sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,117 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2025 SGLang Team
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 3 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 4 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 5 
     | 
    
         
            +
            #
         
     | 
| 
      
 6 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 7 
     | 
    
         
            +
            #
         
     | 
| 
      
 8 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 9 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 10 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 11 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 12 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 13 
     | 
    
         
            +
            """Common config utils for mamba2 - NemotronH, FalconH1, Qwen3Next, etc."""
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            import os
         
     | 
| 
      
 16 
     | 
    
         
            +
            from dataclasses import dataclass, field
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 19 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.distributed.utils import divide
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            def extra_groups_for_head_shards(ngroups: int, tp_size: int):
         
     | 
| 
      
 25 
     | 
    
         
            +
                """Compute the increase in group numbers to account for
         
     | 
| 
      
 26 
     | 
    
         
            +
                replication in order to accompany the head shards."""
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
                # in the case ngoups % tp_size == 0, this will be zero
         
     | 
| 
      
 29 
     | 
    
         
            +
                if ngroups % tp_size == 0:
         
     | 
| 
      
 30 
     | 
    
         
            +
                    return 0
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
                # for n_groups == 1, this is exactly tp_size - n_groups
         
     | 
| 
      
 33 
     | 
    
         
            +
                return tp_size - ngroups
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
            @dataclass(kw_only=True, frozen=True)
         
     | 
| 
      
 37 
     | 
    
         
            +
            class Mamba2StateShape:
         
     | 
| 
      
 38 
     | 
    
         
            +
                conv: tuple[int, int]
         
     | 
| 
      
 39 
     | 
    
         
            +
                temporal: tuple[int, int, int]
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
                intermediate_size: int
         
     | 
| 
      
 42 
     | 
    
         
            +
                conv_dim: int
         
     | 
| 
      
 43 
     | 
    
         
            +
                ssm_state_size: int
         
     | 
| 
      
 44 
     | 
    
         
            +
                num_heads: int
         
     | 
| 
      
 45 
     | 
    
         
            +
                head_dim: int
         
     | 
| 
      
 46 
     | 
    
         
            +
                state_size: int
         
     | 
| 
      
 47 
     | 
    
         
            +
                conv_kernel: int
         
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 50 
     | 
    
         
            +
                def create(
         
     | 
| 
      
 51 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    tp_world_size: int,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    intermediate_size: int,
         
     | 
| 
      
 54 
     | 
    
         
            +
                    n_groups: int,
         
     | 
| 
      
 55 
     | 
    
         
            +
                    num_heads: int,
         
     | 
| 
      
 56 
     | 
    
         
            +
                    head_dim: int,
         
     | 
| 
      
 57 
     | 
    
         
            +
                    state_size: int,
         
     | 
| 
      
 58 
     | 
    
         
            +
                    conv_kernel: int,
         
     | 
| 
      
 59 
     | 
    
         
            +
                ) -> "Mamba2StateShape":
         
     | 
| 
      
 60 
     | 
    
         
            +
                    # if n_groups is not divisible by world_size, need to extend the shards
         
     | 
| 
      
 61 
     | 
    
         
            +
                    # to ensure all groups needed by a head is sharded along with it
         
     | 
| 
      
 62 
     | 
    
         
            +
                    if n_groups % tp_world_size != 0:
         
     | 
| 
      
 63 
     | 
    
         
            +
                        extra_groups = extra_groups_for_head_shards(n_groups, tp_world_size)
         
     | 
| 
      
 64 
     | 
    
         
            +
                        n_groups += extra_groups
         
     | 
| 
      
 65 
     | 
    
         
            +
                    # heads and n_groups are TP-ed
         
     | 
| 
      
 66 
     | 
    
         
            +
                    conv_dim = intermediate_size + 2 * n_groups * state_size
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                    # contiguous along 'dim' axis
         
     | 
| 
      
 69 
     | 
    
         
            +
                    conv_state_shape = divide(conv_dim, tp_world_size), conv_kernel - 1
         
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
                    # These are not TP-ed as they depend on A, dt_bias, D
         
     | 
| 
      
 72 
     | 
    
         
            +
                    # - they are typically small
         
     | 
| 
      
 73 
     | 
    
         
            +
                    #   e.g., QWen3-Next: (32, 128, 128)
         
     | 
| 
      
 74 
     | 
    
         
            +
                    temporal_state_shape = (divide(num_heads, tp_world_size), head_dim, state_size)
         
     | 
| 
      
 75 
     | 
    
         
            +
                    return Mamba2StateShape(
         
     | 
| 
      
 76 
     | 
    
         
            +
                        conv=conv_state_shape,
         
     | 
| 
      
 77 
     | 
    
         
            +
                        temporal=temporal_state_shape,
         
     | 
| 
      
 78 
     | 
    
         
            +
                        intermediate_size=intermediate_size,
         
     | 
| 
      
 79 
     | 
    
         
            +
                        conv_dim=conv_dim,
         
     | 
| 
      
 80 
     | 
    
         
            +
                        ssm_state_size=state_size,
         
     | 
| 
      
 81 
     | 
    
         
            +
                        num_heads=num_heads,
         
     | 
| 
      
 82 
     | 
    
         
            +
                        head_dim=head_dim,
         
     | 
| 
      
 83 
     | 
    
         
            +
                        state_size=state_size,
         
     | 
| 
      
 84 
     | 
    
         
            +
                        conv_kernel=conv_kernel,
         
     | 
| 
      
 85 
     | 
    
         
            +
                    )
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
            @dataclass(kw_only=True, frozen=True)
         
     | 
| 
      
 89 
     | 
    
         
            +
            class Mamba2StateDType:
         
     | 
| 
      
 90 
     | 
    
         
            +
                conv: torch.dtype
         
     | 
| 
      
 91 
     | 
    
         
            +
                temporal: torch.dtype
         
     | 
| 
      
 92 
     | 
    
         
            +
             
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
            CONV_DTYPE = torch.bfloat16
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
            def mamba2_state_dtype() -> Mamba2StateDType:
         
     | 
| 
      
 98 
     | 
    
         
            +
                dtype_map = {
         
     | 
| 
      
 99 
     | 
    
         
            +
                    "float32": torch.float32,
         
     | 
| 
      
 100 
     | 
    
         
            +
                    "bfloat16": torch.bfloat16,
         
     | 
| 
      
 101 
     | 
    
         
            +
                }
         
     | 
| 
      
 102 
     | 
    
         
            +
                ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
         
     | 
| 
      
 103 
     | 
    
         
            +
                return Mamba2StateDType(conv=CONV_DTYPE, temporal=ssm_dtype)
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
            @dataclass(kw_only=True, frozen=True)
         
     | 
| 
      
 107 
     | 
    
         
            +
            class Mamba2CacheParams:
         
     | 
| 
      
 108 
     | 
    
         
            +
                shape: Mamba2StateShape
         
     | 
| 
      
 109 
     | 
    
         
            +
                dtype: Mamba2StateDType = field(default_factory=mamba2_state_dtype)
         
     | 
| 
      
 110 
     | 
    
         
            +
                layers: list[int]
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                @property
         
     | 
| 
      
 113 
     | 
    
         
            +
                def mamba_cache_per_req(self) -> int:
         
     | 
| 
      
 114 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 115 
     | 
    
         
            +
                        int(np.prod(self.shape.conv)) * self.dtype.conv.itemsize
         
     | 
| 
      
 116 
     | 
    
         
            +
                        + int(np.prod(self.shape.temporal)) * self.dtype.temporal.itemsize
         
     | 
| 
      
 117 
     | 
    
         
            +
                    ) * len(self.layers)
         
     | 
| 
         @@ -17,7 +17,7 @@ import logging 
     | 
|
| 
       17 
17 
     | 
    
