passagemath-schemes 10.6.38__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-schemes might be problematic. Click here for more details.

Files changed (314) hide show
  1. passagemath_schemes/.dylibs/libflint.21.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.6.38.dist-info/METADATA +204 -0
  7. passagemath_schemes-10.6.38.dist-info/METADATA.bak +205 -0
  8. passagemath_schemes-10.6.38.dist-info/RECORD +314 -0
  9. passagemath_schemes-10.6.38.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.6.38.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +745 -0
  29. sage/lfunctions/pari.py +818 -0
  30. sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5135 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
  34. sage/modular/abvar/abvar_newform.py +244 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +186 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +720 -0
  40. sage/modular/abvar/homspace.py +998 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +740 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1402 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +363 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +653 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1469 -0
  57. sage/modular/arithgroup/congroup_generic.py +628 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +267 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1066 -0
  61. sage/modular/arithgroup/tests.py +418 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3753 -0
  64. sage/modular/btquotients/pautomorphicform.py +2570 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1109 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +569 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1065 -0
  77. sage/modular/hecke/algebra.py +746 -0
  78. sage/modular/hecke/all.py +20 -0
  79. sage/modular/hecke/ambient_module.py +1019 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +325 -0
  82. sage/modular/hecke/hecke_operator.py +780 -0
  83. sage/modular/hecke/homspace.py +206 -0
  84. sage/modular/hecke/module.py +1767 -0
  85. sage/modular/hecke/morphism.py +174 -0
  86. sage/modular/hecke/submodule.py +989 -0
  87. sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2017 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1071 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +815 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +124 -0
  101. sage/modular/modform/ambient_g1.py +204 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +505 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4131 -0
  108. sage/modular/modform/find_generators.py +59 -0
  109. sage/modular/modform/half_integral.py +154 -0
  110. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  111. sage/modular/modform/j_invariant.py +47 -0
  112. sage/modular/modform/l_series_gross_zagier.py +133 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
  114. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  115. sage/modular/modform/notes.py +45 -0
  116. sage/modular/modform/numerical.py +514 -0
  117. sage/modular/modform/periods.py +14 -0
  118. sage/modular/modform/ring.py +1257 -0
  119. sage/modular/modform/space.py +1860 -0
  120. sage/modular/modform/submodule.py +118 -0
  121. sage/modular/modform/tests.py +64 -0
  122. sage/modular/modform/theta.py +110 -0
  123. sage/modular/modform/vm_basis.py +381 -0
  124. sage/modular/modform/weight1.py +220 -0
  125. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  126. sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
  127. sage/modular/modform_hecketriangle/all.py +30 -0
  128. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  129. sage/modular/modform_hecketriangle/constructor.py +416 -0
  130. sage/modular/modform_hecketriangle/element.py +351 -0
  131. sage/modular/modform_hecketriangle/functors.py +752 -0
  132. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  133. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
  135. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
  136. sage/modular/modform_hecketriangle/readme.py +1214 -0
  137. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  138. sage/modular/modform_hecketriangle/space.py +1037 -0
  139. sage/modular/modform_hecketriangle/subspace.py +423 -0
  140. sage/modular/modsym/all.py +17 -0
  141. sage/modular/modsym/ambient.py +3846 -0
  142. sage/modular/modsym/boundary.py +1420 -0
  143. sage/modular/modsym/element.py +336 -0
  144. sage/modular/modsym/g1list.py +178 -0
  145. sage/modular/modsym/ghlist.py +182 -0
  146. sage/modular/modsym/hecke_operator.py +73 -0
  147. sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
  148. sage/modular/modsym/manin_symbol.pxd +5 -0
  149. sage/modular/modsym/manin_symbol.pyx +497 -0
  150. sage/modular/modsym/manin_symbol_list.py +1295 -0
  151. sage/modular/modsym/modsym.py +400 -0
  152. sage/modular/modsym/modular_symbols.py +384 -0
  153. sage/modular/modsym/p1list.cpython-314t-darwin.so +0 -0
  154. sage/modular/modsym/p1list.pxd +29 -0
  155. sage/modular/modsym/p1list.pyx +1372 -0
  156. sage/modular/modsym/p1list_nf.py +1241 -0
  157. sage/modular/modsym/relation_matrix.py +591 -0
  158. sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
  159. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  160. sage/modular/modsym/space.py +2468 -0
  161. sage/modular/modsym/subspace.py +455 -0
  162. sage/modular/modsym/tests.py +375 -0
  163. sage/modular/multiple_zeta.py +2632 -0
  164. sage/modular/multiple_zeta_F_algebra.py +786 -0
  165. sage/modular/overconvergent/all.py +6 -0
  166. sage/modular/overconvergent/genus0.py +1878 -0
  167. sage/modular/overconvergent/hecke_series.py +1187 -0
  168. sage/modular/overconvergent/weightspace.py +778 -0
  169. sage/modular/pollack_stevens/all.py +4 -0
  170. sage/modular/pollack_stevens/distributions.py +874 -0
  171. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  172. sage/modular/pollack_stevens/manin_map.py +859 -0
  173. sage/modular/pollack_stevens/modsym.py +1593 -0
  174. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  175. sage/modular/pollack_stevens/sigma0.py +534 -0
  176. sage/modular/pollack_stevens/space.py +1076 -0
  177. sage/modular/quasimodform/all.py +3 -0
  178. sage/modular/quasimodform/element.py +845 -0
  179. sage/modular/quasimodform/ring.py +828 -0
  180. sage/modular/quatalg/all.py +3 -0
  181. sage/modular/quatalg/brandt.py +1642 -0
  182. sage/modular/ssmod/all.py +8 -0
  183. sage/modular/ssmod/ssmod.py +827 -0
  184. sage/rings/all__sagemath_schemes.py +1 -0
  185. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  186. sage/rings/polynomial/binary_form_reduce.py +585 -0
  187. sage/schemes/all.py +41 -0
  188. sage/schemes/berkovich/all.py +6 -0
  189. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  190. sage/schemes/berkovich/berkovich_space.py +748 -0
  191. sage/schemes/curves/affine_curve.py +2928 -0
  192. sage/schemes/curves/all.py +33 -0
  193. sage/schemes/curves/closed_point.py +434 -0
  194. sage/schemes/curves/constructor.py +381 -0
  195. sage/schemes/curves/curve.py +542 -0
