passagemath-schemes 10.6.38__cp314-cp314t-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.21.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.38.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.38.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.38.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.38.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.38.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,2234 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
r"""
|
|
3
|
+
Period lattices of elliptic curves and related functions
|
|
4
|
+
|
|
5
|
+
Let `E` be an elliptic curve defined over a number field `K`
|
|
6
|
+
(including `\QQ`). We attach a period lattice (a discrete rank 2
|
|
7
|
+
subgroup of `\CC`) to each embedding of `K` into `\CC`.
|
|
8
|
+
|
|
9
|
+
In the case of real embeddings, the lattice is stable under complex
|
|
10
|
+
conjugation and is called a real lattice. These have two types:
|
|
11
|
+
rectangular, (the real curve has two connected components and positive
|
|
12
|
+
discriminant) or non-rectangular (one connected component, negative
|
|
13
|
+
discriminant).
|
|
14
|
+
|
|
15
|
+
The periods are computed to arbitrary precision using the AGM (Gauss's
|
|
16
|
+
Arithmetic-Geometric Mean).
|
|
17
|
+
|
|
18
|
+
EXAMPLES::
|
|
19
|
+
|
|
20
|
+
sage: x = polygen(ZZ, 'x')
|
|
21
|
+
sage: K.<a> = NumberField(x^3 - 2) # needs sage.rings.number_field
|
|
22
|
+
sage: E = EllipticCurve([0,1,0,a,a]) # needs sage.rings.number_field
|
|
23
|
+
|
|
24
|
+
First we try a real embedding::
|
|
25
|
+
|
|
26
|
+
sage: emb = K.embeddings(RealField())[0] # needs sage.rings.number_field
|
|
27
|
+
sage: L = E.period_lattice(emb); L # needs sage.rings.number_field
|
|
28
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
|
|
29
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
30
|
+
with respect to the embedding Ring morphism:
|
|
31
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
32
|
+
To: Algebraic Real Field
|
|
33
|
+
Defn: a |--> 1.259921049894873?
|
|
34
|
+
|
|
35
|
+
The first basis period is real::
|
|
36
|
+
|
|
37
|
+
sage: L.basis() # needs sage.rings.number_field
|
|
38
|
+
(3.81452977217855, 1.90726488608927 + 1.34047785962440*I)
|
|
39
|
+
sage: L.is_real() # needs sage.rings.number_field
|
|
40
|
+
True
|
|
41
|
+
|
|
42
|
+
For a basis `\omega_1,\omega_2` normalised so that `\omega_1/\omega_2`
|
|
43
|
+
is in the fundamental region of the upper half-plane, use the method
|
|
44
|
+
:meth:`~sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell.normalised_basis`
|
|
45
|
+
instead::
|
|
46
|
+
|
|
47
|
+
sage: L.normalised_basis() # needs sage.rings.number_field
|
|
48
|
+
(1.90726488608927 - 1.34047785962440*I, -1.90726488608927 - 1.34047785962440*I)
|
|
49
|
+
|
|
50
|
+
Next a complex embedding::
|
|
51
|
+
|
|
52
|
+
sage: emb = K.embeddings(ComplexField())[0] # needs sage.rings.number_field
|
|
53
|
+
sage: L = E.period_lattice(emb); L # needs sage.rings.number_field
|
|
54
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
|
|
55
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
56
|
+
with respect to the embedding Ring morphism:
|
|
57
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
58
|
+
To: Algebraic Field
|
|
59
|
+
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I
|
|
60
|
+
|
|
61
|
+
In this case, the basis `\omega_1`, `\omega_2` is always normalised so
|
|
62
|
+
that `\tau = \omega_1/\omega_2` is in the fundamental region in the
|
|
63
|
+
upper half plane::
|
|
64
|
+
|
|
65
|
+
sage: # needs sage.rings.number_field
|
|
66
|
+
sage: w1, w2 = L.basis(); w1, w2
|
|
67
|
+
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
|
|
68
|
+
sage: L.is_real()
|
|
69
|
+
False
|
|
70
|
+
sage: tau = w1/w2; tau
|
|
71
|
+
0.387694505032876 + 1.30821088214407*I
|
|
72
|
+
sage: L.normalised_basis()
|
|
73
|
+
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
|
|
74
|
+
|
|
75
|
+
We test that bug :issue:`8415` (caused by a PARI bug fixed in v2.3.5) is OK::
|
|
76
|
+
|
|
77
|
+
sage: # needs database_cremona_mini_ellcurve sage.rings.number_field
|
|
78
|
+
sage: E = EllipticCurve('37a')
|
|
79
|
+
sage: K.<a> = QuadraticField(-7)
|
|
80
|
+
sage: EK = E.change_ring(K)
|
|
81
|
+
sage: EK.period_lattice(K.complex_embeddings()[0])
|
|
82
|
+
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x
|
|
83
|
+
over Number Field in a with defining polynomial x^2 + 7
|
|
84
|
+
with a = 2.645751311064591?*I
|
|
85
|
+
with respect to the embedding Ring morphism:
|
|
86
|
+
From: Number Field in a with defining polynomial x^2 + 7
|
|
87
|
+
with a = 2.645751311064591?*I
|
|
88
|
+
To: Algebraic Field
|
|
89
|
+
Defn: a |--> -2.645751311064591?*I
|
|
90
|
+
|
|
91
|
+
REFERENCES:
|
|
92
|
+
|
|
93
|
+
- [CT2013]_
|
|
94
|
+
|
|
95
|
+
AUTHORS:
|
|
96
|
+
|
|
97
|
+
- ?: initial version.
|
|
98
|
+
|
|
99
|
+
- John Cremona:
|
|
100
|
+
|
|
101
|
+
- Adapted to handle real embeddings of number fields, September 2008.
|
|
102
|
+
|
|
103
|
+
- Added basis_matrix function, November 2008
|
|
104
|
+
|
|
105
|
+
- Added support for complex embeddings, May 2009.
|
|
106
|
+
|
|
107
|
+
- Added complex elliptic logs, March 2010; enhanced, October 2010.
|
|
108
|
+
"""
|
|
109
|
+
|
|
110
|
+
import sage.rings.abc
|
|
111
|
+
|
|
112
|
+
from sage.categories.morphism import IdentityMorphism
|
|
113
|
+
from sage.misc.cachefunc import cached_method
|
|
114
|
+
from sage.misc.lazy_import import lazy_import
|
|
115
|
+
from sage.modules.free_module import FreeModule_generic_pid
|
|
116
|
+
from sage.rings.complex_mpfr import ComplexField, ComplexNumber
|
|
117
|
+
from sage.rings.infinity import Infinity
|
|
118
|
+
from sage.rings.integer_ring import ZZ
|
|
119
|
+
from sage.rings.qqbar import AA, QQbar
|
|
120
|
+
from sage.rings.rational_field import QQ
|
|
121
|
+
from sage.rings.real_mpfr import RealField, RealNumber
|
|
122
|
+
from sage.schemes.elliptic_curves.constructor import EllipticCurve
|
|
123
|
+
from sage.structure.richcmp import richcmp_method, richcmp, richcmp_not_equal
|
|
124
|
+
|
|
125
|
+
lazy_import('sage.libs.pari', 'pari')
|
|
126
|
+
lazy_import('sage.rings.number_field.number_field', 'refine_embedding')
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
class PeriodLattice(FreeModule_generic_pid):
|
|
130
|
+
"""
|
|
131
|
+
The class for the period lattice of an algebraic variety.
|
|
132
|
+
"""
|
|
133
|
+
pass
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
@richcmp_method
|
|
137
|
+
class PeriodLattice_ell(PeriodLattice):
|
|
138
|
+
r"""
|
|
139
|
+
The class for the period lattice of an elliptic curve.
|
|
140
|
+
|
|
141
|
+
Currently supported are elliptic curves defined over `\QQ`, and
|
|
142
|
+
elliptic curves defined over a number field with a real or complex
|
|
143
|
+
embedding, where the lattice constructed depends on that
|
|
144
|
+
embedding.
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
def __init__(self, E, embedding=None):
|
|
148
|
+
r"""
|
|
149
|
+
Initialises the period lattice by storing the elliptic curve and the embedding.
|
|
150
|
+
|
|
151
|
+
INPUT:
|
|
152
|
+
|
|
153
|
+
- ``E`` -- an elliptic curve
|
|
154
|
+
|
|
155
|
+
- ``embedding`` -- (default: ``None``) an embedding of the base
|
|
156
|
+
field `K` of ``E`` into a real or complex field. If ``None``:
|
|
157
|
+
|
|
158
|
+
- use the built-in coercion to `\RR` for `K=\QQ`;
|
|
159
|
+
|
|
160
|
+
- use the first embedding into `\RR` given by
|
|
161
|
+
``K.embeddings(RealField())``, if there are any;
|
|
162
|
+
|
|
163
|
+
- use the first embedding into `\CC` given by
|
|
164
|
+
``K.embeddings(ComplexField())``, if `K` is totally complex.
|
|
165
|
+
|
|
166
|
+
.. NOTE::
|
|
167
|
+
|
|
168
|
+
No periods are computed on creation of the lattice; see the
|
|
169
|
+
methods :meth:`basis`, :meth:`normalised_basis` and
|
|
170
|
+
:meth:`real_period` for precision setting.
|
|
171
|
+
|
|
172
|
+
EXAMPLES:
|
|
173
|
+
|
|
174
|
+
This function is not normally called directly, but will be
|
|
175
|
+
called by the period_lattice() function of classes
|
|
176
|
+
ell_number_field and ell_rational_field::
|
|
177
|
+
|
|
178
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import PeriodLattice_ell
|
|
179
|
+
|
|
180
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
181
|
+
sage: E = EllipticCurve('37a')
|
|
182
|
+
sage: PeriodLattice_ell(E)
|
|
183
|
+
Period lattice associated to
|
|
184
|
+
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
|
|
185
|
+
|
|
186
|
+
::
|
|
187
|
+
|
|
188
|
+
sage: # needs sage.rings.number_field
|
|
189
|
+
sage: x = polygen(ZZ, 'x')
|
|
190
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
191
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
192
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
193
|
+
sage: L = PeriodLattice_ell(E, emb); L
|
|
194
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
|
|
195
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
196
|
+
with respect to the embedding Ring morphism:
|
|
197
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
198
|
+
To: Algebraic Real Field
|
|
199
|
+
Defn: a |--> 1.259921049894873?
|
|
200
|
+
|
|
201
|
+
sage: emb = K.embeddings(ComplexField())[0] # needs sage.rings.number_field
|
|
202
|
+
sage: L = PeriodLattice_ell(E, emb); L # needs sage.rings.number_field
|
|
203
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a
|
|
204
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
205
|
+
with respect to the embedding Ring morphism:
|
|
206
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
207
|
+
To: Algebraic Field
|
|
208
|
+
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I
|
|
209
|
+
|
|
210
|
+
TESTS::
|
|
211
|
+
|
|
212
|
+
sage: # needs sage.rings.number_field
|
|
213
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import PeriodLattice_ell
|
|
214
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
215
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
216
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
217
|
+
sage: L = PeriodLattice_ell(E,emb)
|
|
218
|
+
sage: L == loads(dumps(L))
|
|
219
|
+
True
|
|
220
|
+
|
|
221
|
+
Elliptic curve over imaginary number field without ``embedding`` specified::
|
|
222
|
+
|
|
223
|
+
sage: E = EllipticCurve(QQ[I], [5, -3*I])
|
|
224
|
+
sage: L = PeriodLattice_ell(E, embedding=None)
|
|
225
|
+
sage: L.elliptic_logarithm(E(I+1, I+2)) # abs tol 1e-15
|
|
226
|
+
-0.773376784700140 - 0.177736018028666*I
|
|
227
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-15
|
|
228
|
+
(1.00000000000000 - 1.00000000000000*I : 2.00000000000000 - 1.00000000000000*I : 1.00000000000000)
|
|
229
|
+
"""
|
|
230
|
+
# First we cache the elliptic curve with this period lattice:
|
|
231
|
+
|
|
232
|
+
self.E = E
|
|
233
|
+
|
|
234
|
+
# Next we cache the embedding into QQbar or AA which extends
|
|
235
|
+
# the given embedding:
|
|
236
|
+
|
|
237
|
+
K = E.base_field()
|
|
238
|
+
self._is_exact = K.is_exact()
|
|
239
|
+
if embedding is None:
|
|
240
|
+
if K in (AA, QQbar):
|
|
241
|
+
embedding = K.hom(QQbar)
|
|
242
|
+
real = K == AA
|
|
243
|
+
elif not self._is_exact:
|
|
244
|
+
embedding = IdentityMorphism(K)
|
|
245
|
+
real = isinstance(K, (sage.rings.abc.RealField, sage.rings.abc.RealDoubleField))
|
|
246
|
+
else:
|
|
247
|
+
embs = K.embeddings(AA)
|
|
248
|
+
real = len(embs) > 0
|
|
249
|
+
if not real:
|
|
250
|
+
embs = K.embeddings(QQbar)
|
|
251
|
+
embedding = embs[0]
|
|
252
|
+
else:
|
|
253
|
+
embedding = refine_embedding(embedding, Infinity)
|
|
254
|
+
real = embedding(K.gen()).imag().is_zero()
|
|
255
|
+
|
|
256
|
+
self.embedding = embedding
|
|
257
|
+
|
|
258
|
+
# Next we compute and cache (in self.real_flag) the type of
|
|
259
|
+
# the lattice: +1 for real rectangular, -1 for real
|
|
260
|
+
# non-rectangular, 0 for non-real:
|
|
261
|
+
|
|
262
|
+
self.real_flag = 0
|
|
263
|
+
if real:
|
|
264
|
+
self.real_flag = +1
|
|
265
|
+
if embedding(E.discriminant()) < 0:
|
|
266
|
+
self.real_flag = -1
|
|
267
|
+
|
|
268
|
+
# The following algebraic data associated to E and the
|
|
269
|
+
# embedding is cached:
|
|
270
|
+
#
|
|
271
|
+
# Ebar: the curve E base-changed to QQbar (or AA)
|
|
272
|
+
# f2: the 2-division polynomial of Ebar
|
|
273
|
+
# ei: the roots e1, e2, e3 of f2, as elements of QQbar (or AA)
|
|
274
|
+
#
|
|
275
|
+
# The ei are used both for period computation and elliptic
|
|
276
|
+
# logarithms.
|
|
277
|
+
|
|
278
|
+
if self._is_exact:
|
|
279
|
+
self.Ebar = self.E.change_ring(self.embedding)
|
|
280
|
+
self.f2 = self.Ebar.two_division_polynomial()
|
|
281
|
+
else:
|
|
282
|
+
self.f2 = self.E.two_division_polynomial()
|
|
283
|
+
if self.real_flag == 1: # positive discriminant
|
|
284
|
+
self._ei = self.f2.roots(AA if self._is_exact else K, multiplicities=False)
|
|
285
|
+
self._ei.sort() # e1 < e2 < e3
|
|
286
|
+
e1, e2, e3 = self._ei
|
|
287
|
+
elif self.real_flag == -1: # negative discriminant
|
|
288
|
+
self._ei = self.f2.roots(QQbar if self._is_exact else ComplexField(K.precision()), multiplicities=False)
|
|
289
|
+
self._ei = sorted(self._ei, key=lambda z: z.imag())
|
|
290
|
+
e1, e3, e2 = self._ei # so e3 is real
|
|
291
|
+
if self._is_exact:
|
|
292
|
+
e3 = AA(e3)
|
|
293
|
+
self._ei = [e1, e2, e3]
|
|
294
|
+
else:
|
|
295
|
+
self._ei = self.f2.roots(QQbar if self._is_exact else ComplexField(K.precision()), multiplicities=False)
|
|
296
|
+
e1, e2, e3 = self._ei
|
|
297
|
+
|
|
298
|
+
# The quantities sqrt(e_i-e_j) are cached (as elements of
|
|
299
|
+
# QQbar) to be used in period computations:
|
|
300
|
+
|
|
301
|
+
self._abc = (e3-e1).sqrt(), (e3-e2).sqrt(), (e2-e1).sqrt()
|
|
302
|
+
|
|
303
|
+
PeriodLattice.__init__(self, base_ring=ZZ, rank=2, degree=1, sparse=False)
|
|
304
|
+
|
|
305
|
+
def __richcmp__(self, other, op):
|
|
306
|
+
r"""
|
|
307
|
+
Comparison function for period lattices.
