| 
      
 525 
     | 
    
         
            +
                                page_table=self.forward_metadata_spec_decode_expand.page_table,
         
     | 
| 
      
 526 
     | 
    
         
            +
                                cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
         
     | 
| 
      
 527 
     | 
    
         
            +
                                cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
         
     | 
| 
      
 528 
     | 
    
         
            +
                                cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
         
     | 
| 
      
 529 
     | 
    
         
            +
                                max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
         
     | 
| 
      
 530 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 531 
     | 
    
         
            +
                                causal=False,
         
     | 
| 
      
 532 
     | 
    
         
            +
                                window_size=window_size,
         
     | 
| 
      
 533 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 534 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 535 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 536 
     | 
    
         
            +
                                return_softmax_lse=True,
         
     | 
| 
      
 537 
     | 
    
         
            +
                                **kwargs,
         
     | 
| 
      
 538 
     | 
    
         
            +
                            )
         
     | 
| 
      
 539 
     | 
    
         
            +
                            o, _ = merge_state_v2_wrapper(
         
     | 
| 
      
 540 
     | 
    
         
            +
                                o,
         
     | 
| 
      
 541 
     | 
    
         
            +
                                softmax_lse.T.contiguous(),
         
     | 
| 
      
 542 
     | 
    
         
            +
                                o_expand,
         
     | 
| 
      
 543 
     | 
    
         
            +
                                softmax_lse_expand.T.contiguous(),
         
     | 
| 
      
 544 
     | 
    
         
            +
                            )
         
     | 
| 
      
 545 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 546 
     | 
    
         
            +
                            o = result
         
     | 
| 
      
 547 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 548 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 549 
     | 
    
         
            +
                            forward_batch.attn_attend_prefix_cache is not None
         
     | 
| 
      
 550 
     | 
    
         
            +
                            and not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 551 
     | 
    
         
            +
                            and not forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 552 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 553 
     | 
    
         
            +
                            # Do multi-head attention with chunked prefix cache
         
     | 
| 
      
 554 
     | 
    
         
            +
                            if forward_batch.attn_attend_prefix_cache:
         
     | 
| 
      
 555 
     | 
    
         
            +
                                assert not get_global_server_args().disable_chunked_prefix_cache
         
     | 
| 
      
 556 
     | 
    
         
            +
                                # MHA for chunked prefix kv cache when running model with MLA
         
     | 
| 
      
 557 
     | 
    
         
            +
                                assert forward_batch.prefix_chunk_idx is not None
         
     | 
| 
      
 558 
     | 
    
         
            +
                                assert forward_batch.prefix_chunk_cu_seq_lens is not None
         
     | 
| 
      
 559 
     | 
    
         
            +
                                assert forward_batch.prefix_chunk_max_seq_lens is not None
         
     | 
| 
      
 560 
     | 
    
         
            +
             
     | 
| 
      
 561 
     | 
    
         
            +
                                chunk_idx = forward_batch.prefix_chunk_idx
         
     | 
| 
      
 562 
     | 
    
         
            +
                                assert chunk_idx >= 0
         
     | 
| 
      
 563 
     | 
    
         
            +
             
     | 
| 
      
 564 
     | 
    
         
            +
                                assert forward_batch.mha_return_lse
         
     | 
| 
      
 565 
     | 
    
         
            +
                                output = flash_attn_varlen_func(
         
     | 
| 
      
 566 
     | 
    
         
            +
                                    q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 567 
     | 
    
         
            +
                                    k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
         
     | 
| 
      
 568 
     | 
    
         
            +
                                    v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
         
     | 
| 
      
 569 
     | 
    
         
            +
                                    cu_seqlens_q=metadata.cu_seqlens_q,
         
     | 
| 
      
 570 
     | 
    
         
            +
                                    cu_seqlens_k=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
         
     | 
| 
      
 571 
     | 
    
         
            +
                                    max_seqlen_q=metadata.max_seq_len_q,
         
     | 
| 
      
 572 
     | 
    
         
            +
                                    max_seqlen_k=forward_batch.prefix_chunk_max_seq_lens[chunk_idx],
         
     | 
| 
      
 573 
     | 
    
         
            +
                                    softmax_scale=layer.scaling,
         
     | 
| 
      
 574 
     | 
    
         
            +
                                    causal=False,
         
     | 
| 
      
 575 
     | 
    
         
            +
                                    return_softmax_lse=True,
         
     | 
| 
      
 576 
     | 
    
         
            +
                                )
         
     | 
| 
      
 577 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 578 
     | 
    
         
            +
                                # MHA for extend part of sequence without attending prefix kv cache
         
     | 
| 
      
 579 
     | 
    
         
            +
                                output = flash_attn_varlen_func(
         
     | 
| 
      
 580 
     | 
    
         
            +
                                    q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 581 
     | 
    
         
            +
                                    k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
         
     | 
| 
      
 582 
     | 
    
         
            +
                                    v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
         
     | 
| 
      
 583 
     | 
    
         
            +
                                    cu_seqlens_q=metadata.cu_seqlens_q,
         
     | 
| 
      
 584 
     | 
    
         
            +
                                    cu_seqlens_k=metadata.cu_seqlens_q,
         
     | 
| 
      
 585 
     | 
    
         
            +
                                    max_seqlen_q=metadata.max_seq_len_q,
         
     | 
| 
      
 586 
     | 
    
         
            +
                                    max_seqlen_k=metadata.max_seq_len_q,
         
     | 
| 
      
 587 
     | 
    
         
            +
                                    softmax_scale=layer.scaling,
         
     | 
| 
      
 588 
     | 
    
         
            +
                                    causal=True,
         
     | 
| 
      
 589 
     | 
    
         
            +
                                    return_softmax_lse=forward_batch.mha_return_lse,
         
     | 
| 
      
 590 
     | 
    
         
            +
                                )
         