  196. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  197. sage/schemes/curves/point.py +463 -0
  198. sage/schemes/curves/projective_curve.py +3026 -0
  199. sage/schemes/curves/zariski_vankampen.py +1932 -0
  200. sage/schemes/cyclic_covers/all.py +2 -0
  201. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  202. sage/schemes/cyclic_covers/constructor.py +137 -0
  203. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  204. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  205. sage/schemes/elliptic_curves/BSD.py +1036 -0
  206. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  207. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  208. sage/schemes/elliptic_curves/all.py +49 -0
  209. sage/schemes/elliptic_curves/cardinality.py +609 -0
  210. sage/schemes/elliptic_curves/cm.py +1102 -0
  211. sage/schemes/elliptic_curves/constructor.py +1552 -0
  212. sage/schemes/elliptic_curves/ec_database.py +175 -0
  213. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
  214. sage/schemes/elliptic_curves/ell_egros.py +459 -0
  215. sage/schemes/elliptic_curves/ell_field.py +2836 -0
  216. sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
  217. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  218. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  219. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  220. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  221. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  222. sage/schemes/elliptic_curves/ell_point.py +4787 -0
  223. sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
  224. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  225. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  226. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  227. sage/schemes/elliptic_curves/formal_group.py +760 -0
  228. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  229. sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
  230. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  231. sage/schemes/elliptic_curves/heegner.py +7335 -0
  232. sage/schemes/elliptic_curves/height.py +2109 -0
  233. sage/schemes/elliptic_curves/hom.py +1406 -0
  234. sage/schemes/elliptic_curves/hom_composite.py +934 -0
  235. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  236. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  237. sage/schemes/elliptic_curves/hom_sum.py +682 -0
  238. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  239. sage/schemes/elliptic_curves/homset.py +271 -0
  240. sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
  241. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  242. sage/schemes/elliptic_curves/jacobian.py +237 -0
  243. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  244. sage/schemes/elliptic_curves/kraus.py +1014 -0
  245. sage/schemes/elliptic_curves/lseries_ell.py +943 -0
  246. sage/schemes/elliptic_curves/mod5family.py +105 -0
  247. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  248. sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
  249. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  250. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  251. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  252. sage/schemes/elliptic_curves/padics.py +1816 -0
  253. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  254. sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
  255. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  256. sage/schemes/elliptic_curves/saturation.py +715 -0
  257. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  258. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  259. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  260. sage/schemes/hyperelliptic_curves/all.py +6 -0
  261. sage/schemes/hyperelliptic_curves/constructor.py +291 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
  265. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  266. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  267. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
  271. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  272. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
  273. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  274. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  275. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
  276. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  277. sage/schemes/jacobians/all.py +2 -0
  278. sage/schemes/overview.py +161 -0
  279. sage/schemes/plane_conics/all.py +22 -0
  280. sage/schemes/plane_conics/con_field.py +1296 -0
  281. sage/schemes/plane_conics/con_finite_field.py +158 -0
  282. sage/schemes/plane_conics/con_number_field.py +456 -0
  283. sage/schemes/plane_conics/con_rational_field.py +406 -0
  284. sage/schemes/plane_conics/con_rational_function_field.py +580 -0
  285. sage/schemes/plane_conics/constructor.py +249 -0
  286. sage/schemes/plane_quartics/all.py +2 -0
  287. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  288. sage/schemes/plane_quartics/quartic_generic.py +73 -0
  289. sage/schemes/riemann_surfaces/all.py +1 -0
  290. sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
  291. sage_wheels/share/cremona/cremona_mini.db +0 -0
  292. sage_wheels/share/ellcurves/rank0 +30427 -0
  293. sage_wheels/share/ellcurves/rank1 +31871 -0
  294. sage_wheels/share/ellcurves/rank10 +6 -0
  295. sage_wheels/share/ellcurves/rank11 +6 -0
  296. sage_wheels/share/ellcurves/rank12 +1 -0
  297. sage_wheels/share/ellcurves/rank14 +1 -0
  298. sage_wheels/share/ellcurves/rank15 +1 -0
  299. sage_wheels/share/ellcurves/rank17 +1 -0
  300. sage_wheels/share/ellcurves/rank19 +1 -0
  301. sage_wheels/share/ellcurves/rank2 +2388 -0
  302. sage_wheels/share/ellcurves/rank20 +1 -0
  303. sage_wheels/share/ellcurves/rank21 +1 -0
  304. sage_wheels/share/ellcurves/rank22 +1 -0
  305. sage_wheels/share/ellcurves/rank23 +1 -0
  306. sage_wheels/share/ellcurves/rank24 +1 -0
  307. sage_wheels/share/ellcurves/rank28 +1 -0
  308. sage_wheels/share/ellcurves/rank3 +836 -0
  309. sage_wheels/share/ellcurves/rank4 +10 -0
  310. sage_wheels/share/ellcurves/rank5 +5 -0
  311. sage_wheels/share/ellcurves/rank6 +5 -0
  312. sage_wheels/share/ellcurves/rank7 +5 -0
  313. sage_wheels/share/ellcurves/rank8 +6 -0
  314. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,2632 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.combinat
3
+ r"""
4
+ Algebra of motivic multiple zeta values
5
+
6
+ This file contains an implementation of the algebra of motivic
7
+ multiple zeta values.
8
+
9
+ The elements of this algebra are not the usual multiple zeta values as
10
+ real numbers defined by concrete iterated integrals, but abstract
11
+ symbols that satisfy all the linear relations between formal iterated
12
+ integrals that come from algebraic geometry (motivic
13
+ relations). Although this set of relations is not explicit, one can
14
+ test the equality as explained in the article [Brown2012]_. One can
15
+ map these motivic multiple zeta values to the associated real
16
+ numbers. Conjecturally, this period map should be injective.
17
+
18
+ The implementation follows closely all the conventions from [Brown2012]_.
