passagemath-schemes 10.6.38__cp314-cp314t-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.21.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.38.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.38.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.38.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.38.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.38.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,292 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
r"""
|
|
3
|
+
Helper functions for local components
|
|
4
|
+
|
|
5
|
+
This module contains various functions relating to lifting elements of
|
|
6
|
+
`\SL_2(\ZZ / N\ZZ)` to `\SL_2(\ZZ)`, and other related
|
|
7
|
+
problems.
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
from sage.rings.integer_ring import ZZ
|
|
11
|
+
from sage.arith.misc import crt, inverse_mod
|
|
12
|
+
from sage.modular.modsym.p1list import lift_to_sl2z
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lift_to_gamma1(g, m, n):
|
|
16
|
+
r"""
|
|
17
|
+
If ``g = [a,b,c,d]`` is a list of integers defining a `2 \times 2` matrix
|
|
18
|
+
whose determinant is `1 \pmod m`, return a list of integers giving the
|
|
19
|
+
entries of a matrix which is congruent to `g \pmod m` and to
|
|
20
|
+
`\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod n`. Here `m` and `n`
|
|
21
|
+
must be coprime.
|
|
22
|
+
|
|
23
|
+
INPUT:
|
|
24
|
+
|
|
25
|
+
- ``g`` -- list of 4 integers defining a `2 \times 2` matrix
|
|
26
|
+
|
|
27
|
+
- `m`, `n` -- coprime positive integers
|
|
28
|
+
|
|
29
|
+
Here `m` and `n` should be coprime positive integers. Either of `m` and `n`
|
|
30
|
+
can be `1`. If `n = 1`, this still makes perfect sense; this is what is
|
|
31
|
+
called by the function :func:`~lift_matrix_to_sl2z`. If `m = 1` this is a
|
|
32
|
+
rather silly question, so we adopt the convention of always returning the
|
|
33
|
+
identity matrix.
|
|
34
|
+
|
|
35
|
+
The result is always a list of Sage integers (unlike ``lift_to_sl2z``,
|
|
36
|
+
which tends to return Python ints).
|
|
37
|
+
|
|
38
|
+
EXAMPLES::
|
|
39
|
+
|
|
40
|
+
sage: from sage.modular.local_comp.liftings import lift_to_gamma1
|
|
41
|
+
sage: A = matrix(ZZ, 2, lift_to_gamma1([10, 11, 3, 11], 19, 5)); A
|
|
42
|
+
[371 68]
|
|
43
|
+
[ 60 11]
|
|
44
|
+
sage: A.det() == 1
|
|
45
|
+
True
|
|
46
|
+
sage: A.change_ring(Zmod(19))
|
|
47
|
+
[10 11]
|
|
48
|
+
[ 3 11]
|
|
49
|
+
sage: A.change_ring(Zmod(5))
|
|
50
|
+
[1 3]
|
|
51
|
+
[0 1]
|
|
52
|
+
sage: m = list(SL2Z.random_element())
|
|
53
|
+
sage: n = lift_to_gamma1(m, 11, 17)
|
|
54
|
+
sage: assert matrix(Zmod(11), 2, n) == matrix(Zmod(11),2,m)
|
|
55
|
+
sage: assert matrix(Zmod(17), 2, [n[0], 0, n[2], n[3]]) == 1
|
|
56
|
+
sage: type(lift_to_gamma1([10,11,3,11],19,5)[0])
|
|
57
|
+
<class 'sage.rings.integer.Integer'>
|
|
58
|
+
|
|
59
|
+
Tests with `m = 1` and with `n = 1`::
|
|
60
|
+
|
|
61
|
+
sage: lift_to_gamma1([1,1,0,1], 5, 1)
|
|
62
|
+
[1, 1, 0, 1]
|
|
63
|
+
sage: lift_to_gamma1([2,3,11,22], 1, 5)
|
|
64
|
+
[1, 0, 0, 1]
|
|
65
|
+
"""
|
|
66
|
+
if m == 1:
|
|
67
|
+
return [ZZ.one(), ZZ.zero(), ZZ.zero(), ZZ.one()]
|
|
68
|
+
a, b, c, d = (ZZ(x) for x in g)
|
|
69
|
+
det = (a * d - b * c) % m
|
|
70
|
+
if det != 1:
|
|
71
|
+
raise ValueError("Determinant is {0} mod {1}, should be 1".format(det, m))
|
|
72
|
+
c2 = crt(c, 0, m, n)
|
|
73
|
+
d2 = crt(d, 1, m, n)
|
|
74
|
+
a3,b3,c3,d3 = (ZZ(_) for _ in lift_to_sl2z(c2, d2, m * n))
|
|
75
|
+
r = (a3*b - b3*a) % m
|
|
76
|
+
return [a3 + r * c3, b3 + r * d3, c3, d3]
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def lift_matrix_to_sl2z(A, N):
|
|
80
|
+
r"""
|
|
81
|
+
Given a list of length 4 representing a 2x2 matrix over `\ZZ / N\ZZ` with
|
|
82
|
+
determinant 1 (mod `N`), lift it to a 2x2 matrix over `\ZZ` with
|
|
83
|
+
determinant 1.