|
|
308
|
+
|
|
309
|
+
TESTS::
|
|
310
|
+
|
|
311
|
+
sage: # needs sage.rings.number_field
|
|
312
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import PeriodLattice_ell
|
|
313
|
+
sage: x = polygen(ZZ, 'x')
|
|
314
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
315
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
316
|
+
sage: embs = K.embeddings(ComplexField())
|
|
317
|
+
sage: L1, L2, L3 = [PeriodLattice_ell(E, e) for e in embs]
|
|
318
|
+
sage: L1 < L2 < L3
|
|
319
|
+
True
|
|
320
|
+
"""
|
|
321
|
+
if not isinstance(other, PeriodLattice_ell):
|
|
322
|
+
return NotImplemented
|
|
323
|
+
|
|
324
|
+
lx = self.E
|
|
325
|
+
rx = other.E
|
|
326
|
+
if lx != rx:
|
|
327
|
+
return richcmp_not_equal(lx, rx, op)
|
|
328
|
+
|
|
329
|
+
a = self.E.base_field().gen()
|
|
330
|
+
return richcmp(self.embedding(a), other.embedding(a), op)
|
|
331
|
+
|
|
332
|
+
def __repr__(self):
|
|
333
|
+
"""
|
|
334
|
+
Return the string representation of this period lattice.
|
|
335
|
+
|
|
336
|
+
EXAMPLES::
|
|
337
|
+
|
|
338
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
339
|
+
sage: E = EllipticCurve('37a')
|
|
340
|
+
sage: E.period_lattice()
|
|
341
|
+
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
|
|
342
|
+
|
|
343
|
+
::
|
|
344
|
+
|
|
345
|
+
sage: # needs sage.rings.number_field
|
|
346
|
+
sage: x = polygen(ZZ, 'x')
|
|
347
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
348
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
349
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
350
|
+
sage: L = E.period_lattice(emb); L
|
|
351
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a over Number Field in a
|
|
352
|
+
with defining polynomial x^3 - 2 with respect to the embedding Ring morphism:
|
|
353
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
354
|
+
To: Algebraic Real Field
|
|
355
|
+
Defn: a |--> 1.259921049894873?
|
|
356
|
+
"""
|
|
357
|
+
K = self.E.base_field()
|
|
358
|
+
if K in (QQ, AA, QQbar) or isinstance(self.embedding, IdentityMorphism):
|
|
359
|
+
return "Period lattice associated to %s" % (self.E)
|
|
360
|
+
return "Period lattice associated to %s with respect to the embedding %s" % (self.E, self.embedding)
|
|
361
|
+
|
|
362
|
+
def __call__(self, P, prec=None):
|
|
363
|
+
r"""
|
|
364
|
+
Return the elliptic logarithm of a point `P`.
|
|
365
|
+
|
|
366
|
+
INPUT:
|
|
367
|
+
|
|
368
|
+
- ``P`` -- a point on the elliptic curve associated with this period
|
|
369
|
+
lattice
|
|
370
|
+
|
|
371
|
+
- ``prec`` -- (default: ``None``) precision in bits (default
|
|
372
|
+
precision if ``None``)
|
|
373
|
+
|
|
374
|
+
OUTPUT:
|
|
375
|
+
|
|
376
|
+
(complex number) The elliptic logarithm of the point `P` with
|
|
377
|
+
respect to this period lattice. If `E` is the elliptic curve
|
|
378
|
+
and `\sigma:K\to\CC` the embedding, then the returned value `z`
|
|
379
|
+
is such that `z\pmod{L}` maps to `\sigma(P)` under the
|
|
380
|
+
standard Weierstrass isomorphism from `\CC/L` to `\sigma(E)`.
|
|
381
|
+
|
|
382
|
+
EXAMPLES::
|
|
383
|
+
|
|
384
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
385
|
+
sage: E = EllipticCurve('389a')
|
|
386
|
+
sage: L = E.period_lattice()
|
|
387
|
+
sage: E.discriminant() > 0
|
|
388
|
+
True
|
|
389
|
+
sage: L.real_flag
|
|
390
|
+
1
|
|
391
|
+
sage: P = E([-1,1])
|
|
392
|
+
sage: P.is_on_identity_component ()
|
|
393
|
+
False
|
|
394
|
+
sage: L(P, prec=96) # abs tol 1e-27
|
|
395
|
+
0.4793482501902193161295330101 + 0.985868850775824102211203849*I
|
|
396
|
+
sage: Q = E([3,5])
|
|
397
|
+
sage: Q.is_on_identity_component()
|
|
398
|
+
True
|
|
399
|
+
sage: L(Q, prec=96)
|
|
400
|
+
1.931128271542559442488585220
|
|
401
|
+
|
|
402
|
+
Note that this is actually the inverse of the Weierstrass isomorphism::
|
|
403
|
+
|
|
404
|
+
sage: L.elliptic_exponential(L(Q)) # needs database_cremona_mini_ellcurve
|
|
405
|
+
(3.00000000000000 : 5.00000000000000 : 1.00000000000000)
|
|
406
|
+
|
|
407
|
+
An example with negative discriminant, and a torsion point::
|
|
408
|
+
|
|
409
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
410
|
+
sage: E = EllipticCurve('11a1')
|
|
411
|
+
sage: L = E.period_lattice()
|
|
412
|
+
sage: E.discriminant() < 0
|
|
413
|
+
True
|
|
414
|
+
sage: L.real_flag
|
|
415
|
+
-1
|
|
416
|
+
sage: P = E([16,-61])
|
|
417
|
+
sage: L(P)
|
|
418
|
+
0.253841860855911
|
|
419
|
+
sage: L.real_period() / L(P)
|
|
420
|
+
5.00000000000000
|
|
421
|
+
"""
|
|
422
|
+
return self.elliptic_logarithm(P,prec)
|
|
423
|
+
|
|
424
|
+
@cached_method
|
|
425
|
+
def basis(self, prec=None, algorithm='sage'):
|
|
426
|
+
r"""
|
|
427
|
+
Return a basis for this period lattice as a 2-tuple.
|
|
428
|
+
|
|
429
|
+
INPUT:
|
|
430
|
+
|
|
431
|
+
- ``prec`` -- (default: ``None``) precision in bits (default
|
|
432
|
+
precision if ``None``)
|
|
433
|
+
|
|
434
|
+
- ``algorithm`` -- string (default: ``'sage'``); choice of
|
|
435
|
+
implementation (for real embeddings only) between ``'sage'``
|
|
436
|
+
(native Sage implementation) or ``'pari'`` (use the PARI
|
|
437
|
+
library: only available for real embeddings)
|
|
438
|
+
|
|
439
|
+
OUTPUT:
|
|
440
|
+
|
|
441
|
+
(tuple of Complex) `(\omega_1,\omega_2)` where the lattice is
|
|
442
|
+
`\ZZ\omega_1 + \ZZ\omega_2`. If the lattice is real then
|
|
443
|
+
`\omega_1` is real and positive, `\Im(\omega_2)>0` and
|
|
444
|
+
`\Re(\omega_2/\omega_1)` is either `0` (for rectangular
|
|
445
|
+
lattices) or `\frac{1}{2}` (for non-rectangular lattices).
|
|
446
|
+
Otherwise, `\omega_1/\omega_2` is in the fundamental region of
|
|
447
|
+
the upper half-plane. If the latter normalisation is required
|
|
448
|
+
for real lattices, use the method :meth:`normalised_basis`
|
|
449
|
+
instead.
|
|
450
|
+
|
|
451
|
+
EXAMPLES::
|
|
452
|
+
|
|
453
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
454
|
+
sage: E = EllipticCurve('37a')
|
|
455
|
+
sage: E.period_lattice().basis()
|
|
456
|
+
(2.99345864623196, 2.45138938198679*I)
|
|
457
|
+
|
|
458
|
+
This shows that the issue reported at :issue:`3954` is fixed::
|
|
459
|
+
|
|
460
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
461
|
+
sage: E = EllipticCurve('37a')
|
|
462
|
+
sage: b1 = E.period_lattice().basis(prec=30)
|
|
463
|
+
sage: b2 = E.period_lattice().basis(prec=30)
|
|
464
|
+
sage: b1 == b2
|
|
465
|
+
True
|
|
466
|
+
|
|
467
|
+
This shows that the issue reported at :issue:`4064` is fixed::
|
|
468
|
+
|
|
469
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
470
|
+
sage: E = EllipticCurve('37a')
|
|
471
|
+
sage: E.period_lattice().basis(prec=30)[0].parent()
|
|
472
|
+
Real Field with 30 bits of precision
|
|
473
|
+
sage: E.period_lattice().basis(prec=100)[0].parent()
|
|
474
|
+
Real Field with 100 bits of precision
|
|
475
|
+
|
|
476
|
+
::
|
|
477
|
+
|
|
478
|
+
sage: # needs sage.rings.number_field
|
|
479
|
+
sage: x = polygen(ZZ, 'x')
|
|
480
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
481
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
482
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
483
|
+
sage: L = E.period_lattice(emb)
|
|
484
|
+
sage: L.basis(64)
|
|
485
|
+
(3.81452977217854509, 1.90726488608927255 + 1.34047785962440202*I)
|
|
486
|
+
|
|
487
|
+
sage: # needs sage.rings.number_field
|
|
488
|
+
sage: emb = K.embeddings(ComplexField())[0]
|
|
489
|
+
sage: L = E.period_lattice(emb)
|
|
490
|
+
sage: w1, w2 = L.basis(); w1, w2
|
|
491
|
+
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
|
|
492
|
+
sage: L.is_real()
|
|
493
|
+
False
|
|
494
|
+
sage: tau = w1/w2; tau
|
|
495
|
+
0.387694505032876 + 1.30821088214407*I
|
|
496
|
+
"""
|
|
497
|
+
# We divide into two cases: (1) Q, or a number field with a
|
|
498
|
+
# real embedding; (2) a number field with a complex embedding.
|
|
499
|
+
# In each case the periods are computed by a different
|
|
500
|
+
# internal function.
|
|
501
|
+
|
|
502
|
+
if self.is_real():
|
|
503
|
+
return self._compute_periods_real(prec=prec, algorithm=algorithm)
|
|
504
|
+
else:
|
|
505
|
+
return self._compute_periods_complex(prec=prec)
|
|
506
|
+
|
|
507
|
+
@cached_method
|
|
508
|
+
def gens(self, prec=None, algorithm='sage'):
|
|
509
|
+
r"""
|
|
510
|
+
Return a basis for this period lattice as a 2-tuple.
|
|
511
|
+
|
|
512
|
+
This is an alias for
|
|
513
|
+
:meth:`~sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell.basis`.
|
|
514
|
+
See the docstring there for a more in-depth explanation and further
|
|
515
|
+
examples.
|
|
516
|
+
|
|
517
|
+
INPUT:
|
|
518
|
+
|
|
519
|
+
- ``prec`` -- (default: ``None``) precision in bits (default
|
|
520
|
+
precision if ``None``)
|
|
521
|
+
|
|
522
|
+
- ``algorithm`` -- string (default: ``'sage'``); choice of
|
|
523
|
+
implementation (for real embeddings only) between ``'sage'``
|
|
524
|
+
(native Sage implementation) or ``'pari'`` (use the PARI
|
|
525
|
+
library: only available for real embeddings)
|
|
526
|
+
|
|
527
|
+
OUTPUT:
|
|
528
|
+
|
|
529
|
+
(tuple of Complex) `(\omega_1,\omega_2)` where the lattice is
|
|
530
|
+
`\ZZ\omega_1 + \ZZ\omega_2`. If the lattice is real then
|
|
531
|
+
`\omega_1` is real and positive, `\Im(\omega_2)>0` and
|
|
532
|
+
`\Re(\omega_2/\omega_1)` is either `0` (for rectangular
|
|
533
|
+
lattices) or `\frac{1}{2}` (for non-rectangular lattices).
|
|
534
|
+
Otherwise, `\omega_1/\omega_2` is in the fundamental region of
|
|
535
|
+
the upper half-plane. If the latter normalisation is required
|
|
536
|
+
for real lattices, use the method :meth:`normalised_basis`
|
|
537
|
+
instead.
|
|
538
|
+
|
|
539
|
+
EXAMPLES::
|
|
540
|
+
|
|
541
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
542
|
+
sage: E = EllipticCurve('37a')
|
|
543
|
+
sage: E.period_lattice().gens()
|
|
544
|
+
(2.99345864623196, 2.45138938198679*I)
|
|
545
|
+
sage: E.period_lattice().gens(prec=100)
|
|
546
|
+
(2.9934586462319596298320099794, 2.4513893819867900608542248319*I)
|
|
547
|
+
"""
|
|
548
|
+
return tuple(self.basis(prec=prec, algorithm=algorithm))
|
|
549
|
+
|
|
550
|
+
@cached_method
|
|
551
|
+
def normalised_basis(self, prec=None, algorithm='sage'):
|
|
552
|
+
r"""
|
|
553
|
+
Return a normalised basis for this period lattice as a 2-tuple.
|
|
554
|
+
|
|
555
|
+
INPUT:
|
|
556
|
+
|
|
557
|
+
- ``prec`` -- (default: ``None``) precision in bits (default
|
|
558
|
+
precision if ``None``)
|
|
559
|
+
|
|
560
|
+
- ``algorithm`` -- string (default: ``'sage'``); choice of
|
|
561
|
+
implementation (for real embeddings only) between ``'sage'``
|
|
562
|
+
(native Sage implementation) or ``'pari'`` (use the PARI
|
|
563
|
+
library: only available for real embeddings)
|
|
564
|
+
|
|
565
|
+
OUTPUT:
|
|
566
|
+
|
|
567
|
+
(tuple of Complex) `(\omega_1,\omega_2)` where the lattice has
|
|
568
|
+
the form `\ZZ\omega_1 + \ZZ\omega_2`. The basis is normalised
|
|
569
|
+
so that `\omega_1/\omega_2` is in the fundamental region of
|
|
570
|
+
the upper half-plane. For an alternative normalisation for
|
|
571
|
+
real lattices (with the first period real), use the method
|
|
572
|
+
:meth:`basis` instead.
|
|
573
|
+
|
|
574
|
+
EXAMPLES::
|
|
575
|
+
|
|
576
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
577
|
+
sage: E = EllipticCurve('37a')
|
|
578
|
+
sage: E.period_lattice().normalised_basis()
|
|
579
|
+
(2.99345864623196, -2.45138938198679*I)
|
|
580
|
+
|
|
581
|
+
::
|
|
582
|
+
|
|
583
|
+
sage: # needs sage.rings.number_field
|
|
584
|
+
sage: x = polygen(ZZ, 'x')
|
|
585
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
586
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
587
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
588
|
+
sage: L = E.period_lattice(emb)
|
|
589
|
+
sage: L.normalised_basis(64)
|
|
590
|
+
(1.90726488608927255 - 1.34047785962440202*I,
|
|
591
|
+
-1.90726488608927255 - 1.34047785962440202*I)
|
|
592
|
+
|
|
593
|
+
sage: # needs sage.rings.number_field
|
|
594
|
+
sage: emb = K.embeddings(ComplexField())[0]
|
|
595
|
+
sage: L = E.period_lattice(emb)
|
|
596
|
+
sage: w1, w2 = L.normalised_basis(); w1, w2
|
|
597
|
+
(-1.37588604166076 - 2.58560946624443*I,
|
|
598
|
+
-2.10339907847356 + 0.428378776460622*I)
|
|
599
|
+
sage: L.is_real()
|
|
600
|
+
False
|
|
601
|
+
sage: tau = w1/w2; tau
|
|
602
|
+
0.387694505032876 + 1.30821088214407*I
|
|
603
|
+
"""
|
|
604
|
+
w1, w2 = self.basis(prec=prec, algorithm=algorithm)
|
|
605
|
+
periods, _ = normalise_periods(w1, w2)
|
|
606
|
+
return periods
|
|
607
|
+
|
|
608
|
+
@cached_method
|
|
609
|
+
def tau(self, prec=None, algorithm='sage'):
|
|
610
|
+
r"""
|
|
611
|
+
Return the upper half-plane parameter in the fundamental region.