19
+
20
+ As a convenient abbreviation, the elements will be called multizetas.
21
+
22
+ EXAMPLES:
23
+
24
+ One can input multizetas using compositions as arguments::
25
+
26
+ sage: Multizeta(3)
27
+ ζ(3)
28
+ sage: Multizeta(2,3,2)
29
+ ζ(2,3,2)
30
+
31
+ as well as linear combinations of them::
32
+
33
+ sage: Multizeta(5)+6*Multizeta(2,3)
34
+ 6*ζ(2,3) + ζ(5)
35
+
36
+ This creates elements of the class :class:`Multizetas`.
37
+
38
+ One can multiply such elements::
39
+
40
+ sage: Multizeta(2)*Multizeta(3)
41
+ 6*ζ(1,4) + 3*ζ(2,3) + ζ(3,2)
42
+
43
+ and their linear combinations::
44
+
45
+ sage: (Multizeta(2)+Multizeta(1,2))*Multizeta(3)
46
+ 9*ζ(1,1,4) + 5*ζ(1,2,3) + 2*ζ(1,3,2) + 6*ζ(1,4) + 2*ζ(2,1,3) + ζ(2,2,2)
47
+ + 3*ζ(2,3) + ζ(3,1,2) + ζ(3,2)
48
+
49
+ The algebra is graded by the weight, which is the sum of the arguments. One
50
+ can extract homogeneous components::
51
+
52
+ sage: z = Multizeta(6)+6*Multizeta(2,3)
53
+ sage: z.homogeneous_component(5)
54
+ 6*ζ(2,3)
55
+
56
+ One can also use the ring of multiple zeta values as a base ring for other
57
+ constructions::
58
+
59
+ sage: Z = Multizeta
60
+ sage: M = matrix(2,2,[Z(2),Z(3),Z(4),Z(5)])
61
+ sage: M.det()
62
+ -10*ζ(1,6) - 5*ζ(2,5) - ζ(3,4) + ζ(4,3) + ζ(5,2)
63
+
64
+ .. rubric:: Auxiliary class for alternative notation
65
+
66
+ One can also use sequences of 0 and 1 as arguments::
67
+
68
+ sage: Multizeta(1,1,0)+3*Multizeta(1,0,0)
69
+ I(110) + 3*I(100)
70
+
71
+ This creates an element of the auxiliary class :class:`Multizetas_iterated`.
72
+ This class is used to represent multiple zeta values as iterated integrals.
73
+
74
+ One can also multiply such elements::
75
+
76
+ sage: Multizeta(1,0)*Multizeta(1,0)
77
+ 4*I(1100) + 2*I(1010)
78
+
79
+ Back-and-forth conversion between the two classes can be done using
80
+ the methods "composition" and "iterated"::
81
+
82
+ sage: (Multizeta(2)*Multizeta(3)).iterated()
83
+ 6*I(11000) + 3*I(10100) + I(10010)
84
+
85
+ sage: (Multizeta(1,0)*Multizeta(1,0)).composition()
86
+ 4*ζ(1,3) + 2*ζ(2,2)
87
+
88
+ Beware that the conversion between these two classes, besides
89
+ exchanging the indexing by words in 0 and 1 and the indexing by
90
+ compositions, also involves the sign `(-1)^w` where `w` is the length
91
+ of the composition and the number of `1` in the associated word in 0
92
+ and 1. For example, one has the equality
93
+
94
+ .. MATH:: \zeta(2,3,4) = (-1)^3 I(1,0,1,0,0,1,0,0,0).
95
+
96
+ .. rubric:: Approximate period map
97
+
98
+ The period map, or rather an approximation, is also available under
99
+ the generic numerical approximation method::
100
+
101
+ sage: z = Multizeta(5)+6*Multizeta(2,3)
102
+ sage: z.n()
103
+ 2.40979014076349
104
+ sage: z.n(prec=100)
105
+ 2.4097901407634924849438423801
106
+
107
+ Behind the scene, all the numerical work is done by the PARI implementation
108
+ of numerical multiple zeta values.
109
+
110
+ .. rubric:: Searching for linear relations
111
+
112
+ All this can be used to find linear dependencies between any set of
113
+ multiple zeta values. Let us illustrate this by an example.
114
+
115
+ Let us first build our sample set::
116
+
117
+ sage: Z = Multizeta
118
+ sage: L = [Z(*c) for c in [(1, 1, 4), (1, 2, 3), (1, 5), (6,)]]
119
+
120
+ Then one can compute the space of relations::
121
+
122
+ sage: M = matrix([Zc.phi_as_vector() for Zc in L])
123
+ sage: K = M.kernel(); K
124
+ Vector space of degree 4 and dimension 2 over Rational Field
125
+ Basis matrix:
126
+ [ 1 0 -2 1/16]
127
+ [ 0 1 6 -13/48]
128
+
129
+ and check that the first relation holds::
130
+
131
+ sage: relation = L[0]-2*L[2]+1/16*L[3]; relation
132
+ ζ(1,1,4) - 2*ζ(1,5) + 1/16*ζ(6)
133
+ sage: relation.phi()
134
+ 0
135
+ sage: relation.is_zero()
136
+ True
137
+
138
+ .. WARNING::
139
+
140
+ Because this code uses an hardcoded multiplicative basis that is
141
+ available up to weight 17 included, some parts will not work
142
+ in larger weights, in particular the test of equality.
143
+
144
+ REFERENCES:
145
+
146
+ .. [Brown2012] Francis C. S. Brown, *On the decomposition of motivic
147
+ multiple zeta values*, Advanced Studies in Pure Mathematics 63,
148
+ 2012. Galois-Teichmuller Theory and Arithmetic Geometry.