|
|
84
|
+
|
|
85
|
+
This is a special case of :func:`~lift_to_gamma1`, and is coded as such.
|
|
86
|
+
|
|
87
|
+
INPUT:
|
|
88
|
+
|
|
89
|
+
- ``A`` -- list of 4 integers defining a `2 \times 2` matrix
|
|
90
|
+
|
|
91
|
+
- ``N`` -- positive integer
|
|
92
|
+
|
|
93
|
+
EXAMPLES::
|
|
94
|
+
|
|
95
|
+
sage: from sage.modular.local_comp.liftings import lift_matrix_to_sl2z
|
|
96
|
+
sage: lift_matrix_to_sl2z([10, 11, 3, 11], 19)
|
|
97
|
+
[29, 106, 3, 11]
|
|
98
|
+
sage: type(_[0])
|
|
99
|
+
<class 'sage.rings.integer.Integer'>
|
|
100
|
+
sage: lift_matrix_to_sl2z([2,0,0,1], 5)
|
|
101
|
+
Traceback (most recent call last):
|
|
102
|
+
...
|
|
103
|
+
ValueError: Determinant is 2 mod 5, should be 1
|
|
104
|
+
"""
|
|
105
|
+
return lift_to_gamma1(A, N, 1)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def lift_gen_to_gamma1(m, n):
|
|
109
|
+
r"""
|
|
110
|
+
Return four integers defining a matrix in `\SL_2(\ZZ)` which is
|
|
111
|
+
congruent to `\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \pmod m` and
|
|
112
|
+
lies in the subgroup `\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod
|
|
113
|
+
n`.
|
|
114
|
+
|
|
115
|
+
This is a special case of :func:`~lift_to_gamma1`, and is coded as such.
|
|
116
|
+
|
|
117
|
+
INPUT:
|
|
118
|
+
|
|
119
|
+
- `m`, `n` -- coprime positive integers
|
|
120
|
+
|
|
121
|
+
EXAMPLES::
|
|
122
|
+
|
|
123
|
+
sage: from sage.modular.local_comp.liftings import lift_gen_to_gamma1
|
|
124
|
+
sage: A = matrix(ZZ, 2, lift_gen_to_gamma1(9, 8)); A
|
|
125
|
+
[441 62]
|
|
126
|
+
[ 64 9]
|
|
127
|
+
sage: A.change_ring(Zmod(9))
|
|
128
|
+
[0 8]
|
|
129
|
+
[1 0]
|
|
130
|
+
sage: A.change_ring(Zmod(8))
|
|
131
|
+
[1 6]
|
|
132
|
+
[0 1]
|
|
133
|
+
sage: type(lift_gen_to_gamma1(9, 8)[0])
|
|
134
|
+
<class 'sage.rings.integer.Integer'>
|
|
135
|
+
"""
|
|
136
|
+
return lift_to_gamma1([0,-1,1,0], m, n)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def lift_uniformiser_odd(p, u, n):
|
|
140
|
+
r"""
|
|
141
|
+
Construct a matrix over `\ZZ` whose determinant is `p`, and which is
|
|
142
|
+
congruent to `\begin{pmatrix} 0 & -1 \\ p & 0 \end{pmatrix} \pmod{p^u}` and
|
|
143
|
+
to `\begin{pmatrix} p & 0 \\ 0 & 1\end{pmatrix} \pmod n`.
|
|
144
|
+
|
|
145
|
+
This is required for the local components machinery in the "ramified" case
|
|
146
|
+
(when the exponent of `p` dividing the level is odd).