     | 
| 
      
 591 
     | 
    
         
            +
                            if forward_batch.mha_return_lse:
         
     | 
| 
      
 592 
     | 
    
         
            +
                                output, lse, *rest = output
         
     | 
| 
      
 593 
     | 
    
         
            +
                                lse = torch.transpose(lse, 0, 1).contiguous()
         
     | 
| 
      
 594 
     | 
    
         
            +
                                return output, lse
         
     | 
| 
      
 595 
     | 
    
         
            +
                            return output
         
     | 
| 
      
 596 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 597 
     | 
    
         
            +
                            # Do absorbed multi-latent attention
         
     | 
| 
      
 598 
     | 
    
         
            +
                            kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(
         
     | 
| 
      
 599 
     | 
    
         
            +
                                layer.layer_id
         
     | 
| 
      
 600 
     | 
    
         
            +
                            ).to(q.dtype)
         
     | 
| 
      
 601 
     | 
    
         
            +
                            k_rope = kv_cache[:, :, layer.v_head_dim :]
         
     | 
| 
      
 602 
     | 
    
         
            +
                            c_kv = kv_cache[:, :, : layer.v_head_dim]
         
     | 
| 
      
 603 
     | 
    
         
            +
                            k_rope_cache = k_rope.view(
         
     | 
| 
      
 604 
     | 
    
         
            +
                                -1,
         
     | 
| 
      
 605 
     | 
    
         
            +
                                self.page_size,
         
     | 
| 
      
 606 
     | 
    
         
            +
                                layer.tp_k_head_num,
         
     | 
| 
      
 607 
     | 
    
         
            +
                                layer.head_dim - layer.v_head_dim,
         
     | 
| 
      
 608 
     | 
    
         
            +
                            )
         
     | 
| 
      
 609 
     | 
    
         
            +
                            c_kv_cache = c_kv.view(
         
     | 
| 
      
 610 
     | 
    
         
            +
                                -1, self.page_size, layer.tp_v_head_num, layer.v_head_dim
         
     | 
| 
      
 611 
     | 
    
         
            +
                            )
         
     | 
| 
      
 612 
     | 
    
         
            +
                            if q_rope is not None:
         
     | 
| 
      
 613 
     | 
    
         
            +
                                q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 614 
     | 
    
         
            +
                                q_rope = q_rope.view(
         
     | 
| 
      
 615 
     | 
    
         
            +
                                    -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
         
     | 
| 
      
 616 
     | 
    
         
            +
                                )
         
     | 
| 
      
 617 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 618 
     | 
    
         
            +
                                q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
      
 619 
     | 
    
         
            +
                                q_nope = q_all[:, :, : layer.v_head_dim]
         
     | 
| 
      
 620 
     | 
    
         
            +
                                q_rope = q_all[:, :, layer.v_head_dim :]
         
     | 
| 
      
 621 
     | 
    
         
            +
             
     | 
| 
      
 622 
     | 
    
         
            +
                            result = flash_attn_with_kvcache(
         
     | 
| 
      
 623 
     | 
    
         
            +
                                q=q_rope,
         
     | 
| 
      
 624 
     | 
    
         
            +
                                k_cache=k_rope_cache,
         
     | 
| 
      
 625 
     | 
    
         
            +
                                v_cache=c_kv_cache,
         
     | 
| 
      
 626 
     | 
    
         
            +
                                qv=q_nope,
         
     | 
| 
      
 627 
     | 
    
         
            +
                                page_table=page_table,
         
     | 
| 
      
 628 
     | 
    
         
            +
                                cache_seqlens=cache_seqlens,
         
     | 
| 
      
 629 
     | 
    
         
            +
                                cu_seqlens_q=cu_seqlens_q,
         
     | 
| 
      
 630 
     | 
    
         
            +
                                cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
         
     | 
| 
      
 631 
     | 
    
         
            +
                                max_seqlen_q=max_seqlen_q,
         
     | 
| 
      
 632 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 633 
     | 
    
         
            +
                                causal=False if use_cascade_attn else causal,
         
     | 
| 
      
 634 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 635 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 636 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 637 
     | 
    
         
            +
                                return_softmax_lse=use_cascade_attn,
         
     | 
| 
      
 638 
     | 
    
         
            +
                            )
         
     | 
| 
      
 639 
     | 
    
         
            +
                            if use_cascade_attn:
         
     | 
| 
      
 640 
     | 
    
         
            +
                                o, softmax_lse, *rest = result
         
     | 
| 
      
 641 
     | 
    
         
            +
                                o_expand, softmax_lse_expand, *rest_expand = (
         
     | 
| 
      
 642 
     | 
    
         
            +
                                    flash_attn_with_kvcache(
         
     | 
| 
      
 643 
     | 
    
         
            +
                                        q=q_rope,
         
     | 
| 
      
 644 
     | 
    
         
            +
                                        k_cache=k_rope_cache,
         
     | 
| 
      
 645 
     | 
    
         
            +
                                        v_cache=c_kv_cache,
         
     | 
| 
      
 646 
     | 
    
         
            +
                                        qv=q_nope,
         
     | 
| 
      
 647 
     | 
    
         
            +
                                        page_table=self.forward_metadata_spec_decode_expand.page_table,
         
     | 
| 
      
 648 
     | 
    
         
            +
                                        cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
         
     | 
| 
      
 649 
     | 
    
         
            +
                                        cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
         
     | 
| 
      
 650 
     | 
    
         
            +
                                        cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
         
     | 
| 
      
 651 
     | 
    
         
            +
                                        max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
         