149
+
150
+ .. [Brown2019] Francis C. S. Brown, *From the Deligne-Ihara conjecture to
151
+ multiple modular values*, :arxiv:`1904.00179`
152
+
153
+ .. [Deli2012] Pierre Deligne, *Multizêtas, d’après Francis Brown*,
154
+ Séminaire Bourbaki, janvier 2012. http://www.bourbaki.ens.fr/TEXTES/1048.pdf
155
+
156
+ .. [Stie2020] \S. Stieberger, *Periods and Superstring Amplitudes*,
157
+ Periods in Quantum Field Theory and Arithmetic, Springer Proceedings
158
+ in Mathematics and Statistics 314, 2020
159
+ """
160
+ # ****************************************************************************
161
+ # Copyright (C) 2020 Frédéric Chapoton
162
+ #
163
+ # Distributed under the terms of the GNU General Public License (GPL)
164
+ # as published by the Free Software Foundation; either version 2 of
165
+ # the License, or (at your option) any later version.
166
+ #
167
+ # https://www.gnu.org/licenses/
168
+ # ****************************************************************************
169
+ from __future__ import annotations
170
+ import numbers
171
+ from collections.abc import Iterator
172
+ from itertools import product
173
+
174
+ from sage.misc.fast_methods import Singleton
175
+ from sage.structure.richcmp import op_EQ, op_NE
176
+ from sage.structure.element import parent
177
+ from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis
178
+ from sage.categories.rings import Rings
179
+ from sage.categories.domains import Domains
180
+ from sage.combinat.composition import Compositions
181
+ from sage.combinat.free_module import CombinatorialFreeModule
182
+ from sage.combinat.integer_vector import IntegerVectors
183
+ from sage.combinat.partition import Partitions
184
+ from sage.combinat.words.finite_word import FiniteWord_class
185
+ from sage.combinat.words.word import Word
186
+ from sage.combinat.words.words import Words
187
+ from sage.combinat.words.shuffle_product import ShuffleProduct_w1w2 as shuffle
188
+ from sage.matrix.constructor import matrix
189
+ from sage.misc.cachefunc import cached_function, cached_method
190
+ from sage.misc.lazy_attribute import lazy_attribute
191
+ from sage.misc.lazy_import import lazy_import
192
+ from sage.misc.misc_c import prod
193
+ from sage.modular.multiple_zeta_F_algebra import F_algebra
194
+ from sage.modules.free_module import VectorSpace
195
+ from sage.rings.integer_ring import ZZ
196
+ from sage.rings.rational_field import QQ
197
+ from sage.sets.positive_integers import PositiveIntegers
198
+
199
+ lazy_import('sage.libs.pari', 'pari')
200
+
201
+
202
+ # multiplicative generators for weight <= 17
203
+ # using the following convention
204
+ # (3, 5) <---> (sign) * [1,0,0,1,0,0,0,0]
205
+ # taken from the Maple implementation by F. Brown
206
+ B_data: list[list[tuple]] = [[], [], [(2,)], [(3,)], [], [(5,)], [],
207
+ [(7,)], [(3, 5)], [(9,)],
208
+ [(3, 7)], [(11,), (3, 3, 5)],
209
+ [(5, 7), (5, 3, 2, 2)],
210
+ [(13,), (3, 5, 5), (3, 3, 7)],
211
+ [(5, 9), (3, 11), (3, 3, 3, 5)],
212
+ [(15,), (3, 5, 7), (3, 3, 9), (5, 3, 3, 2, 2)],
213
+ [(11, 5), (13, 3), (5, 5, 3, 3),
214
+ (7, 3, 3, 3), (7, 5, 2, 2)],
215
+ [(17,), (7, 5, 5), (9, 3, 5), (9, 5, 3),
216
+ (11, 3, 3), (5, 3, 3, 3, 3), (5, 5, 3, 2, 2)]]
217
+
218
+ Words10 = Words((1, 0), infinite=False)
219
+
220
+
221
+ def coproduct_iterator(paire) -> Iterator[list]:
222
+ """
223
+ Return an iterator for terms in the coproduct.
224
+
225
+ This is an auxiliary function.
226
+
227
+ INPUT:
228
+
229
+ - ``paire`` -- a pair (list of indices, end of word)
230
+
231
+ OUTPUT: iterator for terms in the motivic coproduct
232
+
233
+ Each term is seen as a list of positions.
234
+
235
+ EXAMPLES::
236
+
237
+ sage: from sage.modular.multiple_zeta import coproduct_iterator
238
+ sage: list(coproduct_iterator(([0],[0,1,0,1])))
239
+ [[0, 1, 2, 3]]
240
+ sage: list(coproduct_iterator(([0],[0,1,0,1,1,0,1])))
241
+ [[0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 6], [0, 1, 5, 6], [0, 4, 5, 6], [0, 6]]
242
+ """
243
+ head, tail = paire
244
+ n = len(tail)
245
+ if n == 1:
246
+ yield head
247
+ return
248
+ start_value = tail[0]
249
+ last_index = head[-1]
250
+ yield from coproduct_iterator((head + [last_index + 1], tail[1:]))
251
+ for step in range(4, n):
252
+ if step == 5:
253
+ continue
254
+ if tail[step] != start_value:
255
+ yield from coproduct_iterator((head + [last_index + step],
256
+ tail[step:]))
257
+
258
+
259
+ def composition_to_iterated(w, reverse=False) -> tuple[int, ...]:
260
+ """
261
+ Convert a composition to a word in 0 and 1.
262
+
263
+ By default, the chosen convention maps (2,3) to (1,0,1,0,0),
264
+ respecting the reading order from left to right.
265
+
266
+ The inverse map is given by :func:`iterated_to_composition`.
267
+
268
+ EXAMPLES::
269
+
270
+ sage: from sage.modular.multiple_zeta import composition_to_iterated
271
+ sage: composition_to_iterated((1,2))
272
+ (1, 1, 0)
273
+ sage: composition_to_iterated((3,1,2))
274
+ (1, 0, 0, 1, 1, 0)
275
+ sage: composition_to_iterated((3,1,2,4))
276
+ (1, 0, 0, 1, 1, 0, 1, 0, 0, 0)
277
+
278
+ TESTS::
279
+
280
+ sage: composition_to_iterated((1,2), True)
281
+ (1, 0, 1)
282
+ """
283
+ word = ()
284
+ loop_over = reversed(w) if reverse else w
285
+ for letter in loop_over:
286
+ word += (1,) + (0,) * (letter - 1)
287
+ return word
288
+
289
+
290
+ def iterated_to_composition(w, reverse=False) -> tuple[int, ...]:
291
+ """
292
+ Convert a word in 0 and 1 to a composition.