         
             
            import math
         
     | 
| 
       18 
18 
     | 
    
         
             
            import os
         
     | 
| 
       19 
19 
     | 
    
         
             
            from enum import Enum, IntEnum, auto
         
     | 
| 
       20 
     | 
    
         
            -
            from typing import List, Optional, Set, Union
         
     | 
| 
      
 20 
     | 
    
         
            +
            from typing import Any, List, Optional, Set, Union
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
       22 
22 
     | 
    
         
             
            import torch
         
     | 
| 
       23 
23 
     | 
    
         
             
            from transformers import PretrainedConfig
         
     | 
| 
         @@ -53,7 +53,11 @@ def is_deepseek_nsa(config: PretrainedConfig) -> bool: 
     | 
|
| 
       53 
53 
     | 
    
         
             
                return (
         
     | 
| 
       54 
54 
     | 
    
         
             
                    config.architectures is not None
         
     | 
| 
       55 
55 
     | 
    
         
             
                    and config.architectures[0]
         
     | 
| 
       56 
     | 
    
         
            -
                    in [ 
     | 
| 
      
 56 
     | 
    
         
            +
                    in [
         
     | 
| 
      
 57 
     | 
    
         
            +
                        "DeepseekV3ForCausalLM",
         
     | 
| 
      
 58 
     | 
    
         
            +
                        "DeepseekV32ForCausalLM",
         
     | 
| 
      
 59 
     | 
    
         
            +
                        "DeepseekV3ForCausalLMNextN",
         
     | 
| 
      
 60 
     | 
    
         
            +
                    ]
         
     | 
| 
       57 
61 
     | 
    
         
             
                    and getattr(config, "index_topk", None) is not None
         
     | 
| 
       58 
62 
     | 
    
         
             
                )
         
     | 
| 
       59 
63 
     | 
    
         | 
| 
         @@ -87,8 +91,12 @@ class ModelConfig: 
     | 
|
| 
       87 
91 
     | 
    
         
             
                    quantization: Optional[str] = None,
         
     | 
| 
       88 
92 
     | 
    
         
             
                    override_config_file: Optional[str] = None,
         
     | 
| 
       89 
93 
     | 
    
         
             
                    is_draft_model: bool = False,
         
     | 
| 
       90 
     | 
    
         
            -
                    hybrid_kvcache_ratio: Optional[ 
     | 
| 
      
 94 
     | 
    
         
            +
                    hybrid_kvcache_ratio: Optional[
         
     | 
| 
      
 95 
     | 
    
         
            +
                        float
         
     | 
| 
      
 96 
     | 
    
         
            +
                    ] = None,  # TODO: remove this, it is not a model config
         
     | 
| 
       91 
97 
     | 
    
         
             
                    model_impl: Union[str, ModelImpl] = ModelImpl.AUTO,
         
     | 
| 
      
 98 
     | 
    
         
            +
                    sampling_defaults: str = "openai",
         
     | 
| 
      
 99 
     | 
    
         
            +
                    quantize_and_serve: bool = False,
         
     | 
| 
       92 
100 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       93 
101 
     | 
    
         
             
                    # Parse args
         
     | 
| 
       94 
102 
     | 
    
         
             
                    self.model_path = model_path
         
     | 
| 
         @@ -96,6 +104,11 @@ class ModelConfig: 
     | 
|
| 
       96 
104 
     | 
    
         
             
                    self.quantization = quantization
         
     | 
| 
       97 
105 
     | 
    
         
             
                    self.is_draft_model = is_draft_model
         
     | 
| 
       98 
106 
     | 
    
         
             
                    self.model_impl = model_impl
         
     | 
| 
      
 107 
     | 
    
         
            +
                    self.sampling_defaults = sampling_defaults
         
     | 
| 
      
 108 
     | 
    
         
            +
                    self.quantize_and_serve = quantize_and_serve
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
                    # Validate quantize_and_serve configuration
         
     | 
| 
      
 111 
     | 
    
         
            +
                    self._validate_quantize_and_serve_config()
         
     | 
| 
       99 
112 
     | 
    
         | 
| 
       100 
113 
     | 
    
         
             
                    # Get hf config
         
     | 
| 
       101 
114 
     | 
    
         
             
                    self._maybe_pull_model_tokenizer_from_remote()
         
     | 
| 
         @@ -211,6 +224,8 @@ class ModelConfig: 
     | 
|
| 
       211 
224 
     | 
    
         
             
                        quantization=server_args.quantization,
         
     | 
| 
       212 
225 
     | 
    
         
             
                        hybrid_kvcache_ratio=server_args.hybrid_kvcache_ratio,
         
     | 
| 
       213 
226 
     | 
    
         
             
                        model_impl=server_args.model_impl,
         
     | 
| 
      
 227 
     | 
    
         
            +
                        sampling_defaults=server_args.sampling_defaults,
         
     | 
| 
      
 228 
     | 
    
         
            +
                        quantize_and_serve=server_args.quantize_and_serve,
         
     | 
| 
       214 
229 
     | 
    
         
             
                        **kwargs,
         
     | 
| 
       215 
230 
     | 
    
         
             
                    )
         
     | 
| 
       216 
231 
     | 
    
         | 
| 
         @@ -477,31 +492,32 @@ class ModelConfig: 
     | 
|
| 
       477 
492 
     | 
    
         
             
                        # example: https://huggingface.co/nvidia/Llama-3.1-8B-Instruct-FP8/tree/main
         
     | 
| 
       478 
493 
     | 
    
         
             
                        # example: https://huggingface.co/Barrrrry/DeepSeek-R1-W4AFP8/tree/main
         
     | 
| 
       479 
494 
     | 
    
         
             
                        is_local = os.path.exists(self.model_path)
         
     | 
| 
       480 
     | 
    
         
            -
                        modelopt_quant_config = {"quant_method": "modelopt"}
         
     | 
| 
       481 
495 
     | 
    
         
             
                        if not is_local:
         
     | 
| 
       482 
496 
     | 
    
         
             
                            import huggingface_hub
         
     | 
| 
       483 
497 
     | 
    
         | 
| 
       484 
498 
     | 
    
         
             
                            try:
         
     | 
| 
       485 
     | 
    
         
            -
                                from huggingface_hub import HfApi
         
     | 
| 
      
 499 
     | 
    
         
            +
                                from huggingface_hub import HfApi, hf_hub_download
         
     | 
| 
       486 
500 
     | 
    
         | 
| 
       487 
501 
     | 
    
         
             
                                hf_api = HfApi()
         
     | 
| 
       488 
     | 
    
         
            -
             
     | 
| 
       489 
     | 
    
         
            -
                                def check_hf_quant_config():
         
     | 
| 
       490 
     | 
    
         
            -
                                    return hf_api.file_exists(
         
     | 
| 
       491 
     | 
    
         
            -
                                        self.model_path, "hf_quant_config.json"
         
     | 
| 
       492 
     | 
    
         
            -
                                    )
         
     | 
| 
       493 
     | 
    
         
            -
             
     | 
| 
       494 
502 
     | 
    
         
             
                                # Retry HF API call up to 3 times
         
     | 
| 
       495 
503 
     | 
    
         
             