     | 
| 
      
 652 
     | 
    
         
            +
                                        softmax_scale=layer.scaling,
         
     | 
| 
      
 653 
     | 
    
         
            +
                                        causal=False,
         
     | 
| 
      
 654 
     | 
    
         
            +
                                        window_size=window_size,
         
     | 
| 
      
 655 
     | 
    
         
            +
                                        softcap=layer.logit_cap,
         
     | 
| 
      
 656 
     | 
    
         
            +
                                        k_descale=k_descale,
         
     | 
| 
      
 657 
     | 
    
         
            +
                                        v_descale=v_descale,
         
     | 
| 
      
 658 
     | 
    
         
            +
                                        return_softmax_lse=True,
         
     | 
| 
      
 659 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 660 
     | 
    
         
            +
                                )
         
     | 
| 
      
 661 
     | 
    
         
            +
                                o, _ = merge_state_v2_wrapper(
         
     | 
| 
      
 662 
     | 
    
         
            +
                                    o,
         
     | 
| 
      
 663 
     | 
    
         
            +
                                    softmax_lse.T.contiguous(),
         
     | 
| 
      
 664 
     | 
    
         
            +
                                    o_expand,
         
     | 
| 
      
 665 
     | 
    
         
            +
                                    softmax_lse_expand.T.contiguous(),
         
     | 
| 
      
 666 
     | 
    
         
            +
                                )
         
     | 
| 
      
 667 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 668 
     | 
    
         
            +
                                o = result
         
     | 
| 
      
 669 
     | 
    
         
            +
             
     | 
| 
      
 670 
     | 
    
         
            +
                    return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
         
     | 
| 
      
 671 
     | 
    
         
            +
             
     | 
| 
      
 672 
     | 
    
         
            +
                def forward_decode(
         
     | 
| 
      
 673 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 674 
     | 
    
         
            +
                    q: torch.Tensor,
         
     | 
| 
      
 675 
     | 
    
         
            +
                    k: torch.Tensor,
         
     | 
| 
      
 676 
     | 
    
         
            +
                    v: torch.Tensor,
         
     | 
| 
      
 677 
     | 
    
         
            +
                    layer: RadixAttention,
         
     | 
| 
      
 678 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 679 
     | 
    
         
            +
                    save_kv_cache=True,
         
     | 
| 
      
 680 
     | 
    
         
            +
                    # For multi-head latent attention
         
     | 
| 
      
 681 
     | 
    
         
            +
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 682 
     | 
    
         
            +
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 683 
     | 
    
         
            +
                    sinks: Optional[torch.Tensor] = None,
         
     | 
| 
      
 684 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 685 
     | 
    
         
            +
                    if k is not None:
         
     | 
| 
      
 686 
     | 
    
         
            +
                        assert v is not None
         
     | 
| 
      
 687 
     | 
    
         
            +
                        if save_kv_cache:
         
     | 
| 
      
 688 
     | 
    
         
            +
                            cache_loc = (
         
     | 
| 
      
 689 
     | 
    
         
            +
                                forward_batch.out_cache_loc
         
     | 
| 
      
 690 
     | 
    
         
            +
                                if not layer.is_cross_attention
         
     | 
| 
      
 691 
     | 
    
         
            +
                                else forward_batch.encoder_out_cache_loc
         
     | 
| 
      
 692 
     | 
    
         
            +
                            )
         
     | 
| 
      
 693 
     | 
    
         
            +
                            if not self.use_mla:
         
     | 
| 
      
 694 
     | 
    
         
            +
                                forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
      
 695 
     | 
    
         
            +
                                    layer, cache_loc, k, v, layer.k_scale, layer.v_scale
         
     | 
| 
      
 696 
     | 
    
         
            +
                                )
         
     | 
| 
      
 697 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 698 
     | 
    
         
            +
                                forward_batch.token_to_kv_pool.set_mla_kv_buffer(
         
     | 
| 
      
 699 
     | 
    
         
            +
                                    layer,
         
     | 
| 
      
 700 
     | 
    
         
            +
                                    cache_loc,
         
     | 
| 
      
 701 
     | 
    
         
            +
                                    k,
         
     | 
| 
      
 702 
     | 
    
         
            +
                                    k_rope,
         
     | 
| 
      
 703 
     | 
    
         
            +
                                )
         
     | 
| 
      
 704 
     | 
    
         
            +
             
     | 
| 
      
 705 
     | 
    
         
            +
                    # Use precomputed metadata across all layers
         
     | 
| 
      
 706 
     | 
    
         
            +
                    metadata = self.forward_metadata
         
     | 
| 
      
 707 
     | 
    
         
            +
                    local_attn_metadata = getattr(metadata, "local_attn_metadata", None)
         
     | 
| 
      
 708 
     | 
    
         
            +
                    use_local_attn = (
         
     | 
| 
      
 709 
     | 
    
         
            +
                        self.attention_chunk_size is not None
         
     | 
| 
      
 710 
     | 
    
         
            +
                        and local_attn_metadata is not None
         
     | 
| 
      
 711 
     | 
    
         
            +
                        and (hasattr(layer, "use_irope") and layer.use_irope)
         
     | 
| 
      
 712 
     | 
    
         
            +
                    )
         
     | 
| 
      
 713 
     | 
    
         
            +
             
     | 
| 
      
 714 
     | 
    
         
            +
                    # When Spec Decode enabled, forward_decode would be called with two mode:
         
     | 
| 
      
 715 
     | 
    
         
            +
                    # 1. DRAFT_DECODE: we enable cascade attention when top_k > 1
         
     | 
| 
      
 716 
     | 
    
         
            +
                    # 2. IDLE: we don’t need cascade attention, spec_info will be none in this case
         
     | 
| 
      
 717 
     | 
    
         
            +
                    use_cascade_attn = forward_batch.spec_info is not None and self.topk > 1
         
     | 
| 
      
 718 
     | 
    
         
            +
             
     | 
| 
      
 719 
     | 
    
         
            +
                    # Calculate window size (can be moved to metadata if layer properties don't change)
         
     | 
| 
      
 720 
     | 
    
         
            +
                    # we don't do layer.sliding_window_size - 1 since in model.get_attention_sliding_window_size() we already - 1
         