|
|
147
|
+
|
|
148
|
+
EXAMPLES::
|
|
149
|
+
|
|
150
|
+
sage: from sage.modular.local_comp.liftings import lift_uniformiser_odd
|
|
151
|
+
sage: lift_uniformiser_odd(3, 2, 11)
|
|
152
|
+
[432, 377, 165, 144]
|
|
153
|
+
sage: type(lift_uniformiser_odd(3, 2, 11)[0])
|
|
154
|
+
<class 'sage.rings.integer.Integer'>
|
|
155
|
+
"""
|
|
156
|
+
g = lift_gen_to_gamma1(p**u, n)
|
|
157
|
+
return [p * g[0], g[1], p * g[2], g[3]]
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def lift_ramified(g, p, u, n):
|
|
161
|
+
r"""
|
|
162
|
+
Given four integers `a,b,c,d` with `p \mid c` and `ad - bc = 1 \pmod{p^u}`,
|
|
163
|
+
find `a',b',c',d'` congruent to `a,b,c,d \pmod{p^u}`, with `c' = c
|
|
164
|
+
\pmod{p^{u+1}}`, such that `a'd' - b'c'` is exactly 1, and `\begin{pmatrix}
|
|
165
|
+
a & b \\ c & d \end{pmatrix}` is in `\Gamma_1(n)`.
|
|
166
|
+
|
|
167
|
+
Algorithm: Uses :func:`~lift_to_gamma1` to get a lifting modulo `p^u`, and
|
|
168
|
+
then adds an appropriate multiple of the top row to the bottom row in order
|
|
169
|
+
to get the bottom-left entry correct modulo `p^{u+1}`.
|
|
170
|
+
|
|
171
|
+
EXAMPLES::
|
|
172
|
+
|
|
173
|
+
sage: from sage.modular.local_comp.liftings import lift_ramified
|
|
174
|
+
sage: lift_ramified([2,2,3,2], 3, 1, 1)
|
|
175
|
+
[-1, -1, 3, 2]
|
|
176
|
+
sage: lift_ramified([8,2,12,2], 3, 2, 23)
|
|
177
|
+
[323, 110, -133584, -45493]
|
|
178
|
+
sage: type(lift_ramified([8,2,12,2], 3, 2, 23)[0])
|
|
179
|
+
<class 'sage.rings.integer.Integer'>
|
|
180
|
+
"""
|
|
181
|
+
a, b, c, d = lift_to_gamma1(g, p**u, n)
|
|
182
|
+
r = crt((c - g[2]) / p**u * inverse_mod(a, p), 0, p, n)
|
|
183
|
+
c = c - p**u * r * a
|
|
184
|
+
d = d - p**u * r * b
|
|
185
|
+
# assert (c - g[2]) % p**(u+1) == 0
|
|
186
|
+
return [a, b, c, d]
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def lift_for_SL(A, N=None):
|
|
190
|
+
r"""
|
|
191
|
+
Lift a matrix `A` from `SL_m(\ZZ / N\ZZ)` to `SL_m(\ZZ)`.
|
|
192
|
+
|
|
193
|
+
This follows [Shi1971]_, Lemma 1.38, p. 21.