                                file_exists = retry(
         
     | 
| 
       496 
     | 
    
         
            -
                                     
     | 
| 
      
 504 
     | 
    
         
            +
                                    lambda: hf_api.file_exists(
         
     | 
| 
      
 505 
     | 
    
         
            +
                                        self.model_path, "hf_quant_config.json"
         
     | 
| 
      
 506 
     | 
    
         
            +
                                    ),
         
     | 
| 
       497 
507 
     | 
    
         
             
                                    max_retry=2,
         
     | 
| 
       498 
508 
     | 
    
         
             
                                    initial_delay=1.0,
         
     | 
| 
       499 
509 
     | 
    
         
             
                                    max_delay=5.0,
         
     | 
| 
       500 
510 
     | 
    
         
             
                                )
         
     | 
| 
       501 
     | 
    
         
            -
             
     | 
| 
       502 
511 
     | 
    
         
             
                                if file_exists:
         
     | 
| 
       503 
     | 
    
         
            -
                                     
     | 
| 
       504 
     | 
    
         
            -
             
     | 
| 
      
 512 
     | 
    
         
            +
                                    # Download and parse the quantization config for remote models
         
     | 
| 
      
 513 
     | 
    
         
            +
                                    quant_config_file = hf_hub_download(
         
     | 
| 
      
 514 
     | 
    
         
            +
                                        repo_id=self.model_path,
         
     | 
| 
      
 515 
     | 
    
         
            +
                                        filename="hf_quant_config.json",
         
     | 
| 
      
 516 
     | 
    
         
            +
                                        revision=self.revision,
         
     | 
| 
      
 517 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 518 
     | 
    
         
            +
                                    with open(quant_config_file) as f:
         
     | 
| 
      
 519 
     | 
    
         
            +
                                        quant_config_dict = json.load(f)
         
     | 
| 
      
 520 
     | 
    
         
            +
                                    quant_cfg = self._parse_modelopt_quant_config(quant_config_dict)
         
     | 
| 
       505 
521 
     | 
    
         
             
                            except huggingface_hub.errors.OfflineModeIsEnabled:
         
     | 
| 
       506 
522 
     | 
    
         
             
                                logger.warning(
         
     | 
| 
       507 
523 
     | 
    
         
             
                                    "Offline mode is enabled, skipping hf_quant_config.json check"
         
     | 
| 
         @@ -510,21 +526,80 @@ class ModelConfig: 
     | 
|
| 
       510 
526 
     | 
    
         
             
                                logger.warning(
         
     | 
| 
       511 
527 
     | 
    
         
             
                                    f"Failed to check hf_quant_config.json: {self.model_path} {e}"
         
     | 
| 
       512 
528 
     | 
    
         
             
                                )
         
     | 
| 
       513 
     | 
    
         
            -
             
     | 
| 
       514 
529 
     | 
    
         
             
                        elif os.path.exists(os.path.join(self.model_path, "hf_quant_config.json")):
         
     | 
| 
       515 
530 
     | 
    
         
             
                            quant_config_file = os.path.join(
         
     | 
| 
       516 
531 
     | 
    
         
             
                                self.model_path, "hf_quant_config.json"
         
     | 
| 
       517 
532 
     | 
    
         
             
                            )
         
     | 
| 
       518 
533 
     | 
    
         
             
                            with open(quant_config_file) as f:
         
     | 
| 
       519 
534 
     | 
    
         
             
                                quant_config_dict = json.load(f)
         
     | 
| 
       520 
     | 
    
         
            -
                             
     | 
| 
       521 
     | 
    
         
            -
                            quant_algo = json_quant_configs.get("quant_algo", None)
         
     | 
| 
       522 
     | 
    
         
            -
                            if quant_algo == "MIXED_PRECISION":
         
     | 
| 
       523 
     | 
    
         
            -
                                quant_cfg = {"quant_method": "w4afp8"}
         
     | 
| 
       524 
     | 
    
         
            -
                            else:
         
     | 
| 
       525 
     | 
    
         
            -
                                quant_cfg = modelopt_quant_config
         
     | 
| 
      
 535 
     | 
    
         
            +
                            quant_cfg = self._parse_modelopt_quant_config(quant_config_dict)
         
     | 
| 
       526 
536 
     | 
    
         
             
                    return quant_cfg
         
     | 
| 
       527 
537 
     | 
    
         | 
| 
      
 538 
     | 
    
         
            +
                def _parse_modelopt_quant_config(self, quant_config_dict: dict) -> dict:
         
     | 
| 
      
 539 
     | 
    
         
            +
                    """Parse ModelOpt quantization config and return the appropriate quant_method."""
         
     | 
| 
      
 540 
     | 
    
         
            +
                    json_quant_configs = quant_config_dict["quantization"]
         
     | 
| 
      
 541 
     | 
    
         
            +
                    quant_algo = json_quant_configs.get("quant_algo", None)
         
     | 
| 
      
 542 
     | 
    
         
            +
             
     | 
| 
      
 543 
     | 
    
         
            +
                    if quant_algo == "MIXED_PRECISION":
         
     | 
| 
      
 544 
     | 
    
         
            +
                        return {"quant_method": "w4afp8"}
         
     | 
| 
      
 545 
     | 
    
         
            +
                    elif quant_algo and ("FP4" in quant_algo or "NVFP4" in quant_algo):
         
     | 
| 
      
 546 
     | 
    
         
            +
                        return {"quant_method": "modelopt_fp4"}
         
     | 
| 
      
 547 
     | 
    
         
            +
                    elif quant_algo and "FP8" in quant_algo:
         
     | 
| 
      
 548 
     | 
    
         
            +
                        return {"quant_method": "modelopt_fp8"}
         
     | 
| 
      
 549 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 550 
     | 
    
         
            +
                        # Default to FP8 for backward compatibility
         
     | 
| 
      
 551 
     | 
    
         
            +
                        return {"quant_method": "modelopt_fp8"}
         
     | 
| 
      
 552 
     | 
    
         
            +
             
     | 
| 
      
 553 
     | 
    
         
            +
                def _is_already_quantized(self) -> bool:
         
     | 
| 
      
 554 
     | 
    
         
            +
                    """Check if the model is already quantized based on config files."""
         
     | 
| 
      
 555 
     | 
    
         
            +
                    # Check for HuggingFace quantization config
         
     | 
| 
      
 556 
     | 
    
         
            +
                    from sglang.srt.utils import has_hf_quant_config
         
     | 
| 
      
 557 
     | 
    
         
            +
             
     | 
| 
      
 558 
     | 
    
         
            +
                    return has_hf_quant_config(self.model_path)
         
     | 
| 
      
 559 
     | 
    
         
            +
             
     | 
| 
      
 560 
     | 
    
         
            +
                def _get_modelopt_quant_type(self) -> str:
         
     | 
| 
      
 561 
     | 
    
         
            +
                    """Extract ModelOpt quantization type from unified quantization flag."""
         