     | 
| 
      
 721 
     | 
    
         
            +
                    # here is two side inclusive
         
     | 
| 
      
 722 
     | 
    
         
            +
                    window_size = (
         
     | 
| 
      
 723 
     | 
    
         
            +
                        (layer.sliding_window_size, 0)
         
     | 
| 
      
 724 
     | 
    
         
            +
                        if layer.sliding_window_size is not None and layer.sliding_window_size > -1
         
     | 
| 
      
 725 
     | 
    
         
            +
                        else (-1, -1)
         
     | 
| 
      
 726 
     | 
    
         
            +
                    )
         
     | 
| 
      
 727 
     | 
    
         
            +
                    causal = not layer.is_cross_attention
         
     | 
| 
      
 728 
     | 
    
         
            +
             
     | 
| 
      
 729 
     | 
    
         
            +
                    # For fa3 interface version compatibility, we put new fields into conditional keyword args
         
     | 
| 
      
 730 
     | 
    
         
            +
                    kwargs = {}
         
     | 
| 
      
 731 
     | 
    
         
            +
                    if sinks is not None:
         
     | 
| 
      
 732 
     | 
    
         
            +
                        kwargs["sinks"] = sinks
         
     | 
| 
      
 733 
     | 
    
         
            +
             
     | 
| 
      
 734 
     | 
    
         
            +
                    k_descale, v_descale = None, None
         
     | 
| 
      
 735 
     | 
    
         
            +
                    # only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
         
     | 
| 
      
 736 
     | 
    
         
            +
                    # has corresponding quantization method so that layer.k_scale is not None,
         
     | 
| 
      
 737 
     | 
    
         
            +
                    # 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
         
     | 
| 
      
 738 
     | 
    
         
            +
                    if self.kv_cache_dtype_str != "auto" and layer.head_dim <= 256:
         
     | 
| 
      
 739 
     | 
    
         
            +
                        if layer.k_scale is not None:
         
     | 
| 
      
 740 
     | 
    
         
            +
                            descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
         
     | 
| 
      
 741 
     | 
    
         
            +
                            k_descale = layer.k_scale.expand(descale_shape)
         
     | 
| 
      
 742 
     | 
    
         
            +
                            v_descale = layer.v_scale.expand(descale_shape)
         
     | 
| 
      
 743 
     | 
    
         
            +
                        q = q.to(self.kv_cache_dtype)
         
     | 
| 
      
 744 
     | 
    
         
            +
                        q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
         
     | 
| 
      
 745 
     | 
    
         
            +
                        k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
         
     | 
| 
      
 746 
     | 
    
         
            +
                    if not self.use_mla:
         
     | 
| 
      
 747 
     | 
    
         
            +
                        # Do multi-head attention
         
     | 
| 
      
 748 
     | 
    
         
            +
             
     | 
| 
      
 749 
     | 
    
         
            +
                        key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
         
     | 
| 
      
 750 
     | 
    
         
            +
                            layer.layer_id
         
     | 
| 
      
 751 
     | 
    
         
            +
                        )
         
     | 
| 
      
 752 
     | 
    
         
            +
                        key_cache = key_cache.view(
         
     | 
| 
      
 753 
     | 
    
         
            +
                            -1, self.page_size, layer.tp_k_head_num, layer.head_dim
         
     | 
| 
      
 754 
     | 
    
         
            +
                        )
         
     | 
| 
      
 755 
     | 
    
         
            +
                        value_cache = value_cache.view(
         
     | 
| 
      
 756 
     | 
    
         
            +
                            -1, self.page_size, layer.tp_v_head_num, layer.head_dim
         
     | 
| 
      
 757 
     | 
    
         
            +
                        )
         
     | 
| 
      
 758 
     | 
    
         
            +
             
     | 
| 
      
 759 
     | 
    
         
            +
                        if layer.is_cross_attention:
         
     | 
| 
      
 760 
     | 
    
         
            +
                            # Always use non-chunked logic for cross-attention
         
     | 
| 
      
 761 
     | 
    
         
            +
                            o = flash_attn_with_kvcache(
         
     | 
| 
      
 762 
     | 
    
         
            +
                                q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 763 
     | 
    
         
            +
                                k_cache=key_cache,
         
     | 
| 
      
 764 
     | 
    
         
            +
                                v_cache=value_cache,
         
     | 
| 
      
 765 
     | 
    
         
            +
                                page_table=metadata.encoder_page_table,
         
     | 
| 
      
 766 
     | 
    
         
            +
                                cache_seqlens=metadata.encoder_lens_int32,
         
     | 
| 
      
 767 
     | 
    
         
            +
                                cu_seqlens_q=metadata.cu_seqlens_q,
         
     | 
| 
      
 768 
     | 
    
         
            +
                                cu_seqlens_k_new=metadata.encoder_cu_seqlens_k,
         
     | 
| 
      
 769 
     | 
    
         
            +
                                max_seqlen_q=1,
         
     | 
| 
      
 770 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 771 
     | 
    
         
            +
                                causal=False,
         
     | 
| 
      
 772 
     | 
    
         
            +
                                window_size=(-1, -1),
         
     | 
| 
      
 773 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 774 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 775 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 776 
     | 
    