|
|
612
|
+
|
|
613
|
+
INPUT:
|
|
614
|
+
|
|
615
|
+
- ``prec`` -- (default: ``None``) precision in bits (default
|
|
616
|
+
precision if ``None``)
|
|
617
|
+
|
|
618
|
+
- ``algorithm`` -- string (default: ``'sage'``); choice of
|
|
619
|
+
implementation (for real embeddings only) between 'sage'
|
|
620
|
+
(native Sage implementation) or 'pari' (use the PARI
|
|
621
|
+
library: only available for real embeddings)
|
|
622
|
+
|
|
623
|
+
OUTPUT:
|
|
624
|
+
|
|
625
|
+
(Complex) `\tau = \omega_1/\omega_2` where the lattice has the
|
|
626
|
+
form `\ZZ\omega_1 + \ZZ\omega_2`, normalised so that `\tau =
|
|
627
|
+
\omega_1/\omega_2` is in the fundamental region of the upper
|
|
628
|
+
half-plane.
|
|
629
|
+
|
|
630
|
+
EXAMPLES::
|
|
631
|
+
|
|
632
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
633
|
+
sage: E = EllipticCurve('37a')
|
|
634
|
+
sage: L = E.period_lattice()
|
|
635
|
+
sage: L.tau()
|
|
636
|
+
1.22112736076463*I
|
|
637
|
+
|
|
638
|
+
::
|
|
639
|
+
|
|
640
|
+
sage: # needs sage.rings.number_field
|
|
641
|
+
sage: x = polygen(ZZ, 'x')
|
|
642
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
643
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
644
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
645
|
+
sage: L = E.period_lattice(emb)
|
|
646
|
+
sage: tau = L.tau(); tau
|
|
647
|
+
-0.338718341018919 + 0.940887817679340*I
|
|
648
|
+
sage: tau.abs()
|
|
649
|
+
1.00000000000000
|
|
650
|
+
sage: -0.5 <= tau.real() <= 0.5
|
|
651
|
+
True
|
|
652
|
+
|
|
653
|
+
sage: # needs sage.rings.number_field
|
|
654
|
+
sage: emb = K.embeddings(ComplexField())[0]
|
|
655
|
+
sage: L = E.period_lattice(emb)
|
|
656
|
+
sage: tau = L.tau(); tau
|
|
657
|
+
0.387694505032876 + 1.30821088214407*I
|
|
658
|
+
sage: tau.abs()
|
|
659
|
+
1.36444961115933
|
|
660
|
+
sage: -0.5 <= tau.real() <= 0.5
|
|
661
|
+
True
|
|
662
|
+
"""
|
|
663
|
+
w1, w2 = self.normalised_basis(prec=prec, algorithm=algorithm)
|
|
664
|
+
return w1/w2
|
|
665
|
+
|
|
666
|
+
@cached_method
|
|
667
|
+
def _compute_default_prec(self):
|
|
668
|
+
r"""
|
|
669
|
+
Internal function to compute the default precision to be used if nothing is passed in.
|
|
670
|
+
"""
|
|
671
|
+
return RealField().precision() if self._is_exact else self.E.base_field().precision()
|
|
672
|
+
|
|
673
|
+
@cached_method
|
|
674
|
+
def _compute_periods_real(self, prec=None, algorithm='sage'):
|
|
675
|
+
r"""
|
|
676
|
+
Internal function to compute the periods (real embedding case).
|
|
677
|
+
|
|
678
|
+
INPUT:
|
|
679
|
+
|
|
680
|
+
- ``prec`` -- integer or ``None`` (default); floating point
|
|
681
|
+
precision (in bits). If ``None``, use the default precision.
|
|
682
|
+
|
|
683
|
+
- ``algorithm`` string (default: ``'sage'``); choice of implementation between
|
|
684
|
+
|
|
685
|
+
- ``'pari'`` -- use the PARI library
|
|
686
|
+
|
|
687
|
+
- ``'sage'`` -- use a native Sage implementation (with the same underlying algorithm)
|
|
688
|
+
|
|
689
|
+
OUTPUT:
|
|
690
|
+
|
|
691
|
+
(tuple of Complex) `(\omega_1,\omega_2)` where the lattice has
|
|
692
|
+
the form `\ZZ\omega_1 + \ZZ\omega_2`, `\omega_1` is real and
|
|
693
|
+
`\omega_2/\omega_1` has real part either `0` or `frac{1}{2}`.
|
|
694
|
+
|
|
695
|
+
EXAMPLES::
|
|
696
|
+
|
|
697
|
+
sage: # needs sage.rings.number_field
|
|
698
|
+
sage: x = polygen(ZZ, 'x')
|
|
699
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
700
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
701
|
+
sage: embs = K.embeddings(CC)
|
|
702
|
+
sage: Ls = [E.period_lattice(e) for e in embs]
|
|
703
|
+
sage: [L.is_real() for L in Ls]
|
|
704
|
+
[False, False, True]
|
|
705
|
+
sage: Ls[2]._compute_periods_real(100)
|
|
706
|
+
(3.8145297721785450936365098936,
|
|
707
|
+
1.9072648860892725468182549468 + 1.3404778596244020196600112394*I)
|
|
708
|
+
sage: Ls[2]._compute_periods_real(100, algorithm='pari')
|
|
709
|
+
(3.8145297721785450936365098936,
|
|
710
|
+
1.9072648860892725468182549468 - 1.3404778596244020196600112394*I)
|
|
711
|
+
"""
|
|
712
|
+
if prec is None:
|
|
713
|
+
prec = self._compute_default_prec()
|
|
714
|
+
R = RealField(prec)
|
|
715
|
+
C = ComplexField(prec)
|
|
716
|
+
|
|
717
|
+
if algorithm == 'pari':
|
|
718
|
+
ainvs = self.E.a_invariants()
|
|
719
|
+
if self.E.base_field() is not QQ and self._is_exact:
|
|
720
|
+
ainvs = [C(self.embedding(ai)).real() for ai in ainvs]
|
|
721
|
+
|
|
722
|
+
# The precision for omega() is determined by ellinit()
|
|
723
|
+
E_pari = pari.ellinit(ainvs, precision=prec)
|
|
724
|
+
w1, w2 = E_pari.omega()
|
|
725
|
+
return R(w1), C(w2)
|
|
726
|
+
|
|
727
|
+
if algorithm != 'sage':
|
|
728
|
+
raise ValueError("invalid value of 'algorithm' parameter")
|
|
729
|
+
|
|
730
|
+
pi = R.pi()
|
|
731
|
+
# Up to now everything has been exact in AA or QQbar (if self._is_exact),
|
|
732
|
+
# but now we must go transcendental. Only now is the desired precision used!
|
|
733
|
+
if self.real_flag == 1: # positive discriminant
|
|
734
|
+
a, b, c = (R(x) for x in self._abc)
|
|
735
|
+
w1 = R(pi/a.agm(b)) # least real period
|
|
736
|
+
w2 = C(0,pi/a.agm(c)) # least pure imaginary period
|
|
737
|
+
else:
|
|
738
|
+
a = C(self._abc[0])
|
|
739
|
+
x, y, r = a.real().abs(), a.imag().abs(), a.abs()
|
|
740
|
+
w1 = R(pi/r.agm(x)) # least real period
|
|
741
|
+
w2 = R(pi/r.agm(y)) # least pure imaginary period /i
|
|
742
|
+
w2 = C(w1,w2)/2
|
|
743
|
+
|
|
744
|
+
return (w1,w2)
|
|
745
|
+
|
|
746
|
+
@cached_method
|
|
747
|
+
def _compute_periods_complex(self, prec=None, normalise=True):
|
|
748
|
+
r"""
|
|
749
|
+
Internal function to compute the periods (complex embedding case).
|
|
750
|
+
|
|
751
|
+
INPUT:
|
|
752
|
+
|
|
753
|
+
- ``prec`` -- integer or ``None`` (default); floating point precision
|
|
754
|
+
(in bits); if ``None``, use the default precision
|
|
755
|
+
|
|
756
|
+
- ``normalise`` -- boolean (default: ``True``); whether to normalise the
|
|
757
|
+
basis after computation
|
|
758
|
+
|
|
759
|
+
OUTPUT:
|
|
760
|
+
|
|
761
|
+
(tuple of Complex) `(\omega_1,\omega_2)` where the lattice has
|
|
762
|
+
the form `\ZZ\omega_1 + \ZZ\omega_2`. If `normalise` is
|
|
763
|
+
``True``, the basis is normalised so that `(\omega_1/\omega_2)`
|
|
764
|
+
is in the fundamental region of the upper half plane.
|
|
765
|
+
|
|
766
|
+
EXAMPLES::
|
|
767
|
+
|
|
768
|
+
sage: # needs sage.rings.number_field
|
|
769
|
+
sage: x = polygen(ZZ, 'x')
|
|
770
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
771
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
772
|
+
sage: embs = K.embeddings(CC)
|
|
773
|
+
sage: Ls = [E.period_lattice(e) for e in embs]
|
|
774
|
+
sage: [L.is_real() for L in Ls]
|
|
775
|
+
[False, False, True]
|
|
776
|
+
sage: L = Ls[0]
|
|
777
|
+
sage: w1,w2 = L._compute_periods_complex(100); w1,w2
|
|
778
|
+
(-1.3758860416607626645495991458 - 2.5856094662444337042877901304*I,
|
|
779
|
+
-2.1033990784735587243397865076 + 0.42837877646062187766760569686*I)
|
|
780
|
+
sage: tau = w1/w2; tau
|
|
781
|
+
0.38769450503287609349437509561 + 1.3082108821440725664008561928*I
|
|
782
|
+
sage: tau.real()
|
|
783
|
+
0.38769450503287609349437509561
|
|
784
|
+
sage: tau.abs()
|
|
785
|
+
1.3644496111593345713923386773
|
|
786
|
+
|
|
787
|
+
Without normalisation::
|
|
788
|
+
|
|
789
|
+
sage: # needs sage.rings.number_field
|
|
790
|
+
sage: w1,w2 = L._compute_periods_complex(normalise=False); w1,w2
|
|
791
|
+
(2.10339907847356 - 0.428378776460622*I, 0.727513036812796 - 3.01398824270506*I)
|
|
792
|
+
sage: tau = w1/w2; tau
|
|
793
|
+
0.293483964608883 + 0.627038168678760*I
|
|
794
|
+
sage: tau.real()
|
|
795
|
+
0.293483964608883
|
|
796
|
+
sage: tau.abs() # > 1
|
|
797
|
+
0.692321964451917
|
|
798
|
+
"""
|
|
799
|
+
if prec is None:
|
|
800
|
+
prec = self._compute_default_prec()
|
|
801
|
+
C = ComplexField(prec)
|
|
802
|
+
|
|
803
|
+
# Up to now everything has been exact in AA or QQbar (if self._is_exact),
|
|
804
|
+
# but now we must go transcendental. Only now is the desired precision used!
|
|
805
|
+
pi = C.pi()
|
|
806
|
+
a, b, c = (C(x) for x in self._abc)
|
|
807
|
+
if (a+b).abs() < (a-b).abs():
|
|
808
|
+
b = -b
|
|
809
|
+
if (a+c).abs() < (a-c).abs():
|
|
810
|
+
c = -c
|
|
811
|
+
w1 = pi/a.agm(b)
|
|
812
|
+
w2 = pi*C.gen()/a.agm(c)
|
|
813
|
+
if (w1/w2).imag() < 0:
|
|
814
|
+
w2 = -w2
|
|
815
|
+
if normalise:
|
|
816
|
+
w1w2, mat = normalise_periods(w1,w2)
|
|
817
|
+
return w1w2
|
|
818
|
+
return (w1,w2)
|
|
819
|
+
|
|
820
|
+
def is_real(self):
|
|
821
|
+
r"""
|
|
822
|
+
Return ``True`` if this period lattice is real.
|
|
823
|
+
|
|
824
|
+
EXAMPLES::
|
|
825
|
+
|
|
826
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
827
|
+
sage: f = EllipticCurve('11a')
|
|
828
|
+
sage: f.period_lattice().is_real()
|
|
829
|
+
True
|
|
830
|
+
|
|
831
|
+
::
|
|
832
|
+
|
|
833
|
+
sage: # needs sage.rings.number_field
|
|
834
|
+
sage: K.<i> = QuadraticField(-1)
|
|
835
|
+
sage: E = EllipticCurve(K, [0,0,0,i,2*i])
|
|
836
|
+
sage: emb = K.embeddings(ComplexField())[0]
|
|
837
|
+
sage: L = E.period_lattice(emb)
|
|
838
|
+
sage: L.is_real()
|
|
839
|
+
False
|
|
840
|
+
|
|
841
|
+
::
|
|
842
|
+
|
|
843
|
+
sage: x = polygen(ZZ, 'x')
|
|
844
|
+
sage: K.<a> = NumberField(x^3 - 2) # needs sage.rings.number_field
|
|
845
|
+
sage: E = EllipticCurve([0,1,0,a,a]) # needs sage.rings.number_field
|
|
846
|
+
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)] # needs sage.rings.number_field
|
|
847
|
+
[False, False, True]
|
|
848
|
+
|
|
849
|
+
ALGORITHM:
|
|
850
|
+
|
|
851
|
+
The lattice is real if it is associated to a real embedding;
|
|
852
|
+
such lattices are stable under conjugation.
|
|
853
|
+
"""
|
|
854
|
+
return self.real_flag != 0
|
|
855
|
+
|
|
856
|
+
def is_rectangular(self) -> bool:
|
|
857
|
+
r"""
|
|
858
|
+
Return ``True`` if this period lattice is rectangular.
|
|
859
|
+
|
|
860
|
+
.. NOTE::
|
|
861
|
+
|
|
862
|
+
Only defined for real lattices; a :exc:`RuntimeError`
|
|
863
|
+
is raised for non-real lattices.
|
|
864
|
+
|
|
865
|
+
EXAMPLES::
|
|
866
|
+
|
|
867
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
868
|
+
sage: f = EllipticCurve('11a')
|
|
869
|
+
sage: f.period_lattice().basis()
|
|
870
|
+
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
|
|
871
|
+
sage: f.period_lattice().is_rectangular()
|
|
872
|
+
False
|
|
873
|
+
|
|
874
|
+
::
|
|
875
|
+
|
|
876
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
877
|
+
sage: f = EllipticCurve('37b')
|
|
878
|
+
sage: f.period_lattice().basis()
|
|
879
|
+
(1.08852159290423, 1.76761067023379*I)
|
|
880
|
+
sage: f.period_lattice().is_rectangular()
|
|
881
|
+
True
|
|
882
|
+
|
|
883
|
+
ALGORITHM:
|
|
884
|
+
|
|
885
|
+
The period lattice is rectangular precisely if the
|
|
886
|
+
discriminant of the Weierstrass equation is positive, or
|
|
887
|
+
equivalently if the number of real components is 2.
|
|
888
|
+
"""
|
|
889
|
+
if self.is_real():
|
|
890
|
+
return self.real_flag == +1
|
|
891
|
+
raise RuntimeError("Not defined for non-real lattices.")
|
|
892
|
+
|
|
893
|
+
def real_period(self, prec=None, algorithm='sage'):
|
|
894
|
+
"""
|
|
895
|
+
Return the real period of this period lattice.
|
|
896
|
+
|
|
897
|
+
INPUT:
|
|
898
|
+
|
|
899
|
+
- ``prec`` -- integer or ``None`` (default); real precision in
|
|
900
|
+
bits (default real precision if ``None``)
|
|
901
|
+
|
|
902
|
+
- ``algorithm`` -- string (default: ``'sage'``); choice of
|
|
903
|
+
implementation (for real embeddings only) between ``'sage'``
|
|
904
|
+
(native Sage implementation) or ``'pari'`` (use the PARI
|
|
905
|
+
library: only available for real embeddings)
|
|
906
|
+
|
|
907
|
+
.. NOTE::
|
|
908
|
+
|
|
909
|
+
Only defined for real lattices; a :exc:`RuntimeError`
|
|
910
|
+
is raised for non-real lattices.