     | 
| 
      
 562 
     | 
    
         
            +
                    if self.quantization == "modelopt_fp8":
         
     | 
| 
      
 563 
     | 
    
         
            +
                        return "fp8"
         
     | 
| 
      
 564 
     | 
    
         
            +
                    elif self.quantization == "modelopt_fp4":
         
     | 
| 
      
 565 
     | 
    
         
            +
                        return "nvfp4"
         
     | 
| 
      
 566 
     | 
    
         
            +
                    elif self.quantization == "modelopt":
         
     | 
| 
      
 567 
     | 
    
         
            +
                        # Auto-detect from model config
         
     | 
| 
      
 568 
     | 
    
         
            +
                        quant_cfg = self._parse_quant_hf_config()
         
     | 
| 
      
 569 
     | 
    
         
            +
                        if quant_cfg:
         
     | 
| 
      
 570 
     | 
    
         
            +
                            quant_method = quant_cfg.get("quant_method", "").lower()
         
     | 
| 
      
 571 
     | 
    
         
            +
                            if "fp4" in quant_method:
         
     | 
| 
      
 572 
     | 
    
         
            +
                                return "fp4"
         
     | 
| 
      
 573 
     | 
    
         
            +
                            elif "fp8" in quant_method:
         
     | 
| 
      
 574 
     | 
    
         
            +
                                return "fp8"
         
     | 
| 
      
 575 
     | 
    
         
            +
                        # Default to fp8 if can't detect
         
     | 
| 
      
 576 
     | 
    
         
            +
                        return "fp8"
         
     | 
| 
      
 577 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 578 
     | 
    
         
            +
                        return "fp8"  # Default fallback
         
     | 
| 
      
 579 
     | 
    
         
            +
             
     | 
| 
      
 580 
     | 
    
         
            +
                def _validate_quantize_and_serve_config(self):
         
     | 
| 
      
 581 
     | 
    
         
            +
                    """Validate quantize_and_serve configuration."""
         
     | 
| 
      
 582 
     | 
    
         
            +
                    if not self.quantize_and_serve:
         
     | 
| 
      
 583 
     | 
    
         
            +
                        return
         
     | 
| 
      
 584 
     | 
    
         
            +
             
     | 
| 
      
 585 
     | 
    
         
            +
                    # Check if ModelOpt quantization is specified
         
     | 
| 
      
 586 
     | 
    
         
            +
                    modelopt_quantization_specified = self.quantization in [
         
     | 
| 
      
 587 
     | 
    
         
            +
                        "modelopt",
         
     | 
| 
      
 588 
     | 
    
         
            +
                        "modelopt_fp8",
         
     | 
| 
      
 589 
     | 
    
         
            +
                        "modelopt_fp4",
         
     | 
| 
      
 590 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 591 
     | 
    
         
            +
             
     | 
| 
      
 592 
     | 
    
         
            +
                    if not modelopt_quantization_specified:
         
     | 
| 
      
 593 
     | 
    
         
            +
                        raise ValueError("quantize_and_serve requires ModelOpt quantization")
         
     | 
| 
      
 594 
     | 
    
         
            +
             
     | 
| 
      
 595 
     | 
    
         
            +
                    # quantize_and_serve is disabled due to compatibility issues
         
     | 
| 
      
 596 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 597 
     | 
    
         
            +
                        "quantize_and_serve functionality is currently disabled due to compatibility issues. "
         
     | 
| 
      
 598 
     | 
    
         
            +
                        "Please use the separate quantize-then-deploy workflow instead. "
         
     | 
| 
      
 599 
     | 
    
         
            +
                        "Step 1: Quantize and export model. "
         
     | 
| 
      
 600 
     | 
    
         
            +
                        "Step 2: Deploy the exported model."
         
     | 
| 
      
 601 
     | 
    
         
            +
                    )
         
     | 
| 
      
 602 
     | 
    
         
            +
             
     | 
| 
       528 
603 
     | 
    
         
             
                # adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/config.py
         
     | 
| 
       529 
604 
     | 
    
         
             
                def _verify_quantization(self) -> None:
         
     | 
| 
       530 
605 
     | 
    
         
             
                    supported_quantization = [*QUANTIZATION_METHODS]
         
     | 
| 
         @@ -543,7 +618,8 @@ class ModelConfig: 
     | 
|
| 
       543 
618 
     | 
    
         
             
                    optimized_quantization_methods = [
         
     | 
| 
       544 
619 
     | 
    
         
             
                        "fp8",
         
     | 
| 
       545 
620 
     | 
    
         
             
                        "marlin",
         
     | 
| 
       546 
     | 
    
         
            -
                        " 
     | 
| 
      
 621 
     | 
    
         
            +
                        "modelopt_fp8",
         
     | 
| 
      
 622 
     | 
    
         
            +
                        "modelopt_fp4",
         
     | 
| 
       547 
623 
     | 
    
         
             
                        "gptq_marlin_24",
         
     | 
| 
       548 
624 
     | 
    
         
             
                        "gptq_marlin",
         
     | 
| 
       549 
625 
     | 
    
         
             
                        "awq_marlin",
         
     | 
| 
         @@ -657,6 +733,38 @@ class ModelConfig: 
     | 
|
| 
       657 
733 
     | 
    
         
             
                            eos_ids = eos_ids | generation_eos_ids
         
     | 
| 
       658 
734 
     | 
    
         
             
                    return eos_ids
         
     | 
| 
       659 
735 
     | 
    
         | 
| 
      
 736 
     | 
    
         
            +
                def get_default_sampling_params(self) -> dict[str, Any]:
         
     | 
| 
      
 737 
     | 
    
         
            +
                    """
         
     | 
| 
      
 738 
     | 
    
         
            +
                    Get default sampling parameters from the model's generation config.
         
     | 
| 
      
 739 
     | 
    
         
            +
             
     | 
| 
      
 740 
     | 
    
         
            +
                    This method returns non-default sampling parameters from the model's
         
     | 
| 
      
 741 
     | 
    
         
            +
                    generation_config.json when sampling_defaults is set to "model".
         
     | 
| 
      
 742 
     | 
    
         
            +
             
     | 
| 
      
 743 
     | 
    
         
            +
                    Returns:
         
     | 
| 
      
 744 
     | 
    
         
            +
                        A dictionary containing the non-default sampling parameters.
         
     | 
| 
      
 745 
     | 
    
         
            +
                    """
         
     | 
| 
      
 746 
     | 
    
         
            +
                    if self.sampling_defaults != "model":
         
     | 
| 
      
 747 
     | 
    
         
            +
                        return {}
         
     | 
| 
      
 748 
     | 
    
         
            +
             
     | 
| 
      
 749 
     | 
    
         
            +
                    if self.hf_generation_config is None:
         
     | 
| 
      
 750 
     | 
    
         
            +
                        return {}
         
     | 
| 
      
 751 
     | 
    
         
            +
             
     | 
| 
      
 752 
     | 
    
         
            +
                    config = self.hf_generation_config.to_dict()
         
     | 
| 
      
 753 
     | 
    
         
            +
             
     | 
| 
      
 754 
     | 
    
         
            +
                    available_params = [
         
     | 
| 
      
 755 
     | 
    
         
            +
                        "repetition_penalty",
         
     | 
| 
      
 756 
     | 
    
         
            +
                        "temperature",
         
     | 
| 
      
 757 
     | 
    
         
            +
                        "top_k",
         
     | 
| 
      
 758 
     | 
    
         
            +
                        "top_p",
         
     | 
| 
      
 759 
     | 
    
         
            +
                        "min_p",
         
     | 
| 
      
 760 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 761 
     | 
    
         
            +
             
     | 
| 
      
 762 
     | 
    
         
            +
                    default_sampling_params = {
         
     | 
| 
      
 763 
     | 
    
         
            +
                        p: config.get(p) for p in available_params if config.get(p) is not None
         
     | 
| 
      
 764 
     | 
    
         
            +
                    }
         
     | 
| 
      
 765 
     | 
    
         
            +
             
     | 
| 
      
 766 
     | 
    
         
            +
                    return default_sampling_params
         
     | 
| 
      
 767 
     | 
    
         
            +
             
     | 
| 
       660 
768 
     | 
    
         
             
                def _maybe_pull_model_tokenizer_from_remote(self) -> None:
         
     | 
| 
       661 
769 
     | 
    
         
             