         
            +
                                **kwargs,
         
     | 
| 
      
 777 
     | 
    
         
            +
                            )
         
     | 
| 
      
 778 
     | 
    
         
            +
                        elif use_local_attn:
         
     | 
| 
      
 779 
     | 
    
         
            +
                            # Use chunked (local) attention batching for self-attention
         
     | 
| 
      
 780 
     | 
    
         
            +
                            o = flash_attn_with_kvcache(
         
     | 
| 
      
 781 
     | 
    
         
            +
                                q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
         
     | 
| 
      
 782 
     | 
    
         
            +
                                k_cache=key_cache,
         
     | 
| 
      
 783 
     | 
    
         
            +
                                v_cache=value_cache,
         
     | 
| 
      
 784 
     | 
    
         
            +
                                page_table=local_attn_metadata.local_block_table,
         
     | 
| 
      
 785 
     | 
    
         
            +
                                cache_seqlens=local_attn_metadata.local_seqused_k,
         
     | 
| 
      
 786 
     | 
    
         
            +
                                cu_seqlens_q=local_attn_metadata.local_query_start_loc,
         
     | 
| 
      
 787 
     | 
    
         
            +
                                cu_seqlens_k_new=None,
         
     | 
| 
      
 788 
     | 
    
         
            +
                                max_seqlen_q=local_attn_metadata.local_max_query_len,
         
     | 
| 
      
 789 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 790 
     | 
    
         
            +
                                causal=True,
         
     | 
| 
      
 791 
     | 
    
         
            +
                                window_size=(-1, -1),
         
     | 
| 
      
 792 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 793 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 794 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 795 
     | 
    
         
            +
                                **kwargs,
         
     | 
| 
      
 796 
     | 
    
         
            +
                            )
         
     | 
| 
      
 797 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 798 
     | 
    
         
            +
                            page_table = metadata.page_table
         
     | 
| 
      
 799 
     | 
    
         
            +
                            cache_seqlens = metadata.cache_seqlens_int32
         
     | 
| 
      
 800 
     | 
    
         
            +
                            cu_seqlens_k = metadata.cu_seqlens_k
         
     | 
| 
      
 801 
     | 
    
         
            +
                            max_seqlen_q = metadata.max_seq_len_q
         
     | 
| 
      
 802 
     | 
    
         
            +
                            q_reshaped = q.contiguous().view(
         
     | 
| 
      
 803 
     | 
    
         
            +
                                -1, layer.tp_q_head_num, layer.head_dim
         
     | 
| 
      
 804 
     | 
    
         
            +
                            )
         
     | 
| 
      
 805 
     | 
    
         
            +
             
     | 
| 
      
 806 
     | 
    
         
            +
                            # Default: single-token self-attention
         
     | 
| 
      
 807 
     | 
    
         
            +
                            result = flash_attn_with_kvcache(
         
     | 
| 
      
 808 
     | 
    
         
            +
                                q=q_reshaped,
         
     | 
| 
      
 809 
     | 
    
         
            +
                                k_cache=key_cache,
         
     | 
| 
      
 810 
     | 
    
         
            +
                                v_cache=value_cache,
         
     | 
| 
      
 811 
     | 
    
         
            +
                                page_table=page_table,
         
     | 
| 
      
 812 
     | 
    
         
            +
                                cache_seqlens=cache_seqlens,
         
     | 
| 
      
 813 
     | 
    
         
            +
                                cu_seqlens_q=metadata.cu_seqlens_q,
         
     | 
| 
      
 814 
     | 
    
         
            +
                                cu_seqlens_k_new=cu_seqlens_k,
         
     | 
| 
      
 815 
     | 
    
         
            +
                                max_seqlen_q=max_seqlen_q,
         
     | 
| 
      
 816 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 817 
     | 
    
         
            +
                                causal=False if use_cascade_attn else causal,
         
     | 
| 
      
 818 
     | 
    
         
            +
                                window_size=window_size,
         
     | 
| 
      
 819 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 820 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 821 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 822 
     | 
    
         
            +
                                return_softmax_lse=use_cascade_attn,
         
     | 
| 
      
 823 
     | 
    
         
            +
                                **kwargs,
         
     | 
| 
      
 824 
     | 
    
         
            +
                            )
         
     | 
| 
      
 825 
     | 
    
         
            +
                            if use_cascade_attn:
         
     | 
| 
      
 826 
     | 
    
         
            +
                                o, softmax_lse, *rest = result
         
     | 
| 
      
 827 
     | 
    
         
            +
                                o_expand, softmax_lse_expand, *rest_expand = (
         
     | 
| 
      
 828 
     | 
    
         
            +
                                    flash_attn_with_kvcache(
         
     | 
| 
      
 829 
     | 
    
         
            +
                                        q=q_reshaped,
         
     | 
| 
      
 830 
     | 
    
         
            +
                                        k_cache=key_cache,
         
     | 
| 
      
 831 
     | 
    
         
            +
                                        v_cache=value_cache,
         
     | 
| 
      
 832 
     | 
    
         
            +
                                        page_table=self.forward_metadata_spec_decode_expand.page_table,
         
     | 
| 
      
 833 
     | 
    
         
            +
                                        cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
         
     | 
| 
      
 834 
     | 
    
         
            +
                                        cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
         
     | 
| 
      
 835 
     | 
    
         
            +
                                        cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
         
     | 
| 
      
 836 
     | 
    
         
            +
                                        max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
         
     | 
| 
      
 837 
     | 
    
         
            +
                                        softmax_scale=layer.scaling,
         
     | 
| 
      
 838 
     | 
    
         
            +
                                        causal=False,
         
     | 
| 
      
 839 
     | 
    
         
            +
                                        window_size=window_size,
         
     | 
| 
      
 840 
     | 
    
         
            +
                                        softcap=layer.logit_cap,
         
     | 
| 
      
 841 
     | 
    
         
            +
                                        k_descale=k_descale,
         
     | 
| 
      
 842 
     | 
    
         
            +
                                        v_descale=v_descale,
         
     | 
| 
      
 843 
     | 
    
         
            +
                                        return_softmax_lse=True,
         
     | 
| 
      
 844 
     | 
    
         
            +
                                        **kwargs,
         
     | 
| 
      
 845 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 846 
     | 
    
         
            +
                                )
         