|
|
911
|
+
|
|
912
|
+
EXAMPLES::
|
|
913
|
+
|
|
914
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
915
|
+
sage: E = EllipticCurve('37a')
|
|
916
|
+
sage: E.period_lattice().real_period()
|
|
917
|
+
2.99345864623196
|
|
918
|
+
|
|
919
|
+
::
|
|
920
|
+
|
|
921
|
+
sage: # needs sage.rings.number_field
|
|
922
|
+
sage: x = polygen(ZZ, 'x')
|
|
923
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
924
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
925
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
926
|
+
sage: L = E.period_lattice(emb)
|
|
927
|
+
sage: L.real_period(64)
|
|
928
|
+
3.81452977217854509
|
|
929
|
+
"""
|
|
930
|
+
if self.is_real():
|
|
931
|
+
return self.basis(prec,algorithm)[0]
|
|
932
|
+
raise RuntimeError("Not defined for non-real lattices.")
|
|
933
|
+
|
|
934
|
+
def omega(self, prec=None, bsd_normalise=False):
|
|
935
|
+
r"""
|
|
936
|
+
Return the real or complex volume of this period lattice.
|
|
937
|
+
|
|
938
|
+
INPUT:
|
|
939
|
+
|
|
940
|
+
- ``prec`` -- integer or ``None`` (default); real precision in
|
|
941
|
+
bits (default real precision if ``None``)
|
|
942
|
+
|
|
943
|
+
- ``bsd_normalise`` -- boolean (default: ``False``); flag to use
|
|
944
|
+
BSD normalisation in the complex case
|
|
945
|
+
|
|
946
|
+
OUTPUT:
|
|
947
|
+
|
|
948
|
+
(real) For real lattices, this is the real period times the
|
|
949
|
+
number of connected components. For non-real lattices it is
|
|
950
|
+
the complex area, or double the area if ``bsd_normalise`` is
|
|
951
|
+
``True``.
|
|
952
|
+
|
|
953
|
+
.. NOTE::
|
|
954
|
+
|
|
955
|
+
If the curve is given by a *global minimal* Weierstrass
|
|
956
|
+
equation, then with ``bsd_normalise`` = ``True``, this
|
|
957
|
+
gives the correct period in the BSD conjecture: the product
|
|
958
|
+
of this quantity over all embeddings appears in the BSD
|
|
959
|
+
formula. In general a correction factor is required to make
|
|
960
|
+
allowance for the model.
|
|
961
|
+
|
|
962
|
+
EXAMPLES::
|
|
963
|
+
|
|
964
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
965
|
+
sage: E = EllipticCurve('37a')
|
|
966
|
+
sage: E.period_lattice().omega()
|
|
967
|
+
5.98691729246392
|
|
968
|
+
|
|
969
|
+
This is not a minimal model::
|
|
970
|
+
|
|
971
|
+
sage: E = EllipticCurve([0, -432*6^2])
|
|
972
|
+
sage: E.period_lattice().omega()
|
|
973
|
+
0.486109385710056
|
|
974
|
+
|
|
975
|
+
If you were to plug the above omega into the BSD conjecture,
|
|
976
|
+
you would get an incorrect value, out by a factor of 2. The
|
|
977
|
+
following works though::
|
|
978
|
+
|
|
979
|
+
sage: F = E.minimal_model()
|
|
980
|
+
sage: F.period_lattice().omega()
|
|
981
|
+
0.972218771420113
|
|
982
|
+
|
|
983
|
+
::
|
|
984
|
+
|
|
985
|
+
sage: # needs sage.rings.number_field
|
|
986
|
+
sage: x = polygen(ZZ, 'x')
|
|
987
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
988
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
989
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
990
|
+
sage: L = E.period_lattice(emb)
|
|
991
|
+
sage: L.omega(64)
|
|
992
|
+
3.81452977217854509
|
|
993
|
+
|
|
994
|
+
A complex example (taken from J.E.Cremona and E.Whitley,
|
|
995
|
+
*Periods of cusp forms and elliptic curves over imaginary
|
|
996
|
+
quadratic fields*, Mathematics of Computation 62 No. 205
|
|
997
|
+
(1994), 407-429). See :issue:`29645` and :issue:`29782`::
|
|
998
|
+
|
|
999
|
+
sage: # needs sage.rings.number_field
|
|
1000
|
+
sage: K.<i> = QuadraticField(-1)
|
|
1001
|
+
sage: E = EllipticCurve([0,1-i,i,-i,0])
|
|
1002
|
+
sage: L = E.period_lattice(K.embeddings(CC)[0])
|
|
1003
|
+
sage: L.omega()
|
|
1004
|
+
8.80694160502647
|
|
1005
|
+
sage: L.omega(prec=200)
|
|
1006
|
+
8.8069416050264741493250743632295462227858630765392114070032
|
|
1007
|
+
sage: L.omega(bsd_normalise=True)
|
|
1008
|
+
17.6138832100529
|
|
1009
|
+
"""
|
|
1010
|
+
if self.is_real():
|
|
1011
|
+
n_components = 2 if self.real_flag == 1 else 1
|
|
1012
|
+
return self.real_period(prec) * n_components
|
|
1013
|
+
else:
|
|
1014
|
+
bsd_factor = 2 if bsd_normalise else 1
|
|
1015
|
+
return self.complex_area(prec) * bsd_factor
|
|
1016
|
+
|
|
1017
|
+
@cached_method
|
|
1018
|
+
def basis_matrix(self, prec=None, normalised=False):
|
|
1019
|
+
r"""
|
|
1020
|
+
Return the basis matrix of this period lattice.
|
|
1021
|
+
|
|
1022
|
+
INPUT:
|
|
1023
|
+
|
|
1024
|
+
- ``prec`` -- integer or ``None`` (default); real precision in
|
|
1025
|
+
bits (default real precision if ``None``)
|
|
1026
|
+
|
|
1027
|
+
- ``normalised`` -- boolean (default: ``False``); if ``True`` and the
|
|
1028
|
+
embedding is real, use the normalised basis (see
|
|
1029
|
+
:meth:`normalised_basis`) instead of the default
|
|
1030
|
+
|
|
1031
|
+
OUTPUT:
|
|
1032
|
+
|
|
1033
|
+
A `2\times 2` real matrix whose rows are the lattice basis vectors,
|
|
1034
|
+
after identifying `\CC` with `\RR^2`.
|
|
1035
|
+
|
|
1036
|
+
EXAMPLES::
|
|
1037
|
+
|
|
1038
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1039
|
+
sage: E = EllipticCurve('37a')
|
|
1040
|
+
sage: E.period_lattice().basis_matrix()
|
|
1041
|
+
[ 2.99345864623196 0.000000000000000]
|
|
1042
|
+
[0.000000000000000 2.45138938198679]
|
|
1043
|
+
|
|
1044
|
+
::
|
|
1045
|
+
|
|
1046
|
+
sage: # needs sage.rings.number_field
|
|
1047
|
+
sage: x = polygen(ZZ, 'x')
|
|
1048
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1049
|
+
sage: emb = K.embeddings(RealField())[0]
|
|
1050
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
1051
|
+
sage: L = E.period_lattice(emb)
|
|
1052
|
+
sage: L.basis_matrix(64)
|
|
1053
|
+
[ 3.81452977217854509 0.000000000000000000]
|
|
1054
|
+
[ 1.90726488608927255 1.34047785962440202]
|
|
1055
|
+
|
|
1056
|
+
See :issue:`4388`::
|
|
1057
|
+
|
|
1058
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1059
|
+
sage: L = EllipticCurve('11a1').period_lattice()
|
|
1060
|
+
sage: L.basis_matrix()
|
|
1061
|
+
[ 1.26920930427955 0.000000000000000]
|
|
1062
|
+
[0.634604652139777 1.45881661693850]
|
|
1063
|
+
sage: L.basis_matrix(normalised=True)
|
|
1064
|
+
[0.634604652139777 -1.45881661693850]
|
|
1065
|
+
[-1.26920930427955 0.000000000000000]
|
|
1066
|
+
|
|
1067
|
+
::
|
|
1068
|
+
|
|
1069
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1070
|
+
sage: L = EllipticCurve('389a1').period_lattice()
|
|
1071
|
+
sage: L.basis_matrix()
|
|
1072
|
+
[ 2.49021256085505 0.000000000000000]
|
|
1073
|
+
[0.000000000000000 1.97173770155165]
|
|
1074
|
+
sage: L.basis_matrix(normalised=True)
|
|
1075
|
+
[ 2.49021256085505 0.000000000000000]
|
|
1076
|
+
[0.000000000000000 -1.97173770155165]
|
|
1077
|
+
"""
|
|
1078
|
+
from sage.matrix.constructor import Matrix
|
|
1079
|
+
|
|
1080
|
+
if normalised:
|
|
1081
|
+
return Matrix([list(w) for w in self.normalised_basis(prec)])
|
|
1082
|
+
|
|
1083
|
+
w1,w2 = self.basis(prec)
|
|
1084
|
+
if self.is_real():
|
|
1085
|
+
return Matrix([[w1,0],list(w2)])
|
|
1086
|
+
else:
|
|
1087
|
+
return Matrix([list(w) for w in (w1,w2)])
|
|
1088
|
+
|
|
1089
|
+
def complex_area(self, prec=None):
|
|
1090
|
+
"""
|
|
1091
|
+
Return the area of a fundamental domain for the period lattice
|
|
1092
|
+
of the elliptic curve.
|
|
1093
|
+
|
|
1094
|
+
INPUT:
|
|
1095
|
+
|
|
1096
|
+
- ``prec`` -- integer or ``None`` (default); real precision in
|
|
1097
|
+
bits (default real precision if ``None``)
|
|
1098
|
+
|
|
1099
|
+
EXAMPLES::
|
|
1100
|
+
|
|
1101
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1102
|
+
sage: E = EllipticCurve('37a')
|
|
1103
|
+
sage: E.period_lattice().complex_area()
|
|
1104
|
+
7.33813274078958
|
|
1105
|
+
|
|
1106
|
+
::
|
|
1107
|
+
|
|
1108
|
+
sage: # needs sage.rings.number_field
|
|
1109
|
+
sage: x = polygen(ZZ, 'x')
|
|
1110
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1111
|
+
sage: embs = K.embeddings(ComplexField())
|
|
1112
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
1113
|
+
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
|
|
1114
|
+
[False, False, True]
|
|
1115
|
+
sage: [E.period_lattice(emb).complex_area() for emb in embs]
|
|
1116
|
+
[6.02796894766694, 6.02796894766694, 5.11329270448345]
|
|
1117
|
+
"""
|
|
1118
|
+
w1,w2 = self.basis(prec)
|
|
1119
|
+
return (w1*w2.conjugate()).imag().abs()
|
|
1120
|
+
|
|
1121
|
+
def sigma(self, z, prec=None, flag=0):
|
|
1122
|
+
r"""
|
|
1123
|
+
Return the value of the Weierstrass sigma function for this elliptic curve period lattice.
|
|
1124
|
+
|
|
1125
|
+
INPUT:
|
|
1126
|
+
|
|
1127
|
+
- ``z`` -- a complex number
|
|
1128
|
+
|
|
1129
|
+
- ``prec`` -- (default: ``None``) real precision in bits
|
|
1130
|
+
(default real precision if ``None``)
|
|
1131
|
+
|
|
1132
|
+
- ``flag`` --
|
|
1133
|
+
|
|
1134
|
+
0: (default) ???;
|
|
1135
|
+
|
|
1136
|
+
1: computes an arbitrary determination of log(sigma(z))
|
|
1137
|
+
|
|
1138
|
+
2, 3: same using the product expansion instead of theta series. ???
|
|
1139
|
+
|
|
1140
|
+
.. NOTE::
|
|
1141
|
+
|
|
1142
|
+
The reason for the ???'s above, is that the PARI
|
|
1143
|
+
documentation for ellsigma is very vague. Also this is
|
|
1144
|
+
only implemented for curves defined over `\QQ`.
|
|
1145
|
+
|
|
1146
|
+
.. TODO::
|
|
1147
|
+
|
|
1148
|
+
This function does not use any of the PeriodLattice functions
|
|
1149
|
+
and so should be moved to ell_rational_field.
|
|
1150
|
+
|
|
1151
|
+
EXAMPLES::
|
|
1152
|
+
|
|
1153
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1154
|
+
sage: EllipticCurve('389a1').period_lattice().sigma(CC(2,1))
|
|
1155
|
+
2.60912163570108 - 0.200865080824587*I
|
|
1156
|
+
"""
|
|
1157
|
+
if prec is None:
|
|
1158
|
+
prec = self._compute_default_prec()
|
|
1159
|
+
try:
|
|
1160
|
+
return self.E.pari_curve().ellsigma(z, flag, precision=prec)
|
|
1161
|
+
except AttributeError:
|
|
1162
|
+
raise NotImplementedError("sigma function not yet implemented for period lattices of curves not defined over Q")
|
|
1163
|
+
|
|
1164
|
+
def curve(self):
|
|
1165
|
+
r"""
|
|
1166
|
+
Return the elliptic curve associated with this period lattice.
|
|
1167
|
+
|
|
1168
|
+
EXAMPLES::
|
|
1169
|
+
|
|
1170
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1171
|
+
sage: E = EllipticCurve('37a')
|
|
1172
|
+
sage: L = E.period_lattice()
|
|
1173
|
+
sage: L.curve() is E
|
|
1174
|
+
True
|
|
1175
|
+
|
|
1176
|
+
::
|
|
1177
|
+
|
|
1178
|
+
sage: # needs sage.rings.number_field
|
|
1179
|
+
sage: x = polygen(ZZ, 'x')
|
|
1180
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1181
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
1182
|
+
sage: L = E.period_lattice(K.embeddings(RealField())[0])
|
|
1183
|
+
sage: L.curve() is E
|
|
1184
|
+
True
|
|
1185
|
+
|
|
1186
|
+
sage: L = E.period_lattice(K.embeddings(ComplexField())[0]) # needs sage.rings.number_field
|
|
1187
|
+
sage: L.curve() is E # needs sage.rings.number_field
|
|
1188
|
+
True
|
|
1189
|
+
"""
|
|
1190
|
+
return self.E
|
|
1191
|
+
|
|
1192
|
+
@property
|
|
1193
|
+
def is_approximate(self):
|
|
1194
|
+
"""
|
|
1195
|
+
``self.is_approximate`` is deprecated, use ``not self.curve().is_exact()`` instead.
|
|
1196
|
+
|
|
1197
|
+
TESTS::
|
|
1198
|
+
|
|
1199
|
+
sage: E = EllipticCurve(ComplexField(100), [I, 3*I+4])
|
|
1200
|
+
sage: L = E.period_lattice()
|
|
1201
|
+
sage: L.is_approximate
|
|
1202
|
+
doctest:...: DeprecationWarning: The attribute is_approximate for period lattice is deprecated,
|
|
1203
|
+
use self.curve().is_exact() instead.
|
|
1204
|
+
See https://github.com/sagemath/sage/issues/39212 for details.
|
|
1205
|
+
True
|
|
1206
|
+
sage: L.curve() is E
|
|
1207
|
+
True
|
|
1208
|
+
sage: E.is_exact()
|
|
1209
|
+
False
|
|
1210
|
+
sage: E = EllipticCurve(QQ, [0, 2])
|
|
1211
|
+
sage: L = E.period_lattice()
|
|
1212
|
+
sage: L.is_approximate
|
|
1213
|
+
False
|
|
1214
|
+
sage: L.curve() is E
|
|
1215
|
+
True
|
|
1216
|
+
sage: E.is_exact()
|
|
1217
|
+
True
|
|
1218
|
+
"""
|
|
1219
|
+
from sage.misc.superseded import deprecation
|
|
1220
|
+
deprecation(39212, "The attribute is_approximate for period lattice is "
|
|
1221
|
+
"deprecated, use self.curve().is_exact() instead.")