|
|
194
|
+
|
|
195
|
+
INPUT:
|
|
196
|
+
|
|
197
|
+
- ``A`` -- a square matrix with coefficients in `\ZZ / N\ZZ` (or `\ZZ`)
|
|
198
|
+
|
|
199
|
+
- ``N`` -- the modulus (optional) required only if the matrix ``A``
|
|
200
|
+
has coefficients in `\ZZ`
|
|
201
|
+
|
|
202
|
+
EXAMPLES::
|
|
203
|
+
|
|
204
|
+
sage: from sage.modular.local_comp.liftings import lift_for_SL
|
|
205
|
+
sage: A = matrix(Zmod(11), 4, 4, [6, 0, 0, 9, 1, 6, 9, 4, 4, 4, 8, 0, 4, 0, 0, 8])
|
|
206
|
+
sage: A.det()
|
|
207
|
+
1
|
|
208
|
+
sage: L = lift_for_SL(A)
|
|
209
|
+
sage: L.det()
|
|
210
|
+
1
|
|
211
|
+
sage: (L - A) == 0
|
|
212
|
+
True
|
|
213
|
+
|
|
214
|
+
sage: B = matrix(Zmod(19), 4, 4, [1, 6, 10, 4, 4, 14, 15, 4, 13, 0, 1, 15, 15, 15, 17, 10])
|
|
215
|
+
sage: B.det()
|
|
216
|
+
1
|
|
217
|
+
sage: L = lift_for_SL(B)
|
|
218
|
+
sage: L.det()
|
|
219
|
+
1
|
|
220
|
+
sage: (L - B) == 0
|
|
221
|
+
True
|
|
222
|
+
|
|
223
|
+
TESTS::
|
|
224
|
+
|
|
225
|
+
sage: lift_for_SL(matrix(3,3,[1,2,0,3,4,0,0,0,1]),3)
|
|
226
|
+
[-2 -1 0]
|
|
227
|
+
[ 0 1 -3]
|
|
228
|
+
[ 3 0 4]
|
|
229
|
+
|
|
230
|
+
sage: A = matrix(Zmod(7), 2, [1,0,0,1])
|
|
231
|
+
sage: L = lift_for_SL(A)
|
|
232
|
+
sage: L.parent()
|
|
233
|
+
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
|
|
234
|
+
|
|
235
|
+
sage: A = matrix(Zmod(7), 1, [1])
|
|
236
|
+
sage: L = lift_for_SL(A); L
|
|
237
|
+
[1]
|
|
238
|
+
|
|
239
|
+
sage: A = matrix(ZZ, 2, [1,0,0,1])
|
|
240
|
+
sage: lift_for_SL(A)
|
|
241
|
+
Traceback (most recent call last):
|
|
242
|
+
...
|
|
243
|
+
ValueError: you must choose the modulus
|
|
244
|
+
|
|
245
|
+
sage: for _ in range(100):
|
|
246
|
+
....: d = randint(0, 10)
|
|
247
|
+
....: p = choice([2,3,5,7,11])
|
|
248
|
+
....: M = random_matrix(Zmod(p), d, algorithm='unimodular')
|
|
249
|
+
....: assert lift_for_SL(M).det() == 1
|
|
250
|
+
"""
|
|
251
|
+
from sage.matrix.special import (identity_matrix, diagonal_matrix,
|
|
252
|
+
block_diagonal_matrix)
|
|
253
|
+
from sage.misc.misc_c import prod
|
|
254
|
+
|
|
255
|
+
ring = A.parent().base_ring()
|
|
256
|
+
if N is None:
|
|
257
|
+
if ring is ZZ:
|
|
258
|
+
raise ValueError('you must choose the modulus')
|
|
259
|
+
else:
|
|
260
|
+
N = ring.characteristic()
|
|
261
|
+
|
|
262
|
+
m = A.nrows()
|
|
263
|
+
if m <= 1:
|
|
264
|
+
return identity_matrix(ZZ, m)
|
|
265
|
+
|
|
266
|
+
AZZ = A .change_ring(ZZ)
|
|
267
|
+
D, U, V = AZZ.smith_form()
|
|
268
|
+
diag = diagonal_matrix([-1] + [1] * (m - 1))
|
|
269
|
+
if U.det() == -1:
|
|
270
|
+
U = diag * U
|
|
271
|
+
if V.det() == -1:
|
|
272
|
+
V = V * diag
|
|
273
|
+
|
|
274
|
+
a = [U.row(i) * AZZ * V.column(i) for i in range(m)]
|
|
275
|
+
b = prod(a[1:])
|
|
276
|
+
|
|
277
|
+
Winv = identity_matrix(m)
|
|
278
|
+
Winv[1, 0] = 1 - b
|
|
279
|
+
Winv[0, 1] = -1
|
|
280
|
+
Winv[1, 1] = b
|
|
281
|
+
|
|
282
|
+
Xinv = identity_matrix(m)
|
|
283
|
+
Xinv[0, 1] = a[1]
|
|
284
|
+
|
|
285
|
+
Cp = diagonal_matrix(a[1:])
|
|
286
|
+
Cp[0, 0] *= a[0]
|
|
287
|
+
C = lift_for_SL(Cp, N)
|
|
288
|
+
|
|
289
|
+
Cpp = block_diagonal_matrix(identity_matrix(1), C)
|
|
290
|
+
Cpp[1, 0] = 1 - a[0]
|
|
291
|
+
|
|
292
|
+
return (~U * Winv * Cpp * Xinv * ~V).change_ring(ZZ)
|