     | 
| 
      
 847 
     | 
    
         
            +
                                o, _ = merge_state_v2(
         
     | 
| 
      
 848 
     | 
    
         
            +
                                    o,
         
     | 
| 
      
 849 
     | 
    
         
            +
                                    softmax_lse.T.contiguous(),
         
     | 
| 
      
 850 
     | 
    
         
            +
                                    o_expand,
         
     | 
| 
      
 851 
     | 
    
         
            +
                                    softmax_lse_expand.T.contiguous(),
         
     | 
| 
      
 852 
     | 
    
         
            +
                                )
         
     | 
| 
      
 853 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 854 
     | 
    
         
            +
                                o = result
         
     | 
| 
      
 855 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 856 
     | 
    
         
            +
                        # Do absorbed multi-latent attention
         
     | 
| 
      
 857 
     | 
    
         
            +
                        kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id).to(
         
     | 
| 
      
 858 
     | 
    
         
            +
                            q.dtype
         
     | 
| 
      
 859 
     | 
    
         
            +
                        )
         
     | 
| 
      
 860 
     | 
    
         
            +
                        k_rope = kv_cache[:, :, layer.v_head_dim :]
         
     | 
| 
      
 861 
     | 
    
         
            +
                        c_kv = kv_cache[:, :, : layer.v_head_dim]
         
     | 
| 
      
 862 
     | 
    
         
            +
                        k_rope_cache = k_rope.view(
         
     | 
| 
      
 863 
     | 
    
         
            +
                            -1,
         
     | 
| 
      
 864 
     | 
    
         
            +
                            self.page_size,
         
     | 
| 
      
 865 
     | 
    
         
            +
                            layer.tp_k_head_num,
         
     | 
| 
      
 866 
     | 
    
         
            +
                            layer.head_dim - layer.v_head_dim,
         
     | 
| 
      
 867 
     | 
    
         
            +
                        )
         
     | 
| 
      
 868 
     | 
    
         
            +
                        c_kv_cache = c_kv.view(
         
     | 
| 
      
 869 
     | 
    
         
            +
                            -1, self.page_size, layer.tp_v_head_num, layer.v_head_dim
         
     | 
| 
      
 870 
     | 
    
         
            +
                        )
         
     | 
| 
      
 871 
     | 
    
         
            +
             
     | 
| 
      
 872 
     | 
    
         
            +
                        if q_rope is not None:
         
     | 
| 
      
 873 
     | 
    
         
            +
                            q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 874 
     | 
    
         
            +
                            q_rope = q_rope.view(
         
     | 
| 
      
 875 
     | 
    
         
            +
                                -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
         
     | 
| 
      
 876 
     | 
    
         
            +
                            )
         
     | 
| 
      
 877 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 878 
     | 
    
         
            +
                            q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
      
 879 
     | 
    
         
            +
                            q_nope = q_all[:, :, : layer.v_head_dim]
         
     | 
| 
      
 880 
     | 
    
         
            +
                            q_rope = q_all[:, :, layer.v_head_dim :]
         
     | 
| 
      
 881 
     | 
    
         
            +
                        max_seqlen_q = metadata.max_seq_len_q
         
     | 
| 
      
 882 
     | 
    
         
            +
             
     | 
| 
      
 883 
     | 
    
         
            +
                        result = flash_attn_with_kvcache(
         
     | 
| 
      
 884 
     | 
    
         
            +
                            q=q_rope,
         
     | 
| 
      
 885 
     | 
    
         
            +
                            k_cache=k_rope_cache,
         
     | 
| 
      
 886 
     | 
    
         
            +
                            v_cache=c_kv_cache,
         
     | 
| 
      
 887 
     | 
    
         
            +
                            qv=q_nope,
         
     | 
| 
      
 888 
     | 
    
         
            +
                            page_table=metadata.page_table,
         
     | 
| 
      
 889 
     | 
    
         
            +
                            cache_seqlens=metadata.cache_seqlens_int32,
         
     | 
| 
      
 890 
     | 
    
         
            +
                            cu_seqlens_q=metadata.cu_seqlens_q,
         
     | 
| 
      
 891 
     | 
    
         
            +
                            cu_seqlens_k_new=metadata.cu_seqlens_k,
         
     | 
| 
      
 892 
     | 
    
         
            +
                            max_seqlen_q=max_seqlen_q,
         
     | 
| 
      
 893 
     | 
    
         
            +
                            softmax_scale=layer.scaling,
         
     | 
| 
      
 894 
     | 
    
         
            +
                            causal=False if use_cascade_attn else causal,
         
     | 
| 
      
 895 
     | 
    
         
            +
                            softcap=layer.logit_cap,
         
     | 
| 
      
 896 
     | 
    
         
            +
                            k_descale=k_descale,
         
     | 
| 
      
 897 
     | 
    
         
            +
                            v_descale=v_descale,
         
     | 
| 
      
 898 
     | 
    
         
            +
                            return_softmax_lse=use_cascade_attn,  # softmax_lse is needed for merge states
         
     | 
| 
      
 899 
     | 
    
         
            +
                        )
         
     | 
| 
      
 900 
     | 
    
         
            +
                        if use_cascade_attn:
         
     | 
| 
      
 901 
     | 
    
         
            +
                            o, softmax_lse, *rest = result
         
     | 
| 
      
 902 
     | 
    
         
            +
                            o_expand, softmax_lse_expand, *rest_expand = flash_attn_with_kvcache(
         
     | 
| 
      
 903 
     | 
    
         
            +
                                q=q_rope,
         
     | 
| 
      
 904 
     | 
    
         
            +
                                k_cache=k_rope_cache,
         
     | 
| 
      
 905 
     | 
    
         
            +
                                v_cache=c_kv_cache,
         
     | 
| 
      
 906 
     | 
    
         
            +
                                qv=q_nope,
         
     | 
| 
      
 907 
     | 
    
         
            +
                                page_table=self.forward_metadata_spec_decode_expand.page_table,
         
     | 
| 
      
 908 
     | 
    
         
            +
                                cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
         
     | 
| 
      
 909 
     | 
    
         
            +
                                cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
         
     | 
| 
      
 910 
     | 
    
         
            +
                                cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
         