|
|
1222
|
+
return not self._is_exact
|
|
1223
|
+
|
|
1224
|
+
def ei(self):
|
|
1225
|
+
r"""
|
|
1226
|
+
Return the x-coordinates of the 2-division points of the elliptic curve associated
|
|
1227
|
+
with this period lattice, as elements of ``QQbar``.
|
|
1228
|
+
|
|
1229
|
+
EXAMPLES::
|
|
1230
|
+
|
|
1231
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1232
|
+
sage: E = EllipticCurve('37a')
|
|
1233
|
+
sage: L = E.period_lattice()
|
|
1234
|
+
sage: L.ei()
|
|
1235
|
+
[-1.107159871688768?, 0.2695944364054446?, 0.8375654352833230?]
|
|
1236
|
+
|
|
1237
|
+
In the following example, we should have one purely real 2-division point coordinate,
|
|
1238
|
+
and two conjugate purely imaginary coordinates.
|
|
1239
|
+
|
|
1240
|
+
::
|
|
1241
|
+
|
|
1242
|
+
sage: # needs sage.rings.number_field
|
|
1243
|
+
sage: x = polygen(ZZ, 'x')
|
|
1244
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1245
|
+
sage: E = EllipticCurve([0,1,0,a,a])
|
|
1246
|
+
sage: L = E.period_lattice(K.embeddings(RealField())[0])
|
|
1247
|
+
sage: x1,x2,x3 = L.ei()
|
|
1248
|
+
sage: abs(x1.real()) + abs(x2.real()) < 1e-14
|
|
1249
|
+
True
|
|
1250
|
+
sage: x1.imag(), x2.imag(), x3
|
|
1251
|
+
(-1.122462048309373?, 1.122462048309373?, -1.000000000000000?)
|
|
1252
|
+
|
|
1253
|
+
::
|
|
1254
|
+
|
|
1255
|
+
sage: L = E.period_lattice(K.embeddings(ComplexField())[0]) # needs sage.rings.number_field
|
|
1256
|
+
sage: L.ei() # needs sage.rings.number_field
|
|
1257
|
+
[-1.000000000000000? + 0.?e-1...*I,
|
|
1258
|
+
-0.9720806486198328? - 0.561231024154687?*I,
|
|
1259
|
+
0.9720806486198328? + 0.561231024154687?*I]
|
|
1260
|
+
"""
|
|
1261
|
+
return self._ei
|
|
1262
|
+
|
|
1263
|
+
def coordinates(self, z, rounding=None):
|
|
1264
|
+
r"""
|
|
1265
|
+
Return the coordinates of a complex number w.r.t. the lattice basis.
|
|
1266
|
+
|
|
1267
|
+
INPUT:
|
|
1268
|
+
|
|
1269
|
+
- ``z`` -- complex number
|
|
1270
|
+
|
|
1271
|
+
- ``rounding`` -- (default: ``None``) whether and how to round the
|
|
1272
|
+
output (see below)
|
|
1273
|
+
|
|
1274
|
+
OUTPUT:
|
|
1275
|
+
|
|
1276
|
+
When ``rounding`` is ``None`` (the default), returns a tuple
|
|
1277
|
+
of reals `x`, `y` such that `z=xw_1+yw_2` where `w_1`, `w_2`
|
|
1278
|
+
are a basis for the lattice (normalised in the case of complex
|
|
1279
|
+
embeddings).
|
|
1280
|
+
|
|
1281
|
+
When ``rounding`` is ``'round'``, returns a tuple of integers `n_1`,
|
|
1282
|
+
`n_2` which are the closest integers to the `x`, `y` defined
|
|
1283
|
+
above. If `z` is in the lattice these are the coordinates of
|
|
1284
|
+
`z` with respect to the lattice basis.
|
|
1285
|
+
|
|
1286
|
+
When ``rounding`` is ``'floor'``, returns a tuple of integers
|
|
1287
|
+
`n_1`, `n_2` which are the integer parts to the `x`, `y`
|
|
1288
|
+
defined above. These are used in :meth:`.reduce`
|
|
1289
|
+
|
|
1290
|
+
EXAMPLES::
|
|
1291
|
+
|
|
1292
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1293
|
+
sage: E = EllipticCurve('389a')
|
|
1294
|
+
sage: L = E.period_lattice()
|
|
1295
|
+
sage: w1, w2 = L.basis(prec=100)
|
|
1296
|
+
sage: P = E([-1,1])
|
|
1297
|
+
sage: zP = P.elliptic_logarithm(precision=100); zP # abs tol 1e-28
|
|
1298
|
+
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
|
|
1299
|
+
sage: L.coordinates(zP) # abs tol 1e-28
|
|
1300
|
+
(0.19249290511394227352563996419, 0.50000000000000000000000000000)
|
|
1301
|
+
sage: sum([x*w for x, w in zip(L.coordinates(zP), L.basis(prec=100))]) # abs tol 1e-28
|
|
1302
|
+
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
|
|
1303
|
+
sage: L.coordinates(12*w1 + 23*w2) # abs tol 1e-28
|
|
1304
|
+
(12.000000000000000000000000000, 23.000000000000000000000000000)
|
|
1305
|
+
sage: L.coordinates(12*w1 + 23*w2, rounding='floor')
|
|
1306
|
+
(11, 22)
|
|
1307
|
+
sage: L.coordinates(12*w1 + 23*w2, rounding='round')
|
|
1308
|
+
(12, 23)
|
|
1309
|
+
"""
|
|
1310
|
+
C = z.parent()
|
|
1311
|
+
if isinstance(C, sage.rings.abc.RealField):
|
|
1312
|
+
C = ComplexField(C.precision())
|
|
1313
|
+
z = C(z)
|
|
1314
|
+
else:
|
|
1315
|
+
if isinstance(C, sage.rings.abc.ComplexField):
|
|
1316
|
+
pass
|
|
1317
|
+
else:
|
|
1318
|
+
try:
|
|
1319
|
+
C = ComplexField()
|
|
1320
|
+
z = C(z)
|
|
1321
|
+
except TypeError:
|
|
1322
|
+
raise TypeError("%s is not a complex number" % z)
|
|
1323
|
+
prec = C.precision()
|
|
1324
|
+
from sage.matrix.constructor import Matrix
|
|
1325
|
+
from sage.modules.free_module_element import vector
|
|
1326
|
+
if self.real_flag:
|
|
1327
|
+
w1, w2 = self.basis(prec)
|
|
1328
|
+
M = Matrix([[w1, 0], list(w2)])**(-1)
|
|
1329
|
+
else:
|
|
1330
|
+
w1, w2 = self.normalised_basis(prec)
|
|
1331
|
+
M = Matrix([list(w1), list(w2)])**(-1)
|
|
1332
|
+
u, v = vector(z) * M
|
|
1333
|
+
# Now z = u*w1+v*w2
|
|
1334
|
+
if rounding == 'round':
|
|
1335
|
+
return u.round(), v.round()
|
|
1336
|
+
if rounding == 'floor':
|
|
1337
|
+
return u.floor(), v.floor()
|
|
1338
|
+
return u, v
|
|
1339
|
+
|
|
1340
|
+
def reduce(self, z):
|
|
1341
|
+
r"""
|
|
1342
|
+
Reduce a complex number modulo the lattice.
|
|
1343
|
+
|
|
1344
|
+
INPUT:
|
|
1345
|
+
|
|
1346
|
+
- ``z`` -- complex number
|
|
1347
|
+
|
|
1348
|
+
OUTPUT:
|
|
1349
|
+
|
|
1350
|
+
(complex) the reduction of `z` modulo the lattice, lying in
|
|
1351
|
+
the fundamental period parallelogram with respect to the
|
|
1352
|
+
lattice basis. For curves defined over the reals (i.e. real
|
|
1353
|
+
embeddings) the output will be real when possible.
|
|
1354
|
+
|
|
1355
|
+
EXAMPLES::
|
|
1356
|
+
|
|
1357
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1358
|
+
sage: E = EllipticCurve('389a')
|
|
1359
|
+
sage: L = E.period_lattice()
|
|
1360
|
+
sage: w1, w2 = L.basis(prec=100)
|
|
1361
|
+
sage: P = E([-1,1])
|
|
1362
|
+
sage: zP = P.elliptic_logarithm(precision=100); zP # abs tol 1e-28
|
|
1363
|
+
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
|
|
1364
|
+
sage: z = zP + 10*w1 - 20*w2; z # abs tol 1e-28
|
|
1365
|
+
25.381473858740770069343110929 - 38.448885180257139986236950114*I
|
|
1366
|
+
sage: L.reduce(z) # abs tol 1e-28
|
|
1367
|
+
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
|
|
1368
|
+
sage: L.elliptic_logarithm(2*P) # abs tol 1e-15
|
|
1369
|
+
0.958696500380439
|
|
1370
|
+
sage: L.reduce(L.elliptic_logarithm(2*P)) # abs tol 1e-15
|
|
1371
|
+
0.958696500380439
|
|
1372
|
+
sage: L.reduce(L.elliptic_logarithm(2*P) + 10*w1 - 20*w2) # abs tol 1e-15
|
|
1373
|
+
0.958696500380444
|
|
1374
|
+
"""
|
|
1375
|
+
C = z.parent()
|
|
1376
|
+
if isinstance(C, sage.rings.abc.RealField):
|
|
1377
|
+
C = ComplexField(C.precision())
|
|
1378
|
+
z = C(z)
|
|
1379
|
+
elif isinstance(C, sage.rings.abc.ComplexField):
|
|
1380
|
+
pass
|
|
1381
|
+
else:
|
|
1382
|
+
try:
|
|
1383
|
+
C = ComplexField()
|
|
1384
|
+
z = C(z)
|
|
1385
|
+
except TypeError:
|
|
1386
|
+
raise TypeError("%s is not a complex number" % z)
|
|
1387
|
+
prec = C.precision()
|
|
1388
|
+
if self.real_flag:
|
|
1389
|
+
w1, w2 = self.basis(prec) # w1 real
|
|
1390
|
+
else:
|
|
1391
|
+
w1, w2 = self.normalised_basis(prec)
|
|
1392
|
+
u, v = self.coordinates(z, rounding='floor')
|
|
1393
|
+
z = z-u*w1-v*w2
|
|
1394
|
+
|
|
1395
|
+
# Final adjustments for the real case.
|
|
1396
|
+
|
|
1397
|
+
# NB We assume here that when the embedding is real then the
|
|
1398
|
+
# point is also real!
|
|
1399
|
+
|
|
1400
|
+
if self.real_flag == 0:
|
|
1401
|
+
return z
|
|
1402
|
+
if self.real_flag == -1:
|
|
1403
|
+
k = (z.imag() / w2.imag()).round()
|
|
1404
|
+
z = z-k*w2
|
|
1405
|
+
return C(z.real(), 0)
|
|
1406
|
+
|
|
1407
|
+
if ((2*z.imag()/w2.imag()).round()) % 2:
|
|
1408
|
+
return C(z.real(), w2.imag() / 2)
|
|
1409
|
+
else:
|
|
1410
|
+
return C(z.real(), 0)
|
|
1411
|
+
|
|
1412
|
+
def e_log_RC(self, xP, yP, prec=None, reduce=True):
|
|
1413
|
+
r"""
|
|
1414
|
+
Return the elliptic logarithm of a real or complex point.
|
|
1415
|
+
|
|
1416
|
+
INPUT:
|
|
1417
|
+
|
|
1418
|
+
- ``xP``, ``yP`` (real or complex) -- Coordinates of a point on
|
|
1419
|
+
the embedded elliptic curve associated with this period
|
|
1420
|
+
lattice.
|
|
1421
|
+
|
|
1422
|
+
- ``prec`` -- (default: ``None``) real precision in bits
|
|
1423
|
+
(default real precision if ``None``)
|
|
1424
|
+
|
|
1425
|
+
- ``reduce`` -- boolean (default: ``True``); if ``True``, the result
|
|
1426
|
+
is reduced with respect to the period lattice basis
|
|
1427
|
+
|
|
1428
|
+
OUTPUT:
|
|
1429
|
+
|
|
1430
|
+
(complex number) The elliptic logarithm of the point `(xP,yP)`
|
|
1431
|
+
with respect to this period lattice. If `E` is the elliptic
|
|
1432
|
+
curve and `\sigma:K\to\CC` the embedding, the returned
|
|
1433
|
+
value `z` is such that `z\pmod{L}` maps to `(xP,yP)=\sigma(P)`
|
|
1434
|
+
under the standard Weierstrass isomorphism from `\CC/L` to
|
|
1435
|
+
`\sigma(E)`. If ``reduce`` is ``True``, the output is reduced
|
|
1436
|
+
so that it is in the fundamental period parallelogram with
|
|
1437
|
+
respect to the normalised lattice basis.
|
|
1438
|
+
|
|
1439
|
+
ALGORITHM:
|
|
1440
|
+
|
|
1441
|
+
Uses the complex AGM. See [CT2013]_ for details.
|
|
1442
|
+
|
|
1443
|
+
EXAMPLES::
|
|
1444
|
+
|
|
1445
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1446
|
+
sage: E = EllipticCurve('389a')
|
|
1447
|
+
sage: L = E.period_lattice()
|
|
1448
|
+
sage: P = E([-1,1])
|
|
1449
|
+
sage: xP, yP = [RR(c) for c in P.xy()]
|
|
1450
|
+
|
|
1451
|
+
The elliptic log from the real coordinates::
|
|
1452
|
+
|
|
1453
|
+
sage: L.e_log_RC(xP, yP) # abs tol 1e-15 # needs database_cremona_mini_ellcurve
|
|
1454
|
+
0.479348250190219 + 0.985868850775824*I
|
|
1455
|
+
|
|
1456
|
+
The same elliptic log from the algebraic point::
|
|
1457
|
+
|
|
1458
|
+
sage: L(P) # abs tol 1e-15 # needs database_cremona_mini_ellcurve
|
|
1459
|
+
0.479348250190219 + 0.985868850775824*I
|
|
1460
|
+
|
|
1461
|
+
A number field example::
|
|
1462
|
+
|
|
1463
|
+
sage: # needs sage.rings.number_field
|
|
1464
|
+
sage: x = polygen(ZZ, 'x')
|
|
1465
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1466
|
+
sage: E = EllipticCurve([0,0,0,0,a])
|
|
1467
|
+
sage: v = K.real_places()[0]
|
|
1468
|
+
sage: L = E.period_lattice(v)
|
|
1469
|
+
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
|
|
1470
|
+
sage: L(P) # abs tol 1e-15
|
|
1471
|
+
3.51086196882538
|
|
1472
|
+
sage: xP, yP = [v(c) for c in P.xy()]
|
|
1473
|
+
sage: L.e_log_RC(xP, yP) # abs tol 1e-15
|
|
1474
|
+
3.51086196882538
|
|
1475
|
+
|
|
1476
|
+
Elliptic logs of real points which do not come from algebraic
|
|
1477
|
+
points::
|
|
1478
|
+
|
|
1479
|
+
sage: # needs sage.rings.number_field
|
|
1480
|
+
sage: ER = EllipticCurve([v(ai) for ai in E.a_invariants()])
|
|
1481
|
+
sage: P = ER.lift_x(12.34)
|
|
1482
|
+
sage: xP, yP = P.xy()
|
|
1483
|
+
sage: xP, yP # abs tol 1e-15
|
|
1484
|
+
(12.3400000000000, -43.3628968710567)
|
|
1485
|
+
sage: L.e_log_RC(xP, yP) # abs tol 1e-15
|
|
1486
|
+
0.284656841192041
|
|
1487
|
+
sage: xP, yP = ER.lift_x(0).xy() # abs tol 1e-15
|
|
1488
|
+
sage: L.e_log_RC(xP, yP)
|
|
1489
|
+
1.34921304541057
|
|
1490
|
+
|
|
1491
|
+
Elliptic logs of complex points::
|
|
1492
|
+
|
|
1493
|
+
sage: # needs sage.rings.number_field
|
|
1494
|
+
sage: v = K.complex_embeddings()[0]
|
|
1495
|
+
sage: L = E.period_lattice(v)
|
|
1496
|
+
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
|
|
1497
|
+
sage: L(P) # abs tol 1e-15
|
|
1498
|
+
1.68207104397706 - 1.87873661686704*I
|
|
1499
|
+
sage: xP, yP = [v(c) for c in P.xy()]
|
|
1500
|
+
sage: L.e_log_RC(xP, yP) # abs tol 1e-15
|
|
1501
|
+
1.68207104397706 - 1.87873661686704*I
|
|
1502
|
+
sage: EC = EllipticCurve([v(ai) for ai in E.a_invariants()])
|
|
1503
|
+
sage: xP, yP = EC.lift_x(0).xy()
|
|
1504
|
+
sage: L.e_log_RC(xP, yP) # abs tol 1e-15
|
|
1505
|
+
2.06711431204080 - 1.73451485683471*I
|
|
1506
|
+
"""
|
|
1507
|
+
if prec is None:
|
|
1508
|
+
prec = self._compute_default_prec()