                    """
         
     | 
| 
       662 
770 
     | 
    
         
             
                    Pull the model config files to a temporary
         
     | 
| 
         @@ -802,15 +910,18 @@ multimodal_model_archs = [ 
     | 
|
| 
       802 
910 
     | 
    
         
             
                "Qwen2_5_VLForConditionalGeneration",
         
     | 
| 
       803 
911 
     | 
    
         
             
                "Qwen3VLForConditionalGeneration",
         
     | 
| 
       804 
912 
     | 
    
         
             
                "Qwen3VLMoeForConditionalGeneration",
         
     | 
| 
      
 913 
     | 
    
         
            +
                "Qwen3OmniMoeForConditionalGeneration",
         
     | 
| 
       805 
914 
     | 
    
         
             
                "KimiVLForConditionalGeneration",
         
     | 
| 
       806 
915 
     | 
    
         
             
                "InternVLChatModel",
         
     | 
| 
       807 
916 
     | 
    
         
             
                "InternS1ForConditionalGeneration",
         
     | 
| 
       808 
917 
     | 
    
         
             
                "Phi4MMForCausalLM",
         
     | 
| 
       809 
918 
     | 
    
         
             
                "VILAForConditionalGeneration",
         
     | 
| 
       810 
919 
     | 
    
         
             
                "Step3VLForConditionalGeneration",
         
     | 
| 
      
 920 
     | 
    
         
            +
                "POINTSV15ChatModel",
         
     | 
| 
       811 
921 
     | 
    
         
             
                "DotsVLMForCausalLM",
         
     | 
| 
       812 
922 
     | 
    
         
             
                "DotsOCRForCausalLM",
         
     | 
| 
       813 
923 
     | 
    
         
             
                "Sarashina2VisionForCausalLM",
         
     | 
| 
      
 924 
     | 
    
         
            +
                "DeepseekOCRForCausalLM",
         
     | 
| 
       814 
925 
     | 
    
         
             
            ]
         
     | 
| 
       815 
926 
     | 
    
         | 
| 
       816 
927 
     | 
    
         | 
| 
         @@ -0,0 +1,30 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Configuration for NVIDIA ModelOpt quantization integration
         
     | 
| 
      
 2 
     | 
    
         
            +
            from dataclasses import dataclass
         
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 7 
     | 
    
         
            +
            class ModelOptConfig:
         
     | 
| 
      
 8 
     | 
    
         
            +
                """Configuration for NVIDIA ModelOpt quantization operations.
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
                This configuration class holds parameters for ModelOpt quantization,
         
     | 
| 
      
 11 
     | 
    
         
            +
                checkpoint management, and model export operations.
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 14 
     | 
    
         
            +
                    quant: Quantization method/type (e.g., "fp8", "fp4")
         
     | 
| 
      
 15 
     | 
    
         
            +
                    checkpoint_restore_path: Path to restore ModelOpt checkpoint from
         
     | 
| 
      
 16 
     | 
    
         
            +
                    checkpoint_save_path: Path to save ModelOpt checkpoint to
         
     | 
| 
      
 17 
     | 
    
         
            +
                    export_path: Path to export quantized model in HuggingFace format
         
     | 
| 
      
 18 
     | 
    
         
            +
                    quantize_and_serve: Whether to quantize and serve in one step
         
     | 
| 
      
 19 
     | 
    
         
            +
                """
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
                quant: Optional[str] = None
         
     | 
| 
      
 22 
     | 
    
         
            +
                checkpoint_restore_path: Optional[str] = None
         
     | 
| 
      
 23 
     | 
    
         
            +
                checkpoint_save_path: Optional[str] = None
         
     | 
| 
      
 24 
     | 
    
         
            +
                export_path: Optional[str] = None
         
     | 
| 
      
 25 
     | 
    
         
            +
                quantize_and_serve: bool = False
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
                def __post_init__(self):
         
     | 
| 
      
 28 
     | 
    
         
            +
                    """Validate configuration after initialization."""
         
     | 
| 
      
 29 
     | 
    
         
            +
                    # Add any validation logic if needed
         
     | 
| 
      
 30 
     | 
    
         
            +
                    pass
         
     | 
| 
         @@ -0,0 +1,286 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2025 SGLang Team
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 3 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 4 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 5 
     | 
    
         
            +
            #
         
     | 
| 
      
 6 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 7 
     | 
    
         
            +
            #
         
     | 
| 
      
 8 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 9 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 10 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 11 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 12 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 13 
     | 
    
         
            +
            # ==============================================================================
         
     | 
| 
      
 14 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/configs/nemotron_h.py
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            """NemotronH model configuration"""
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            import regex as re
         
     | 
| 
      
 19 
     | 
    
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 
      
 20 
     | 
    
         
            +
            from transformers.utils import logging
         
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.layers.dp_attention import get_attention_tp_size
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
            MAMBA = "M"
         
     | 
| 
      
 28 
     | 
    
         
            +
            ATTENTION = "*"
         
     | 
| 
      
 29 
     | 
    
         
            +
            MLP = "-"
         
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
            class NemotronHConfig(PretrainedConfig):
         
     | 
| 
      
 33 
     | 
    
         
            +
                r"""
         
     | 
| 
      
 34 
     | 
    
         
            +
                This is the configuration class to store the configuration of a
         
     | 
| 
      
 35 
     | 
    
         
            +
                [`NemotronHModel`]. It is used to instantiate a NemotronH model according
         
     | 
| 
      
 36 
     | 
    
         
            +
                to the specified arguments, defining the model architecture. Instantiating
         
     | 
| 
      
 37 
     | 
    
         
            +
                a configuration with the defaults will yield a similar configuration to
         
     | 
| 
      
 38 
     | 
    
         
            +
                that of the NemotronH-v0.1 model.
         
     | 
| 
      
 39 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 40 
     | 
    
         
            +
                    vocab_size (`int`, *optional*, defaults to 131072):
         
     | 
| 
      
 41 
     | 
    
         
            +
                        Vocabulary size of the NemotronH model. Defines the number of
         
     | 
| 
      
 42 
     | 
    
         
            +
                        different tokens that can be represented by the `inputs_ids`
         
     | 
| 
      
 43 
     | 
    
         
            +
                        passed when calling [`NemotronHModel`]
         
     | 
| 
      
 44 
     | 
    
         
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 45 
     | 
    
         
            +
                        Whether the model's input and output word embeddings should be
         
     | 
| 
      
 46 
     | 
    
         
            +
                        tied. Note that this is only relevant if the model has an output
         
     | 
| 
      
 47 
     | 
    
         
            +
                        word embedding layer.
         
     | 
| 
      
 48 
     | 
    
         
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         
     | 
| 
      
 49 
     | 
    
         
            +
                        Dimension of the hidden representations.
         
     | 
| 
      
 50 
     | 
    
         
            +
                    intermediate_size (`int`, *optional*, defaults to 21504):
         
     | 
| 
      
 51 
     | 
    
         
            +
                        Dimension of the MLP representations.
         