293
+
294
+ By default, the chosen convention maps (1,0,1,0,0) to (2,3).
295
+
296
+ The inverse map is given by :func:`composition_to_iterated`.
297
+
298
+ EXAMPLES::
299
+
300
+ sage: from sage.modular.multiple_zeta import iterated_to_composition
301
+ sage: iterated_to_composition([1,0,1,0,0])
302
+ (2, 3)
303
+ sage: iterated_to_composition(Word([1,1,0]))
304
+ (1, 2)
305
+ sage: iterated_to_composition(Word([1,1,0,1,1,0,0]))
306
+ (1, 2, 1, 3)
307
+
308
+ TESTS::
309
+
310
+ sage: iterated_to_composition([1,0,1,0,0], True)
311
+ (3, 2)
312
+ """
313
+ b = []
314
+ count = 1
315
+ for letter in reversed(w):
316
+ if letter == 0:
317
+ count += 1
318
+ else:
319
+ b.append(count)
320
+ count = 1
321
+ return tuple(b) if reverse else tuple(reversed(b))
322
+
323
+
324
+ def dual_composition(c) -> tuple[int, ...]:
325
+ """
326
+ Return the dual composition of ``c``.
327
+
328
+ This is an involution on compositions such that associated
329
+ multizetas are equal.
330
+
331
+ INPUT:
332
+
333
+ - ``c`` -- a composition
334
+
335
+ OUTPUT: a composition
336
+
337
+ EXAMPLES::
338
+
339
+ sage: from sage.modular.multiple_zeta import dual_composition
340
+ sage: dual_composition([3])
341
+ (1, 2)
342
+ sage: dual_composition(dual_composition([3,4,5])) == (3,4,5)
343
+ True
344
+ """
345
+ i = composition_to_iterated(c)
346
+ ri = [1 - x for x in reversed(i)]
347
+ return iterated_to_composition(ri)
348
+
349
+
350
+ def minimize_term(w, cf):
351
+ """
352
+ Return the largest among ``w`` and the dual word of ``w``.
353
+
354
+ INPUT:
355
+
356
+ - ``w`` -- a word in the letters 0 and 1
357
+
358
+ - ``cf`` -- a coefficient
359
+
360
+ OUTPUT:
361
+
362
+ (word, coefficient)
363
+
364
+ The chosen order is lexicographic with 1 < 0.
365
+
366
+ If the dual word is chosen, the sign of the coefficient is changed,
367
+ otherwise the coefficient is returned unchanged.
368
+
369
+ EXAMPLES::
370
+
371
+ sage: from sage.modular.multiple_zeta import minimize_term, Words10
372
+ sage: minimize_term(Words10((1,1,0)), 1)
373
+ (word: 100, -1)
374
+ sage: minimize_term(Words10((1,0,0)), 1)
375
+ (word: 100, 1)
376
+ """
377
+ reverse_w = tuple(1 - t for t in reversed(w))
378
+ for x, y in zip(w, reverse_w):
379
+ if x < y:
380
+ return (w, cf)
381
+ if x > y:
382
+ return (Words10(reverse_w, check=False),
383
+ -cf if len(w) % 2 else cf)
384
+ return (w, cf)
385
+
386
+
387
+ # numerical values
388
+
389
+ class MultizetaValues(Singleton):
390
+ """
391
+ Custom cache for numerical values of multiple zetas.
392
+
393
+ Computations are performed using the PARI/GP :pari:`zetamultall` (for the
394
+ cache) and :pari:`zetamult` (for indices/precision outside of the cache).
395
+
396
+ EXAMPLES::
397
+
398
+ sage: from sage.modular.multiple_zeta import MultizetaValues
399
+ sage: M = MultizetaValues()
400
+
401
+ sage: M((1,2))
402
+ 1.202056903159594285399738161511449990764986292340...
403
+ sage: parent(M((2,3)))
404
+ Real Field with 1024 bits of precision
405
+
406
+ sage: M((2,3), prec=53)
407
+ 0.228810397603354
408
+ sage: parent(M((2,3), prec=53))
409
+ Real Field with 53 bits of precision
410
+
411
+ sage: M((2,3), reverse=False) == M((3,2))
412
+ True
413
+
414
+ sage: M((2,3,4,5))
415
+ 2.9182061974731261426525583710934944310404272413...e-6
416
+ sage: M((2,3,4,5), reverse=False)
417
+ 0.0011829360522243605614404196778185433287651...
418
+
419
+ sage: parent(M((2,3,4,5)))
420
+ Real Field with 1024 bits of precision
421
+ sage: parent(M((2,3,4,5), prec=128))
422
+ Real Field with 128 bits of precision
423
+ """
424
+ def __init__(self) -> None:
425
+ """
426
+ When first called, pre-compute up to weight 8 at precision 1024.
427
+
428
+ TESTS::
429
+
430
+ sage: from sage.modular.multiple_zeta import MultizetaValues
431
+ sage: M = MultizetaValues()
432
+ """
433
+ self.max_weight = 0
434
+ self.prec = 0
435
+ self.reset()
436
+
437
+ def __repr__(self) -> str:
438
+ r"""
439
+ TESTS::
440
+
441
+ sage: from sage.modular.multiple_zeta import MultizetaValues
442
+ sage: MultizetaValues()
443
+ Cached multiple zeta values at precision 1024 up to weight 8
444
+ """
445
+ return f"Cached multiple zeta values at precision {self.prec} up to weight {self.max_weight}"
446
+
447
+ def reset(self, max_weight=8, prec=1024) -> None:
448
+ r"""
449
+ Reset the cache to its default values or to given arguments.