|
|
1509
|
+
# Note: using log2(prec) + 3 guard bits is usually enough.
|
|
1510
|
+
# To avoid computing a logarithm, we use 40 guard bits which
|
|
1511
|
+
# should be largely enough in practice.
|
|
1512
|
+
prec2 = prec + 40
|
|
1513
|
+
|
|
1514
|
+
R = RealField(prec2)
|
|
1515
|
+
C = ComplexField(prec2)
|
|
1516
|
+
e1,e2,e3 = self._ei
|
|
1517
|
+
a1,a2,a3 = (self.embedding(a) for a in self.E.ainvs()[:3])
|
|
1518
|
+
|
|
1519
|
+
wP = 2*yP+a1*xP+a3
|
|
1520
|
+
|
|
1521
|
+
# We treat the case of 2-torsion points separately. (Note
|
|
1522
|
+
# that Cohen's algorithm does not handle these properly.)
|
|
1523
|
+
|
|
1524
|
+
if wP.is_zero(): # 2-torsion treated separately
|
|
1525
|
+
w1,w2 = self._compute_periods_complex(prec,normalise=False)
|
|
1526
|
+
if xP == e1:
|
|
1527
|
+
z = w2/2
|
|
1528
|
+
else:
|
|
1529
|
+
if xP == e3:
|
|
1530
|
+
z = w1/2
|
|
1531
|
+
else:
|
|
1532
|
+
z = (w1+w2)/2
|
|
1533
|
+
if reduce:
|
|
1534
|
+
z = self.reduce(z)
|
|
1535
|
+
return z
|
|
1536
|
+
|
|
1537
|
+
# NB The first block of code works fine for real embeddings as
|
|
1538
|
+
# well as complex embeddings. The special code for real
|
|
1539
|
+
# embeddings uses only real arithmetic in the iteration, and is
|
|
1540
|
+
# based on Cremona and Thongjunthug.
|
|
1541
|
+
|
|
1542
|
+
# An older version, based on Cohen's Algorithm 7.4.8 also uses
|
|
1543
|
+
# only real arithmetic, and gives different normalisations,
|
|
1544
|
+
# but also causes problems (see #10026). It is left in but
|
|
1545
|
+
# commented out below.
|
|
1546
|
+
|
|
1547
|
+
if self.real_flag == 0: # complex case
|
|
1548
|
+
|
|
1549
|
+
a = C((e1-e3).sqrt())
|
|
1550
|
+
b = C((e1-e2).sqrt())
|
|
1551
|
+
if (a+b).abs() < (a-b).abs():
|
|
1552
|
+
b = -b
|
|
1553
|
+
r = C(((xP-e3)/(xP-e2)).sqrt())
|
|
1554
|
+
if r.real() < 0:
|
|
1555
|
+
r = -r
|
|
1556
|
+
t = -C(wP)/(2*r*(xP-e2))
|
|
1557
|
+
# eps controls the end of the loop. Since we aim at a target
|
|
1558
|
+
# precision of prec bits, eps = 2^(-prec) is enough.
|
|
1559
|
+
eps = R(1) >> prec
|
|
1560
|
+
while True:
|
|
1561
|
+
s = b*r+a
|
|
1562
|
+
a, b = (a+b)/2, (a*b).sqrt()
|
|
1563
|
+
if (a+b).abs() < (a-b).abs():
|
|
1564
|
+
b = -b
|
|
1565
|
+
r = (a*(r+1)/s).sqrt()
|
|
1566
|
+
if (r.abs()-1).abs() < eps:
|
|
1567
|
+
break
|
|
1568
|
+
if r.real() < 0:
|
|
1569
|
+
r = -r
|
|
1570
|
+
t *= r
|
|
1571
|
+
z = ((a/t).arctan())/a
|
|
1572
|
+
z = ComplexField(prec)(z)
|
|
1573
|
+
if reduce:
|
|
1574
|
+
z = self.reduce(z)
|
|
1575
|
+
return z
|
|
1576
|
+
|
|
1577
|
+
if self.real_flag == -1: # real, connected case
|
|
1578
|
+
z = C(self._abc[0]) # sqrt(e3-e1)
|
|
1579
|
+
a, y, b = z.real(), z.imag(), z.abs()
|
|
1580
|
+
uv = (xP-e1).sqrt()
|
|
1581
|
+
u, v = uv.real().abs(), uv.imag().abs()
|
|
1582
|
+
r = (u*a/(u*a+v*y)).sqrt()
|
|
1583
|
+
t = -r*R(wP)/(2*(u**2+v**2))
|
|
1584
|
+
on_egg = False
|
|
1585
|
+
else: # real, disconnected case
|
|
1586
|
+
a = R(e3-e1).sqrt()
|
|
1587
|
+
b = R(e3-e2).sqrt()
|
|
1588
|
+
if (a+b).abs() < (a-b).abs():
|
|
1589
|
+
b = -b
|
|
1590
|
+
on_egg = (xP < e3)
|
|
1591
|
+
if on_egg:
|
|
1592
|
+
r = a/R(e3-xP).sqrt()
|
|
1593
|
+
t = r*R(wP)/(2*R(xP-e1))
|
|
1594
|
+
else:
|
|
1595
|
+
r = R((xP-e1)/(xP-e2)).sqrt()
|
|
1596
|
+
t = -R(wP)/(2*r*R(xP-e2))
|
|
1597
|
+
|
|
1598
|
+
# eps controls the end of the loop. Since we aim at a target
|
|
1599
|
+
# precision of prec bits, eps = 2^(-prec) is enough.
|
|
1600
|
+
eps = R(1) >> prec
|
|
1601
|
+
while True:
|
|
1602
|
+
s = b*r+a
|
|
1603
|
+
a, b = (a+b)/2, (a*b).sqrt()
|
|
1604
|
+
r = (a*(r+1)/s).sqrt()
|
|
1605
|
+
if (r-1).abs() < eps:
|
|
1606
|
+
break
|
|
1607
|
+
t *= r
|
|
1608
|
+
z = ((a / t).arctan()) / a
|
|
1609
|
+
if on_egg:
|
|
1610
|
+
w1, w2 = self._compute_periods_real(prec)
|
|
1611
|
+
z += w2 / 2
|
|
1612
|
+
z = ComplexField(prec)(z)
|
|
1613
|
+
if reduce:
|
|
1614
|
+
z = self.reduce(z)
|
|
1615
|
+
return z
|
|
1616
|
+
|
|
1617
|
+
def elliptic_logarithm(self, P, prec=None, reduce=True):
|
|
1618
|
+
r"""
|
|
1619
|
+
Return the elliptic logarithm of a point.
|
|
1620
|
+
|
|
1621
|
+
INPUT:
|
|
1622
|
+
|
|
1623
|
+
- ``P`` -- point on the elliptic curve associated with this period
|
|
1624
|
+
lattice
|
|
1625
|
+
|
|
1626
|
+
- ``prec`` -- (default: ``None``) real precision in bits
|
|
1627
|
+
(default real precision if ``None``)
|
|
1628
|
+
|
|
1629
|
+
- ``reduce`` -- boolean (default: ``True``); if ``True``, the result
|
|
1630
|
+
is reduced with respect to the period lattice basis
|
|
1631
|
+
|
|
1632
|
+
OUTPUT:
|
|
1633
|
+
|
|
1634
|
+
(complex number) The elliptic logarithm of the point `P` with
|
|
1635
|
+
respect to this period lattice. If `E` is the elliptic curve
|
|
1636
|
+
and `\sigma:K\to\CC` the embedding, the returned value `z`
|
|
1637
|
+
is such that `z\pmod{L}` maps to `\sigma(P)` under the
|
|
1638
|
+
standard Weierstrass isomorphism from `\CC/L` to `\sigma(E)`.
|
|
1639
|
+
If ``reduce`` is ``True``, the output is reduced so that it is
|
|
1640
|
+
in the fundamental period parallelogram with respect to the
|
|
1641
|
+
normalised lattice basis.
|
|
1642
|
+
|
|
1643
|
+
ALGORITHM:
|
|
1644
|
+
|
|
1645
|
+
Uses the complex AGM. See [CT2013]_ for details.
|
|
1646
|
+
|
|
1647
|
+
EXAMPLES::
|
|
1648
|
+
|
|
1649
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1650
|
+
sage: E = EllipticCurve('389a')
|
|
1651
|
+
sage: L = E.period_lattice()
|
|
1652
|
+
sage: E.discriminant() > 0
|
|
1653
|
+
True
|
|
1654
|
+
sage: L.real_flag
|
|
1655
|
+
1
|
|
1656
|
+
sage: P = E([-1,1])
|
|
1657
|
+
sage: P.is_on_identity_component ()
|
|
1658
|
+
False
|
|
1659
|
+
sage: L.elliptic_logarithm(P, prec=96)
|
|
1660
|
+
0.4793482501902193161295330101 + 0.9858688507758241022112038491*I
|
|
1661
|
+
sage: Q=E([3,5])
|
|
1662
|
+
sage: Q.is_on_identity_component()
|
|
1663
|
+
True
|
|
1664
|
+
sage: L.elliptic_logarithm(Q, prec=96)
|
|
1665
|
+
1.931128271542559442488585220
|
|
1666
|
+
|
|
1667
|
+
Note that this is actually the inverse of the Weierstrass isomorphism::
|
|
1668
|
+
|
|
1669
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-26 # needs database_cremona_mini_ellcurve
|
|
1670
|
+
(3.000000000000000000000000000 : 5.000000000000000000000000000 : 1.000000000000000000000000000)
|
|
1671
|
+
|
|
1672
|
+
An example with negative discriminant, and a torsion point::
|
|
1673
|
+
|
|
1674
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
1675
|
+
sage: E = EllipticCurve('11a1')
|
|
1676
|
+
sage: L = E.period_lattice()
|
|
1677
|
+
sage: E.discriminant() < 0
|
|
1678
|
+
True
|
|
1679
|
+
sage: L.real_flag
|
|
1680
|
+
-1
|
|
1681
|
+
sage: P = E([16,-61])
|
|
1682
|
+
sage: L.elliptic_logarithm(P)
|
|
1683
|
+
0.253841860855911
|
|
1684
|
+
sage: L.real_period() / L.elliptic_logarithm(P)
|
|
1685
|
+
5.00000000000000
|
|
1686
|
+
|
|
1687
|
+
An example where precision is problematic::
|
|
1688
|
+
|
|
1689
|
+
sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1
|
|
1690
|
+
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
|
|
1691
|
+
sage: L = E.period_lattice()
|
|
1692
|
+
sage: L.ei()
|
|
1693
|
+
[5334.003952567705? - 1.964393150436?e-6*I,
|
|
1694
|
+
5334.003952567705? + 1.964393150436?e-6*I,
|
|
1695
|
+
-10668.25790513541?]