     | 
| 
      
 911 
     | 
    
         
            +
                                max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
         
     | 
| 
      
 912 
     | 
    
         
            +
                                softmax_scale=layer.scaling,
         
     | 
| 
      
 913 
     | 
    
         
            +
                                causal=False,
         
     | 
| 
      
 914 
     | 
    
         
            +
                                window_size=window_size,
         
     | 
| 
      
 915 
     | 
    
         
            +
                                softcap=layer.logit_cap,
         
     | 
| 
      
 916 
     | 
    
         
            +
                                k_descale=k_descale,
         
     | 
| 
      
 917 
     | 
    
         
            +
                                v_descale=v_descale,
         
     | 
| 
      
 918 
     | 
    
         
            +
                                return_softmax_lse=True,
         
     | 
| 
      
 919 
     | 
    
         
            +
                            )
         
     | 
| 
      
 920 
     | 
    
         
            +
                            o, _ = merge_state_v2(
         
     | 
| 
      
 921 
     | 
    
         
            +
                                o,
         
     | 
| 
      
 922 
     | 
    
         
            +
                                softmax_lse.T.contiguous(),
         
     | 
| 
      
 923 
     | 
    
         
            +
                                o_expand,
         
     | 
| 
      
 924 
     | 
    
         
            +
                                softmax_lse_expand.T.contiguous(),
         
     | 
| 
      
 925 
     | 
    
         
            +
                            )
         
     | 
| 
      
 926 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 927 
     | 
    
         
            +
                            o = result
         
     | 
| 
      
 928 
     | 
    
         
            +
             
     | 
| 
      
 929 
     | 
    
         
            +
                    return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
         
     | 
| 
      
 930 
     | 
    
         
            +
             
     | 
| 
      
 931 
     | 
    
         
            +
                def get_cuda_graph_seq_len_fill_value(self):
         
     | 
| 
      
 932 
     | 
    
         
            +
                    """Get the fill value for sequence length in CUDA graph."""
         
     | 
| 
      
 933 
     | 
    
         
            +
                    return 1
         
     | 
| 
      
 934 
     | 
    
         
            +
             
     | 
| 
      
 935 
     | 
    
         
            +
                def _init_local_attn_metadata(
         
     | 
| 
      
 936 
     | 
    
         
            +
                    self, forwardbatch: ForwardBatch, metadata: FlashAttentionMetadata, device
         
     | 
| 
      
 937 
     | 
    
         
            +
                ):
         
     | 
| 
      
 938 
     | 
    
         
            +
                    """Centralized utility to initialize local_attn_metadata if chunked attention is enabled."""
         
     | 
| 
      
 939 
     | 
    
         
            +
                    if self.attention_chunk_size is None:
         
     | 
| 
      
 940 
     | 
    
         
            +
                        metadata.local_attn_metadata = None
         
     | 
| 
      
 941 
     | 
    
         
            +
                        return
         
     | 
| 
      
 942 
     | 
    
         
            +
             
     | 
| 
      
 943 
     | 
    
         
            +
                    cu_seqlens_q = metadata.cu_seqlens_q
         
     | 
| 
      
 944 
     | 
    
         
            +
                    cache_seqlens_int32 = metadata.cache_seqlens_int32
         
     | 
| 
      
 945 
     | 
    
         
            +
                    if self.is_hybrid:
         
     | 
| 
      
 946 
     | 
    
         
            +
                        page_table = self.full_to_swa_index_mapping[metadata.page_table].to(
         
     | 
| 
      
 947 
     | 
    
         
            +
                            torch.int32
         
     | 
| 
      
 948 
     | 
    
         
            +
                        )
         
     | 
| 
      
 949 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 950 
     | 
    
         
            +
                        page_table = metadata.page_table
         
     | 
| 
      
 951 
     | 
    
         
            +
                    if cu_seqlens_q is None or cache_seqlens_int32 is None or page_table is None:
         
     | 
| 
      
 952 
     | 
    
         
            +
                        metadata.local_attn_metadata = None
         
     | 
| 
      
 953 
     | 
    
         
            +
                        return
         
     | 
| 
      
 954 
     | 
    
         
            +
             
     | 
| 
      
 955 
     | 
    
         
            +
                    cu_seqlens_q_np = cu_seqlens_q.cpu().numpy()
         
     | 
| 
      
 956 
     | 
    
         
            +
                    seq_lens_np = cache_seqlens_int32.cpu().numpy()
         
     | 
| 
      
 957 
     | 
    
         
            +
                    (
         
     | 
| 
      
 958 
     | 
    
         
            +
                        seqlens_q_local_np,
         
     | 
| 
      
 959 
     | 
    
         
            +
                        cu_seqlens_q_local_np,
         
     | 
| 
      
 960 
     | 
    
         
            +
                        seqlens_k_local_np,
         
     | 
| 
      
 961 
     | 
    
         
            +
                        block_table_local,
         
     | 
| 
      
 962 
     | 
    
         
            +
                    ) = make_local_attention_virtual_batches(
         
     | 
| 
      
 963 
     | 
    
         
            +
                        self.attention_chunk_size,
         
     | 
| 
      
 964 
     | 
    
         
            +
                        cu_seqlens_q_np,
         
     | 
| 
      
 965 
     | 
    
         
            +
                        seq_lens_np,
         
     | 
| 
      
 966 
     | 
    
         
            +
                        page_table,
         
     | 
| 
      
 967 
     | 
    
         
            +
                        self.page_size,
         
     | 
| 
      
 968 
     | 
    
         
            +
                    )
         
     | 
| 
      
 969 
     | 
    
         
            +
             
     | 
| 
      
 970 
     | 
    
         
            +
                    local_metadata = FlashAttentionMetadata.LocalAttentionMetadata(
         
     | 
| 
      
 971 
     | 
    
         
            +
                        local_query_start_loc=torch.from_numpy(cu_seqlens_q_local_np).to(device),
         