     | 
| 
      
 52 
     | 
    
         
            +
                    num_hidden_layers (`int`, *optional*, defaults to 52):
         
     | 
| 
      
 53 
     | 
    
         
            +
                        Number of hidden layers in the Transformer encoder.
         
     | 
| 
      
 54 
     | 
    
         
            +
                    hybrid_override_pattern (`str`, *optional*, defaults to
         
     | 
| 
      
 55 
     | 
    
         
            +
                        `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
         
     | 
| 
      
 56 
     | 
    
         
            +
                        The pattern of the hybrid model. The pattern is a string of
         
     | 
| 
      
 57 
     | 
    
         
            +
                        characters where each character represents
         
     | 
| 
      
 58 
     | 
    
         
            +
                        M: Mamba2, *: Attention, -: MLP
         
     | 
| 
      
 59 
     | 
    
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         
     | 
| 
      
 60 
     | 
    
         
            +
                        Number of attention heads for each attention layer in the
         
     | 
| 
      
 61 
     | 
    
         
            +
                        Transformer encoder.
         
     | 
| 
      
 62 
     | 
    
         
            +
                    attention_head_dim (`int`, *optional*, defaults to 128):
         
     | 
| 
      
 63 
     | 
    
         
            +
                        Dimension of each attention head.
         
     | 
| 
      
 64 
     | 
    
         
            +
                    num_key_value_heads (`int`, *optional*, defaults to 8):
         
     | 
| 
      
 65 
     | 
    
         
            +
                        This is the number of key_value heads that should be used to
         
     | 
| 
      
 66 
     | 
    
         
            +
                        implement Grouped Query Attention. If
         
     | 
| 
      
 67 
     | 
    
         
            +
                        `num_key_value_heads=num_attention_heads`, the model will use
         
     | 
| 
      
 68 
     | 
    
         
            +
                        Multi Head Attention (MHA), if `num_key_value_heads=1` the model
         
     | 
| 
      
 69 
     | 
    
         
            +
                        will use Multi Query Attention (MQA) otherwise GQA is used.
         
     | 
| 
      
 70 
     | 
    
         
            +
                    mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
         
     | 
| 
      
 71 
     | 
    
         
            +
                        The non-linear activation function in the MLP layers.
         
     | 
| 
      
 72 
     | 
    
         
            +
                    attention_bias (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 73 
     | 
    
         
            +
                        Whether to use bias in attention layers.
         
     | 
| 
      
 74 
     | 
    
         
            +
                    mlp_bias (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 75 
     | 
    
         
            +
                        Whether to use bias in MLP layers.
         
     | 
| 
      
 76 
     | 
    
         
            +
                    use_bias (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 77 
     | 
    
         
            +
                        Whether to use bias in the model.
         
     | 
| 
      
 78 
     | 
    
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 
      
 79 
     | 
    
         
            +
                        The standard deviation of the truncated_normal_initializer for
         
     | 
| 
      
 80 
     | 
    
         
            +
                        initializing all weight matrices.
         
     | 
| 
      
 81 
     | 
    
         
            +
                    layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
         
     | 
| 
      
 82 
     | 
    
         
            +
                        The epsilon used by the layer normalization layers.
         
     | 
| 
      
 83 
     | 
    
         
            +
                    residual_in_fp32 (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 84 
     | 
    
         
            +
                        Whether or not residuals should be in `float32`. If set to `False`
         
     | 
| 
      
 85 
     | 
    
         
            +
                        residuals will keep the same `dtype` as the rest of the model.
         
     | 
| 
      
 86 
     | 
    
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 
      
 87 
     | 
    
         
            +
                        Whether or not the model should return the last key/values
         
     | 
| 
      
 88 
     | 
    
         
            +
                        attentions (not used by all models). Only relevant if
         
     | 
| 
      
 89 
     | 
    
         
            +
                        `config.is_decoder=True`.
         
     | 
| 
      
 90 
     | 
    
         
            +
                    num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
         
     | 
| 
      
 91 
     | 
    
         
            +
                        Number of prompt logits to calculate during generation. If `None`,
         
     | 
| 
      
 92 
     | 
    
         
            +
                        all logits will be calculated. If an integer value, only last
         
     | 
| 
      
 93 
     | 
    
         
            +
                        `num_logits_to_keep` logits will be calculated.
         
     | 
| 
      
 94 
     | 
    
         
            +
                    pad_token_id (`int`, *optional*, defaults to 0):
         
     | 
| 
      
 95 
     | 
    
         
            +
                        The id of the padding token.
         
     | 
| 
      
 96 
     | 
    
         
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         
     | 
| 
      
 97 
     | 
    
         
            +
                        The id of the "beginning-of-sequence" token.
         
     | 
| 
      
 98 
     | 
    
         
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         
     | 
| 
      
 99 
     | 
    
         
            +
                        The id of the "end-of-sequence" token.
         
     | 
| 
      
 100 
     | 
    
         
            +
                    sliding_window (`int`, *optional*, defaults to None):
         
     | 
| 
      
 101 
     | 
    
         
            +
                        Sliding window attention window size.
         
     | 
| 
      
 102 
     | 
    
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 4096):
         
     | 
| 
      
 103 
     | 
    
         
            +
                        The maximum sequence length that this model might ever be used
         
     | 
| 
      
 104 
     | 
    
         
            +
                        with.
         
     | 
| 
      
 105 
     | 
    
         
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         
     | 
| 
      
 106 
     | 
    
         
            +
                        The dropout ratio for the attention probabilities.
         
     | 
| 
      
 107 
     | 
    
         
            +
                    hidden_dropout (`float`, *optional*, defaults to 0.0):
         
     | 
| 
      
 108 
     | 
    
         
            +
                        The dropout ratio for the hidden states.
         
     | 
| 
      
 109 
     | 
    
         
            +
                    use_mamba_kernels (`bool`, *optional*, defaults to `True`):
         
     | 
| 
      
 110 
     | 
    
         
            +
                        Flag indicating whether or not to use the fast mamba kernels.
         
     | 
| 
      
 111 
     | 
    
         
            +
                        These are available only if `mamba-ssm` and `causal-conv1d`
         
     | 
| 
      
 112 
     | 
    
         
            +
                        are installed, and the mamba modules are running on a CUDA device.
         
     | 
| 
      
 113 
     | 
    
         
            +
                    ssm_state_size (`int`, *optional*, defaults to 128):
         
     | 
| 
      
 114 
     | 
    
         
            +
                        The dimension of the mamba state space latents.
         
     | 
| 
      
 115 
     | 
    
         
            +
                    mamba_num_heads (`int`, *optional*, defaults to 128):
         
     | 
| 
      
 116 
     | 
    
         
            +
                        Number of heads in Mamba layers.
         
     | 
| 
      
 117 
     | 
    
         
            +
                    mamba_n_groups (`int`, *optional*, defaults to 8):
         
     | 
| 
      
 118 
     | 
    
         
            +
                        Number of groups in Mamba layers.
         
     | 
| 
      
 119 
     | 
    
         
            +
                    mamba_head_dim (`int`, *optional*, defaults to 64):
         
     | 
| 
      
 120 
     | 
    
         
            +
                        Dimension of each Mamba head.
         
     | 
| 
      
 121 
     | 
    
         
            +
                    mamba_d_conv (`int`, *optional*, defaults to 4):
         
     | 
| 
      
 122 
     | 
    
         
            +
                        The size of the mamba convolution kernel.
         
     | 
| 
      
 123 
     | 
    
         
            +
                    mamba_expand (`int`, *optional*, defaults to 2):
         
     | 
| 
      
 124 
     | 
    
         
            +
                        Expanding factor used to determine the mamba intermediate size.
         