450
+
451
+ TESTS::
452
+
453
+ sage: from sage.modular.multiple_zeta import MultizetaValues
454
+ sage: M = MultizetaValues()
455
+ sage: M
456
+ Cached multiple zeta values at precision 1024 up to weight 8
457
+ sage: M.reset(5, 64)
458
+ sage: M
459
+ Cached multiple zeta values at precision 64 up to weight 5
460
+ sage: M.reset()
461
+ sage: M
462
+ Cached multiple zeta values at precision 1024 up to weight 8
463
+ """
464
+ self.prec = int(prec)
465
+ self.max_weight = int(max_weight)
466
+ self._data = pari.zetamultall(self.max_weight, precision=self.prec)
467
+
468
+ def update(self, max_weight, prec) -> None:
469
+ """
470
+ Compute and store more values if needed.
471
+
472
+ TESTS::
473
+
474
+ sage: from sage.modular.multiple_zeta import MultizetaValues
475
+ sage: M = MultizetaValues()
476
+ sage: M
477
+ Cached multiple zeta values at precision 1024 up to weight 8
478
+ sage: M.update(5, 64)
479
+ sage: M
480
+ Cached multiple zeta values at precision 1024 up to weight 8
481
+ sage: M.update(5, 2048)
482
+ sage: M
483
+ Cached multiple zeta values at precision 2048 up to weight 8
484
+ sage: M.reset()
485
+ """
486
+ if self.prec < prec or self.max_weight < max_weight:
487
+ self.reset(max(self.max_weight, max_weight), max(self.prec, prec))
488
+
489
+ def pari_eval(self, index):
490
+ r"""
491
+ TESTS::
492
+
493
+ sage: from sage.modular.multiple_zeta import MultizetaValues
494
+ sage: M = MultizetaValues()
495
+ sage: [M.pari_eval((n,)) for n in range(2,20)]
496
+ [1.64493406684823, 1.20205690315959, 1.08232323371114, 1.03692775514337, ... 1.00000381729326, 1.00000190821272]
497
+ """
498
+ weight = sum(index)
499
+ index = list(reversed(index))
500
+ if weight <= self.max_weight:
501
+ index = pari.zetamultconvert(index, 2)
502
+ return self._data[index - 1]
503
+ return pari.zetamult(index, precision=self.prec)
504
+
505
+ def __call__(self, index, prec=None, reverse=True):
506
+ r"""
507
+ Numerical multiple zeta value as a Sage real floating point number.
508
+
509
+ TESTS::
510
+
511
+ sage: from sage.modular.multiple_zeta import MultizetaValues
512
+
513
+ sage: V = MultizetaValues()
514
+ sage: V((3,2))
515
+ 0.7115661975505724320969738060864026120925612044383392364...
516
+ sage: V((3,2), reverse=False)
517
+ 0.2288103976033537597687461489416887919325093427198821602...
518
+ sage: V((3,2), prec=128)
519
+ 0.71156619755057243209697380608640261209
520
+ sage: V((3,2), prec=128, reverse=False)
521
+ 0.22881039760335375976874614894168879193
522
+
523
+ sage: V((1,3))
524
+ 0.2705808084277845478790009241352919756936877379796817269...
525
+ sage: V((3,1), reverse=False)
526
+ 0.2705808084277845478790009241352919756936877379796817269...
527
+
528
+ sage: V((3,1))
529
+ Traceback (most recent call last):
530
+ ...
531
+ ValueError: divergent zeta value
532
+ sage: V((1,3), reverse=False)
533
+ Traceback (most recent call last):
534
+ ...
535
+ ValueError: divergent zeta value
536
+ """
537
+ if reverse:
538
+ index = list(reversed(index))
539
+ if index[0] == 1:
540
+ raise ValueError("divergent zeta value")
541
+ if prec is None:
542
+ prec = self.prec
543
+ weight = sum(index)
544
+ if weight <= self.max_weight and prec <= self.prec:
545
+ index = pari.zetamultconvert(index, 2)
546
+ value = self._data[index - 1]
547
+ return value.sage().n(prec=prec)
548
+ return pari.zetamult(index, precision=prec).sage().n(prec=prec)
549
+
550
+
551
+ Values = MultizetaValues()
552
+
553
+
554
+ def extend_multiplicative_basis(B, n) -> Iterator[tuple]:
555
+ """
556
+ Extend a multiplicative basis into a basis.
557
+
558
+ This is an iterator.
559
+
560
+ INPUT:
561
+
562
+ - ``B`` -- function mapping integer to list of tuples of compositions
563
+
564
+ - ``n`` -- integer
565
+
566
+ OUTPUT: each term is a tuple of tuples of compositions
567
+
568
+ EXAMPLES::
569
+
570
+ sage: from sage.modular.multiple_zeta import extend_multiplicative_basis
571
+ sage: from sage.modular.multiple_zeta import B_data
572
+ sage: list(extend_multiplicative_basis(B_data,5))
573
+ [((5,),), ((3,), (2,))]
574
+ sage: list(extend_multiplicative_basis(B_data,6))
575
+ [((3,), (3,)), ((2,), (2,), (2,))]
576
+ sage: list(extend_multiplicative_basis(B_data,7))
577
+ [((7,),), ((5,), (2,)), ((3,), (2,), (2,))]
578
+ """
579
+ for pi in Partitions(n, min_part=2):
580
+ yield from product(*[B[i] for i in pi])
581
+
582
+
583
+ # several classes for the algebra of MZV
584
+
585
+
586
+ def Multizeta(*args):
587
+ r"""
588
+ Common entry point for multiple zeta values.
589
+
590
+ If the argument is a sequence of 0 and 1, an element of
591
+ :class:`Multizetas_iterated` will be returned.
592
+
593
+ Otherwise, an element of :class:`Multizetas` will be returned.
594
+
595
+ The base ring is `\QQ`.
596
+
597
+ EXAMPLES::
598
+
599
+ sage: Z = Multizeta
600
+ sage: Z(1,0,1,0)
601
+ I(1010)
602
+ sage: Z(3,2,2)
603
+ ζ(3,2,2)
604
+
605
+ TESTS::
606
+
607
+ sage: Z(3,2,2).iterated().composition()
608
+ ζ(3,2,2)
609
+ sage: Z(1,0,1,0).composition().iterated()
610
+ I(1010)
611
+ """
612
+ if 0 in args:
613
+ return Multizetas_iterated(QQ)(tuple(args))
614
+ return Multizetas(QQ)(tuple(args))
615
+
616
+
617
+ class Multizetas(CombinatorialFreeModule):
618
+ r"""
619
+ Main class for the algebra of multiple zeta values.