     | 
| 
      
 972 
     | 
    
         
            +
                        local_seqused_k=torch.from_numpy(seqlens_k_local_np).to(device),
         
     | 
| 
      
 973 
     | 
    
         
            +
                        local_block_table=block_table_local.to(device),
         
     | 
| 
      
 974 
     | 
    
         
            +
                        local_max_query_len=int(seqlens_q_local_np.max()),
         
     | 
| 
      
 975 
     | 
    
         
            +
                        local_max_seq_len=int(seqlens_k_local_np.max()),
         
     | 
| 
      
 976 
     | 
    
         
            +
                    )
         
     | 
| 
      
 977 
     | 
    
         
            +
                    metadata.local_attn_metadata = local_metadata
         
     | 
| 
      
 978 
     | 
    
         
            +
             
     | 
| 
      
 979 
     | 
    
         
            +
                def _init_sliding_window_attn_spec_metadata(
         
     | 
| 
      
 980 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 981 
     | 
    
         
            +
                    metadata: FlashAttentionMetadata,
         
     | 
| 
      
 982 
     | 
    
         
            +
                    metadata_expand: FlashAttentionMetadata,
         
     | 
| 
      
 983 
     | 
    
         
            +
                    metadata_swa: Optional[FlashAttentionMetadata] = None,
         
     | 
| 
      
 984 
     | 
    
         
            +
                ):
         
     | 
| 
      
 985 
     | 
    
         
            +
                    # TODO: support page_size > 1 for swa spec
         
     | 
| 
      
 986 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 987 
     | 
    
         
            +
                        self.page_size == 1
         
     | 
| 
      
 988 
     | 
    
         
            +
                    ), "FlashAttention backend doesn't support topk > 1 speculative decoding with page size > 1 sliding window attention"
         
     | 
| 
      
 989 
     | 
    
         
            +
             
     | 
| 
      
 990 
     | 
    
         
            +
                    cache_seqlens_int32 = (
         
     | 
| 
      
 991 
     | 
    
         
            +
                        metadata.cache_seqlens_int32.repeat_interleave(
         
     | 
| 
      
 992 
     | 
    
         
            +
                            self.speculative_num_draft_tokens
         
     | 
| 
      
 993 
     | 
    
         
            +
                        )
         
     | 
| 
      
 994 
     | 
    
         
            +
                        + metadata_expand.cache_seqlens_int32
         
     | 
| 
      
 995 
     | 
    
         
            +
                    )
         
     | 
| 
      
 996 
     | 
    
         
            +
                    cu_seqlens_k = torch.nn.functional.pad(
         
     | 
| 
      
 997 
     | 
    
         
            +
                        torch.cumsum(cache_seqlens_int32, dim=0, dtype=torch.int32), (1, 0)
         
     | 
| 
      
 998 
     | 
    
         
            +
                    )
         
     | 
| 
      
 999 
     | 
    
         
            +
                    bs = cache_seqlens_int32.shape[0]
         
     | 
| 
      
 1000 
     | 
    
         
            +
                    page_table = (
         
     | 
| 
      
 1001 
     | 
    
         
            +
                        metadata.page_table.new_zeros(
         
     | 
| 
      
 1002 
     | 
    
         
            +
                            (bs, metadata.max_seq_len_k + metadata_expand.page_table.shape[1])
         
     | 
| 
      
 1003 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1004 
     | 
    
         
            +
                        if metadata_swa is None
         
     | 
| 
      
 1005 
     | 
    
         
            +
                        else metadata_swa.page_table
         
     | 
| 
      
 1006 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1007 
     | 
    
         
            +
             
     | 
| 
      
 1008 
     | 
    
         
            +
                    prepare_swa_spec_page_table_triton(
         
     | 
| 
      
 1009 
     | 
    
         
            +
                        page_table,
         
     | 
| 
      
 1010 
     | 
    
         
            +
                        metadata.page_table,
         
     | 
| 
      
 1011 
     | 
    
         
            +
                        metadata_expand.page_table,
         
     | 
| 
      
 1012 
     | 
    
         
            +
                        metadata.cache_seqlens_int32,
         
     | 
| 
      
 1013 
     | 
    
         
            +
                        metadata_expand.cache_seqlens_int32,
         
     | 
| 
      
 1014 
     | 
    
         
            +
                        self.speculative_num_draft_tokens,
         
     | 
| 
      
 1015 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1016 
     | 
    
         
            +
             
     | 
| 
      
 1017 
     | 
    
         
            +
                    if metadata_swa is None:
         
     | 
| 
      
 1018 
     | 
    
         
            +
                        metadata_swa = FlashAttentionMetadata()
         
     | 
| 
      
 1019 
     | 
    
         
            +
                        metadata_swa.max_seq_len_q = 1
         
     | 
| 
      
 1020 
     | 
    
         
            +
                        metadata_swa.cu_seqlens_q = metadata_expand.cu_seqlens_q
         
     | 
| 
      
 1021 
     | 
    
         
            +
                        metadata_swa.cache_seqlens_int32 = cache_seqlens_int32
         
     | 
| 
      
 1022 
     | 
    
         
            +
                        metadata_swa.cu_seqlens_k = cu_seqlens_k
         
     | 
| 
      
 1023 
     | 
    
         
            +
                        metadata_swa.page_table = page_table
         
     | 
| 
      
 1024 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1025 
     | 
    
         
            +
                        metadata_swa.cache_seqlens_int32.copy_(cache_seqlens_int32)
         
     | 
| 
      
 1026 
     | 
    
         
            +
                        metadata_swa.cu_seqlens_k.copy_(cu_seqlens_k)
         
     | 
| 
      
 1027 
     | 
    
         
            +
             
     | 
| 
      
 1028 
     | 
    
         
            +
                    metadata.swa_spec_metadata = metadata_swa
         
     |