     | 
| 
      
 125 
     | 
    
         
            +
                    mamba_hidden_act (`str`, *optional*, defaults to "silu"):
         
     | 
| 
      
 126 
     | 
    
         
            +
                        The non-linear activation function in the Mamba layers.
         
     | 
| 
      
 127 
     | 
    
         
            +
                    mamba_dt_min (`float`, *optional*, defaults to 0.001):
         
     | 
| 
      
 128 
     | 
    
         
            +
                        Minimum value for the time step in Mamba.
         
     | 
| 
      
 129 
     | 
    
         
            +
                    mamba_dt_max (`float`, *optional*, defaults to 0.1):
         
     | 
| 
      
 130 
     | 
    
         
            +
                        Maximum value for the time step in Mamba.
         
     | 
| 
      
 131 
     | 
    
         
            +
                    mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
         
     | 
| 
      
 132 
     | 
    
         
            +
                        Limits for the time step in Mamba.
         
     | 
| 
      
 133 
     | 
    
         
            +
                    mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
         
     | 
| 
      
 134 
     | 
    
         
            +
                        Floor value for time step initialization in Mamba.
         
     | 
| 
      
 135 
     | 
    
         
            +
                    mamba_conv_bias (`bool`, *optional*, defaults to `True`):
         
     | 
| 
      
 136 
     | 
    
         
            +
                        Whether to use bias in the convolution layer of the mamba mixer
         
     | 
| 
      
 137 
     | 
    
         
            +
                        block.
         
     | 
| 
      
 138 
     | 
    
         
            +
                    mamba_proj_bias (`bool`, *optional*, defaults to `False`):
         
     | 
| 
      
 139 
     | 
    
         
            +
                        Whether to use bias in the input and output projections of the
         
     | 
| 
      
 140 
     | 
    
         
            +
                        mamba mixer block.
         
     | 
| 
      
 141 
     | 
    
         
            +
                    mamba_chunk_size (`int`, *optional*, defaults to 256):
         
     | 
| 
      
 142 
     | 
    
         
            +
                        Size of chunks for Mamba processing.
         
     | 
| 
      
 143 
     | 
    
         
            +
                    rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
         
     | 
| 
      
 144 
     | 
    
         
            +
                        Whether to rescale the pre-normalization residual connections.
         
     | 
| 
      
 145 
     | 
    
         
            +
                """
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
      
 147 
     | 
    
         
            +
                model_type = "nemotron_h"
         
     | 
| 
      
 148 
     | 
    
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 152 
     | 
    
         
            +
                    vocab_size=131072,
         
     | 
| 
      
 153 
     | 
    
         
            +
                    tie_word_embeddings=False,
         
     | 
| 
      
 154 
     | 
    
         
            +
                    hidden_size=4096,
         
     | 
| 
      
 155 
     | 
    
         
            +
                    intermediate_size=21504,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    num_hidden_layers=52,
         
     | 
| 
      
 157 
     | 
    
         
            +
                    hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
         
     | 
| 
      
 158 
     | 
    
         
            +
                    num_attention_heads=32,
         
     | 
| 
      
 159 
     | 
    
         
            +
                    head_dim=128,
         
     | 
| 
      
 160 
     | 
    
         
            +
                    num_key_value_heads=8,  # nemo: num_query_groups
         
     | 
| 
      
 161 
     | 
    
         
            +
                    mlp_hidden_act="relu2",
         
     | 
| 
      
 162 
     | 
    
         
            +
                    attention_bias=False,
         
     | 
| 
      
 163 
     | 
    
         
            +
                    mlp_bias=False,
         
     | 
| 
      
 164 
     | 
    
         
            +
                    use_bias=False,
         
     | 
| 
      
 165 
     | 
    
         
            +
                    initializer_range=0.02,  # nemo: init_method_std
         
     | 
| 
      
 166 
     | 
    
         
            +
                    layer_norm_epsilon=1e-5,  # nemo: layernorm_epsilon
         
     | 
| 
      
 167 
     | 
    
         
            +
                    residual_in_fp32=False,  #  Megatron Core default value
         
     | 
| 
      
 168 
     | 
    
         
            +
                    use_cache=True,
         
     | 
| 
      
 169 
     | 
    
         
            +
                    num_logits_to_keep=1,
         
     | 
| 
      
 170 
     | 
    
         
            +
                    pad_token_id=0,
         
     | 
| 
      
 171 
     | 
    
         
            +
                    bos_token_id=1,
         
     | 
| 
      
 172 
     | 
    
         
            +
                    eos_token_id=2,
         
     | 
| 
      
 173 
     | 
    
         
            +
                    sliding_window=None,
         
     | 
| 
      
 174 
     | 
    
         
            +
                    max_position_embeddings=4096,
         
     | 
| 
      
 175 
     | 
    
         
            +
                    attention_dropout=0.0,
         
     | 
| 
      
 176 
     | 
    
         
            +
                    hidden_dropout=0.0,  # * ADDED
         
     | 
| 
      
 177 
     | 
    
         
            +
                    use_mamba_kernels=True,
         
     | 
| 
      
 178 
     | 
    
         
            +
                    ssm_state_size=128,  # mamba_state_size
         
     | 
| 
      
 179 
     | 
    
         
            +
                    mamba_num_heads=128,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    mamba_n_groups=8,  # nemo: mamba_ssm_ngroups = num_heads
         
     | 
| 
      
 181 
     | 
    
         
            +
                    mamba_head_dim=64,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    mamba_d_conv=4,
         
     | 
| 
      
 183 
     | 
    
         
            +
                    mamba_expand=2,
         
     | 
| 
      
 184 
     | 
    
         
            +
                    mamba_hidden_act="silu",
         
     | 
| 
      
 185 
     | 
    
         
            +
                    mamba_dt_min=0.001,
         
     | 
| 
      
 186 
     | 
    
         
            +
                    mamba_dt_max=0.1,
         
     | 
| 
      
 187 
     | 
    
         
            +
                    mamba_dt_limit=(0.0, float("inf")),
         
     | 
| 
      
 188 
     | 
    
         
            +
                    mamba_dt_init_floor=1e-4,
         
     | 
| 
      
 189 
     | 
    
         
            +
                    mamba_conv_bias=True,
         
     | 
| 
      
 190 
     | 
    
         
            +
                    mamba_proj_bias=False,
         
     | 
| 
      
 191 
     | 
    
         
            +
                    mamba_chunk_size=256,
         
     | 
| 
      
 192 
     | 
    
         
            +
                    rescale_prenorm_residual=True,
         
     | 
| 
      
 193 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 194 
     | 
    
         
            +
                ):
         
     | 
| 
      
 195 
     | 
    
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 
      
 196 
     | 
    
         
            +
                    self.tie_word_embeddings = tie_word_embeddings
         
     | 
| 
      
 197 
     | 
    
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 
      
 198 
     | 
    
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 
      
 199 
     | 
    
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 
      
 200 
     | 
    
         
            +
                    self.hybrid_override_pattern = hybrid_override_pattern
         
     | 
| 
      
 201 
     | 
    
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 
      
 202 
     | 
    
         
            +
                    self.head_dim = head_dim
         
     | 
| 
      
 203 
     | 
    
         
            +
                    self.sliding_window = sliding_window
         
     | 
| 
      
 204 
     | 
    
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 
      
 205 
     | 
    
         
            +
                    self.attention_dropout = attention_dropout
         
     | 
| 
      
 206 
     | 
    
         
            +
                    self.hidden_dropout = hidden_dropout
         
     | 
| 
      
 207 
     | 
    
         
            +
             
     | 
| 
      
 208 
     | 
    
         
            +
                    # Validate hybrid_override_pattern
         
     | 
| 
      
 209 
     | 
    
         
            +
                    # M: Mamba2, *: Attention, -: MLP
         
     | 
| 
      
 210 
     | 
    
         
            +
                    assert len(self.hybrid_override_pattern) == self.num_hidden_layers, (
         