620
+
621
+ The convention is chosen so that `\zeta(1,2)` is convergent.
622
+
623
+ EXAMPLES::
624
+
625
+ sage: M = Multizetas(QQ)
626
+ sage: x = M((2,))
627
+ sage: y = M((4,3))
628
+ sage: x+5*y
629
+ ζ(2) + 5*ζ(4,3)
630
+ sage: x*y
631
+ 6*ζ(1,4,4) + 8*ζ(1,5,3) + 3*ζ(2,3,4) + 4*ζ(2,4,3) + 3*ζ(3,2,4)
632
+ + 2*ζ(3,3,3) + 6*ζ(4,1,4) + 3*ζ(4,2,3) + ζ(4,3,2)
633
+
634
+ TESTS::
635
+
636
+ sage: A = QQ['u']
637
+ sage: u = A.gen()
638
+ sage: M = Multizetas(A)
639
+ sage: (u*M((2,))+M((3,)))*M((2,))
640
+ 4*u*ζ(1,3) + 6*ζ(1,4) + 2*u*ζ(2,2) + 3*ζ(2,3) + ζ(3,2)
641
+
642
+ Check for :issue:`30925`::
643
+
644
+ sage: M = Multizetas(QQ)
645
+ sage: l = [1,2,3]
646
+ sage: z = M(l)
647
+ sage: l[0] = 19
648
+ sage: z
649
+ ζ(1,2,3)
650
+ """
651
+ def __init__(self, R) -> None:
652
+ """
653
+ TESTS::
654
+
655
+ sage: M = Multizetas(QQ)
656
+ sage: TestSuite(M).run() # not tested
657
+ sage: M.category()
658
+ Category of commutative no zero divisors graded algebras
659
+ with basis over Rational Field
660
+ """
661
+ if R not in Rings():
662
+ raise TypeError("argument R must be a ring")
663
+ cat = GradedAlgebrasWithBasis(R).Commutative()
664
+ if R in Domains():
665
+ cat = cat & Domains()
666
+ W = Words(PositiveIntegers(), infinite=False)
667
+ CombinatorialFreeModule.__init__(self, R, W, prefix='Z', category=cat)
668
+
669
+ def _repr_(self) -> str:
670
+ r"""
671
+ Return a string representation of the algebra.
672
+
673
+ EXAMPLES::
674
+
675
+ sage: M = Multizetas(QQ); M
676
+ Algebra of motivic multiple zeta values indexed by compositions over Rational Field
677
+ """
678
+ txt = "Algebra of motivic multiple zeta values indexed by compositions over {}"
679
+ return txt.format(self.base_ring())
680
+
681
+ def _repr_term(self, m) -> str:
682
+ """
683
+ Return a custom string representation for the monomials.
684
+
685
+ EXAMPLES::
686
+
687
+ sage: Multizeta(2,3) # indirect doctest
688
+ ζ(2,3)
689
+ """
690
+ return "ζ(" + ','.join(str(letter) for letter in m) + ")"
691
+
692
+ def _latex_term(self, m) -> str:
693
+ r"""
694
+ Return a custom latex representation for the monomials.
695
+
696
+ EXAMPLES::
697
+
698
+ sage: latex(Multizeta(2,3) - 3/5 * Multizeta(1,1,2)) # indirect doctest
699
+ -\frac{3}{5} \zeta(1,1,2) + \zeta(2,3)
700
+ """
701
+ return "\\zeta(" + ','.join(str(letter) for letter in m) + ")"
702
+
703
+ @cached_method
704
+ def one_basis(self):
705
+ r"""
706
+ Return the index of the unit for the algebra.
707
+
708
+ This is the empty word.
709
+
710
+ EXAMPLES::
711
+
712
+ sage: M = Multizetas(QQ)
713
+ sage: M.one_basis()
714
+ word:
715
+ """
716
+ return self.basis().keys()([], check=False)
717
+
718
+ def some_elements(self) -> tuple:
719
+ r"""
720
+ Return some elements of the algebra.
721
+
722
+ EXAMPLES::
723
+
724
+ sage: M = Multizetas(QQ)
725
+ sage: M.some_elements()
726
+ (ζ(), ζ(2), ζ(3), ζ(4), ζ(1,2))
727
+ """
728
+ return self([]), self([2]), self([3]), self([4]), self((1, 2))
729
+
730
+ def _an_element_(self):
731
+ r"""
732
+ Return an element of the algebra.
733
+
734
+ EXAMPLES::
735
+
736
+ sage: M = Multizetas(QQ)
737
+ sage: M.an_element()
738
+ ζ() + ζ(1,2) + 1/2*ζ(5)
739
+ """
740
+ cf = self.base_ring().an_element()
741
+ return self([]) + self([1, 2]) + cf * self([5])
742
+
743
+ def product_on_basis(self, w1, w2):
744
+ r"""
745
+ Compute the product of two monomials.
746
+
747
+ This is done by converting to iterated integrals and
748
+ using the shuffle product.
749
+
750
+ INPUT:
751
+
752
+ - ``w1``, ``w2`` -- compositions as words
753
+
754
+ EXAMPLES::
755
+
756
+ sage: M = Multizetas(QQ)
757
+ sage: W = M.basis().keys()
758
+ sage: M.product_on_basis(W([2]),W([2]))
759
+ 4*ζ(1,3) + 2*ζ(2,2)
760
+ sage: x = M((2,))
761
+ sage: x*x
762
+ 4*ζ(1,3) + 2*ζ(2,2)
763
+ """
764
+ if not w1:
765
+ return self._monomial(w2)
766
+ if not w2:
767
+ return self._monomial(w1)
768
+ p1 = self.iterated_on_basis(w1)
769
+ p2 = self.iterated_on_basis(w2)
770
+ p1p2 = p1 * p2
771
+ MZV_it = p1p2.parent()
772
+ return MZV_it.composition(p1p2)
773
+
774
+ def half_product(self, w1, w2):
775
+ r"""
776
+ Compute half of the product of two elements.