|
|
1696
|
+
sage: L.elliptic_logarithm(P,prec=100)
|
|
1697
|
+
0.27656204014107061464076203097
|
|
1698
|
+
|
|
1699
|
+
Some complex examples, taken from the paper by Cremona and Thongjunthug::
|
|
1700
|
+
|
|
1701
|
+
sage: # needs sage.rings.number_field
|
|
1702
|
+
sage: K.<i> = QuadraticField(-1)
|
|
1703
|
+
sage: a4 = 9*i - 10
|
|
1704
|
+
sage: a6 = 21 - i
|
|
1705
|
+
sage: E = EllipticCurve([0,0,0,a4,a6])
|
|
1706
|
+
sage: e1 = 3 - 2*i; e2 = 1 + i; e3 = -4 + i
|
|
1707
|
+
sage: emb = K.embeddings(CC)[1]
|
|
1708
|
+
sage: L = E.period_lattice(emb)
|
|
1709
|
+
sage: P = E(2 - i, 4 + 2*i)
|
|
1710
|
+
|
|
1711
|
+
By default, the output is reduced with respect to the
|
|
1712
|
+
normalised lattice basis, so that its coordinates with respect
|
|
1713
|
+
to that basis lie in the interval [0,1)::
|
|
1714
|
+
|
|
1715
|
+
sage: z = L.elliptic_logarithm(P, prec=100); z # needs sage.rings.number_field
|
|
1716
|
+
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I
|
|
1717
|
+
sage: L.coordinates(z) # needs sage.rings.number_field
|
|
1718
|
+
(0.46247636364807931766105406092, 0.79497588726808704200760395829)
|
|
1719
|
+
|
|
1720
|
+
Using ``reduce=False`` this step can be omitted. In this case
|
|
1721
|
+
the coordinates are usually in the interval [-0.5,0.5), but
|
|
1722
|
+
this is not guaranteed. This option is mainly for testing
|
|
1723
|
+
purposes::
|
|
1724
|
+
|
|
1725
|
+
sage: z = L.elliptic_logarithm(P, prec=100, reduce=False); z # needs sage.rings.number_field
|
|
1726
|
+
0.57002153834710752778063503023 + 0.46476340520469798857457031393*I
|
|
1727
|
+
sage: L.coordinates(z) # needs sage.rings.number_field
|
|
1728
|
+
(0.46247636364807931766105406092, -0.20502411273191295799239604171)
|
|
1729
|
+
|
|
1730
|
+
The elliptic logs of the 2-torsion points are half-periods::
|
|
1731
|
+
|
|
1732
|
+
sage: L.elliptic_logarithm(E(e1, 0), prec=100) # needs sage.rings.number_field
|
|
1733
|
+
0.64607575874356525952487867052 + 0.22379609053909448304176885364*I
|
|
1734
|
+
sage: L.elliptic_logarithm(E(e2, 0), prec=100) # needs sage.rings.number_field
|
|
1735
|
+
0.71330686725892253793705940192 - 0.40481924028150941053684639367*I
|
|
1736
|
+
sage: L.elliptic_logarithm(E(e3, 0), prec=100) # needs sage.rings.number_field
|
|
1737
|
+
0.067231108515357278412180731396 - 0.62861533082060389357861524731*I
|
|
1738
|
+
|
|
1739
|
+
We check this by doubling and seeing that the resulting
|
|
1740
|
+
coordinates are integers::
|
|
1741
|
+
|
|
1742
|
+
sage: L.coordinates(2*L.elliptic_logarithm(E(e1, 0), prec=100)) # needs sage.rings.number_field
|
|
1743
|
+
(1.0000000000000000000000000000, 0.00000000000000000000000000000)
|
|
1744
|
+
sage: L.coordinates(2*L.elliptic_logarithm(E(e2, 0), prec=100)) # needs sage.rings.number_field
|
|
1745
|
+
(1.0000000000000000000000000000, 1.0000000000000000000000000000)
|
|
1746
|
+
sage: L.coordinates(2*L.elliptic_logarithm(E(e3, 0), prec=100)) # needs sage.rings.number_field
|
|
1747
|
+
(0.00000000000000000000000000000, 1.0000000000000000000000000000)
|
|
1748
|
+
|
|
1749
|
+
::
|
|
1750
|
+
|
|
1751
|
+
sage: # needs sage.rings.number_field
|
|
1752
|
+
sage: a4 = -78*i + 104
|
|
1753
|
+
sage: a6 = -216*i - 312
|
|
1754
|
+
sage: E = EllipticCurve([0,0,0,a4,a6])
|
|
1755
|
+
sage: emb = K.embeddings(CC)[1]
|
|
1756
|
+
sage: L = E.period_lattice(emb)
|
|
1757
|
+
sage: P = E(3 + 2*i, 14 - 7*i)
|
|
1758
|
+
sage: L.elliptic_logarithm(P)
|
|
1759
|
+
0.297147783912228 - 0.546125549639461*I
|
|
1760
|
+
sage: L.coordinates(L.elliptic_logarithm(P))
|
|
1761
|
+
(0.628653378040238, 0.371417754610223)
|
|
1762
|
+
sage: e1 = 1 + 3*i; e2 = -4 - 12*i; e3 = -e1 - e2
|
|
1763
|
+
sage: L.coordinates(L.elliptic_logarithm(E(e1, 0)))
|
|
1764
|
+
(0.500000000000000, 0.500000000000000)
|
|
1765
|
+
sage: L.coordinates(L.elliptic_logarithm(E(e2, 0)))
|
|
1766
|
+
(1.00000000000000, 0.500000000000000)
|
|
1767
|
+
sage: L.coordinates(L.elliptic_logarithm(E(e3, 0)))
|
|
1768
|
+
(0.500000000000000, 0.000000000000000)
|
|
1769
|
+
|
|
1770
|
+
TESTS:
|
|
1771
|
+
|
|
1772
|
+
See :issue:`10026` and :issue:`11767`::
|
|
1773
|
+
|
|
1774
|
+
sage: # needs sage.rings.number_field
|
|
1775
|
+
sage: K.<w> = QuadraticField(2)
|
|
1776
|
+
sage: E = EllipticCurve([0, -1, 1, -3*w - 4, 3*w + 4])
|
|
1777
|
+
sage: T = E.simon_two_descent(lim1=20, lim3=5, limtriv=20)
|
|
1778
|
+
sage: P, Q = T[2]
|
|
1779
|
+
sage: embs = K.embeddings(CC)
|
|
1780
|
+
sage: Lambda = E.period_lattice(embs[0])
|
|
1781
|
+
sage: Lambda.elliptic_logarithm(P, 100)
|
|
1782
|
+
4.7100131126199672766973600998
|
|
1783
|
+
sage: R.<x> = QQ[]
|
|
1784
|
+
sage: K.<a> = NumberField(x^2 + x + 5)
|
|
1785
|
+
sage: E = EllipticCurve(K, [0,0,1,-3,-5])
|
|
1786
|
+
sage: P = E([0,a])
|
|
1787
|
+
sage: Lambda = P.curve().period_lattice(K.embeddings(ComplexField(600))[0])
|
|
1788
|
+
sage: Lambda.elliptic_logarithm(P, prec=600)
|
|
1789
|
+
-0.842248166487739393375018008381693990800588864069506187033873183845246233548058477561706400464057832396643843146464236956684557207157300006542470428493573195030603817094900751609464 - 0.571366031453267388121279381354098224265947866751130917440598461117775339240176310729173301979590106474259885638797913383502735083088736326391919063211421189027226502851390118943491*I
|
|
1790
|
+
sage: K.<a> = QuadraticField(-5)
|
|
1791
|
+
sage: E = EllipticCurve([1,1,a,a,0])
|
|
1792
|
+
sage: P = E(0, 0)
|
|
1793
|
+
sage: L = P.curve().period_lattice(K.embeddings(ComplexField())[0])
|
|
1794
|
+
sage: L.elliptic_logarithm(P, prec=500)
|
|
1795
|
+
1.17058357737548897849026170185581196033579563441850967539191867385734983296504066660506637438866628981886518901958717288150400849746892393771983141354 - 1.13513899565966043682474529757126359416758251309237866586896869548539516543734207347695898664875799307727928332953834601460994992792519799260968053875*I
|
|
1796
|
+
sage: L.elliptic_logarithm(P, prec=1000)
|
|
1797
|
+
1.17058357737548897849026170185581196033579563441850967539191867385734983296504066660506637438866628981886518901958717288150400849746892393771983141354014895386251320571643977497740116710952913769943240797618468987304985625823413440999754037939123032233879499904283600304184828809773650066658885672885 - 1.13513899565966043682474529757126359416758251309237866586896869548539516543734207347695898664875799307727928332953834601460994992792519799260968053875387282656993476491590607092182964878750169490985439873220720963653658829712494879003124071110818175013453207439440032582917366703476398880865439217473*I
|
|
1798
|
+
|
|
1799
|
+
Elliptic curve over ``QQbar``::
|
|
1800
|
+
|
|
1801
|
+
sage: # needs sage.rings.number_field sage.symbolic
|
|
1802
|
+
sage: E = EllipticCurve(QQbar, [sqrt(2), I])
|
|
1803
|
+
sage: L = E.period_lattice()
|
|
1804
|
+
sage: P = E.lift_x(3)
|
|
1805
|
+
sage: L.elliptic_logarithm(P)
|
|
1806
|
+
-1.97657221097437 - 1.05021415535949*I
|
|
1807
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-15
|
|
1808
|
+
(3.00000000000000 + 9.20856947066460e-16*I : -5.59022723358798 - 0.0894418024719718*I : 1.00000000000000)
|
|
1809
|
+
sage: L.elliptic_logarithm(P, prec=100) # abs tol 1e-15
|
|
1810
|
+
-3.4730631218714889933426781799 + 0.44627675553762761312098773197*I
|
|
1811
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-28
|
|
1812
|
+
(3.0000000000000000000000000000 - 1.4773628579202938936348512161e-30*I : -5.5902272335879800026836302686 - 0.089441802471969391005702381090*I : 1.0000000000000000000000000000)
|
|
1813
|
+
|
|
1814
|
+
Real approximate field, negative discriminant. Note that the output precision uses the precision of the base field::
|
|
1815
|
+
|
|
1816
|
+
sage: E = EllipticCurve(RealField(100), [1, 6])
|
|
1817
|
+
sage: L = E.period_lattice()
|
|
1818
|
+
sage: L.real_flag
|
|
1819
|
+
-1
|
|
1820
|
+
sage: P = E(3, 6)
|
|
1821
|
+
sage: L.elliptic_logarithm(P) # abs tol 1e-26
|
|
1822
|
+
2.4593388737550379526023682666
|
|
1823
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-26
|
|
1824
|
+
(3.0000000000000000000000000000 : 5.9999999999999999999999999999 : 1.0000000000000000000000000000)
|
|
1825
|
+
sage: E = EllipticCurve(RDF, [1, 6])
|
|
1826
|
+
sage: L = E.period_lattice()
|
|
1827
|
+
sage: L.real_flag
|
|
1828
|
+
-1
|
|
1829
|
+
sage: P = E(3, 6)
|
|
1830
|
+
sage: L.elliptic_logarithm(P) # abs tol 1e-13
|
|
1831
|
+
2.45933887375504
|
|
1832
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-13
|
|
1833
|
+
(3.00000000000000 : 6.00000000000001 : 1.00000000000000)
|
|
1834
|
+
|
|
1835
|
+
Real approximate field, positive discriminant::
|
|
1836
|
+
|
|
1837
|
+
sage: E = EllipticCurve(RealField(100), [-4, 3])
|
|
1838
|
+
sage: L = E.period_lattice()
|
|
1839
|
+
sage: L.real_flag
|
|
1840
|
+
1
|
|
1841
|
+
sage: P = E.lift_x(4)
|
|
1842
|
+
sage: L.elliptic_logarithm(P) # abs tol 1e-26
|
|
1843
|
+
0.51188849089267627141925354967
|
|
1844
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-26
|
|
1845
|
+
(4.0000000000000000000000000000 : -7.1414284285428499979993998114 : 1.0000000000000000000000000000)
|
|
1846
|
+
|
|
1847
|
+
Complex approximate field::
|
|
1848
|
+
|
|
1849
|
+
sage: E = EllipticCurve(ComplexField(100), [I, 3*I+4])
|
|
1850
|
+
sage: L = E.period_lattice()
|
|
1851
|
+
sage: L.real_flag
|
|
1852
|
+
0
|
|
1853
|
+
sage: P = E.lift_x(4)
|
|
1854
|
+
sage: L.elliptic_logarithm(P) # abs tol 1e-26
|
|
1855
|
+
-1.1447032790074574712147458157 - 0.72429843602171875396186134806*I
|
|
1856
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-26
|
|
1857
|
+
(4.0000000000000000000000000000 + 1.2025589033682610849950210280e-30*I : -8.2570982991257407680322611854 - 0.42387771989714340809597881586*I : 1.0000000000000000000000000000)
|
|
1858
|
+
sage: E = EllipticCurve(CDF, [I, 3*I+4])
|
|
1859
|
+
sage: L = E.period_lattice()
|
|
1860
|
+
sage: L.real_flag
|
|
1861
|
+
0
|
|
1862
|
+
sage: P = E.lift_x(4)
|
|
1863
|
+
sage: L.elliptic_logarithm(P) # abs tol 1e-13
|
|
1864
|
+
-1.14470327900746 - 0.724298436021719*I
|
|
1865
|
+
sage: L.elliptic_exponential(_) # abs tol 1e-13
|
|
1866
|
+
(4.00000000000000 - 0*I : -8.25709829912574 - 0.423877719897148*I : 1.00000000000000)
|
|
1867
|
+
"""
|
|
1868
|
+
if P.curve() is not self.E:
|
|
1869
|
+
raise ValueError("Point is on the wrong curve")
|
|
1870
|
+
if prec is None:
|
|
1871
|
+
prec = self._compute_default_prec()
|
|
1872
|
+
if P.is_zero():
|
|
1873
|
+
return ComplexField(prec)(0)
|
|
1874
|
+
|
|
1875
|
+
# Compute the real or complex coordinates of P:
|
|
1876
|
+
|
|
1877
|
+
xP, yP = (self.embedding(coord) for coord in P.xy())
|
|
1878
|
+
|
|
1879
|
+
# The real work is done over R or C now:
|
|
1880
|
+
|
|
1881
|
+
return self.e_log_RC(xP, yP, prec, reduce=reduce)
|
|
1882
|
+
|
|
1883
|
+
def elliptic_exponential(self, z, to_curve=True):
|
|
1884
|
+
r"""
|
|
1885
|
+
Return the elliptic exponential of a complex number.
|
|
1886
|
+
|
|
1887
|
+
INPUT:
|
|
1888
|
+
|
|
1889
|
+
- ``z`` -- complex number (viewed modulo this period lattice)
|
|
1890
|
+
|
|
1891
|
+
- ``to_curve`` -- boolean (default: ``True``); see below
|
|
1892
|
+
|
|
1893
|
+
OUTPUT:
|
|
1894
|
+
|
|
1895
|
+
- If ``to_curve`` is False, a 2-tuple of real or complex
|
|
1896
|
+
numbers representing the point `(x,y) = (\wp(z),\wp'(z))`
|
|
1897
|
+
where `\wp` denotes the Weierstrass `\wp`-function with
|
|
1898
|
+
respect to this lattice.
|
|
1899
|
+
|
|
1900
|
+
- If ``to_curve`` is True, the point `(X,Y) =
|
|
1901
|
+
(x-b_2/12,y-(a_1(x-b_2/12)-a_3)/2)` as a point in `E(\RR)`
|
|
1902
|
+
or `E(\CC)`, with `(x,y) = (\wp(z),\wp'(z))` as above, where
|
|
1903
|
+
`E` is the elliptic curve over `\RR` or `\CC` whose period
|
|
1904
|
+
lattice this is.
|
|
1905
|
+
|
|
1906
|
+
- If the lattice is real and `z` is also real then the output
|
|
1907
|
+
is a pair of real numbers if ``to_curve`` is ``True``, or a
|
|
1908
|
+
point in `E(\RR)` if ``to_curve`` is ``False``.
|
|
1909
|
+
|
|
1910
|
+
.. NOTE::
|
|
1911
|
+
|
|
1912
|
+
The precision is taken from that of the input ``z``.