     | 
| 
      
 211 
     | 
    
         
            +
                        "hybrid_override_pattern must have same length as " "num_hidden_layers"
         
     | 
| 
      
 212 
     | 
    
         
            +
                    )
         
     | 
| 
      
 213 
     | 
    
         
            +
                    assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), (
         
     | 
| 
      
 214 
     | 
    
         
            +
                        "hybrid_override_pattern must only contain characters " "'M', '*', or '-'"
         
     | 
| 
      
 215 
     | 
    
         
            +
                    )
         
     | 
| 
      
 216 
     | 
    
         
            +
             
     | 
| 
      
 217 
     | 
    
         
            +
                    # for backward compatibility
         
     | 
| 
      
 218 
     | 
    
         
            +
                    if num_key_value_heads is None:
         
     | 
| 
      
 219 
     | 
    
         
            +
                        num_key_value_heads = num_attention_heads
         
     | 
| 
      
 220 
     | 
    
         
            +
             
     | 
| 
      
 221 
     | 
    
         
            +
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 
      
 222 
     | 
    
         
            +
                    self.mlp_hidden_act = mlp_hidden_act
         
     | 
| 
      
 223 
     | 
    
         
            +
                    self.attention_bias = attention_bias
         
     | 
| 
      
 224 
     | 
    
         
            +
                    self.mlp_bias = mlp_bias
         
     | 
| 
      
 225 
     | 
    
         
            +
                    self.use_bias = use_bias
         
     | 
| 
      
 226 
     | 
    
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 
      
 227 
     | 
    
         
            +
                    self.layer_norm_epsilon = layer_norm_epsilon
         
     | 
| 
      
 228 
     | 
    
         
            +
                    self.residual_in_fp32 = residual_in_fp32
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                    self.use_cache = use_cache
         
     | 
| 
      
 231 
     | 
    
         
            +
                    self.num_logits_to_keep = num_logits_to_keep
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
      
 233 
     | 
    
         
            +
                    self.use_mamba_kernels = use_mamba_kernels
         
     | 
| 
      
 234 
     | 
    
         
            +
                    self.mamba_n_groups = mamba_n_groups
         
     | 
| 
      
 235 
     | 
    
         
            +
                    self.mamba_head_dim = mamba_head_dim
         
     | 
| 
      
 236 
     | 
    
         
            +
                    self.ssm_state_size = ssm_state_size
         
     | 
| 
      
 237 
     | 
    
         
            +
                    self.mamba_num_heads = mamba_num_heads
         
     | 
| 
      
 238 
     | 
    
         
            +
                    self.conv_kernel = mamba_d_conv
         
     | 
| 
      
 239 
     | 
    
         
            +
                    self.expand = mamba_expand
         
     | 
| 
      
 240 
     | 
    
         
            +
                    self.mamba_hidden_act = mamba_hidden_act
         
     | 
| 
      
 241 
     | 
    
         
            +
                    self.time_step_min = mamba_dt_min
         
     | 
| 
      
 242 
     | 
    
         
            +
                    self.time_step_max = mamba_dt_max
         
     | 
| 
      
 243 
     | 
    
         
            +
                    self.time_step_limit = mamba_dt_limit
         
     | 
| 
      
 244 
     | 
    
         
            +
                    self.time_step_floor = mamba_dt_init_floor
         
     | 
| 
      
 245 
     | 
    
         
            +
                    self.use_conv_bias = mamba_conv_bias
         
     | 
| 
      
 246 
     | 
    
         
            +
                    self.mamba_proj_bias = mamba_proj_bias
         
     | 
| 
      
 247 
     | 
    
         
            +
                    self.mamba_chunk_size = mamba_chunk_size
         
     | 
| 
      
 248 
     | 
    
         
            +
                    self.rescale_prenorm_residual = rescale_prenorm_residual
         
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
                    super().__init__(
         
     | 
| 
      
 251 
     | 
    
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 
      
 252 
     | 
    
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 
      
 253 
     | 
    
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 
      
 254 
     | 
    
         
            +
                        tie_word_embeddings=tie_word_embeddings,
         
     | 
| 
      
 255 
     | 
    
         
            +
                        **kwargs,
         
     | 
| 
      
 256 
     | 
    
         
            +
                    )
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
                @property
         
     | 
| 
      
 259 
     | 
    
         
            +
                def mamba_layer_ids(self):
         
     | 
| 
      
 260 
     | 
    
         
            +
                    return [
         
     | 
| 
      
 261 
     | 
    
         
            +
                        i
         
     | 
| 
      
 262 
     | 
    
         
            +
                        for i in range(self.num_hidden_layers)
         
     | 
| 
      
 263 
     | 
    
         
            +
                        if self.hybrid_override_pattern[i] == MAMBA
         
     | 
| 
      
 264 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 265 
     | 
    
         
            +
             
     | 
| 
      
 266 
     | 
    
         
            +
                @property
         
     | 
| 
      
 267 
     | 
    
         
            +
                def full_attention_layer_ids(self):
         
     | 
| 
      
 268 
     | 
    
         
            +
                    return [
         
     | 
| 
      
 269 
     | 
    
         
            +
                        i
         
     | 
| 
      
 270 
     | 
    
         
            +
                        for i in range(self.num_hidden_layers)
         
     | 
| 
      
 271 
     | 
    
         
            +
                        if self.hybrid_override_pattern[i] == ATTENTION
         
     | 
| 
      
 272 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 273 
     | 
    
         
            +
             
     | 
| 
      
 274 
     | 
    
         
            +
                @property
         
     | 
| 
      
 275 
     | 
    
         
            +
                def mamba2_cache_params(self) -> Mamba2CacheParams:
         
     | 
| 
      
 276 
     | 
    
         
            +
                    shape = Mamba2StateShape.create(
         
     | 
| 
      
 277 
     | 
    
         
            +
                        tp_world_size=get_attention_tp_size(),
         
     | 
| 
      
 278 
     | 
    
         
            +
                        intermediate_size=self.mamba_num_heads * self.mamba_head_dim,
         
     | 
| 
      
 279 
     | 
    
         
            +
                        n_groups=self.n_groups,
         
     | 
| 
      
 280 
     | 
    
         
            +
                        num_heads=self.mamba_num_heads,
         
     | 
| 
      
 281 
     | 
    
         
            +
                        head_dim=self.mamba_head_dim,
         
     | 
| 
      
 282 
     | 
    
         
            +
                        state_size=self.ssm_state_size,
         
     | 
| 
      
 283 
     | 
    
         
            +
                        conv_kernel=self.conv_kernel,
         
     | 
| 
      
 284 
     | 
    
         
            +
                    )
         
     | 
| 
      
 285 
     | 
    
         
            +
             
     | 
| 
      
 286 
     | 
    
         
            +
                    return Mamba2CacheParams(shape=shape, layers=self.mamba_layer_ids)
         
     |