|
|
1913
|
+
|
|
1914
|
+
EXAMPLES::
|
|
1915
|
+
|
|
1916
|
+
sage: E = EllipticCurve([1,1,1,-8,6])
|
|
1917
|
+
sage: P = E(1, -2)
|
|
1918
|
+
sage: L = E.period_lattice()
|
|
1919
|
+
sage: z = L(P); z
|
|
1920
|
+
1.17044757240090
|
|
1921
|
+
sage: L.elliptic_exponential(z)
|
|
1922
|
+
(0.999999999999999 : -2.00000000000000 : 1.00000000000000)
|
|
1923
|
+
sage: _.curve()
|
|
1924
|
+
Elliptic Curve defined by y^2 + 1.00000000000000*x*y + 1.00000000000000*y
|
|
1925
|
+
= x^3 + 1.00000000000000*x^2 - 8.00000000000000*x + 6.00000000000000
|
|
1926
|
+
over Real Field with 53 bits of precision
|
|
1927
|
+
sage: L.elliptic_exponential(z,to_curve=False)
|
|
1928
|
+
(1.41666666666667, -2.00000000000000)
|
|
1929
|
+
sage: z = L(P, prec=201); z
|
|
1930
|
+
1.17044757240089592298992188482371493504472561677451007994189
|
|
1931
|
+
sage: L.elliptic_exponential(z)
|
|
1932
|
+
(1.00000000000000000000000000000000000000000000000000000000000
|
|
1933
|
+
: -2.00000000000000000000000000000000000000000000000000000000000
|
|
1934
|
+
: 1.00000000000000000000000000000000000000000000000000000000000)
|
|
1935
|
+
|
|
1936
|
+
Examples over number fields::
|
|
1937
|
+
|
|
1938
|
+
sage: # needs sage.rings.number_field
|
|
1939
|
+
sage: x = polygen(QQ)
|
|
1940
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1941
|
+
sage: embs = K.embeddings(CC)
|
|
1942
|
+
sage: E = EllipticCurve('37a')
|
|
1943
|
+
sage: EK = E.change_ring(K)
|
|
1944
|
+
sage: Li = [EK.period_lattice(e) for e in embs]
|
|
1945
|
+
sage: P = EK(-1, -1)
|
|
1946
|
+
sage: Q = EK(a - 1, 1 - a^2)
|
|
1947
|
+
sage: zi = [L.elliptic_logarithm(P) for L in Li]
|
|
1948
|
+
sage: [c.real() for c in Li[0].elliptic_exponential(zi[0])]
|
|
1949
|
+
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
|
|
1950
|
+
sage: [c.real() for c in Li[0].elliptic_exponential(zi[1])]
|
|
1951
|
+
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
|
|
1952
|
+
sage: [c.real() for c in Li[0].elliptic_exponential(zi[2])]
|
|
1953
|
+
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
|
|
1954
|
+
|
|
1955
|
+
sage: # needs sage.rings.number_field
|
|
1956
|
+
sage: zi = [L.elliptic_logarithm(Q) for L in Li]
|
|
1957
|
+
sage: Li[0].elliptic_exponential(zi[0])
|
|
1958
|
+
(-1.62996052494744 - 1.09112363597172*I
|
|
1959
|
+
: 1.79370052598410 - 1.37472963699860*I
|
|
1960
|
+
: 1.00000000000000)
|
|
1961
|
+
sage: [embs[0](c) for c in Q]
|
|
1962
|
+
[-1.62996052494744 - 1.09112363597172*I,
|
|
1963
|
+
1.79370052598410 - 1.37472963699860*I,
|
|
1964
|
+
1.00000000000000]
|
|
1965
|
+
sage: Li[1].elliptic_exponential(zi[1])
|
|
1966
|
+
(-1.62996052494744 + 1.09112363597172*I
|
|
1967
|
+
: 1.79370052598410 + 1.37472963699860*I
|
|
1968
|
+
: 1.00000000000000)
|
|
1969
|
+
sage: [embs[1](c) for c in Q]
|
|
1970
|
+
[-1.62996052494744 + 1.09112363597172*I,
|
|
1971
|
+
1.79370052598410 + 1.37472963699860*I,
|
|
1972
|
+
1.00000000000000]
|
|
1973
|
+
sage: [c.real() for c in Li[2].elliptic_exponential(zi[2])]
|
|
1974
|
+
[0.259921049894873, -0.587401051968199, 1.00000000000000]
|
|
1975
|
+
sage: [embs[2](c) for c in Q]
|
|
1976
|
+
[0.259921049894873, -0.587401051968200, 1.00000000000000]
|
|
1977
|
+
|
|
1978
|
+
Test to show that :issue:`8820` is fixed::
|
|
1979
|
+
|
|
1980
|
+
sage: # needs database_cremona_mini_ellcurve sage.rings.number_field
|
|
1981
|
+
sage: E = EllipticCurve('37a')
|
|
1982
|
+
sage: K.<a> = QuadraticField(-5)
|
|
1983
|
+
sage: L = E.change_ring(K).period_lattice(K.places()[0])
|
|
1984
|
+
sage: L.elliptic_exponential(CDF(.1,.1)) # abs tol 1e-15
|
|
1985
|
+
(0.0000142854026029 - 49.9960001066650*I
|
|
1986
|
+
: 249.520141250950 + 250.019855549131*I : 1.00000000000000)
|
|
1987
|
+
sage: L.elliptic_exponential(CDF(.1,.1), to_curve=False)
|
|
1988
|
+
(0.0000142854026029447 - 49.9960001066650*I,
|
|
1989
|
+
500.040282501900 + 500.039711098263*I)
|
|
1990
|
+
|
|
1991
|
+
`z=0` is treated as a special case::
|
|
1992
|
+
|
|
1993
|
+
sage: E = EllipticCurve([1,1,1,-8,6])
|
|
1994
|
+
sage: L = E.period_lattice()
|
|
1995
|
+
sage: L.elliptic_exponential(0)
|
|
1996
|
+
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
|
|
1997
|
+
sage: L.elliptic_exponential(0, to_curve=False)
|
|
1998
|
+
(+infinity, +infinity)
|
|
1999
|
+
|
|
2000
|
+
::
|
|
2001
|
+
|
|
2002
|
+
sage: # needs database_cremona_mini_ellcurve sage.rings.number_field
|
|
2003
|
+
sage: E = EllipticCurve('37a')
|
|
2004
|
+
sage: K.<a> = QuadraticField(-5)
|
|
2005
|
+
sage: L = E.change_ring(K).period_lattice(K.places()[0])
|
|
2006
|
+
sage: P = L.elliptic_exponential(0); P
|
|
2007
|
+
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
|
|
2008
|
+
sage: P.parent()
|
|
2009
|
+
Abelian group of points on Elliptic Curve defined by
|
|
2010
|
+
y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x
|
|
2011
|
+
over Complex Field with 53 bits of precision
|
|
2012
|
+
|
|
2013
|
+
Very small `z` are handled properly (see :issue:`8820`)::
|
|
2014
|
+
|
|
2015
|
+
sage: # needs sage.rings.number_field
|
|
2016
|
+
sage: K.<a> = QuadraticField(-1)
|
|
2017
|
+
sage: E = EllipticCurve([0,0,0,a,0])
|
|
2018
|
+
sage: L = E.period_lattice(K.complex_embeddings()[0])
|
|
2019
|
+
sage: L.elliptic_exponential(1e-100)
|
|
2020
|
+
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
|
|
2021
|
+
|
|
2022
|
+
The elliptic exponential of `z` is returned as `(0 : 1 : 0)` if
|
|
2023
|
+
the coordinates of `z` with respect to the period lattice are
|
|
2024
|
+
approximately integral::
|
|
2025
|
+
|
|
2026
|
+
sage: (100/log(2.0,10))/0.8
|
|
2027
|
+
415.241011860920
|
|
2028
|
+
sage: L.elliptic_exponential((RealField(415)(1e-100))).is_zero() # needs sage.rings.number_field
|
|
2029
|
+
True
|
|
2030
|
+
sage: L.elliptic_exponential((RealField(420)(1e-100))).is_zero() # needs sage.rings.number_field
|
|
2031
|
+
False
|
|
2032
|
+
"""
|
|
2033
|
+
C = z.parent()
|
|
2034
|
+
z_is_real = False
|
|
2035
|
+
if isinstance(C, sage.rings.abc.RealField):
|
|
2036
|
+
z_is_real = True
|
|
2037
|
+
C = ComplexField(C.precision())
|
|
2038
|
+
z = C(z)
|
|
2039
|
+
else:
|
|
2040
|
+
if isinstance(C, sage.rings.abc.ComplexField):
|
|
2041
|
+
z_is_real = z.is_real()
|
|
2042
|
+
else:
|
|
2043
|
+
try:
|
|
2044
|
+
C = ComplexField()
|
|
2045
|
+
z = C(z)
|
|
2046
|
+
z_is_real = z.is_real()
|
|
2047
|
+
except TypeError:
|
|
2048
|
+
raise TypeError("%s is not a complex number" % z)
|
|
2049
|
+
prec = C.precision()
|
|
2050
|
+
|
|
2051
|
+
# test for the point at infinity:
|
|
2052
|
+
|
|
2053
|
+
eps = (C(2)**(-0.8*prec)).real() ## to test integrality w.r.t. lattice within 20%
|
|
2054
|
+
if all((t.round()-t).abs() < eps for t in self.coordinates(z)):
|
|
2055
|
+
K = z.parent()
|
|
2056
|
+
if to_curve:
|
|
2057
|
+
return self.curve().change_ring(K)(0)
|
|
2058
|
+
else:
|
|
2059
|
+
return K(Infinity), K(Infinity)
|
|
2060
|
+
|
|
2061
|
+
# general number field code (including QQ):
|
|
2062
|
+
|
|
2063
|
+
# We do not use PARI's ellztopoint function since it is only
|
|
2064
|
+
# defined for curves over the reals (note that PARI only
|
|
2065
|
+
# computes the period lattice basis in that case). But Sage
|
|
2066
|
+
# can compute the period lattice basis over CC, and then
|
|
2067
|
+
# PARI's ellwp function works fine.
|
|
2068
|
+
|
|
2069
|
+
# NB converting the PARI values to Sage values might land up
|
|
2070
|
+
# in real/complex fields of spuriously higher precision than
|
|
2071
|
+
# the input, since PARI's precision is in word-size chunks.
|
|
2072
|
+
# So we force the results back into the real/complex fields of
|
|
2073
|
+
# the same precision as the input.
|
|
2074
|
+
|
|
2075
|
+
x, y = pari(self.basis(prec=prec)).ellwp(z, flag=1)
|
|
2076
|
+
x, y = (C(t) for t in (x, y))
|
|
2077
|
+
|
|
2078
|
+
if self.real_flag and z_is_real:
|
|
2079
|
+
x = x.real()
|
|
2080
|
+
y = y.real()
|
|
2081
|
+
|
|
2082
|
+
if to_curve:
|
|
2083
|
+
K = x.parent()
|
|
2084
|
+
if self._is_exact:
|
|
2085
|
+
v = refine_embedding(self.embedding, Infinity)
|
|
2086
|
+
else:
|
|
2087
|
+
v = self.embedding
|
|
2088
|
+
a1, a2, a3, a4, a6 = (K(v(a)) for a in self.E.ainvs())
|
|
2089
|
+
b2 = K(v(self.E.b2()))
|
|
2090
|
+
x = x - b2 / 12
|
|
2091
|
+
y = (y - (a1 * x + a3)) / 2
|
|
2092
|
+
EK = EllipticCurve(K, [a1, a2, a3, a4, a6])
|
|
2093
|
+
return EK.point((x, y, K.one()), check=False)
|
|
2094
|
+
else:
|
|
2095
|
+
return (x, y)
|
|
2096
|
+
|
|
2097
|
+
|
|
2098
|
+
def reduce_tau(tau):
|
|
2099
|
+
r"""
|
|
2100
|
+
Transform a point in the upper half plane to the fundamental region.
|
|
2101
|
+
|
|
2102
|
+
INPUT:
|
|
2103
|
+
|
|
2104
|
+
- ``tau`` -- complex number with positive imaginary part
|
|
2105
|
+
|
|
2106
|
+
OUTPUT:
|
|
2107
|
+
|
|
2108
|
+
(tuple) `(\tau',[a,b,c,d])` where `a,b,c,d` are integers such that
|
|
2109
|
+
|
|
2110
|
+
- `ad-bc=1`;
|
|
2111
|
+
- `\tau'=(a\tau+b)/(c\tau+d)`;
|
|
2112
|
+
- `|\tau'|\ge1`;
|
|
2113
|
+
- `|\Re(\tau')|\le\frac{1}{2}`.
|
|
2114
|
+
|
|
2115
|
+
EXAMPLES::
|
|
2116
|
+
|
|
2117
|
+
sage: # needs sage.rings.real_mpfr sage.symbolic
|
|
2118
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau
|
|
2119
|
+
sage: reduce_tau(CC(1.23,3.45))
|
|
2120
|
+
(0.230000000000000 + 3.45000000000000*I, [1, -1, 0, 1])
|
|
2121
|
+
sage: reduce_tau(CC(1.23,0.0345))
|
|
2122
|
+
(-0.463960069171512 + 1.35591888067914*I, [-5, 6, 4, -5])
|
|
2123
|
+
sage: reduce_tau(CC(1.23,0.0000345))
|
|
2124
|
+
(0.130000000001761 + 2.89855072463768*I, [13, -16, 100, -123])
|
|
2125
|
+
"""
|
|
2126
|
+
assert tau.imag() > 0
|
|
2127
|
+
a, b = ZZ(1), ZZ(0)
|
|
2128
|
+
c, d = b, a
|
|
2129
|
+
k = tau.real().round()
|
|
2130
|
+
tau -= k
|
|
2131
|
+
a -= k*c
|
|
2132
|
+
b -= k*d
|
|
2133
|
+
while tau.abs() < 0.999:
|
|
2134
|
+
tau = -1/tau
|
|
2135
|
+
a, b, c, d = c, d, -a, -b
|
|
2136
|
+
k = tau.real().round()
|
|
2137
|
+
tau -= k
|
|
2138
|
+
a -= k*c
|
|
2139
|
+
b -= k*d
|
|
2140
|
+
assert a*d-b*c == 1
|
|
2141
|
+
assert tau.abs() >= 0.999 and tau.real().abs() <= 0.5
|
|
2142
|
+
return tau, [a,b,c,d]
|
|
2143
|
+
|
|
2144
|
+
|
|
2145
|
+
def normalise_periods(w1, w2):
|
|
2146
|
+
r"""
|
|
2147
|
+
Normalise the period basis `(w_1,w_2)` so that `w_1/w_2` is in the fundamental region.
|
|
2148
|
+
|
|
2149
|
+
INPUT:
|
|
2150
|
+
|
|
2151
|
+
- ``w1``, ``w2`` -- two complex numbers with non-real ratio
|
|
2152
|
+
|
|
2153
|
+
OUTPUT:
|
|
2154
|
+
|
|
2155
|
+
(tuple) `((\omega_1',\omega_2'),[a,b,c,d])` where `a,b,c,d` are
|
|
2156
|
+
integers such that
|
|
2157
|
+
|
|
2158
|
+
- `ad-bc=\pm1`;
|
|
2159
|
+
- `(\omega_1',\omega_2') = (a\omega_1+b\omega_2,c\omega_1+d\omega_2)`;
|
|
2160
|
+
- `\tau=\omega_1'/\omega_2'` is in the upper half plane;
|
|
2161
|
+
- `|\tau|\ge1` and `|\Re(\tau)|\le\frac{1}{2}`.
|
|
2162
|
+
|
|
2163
|
+
EXAMPLES::
|
|
2164
|
+
|
|
2165
|
+
sage: # needs sage.rings.real_mpfr sage.symbolic
|
|
2166
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau, normalise_periods
|
|
2167
|
+
sage: w1 = CC(1.234, 3.456)
|
|
2168
|
+
sage: w2 = CC(1.234, 3.456000001)
|
|
2169
|
+
sage: w1/w2 # in lower half plane!
|
|
2170
|
+
0.999999999743367 - 9.16334785827644e-11*I
|
|
2171
|
+
sage: w1w2, abcd = normalise_periods(w1, w2)
|
|
2172
|
+
sage: a,b,c,d = abcd
|
|
2173
|
+
sage: w1w2 == (a*w1+b*w2, c*w1+d*w2)
|
|
2174
|
+
True
|
|
2175
|
+
sage: w1w2[0]/w1w2[1]
|
|
2176
|
+
1.23400010389203e9*I
|
|
2177
|
+
sage: a*d-b*c # note change of orientation
|
|
2178
|
+
-1
|
|
2179
|
+
"""
|
|
2180
|
+
tau = w1/w2
|
|
2181
|
+
s = +1
|
|
2182
|
+
if tau.imag() < 0:
|
|
2183
|
+
w2 = -w2
|
|
2184
|
+
tau = -tau
|
|
2185
|
+
s = -1
|
|
2186
|
+
tau, abcd = reduce_tau(tau)
|
|
2187
|
+
a, b, c, d = abcd
|
|
2188
|
+
if s < 0:
|
|
2189
|
+
abcd = (a,-b,c,-d)
|
|
2190
|
+
return (a*w1+b*w2,c*w1+d*w2), abcd
|
|
2191
|
+
|
|
2192
|
+
|
|
2193
|
+
def extended_agm_iteration(a, b, c):
|
|
2194
|
+
r"""
|
|
2195
|
+
Internal function for the extended AGM used in elliptic logarithm computation.
|
|
2196
|
+
|
|
2197
|
+
INPUT:
|
|
2198
|
+
|
|
2199
|
+
- ``a``, ``b``, ``c`` -- three real or complex numbers
|
|
2200
|
+
|
|
2201
|
+
OUTPUT:
|
|
2202
|
+
|
|
2203
|
+
(3-tuple) `(a_0,b_0,c_0)`, the limit of the iteration `(a,b,c) \mapsto ((a+b)/2,\sqrt{ab},(c+\sqrt{c^2+b^2-a^2})/2)`.
|
|
2204
|
+
|
|
2205
|
+
EXAMPLES::
|
|
2206
|
+
|
|
2207
|
+
sage: # needs sage.rings.real_mpfr
|
|
2208
|
+
sage: from sage.schemes.elliptic_curves.period_lattice import extended_agm_iteration
|
|
2209
|
+
sage: extended_agm_iteration(RR(1), RR(2), RR(3))
|
|
2210
|
+
(1.45679103104691, 1.45679103104691, 3.21245294970054)
|
|
2211
|
+
sage: extended_agm_iteration(CC(1,2), CC(2,3), CC(3,4))
|
|
2212
|
+
(1.46242448156430 + 2.47791311676267*I,
|
|
2213
|
+
1.46242448156430 + 2.47791311676267*I,
|
|
2214
|
+
3.22202144343535 + 4.28383734262540*I)
|
|
2215
|
+
|
|
2216
|
+
TESTS::
|
|
2217
|
+
|
|
2218
|
+
sage: extended_agm_iteration(1,2,3) # needs sage.rings.real_mpfr
|
|
2219
|
+
Traceback (most recent call last):
|
|
2220
|
+
...
|
|
2221
|
+
ValueError: values must be real or complex numbers
|
|
2222
|
+
"""
|
|
2223
|
+
if not isinstance(a, (RealNumber,ComplexNumber)):
|
|
2224
|
+
raise ValueError("values must be real or complex numbers")
|
|
2225
|
+
eps = a.parent().one().real() >> (a.parent().precision() - 10)
|
|
2226
|
+
while True:
|
|
2227
|
+
a1 = (a + b) / 2
|
|
2228
|
+
b1 = (a * b).sqrt()
|
|
2229
|
+
delta = (b**2 - a**2) / c**2
|
|
2230
|
+
f = (1 + (1 + delta).sqrt()) / 2
|
|
2231
|
+
if (f.abs() - 1).abs() < eps:
|
|
2232
|
+
return a, b, c
|
|
2233
|
+
c *= f
|
|
2234
|
+
a, b = a1, b1
|