777
+
778
+ This comes from half of the shuffle product.
779
+
780
+ .. WARNING:: This is not a motivic operation.
781
+
782
+ INPUT:
783
+
784
+ - ``w1``, ``w2`` -- elements
785
+
786
+ EXAMPLES::
787
+
788
+ sage: M = Multizetas(QQ)
789
+ sage: M.half_product(M([2]),M([2]))
790
+ 2*ζ(1,3) + ζ(2,2)
791
+
792
+ TESTS:
793
+
794
+ sage: M.half_product(M.one(), M([2]))
795
+ Traceback (most recent call last):
796
+ ...
797
+ ValueError: not defined on the unit
798
+ """
799
+ empty = self.one_basis()
800
+ if w1.coefficient(empty) or w2.coefficient(empty):
801
+ raise ValueError('not defined on the unit')
802
+ p1 = self.iterated(w1)
803
+ p2 = self.iterated(w2)
804
+ MZV_it = p1.parent()
805
+ p1p2 = MZV_it.half_product(p1, p2)
806
+ return MZV_it.composition(p1p2)
807
+
808
+ @lazy_attribute
809
+ def iterated(self):
810
+ """
811
+ Convert to the algebra of iterated integrals.
812
+
813
+ This is also available as a method of elements.
814
+
815
+ EXAMPLES::
816
+
817
+ sage: M = Multizetas(QQ)
818
+ sage: x = M((3,2))
819
+ sage: M.iterated(3*x)
820
+ 3*I(10010)
821
+ sage: x = M((2,3,2))
822
+ sage: M.iterated(4*x)
823
+ -4*I(1010010)
824
+ """
825
+ cod = Multizetas_iterated(self.base_ring())
826
+ return self.module_morphism(self.iterated_on_basis, codomain=cod)
827
+
828
+ def iterated_on_basis(self, w):
829
+ """
830
+ Convert to the algebra of iterated integrals.
831
+
832
+ Beware that this conversion involves signs in our chosen convention.
833
+
834
+ INPUT:
835
+
836
+ - ``w`` -- a word
837
+
838
+ EXAMPLES::
839
+
840
+ sage: M = Multizetas(QQ)
841
+ sage: x = M.basis().keys()((3,2))
842
+ sage: M.iterated_on_basis(x)
843
+ I(10010)
844
+ sage: x = M.basis().keys()((2,3,2))
845
+ sage: M.iterated_on_basis(x)
846
+ -I(1010010)
847
+ """
848
+ codomain = Multizetas_iterated(self.base_ring())
849
+ image = codomain(composition_to_iterated(w))
850
+ return -image if len(w) % 2 else image
851
+
852
+ def degree_on_basis(self, w):
853
+ """
854
+ Return the degree of the monomial ``w``.
855
+
856
+ This is the sum of terms in ``w``.
857
+
858
+ INPUT:
859
+
860
+ - ``w`` -- a composition
861
+
862
+ EXAMPLES::
863
+
864
+ sage: M = Multizetas(QQ)
865
+ sage: x = (2,3)
866
+ sage: M.degree_on_basis(x) # indirect doctest
867
+ 5
868
+ """
869
+ return ZZ(sum(w))
870
+
871
+ @lazy_attribute
872
+ def phi(self):
873
+ r"""
874
+ Return the morphism ``phi``.
875
+
876
+ This sends multiple zeta values to the auxiliary F-algebra,
877
+ which is a shuffle algebra in odd generators `f_3,f_5,f_7,\dots`
878
+ over the polynomial ring in one variable `f_2`.
879
+
880
+ This is a ring isomorphism, that depends on the choice of a
881
+ multiplicative basis for the ring of motivic multiple zeta
882
+ values. Here we use one specific hardcoded basis.
883
+
884
+ For the precise definition of ``phi`` by induction, see [Brown2012]_.
885
+
886
+ EXAMPLES::
887
+
888
+ sage: M = Multizetas(QQ)
889
+ sage: m = Multizeta(2,2) + 2*Multizeta(1,3); m
890
+ 2*ζ(1,3) + ζ(2,2)
891
+ sage: M.phi(m)
892
+ 1/2*f2^2
893
+
894
+ sage: Z = Multizeta
895
+ sage: B5 = [3*Z(1,4) + 2*Z(2,3) + Z(3,2), 3*Z(1,4) + Z(2,3)]
896
+ sage: [M.phi(b) for b in B5]
897
+ [-1/2*f5 + f2*f3, 1/2*f5]
898
+ """
899
+ M_it = Multizetas_iterated(self.base_ring())
900
+ return M_it.phi * self.iterated
901
+
902
+ def _element_constructor_(self, x):
903
+ r"""
904
+ Convert ``x`` into ``self``.
905
+
906
+ INPUT:
907
+
908
+ - ``x`` -- either a list, tuple, word or a multiple zeta value
909
+
910
+ EXAMPLES::
911
+
912
+ sage: M = Multizetas(QQ)
913
+ sage: M(Word((2,3)))
914
+ ζ(2,3)
915
+ sage: M(Word([2,3]))
916
+ ζ(2,3)
917
+ sage: x = M((2,3)); x
918
+ ζ(2,3)
919
+ sage: M(x) == x
920
+ True
921
+
922
+ sage: M() == M(0) == M.zero()
923
+ True
924
+ sage: M([]) == M(1) == M.one()
925
+ True
926
+
927
+ sage: M('heyho')
928
+ Traceback (most recent call last):
929
+ ...
930
+ TypeError: invalid input for building a multizeta value
931
+ """
932
+ if isinstance(x, (FiniteWord_class, tuple, list)):
933
+ if not all(isinstance(letter, numbers.Integral) for letter in x):
934
+ raise ValueError('invalid input for building a multizeta value')
935
+ if x and x[-1] == 1:
936
+ raise ValueError('divergent zeta value')
937
+ W = self.basis().keys()
938
+ if isinstance(x, list):
939
+ x = tuple(x)
940
+ return self._monomial(W(x, check=False))
941
+ if isinstance(parent(x), Multizetas_iterated):
942
+ return x.composition()
943
+ raise TypeError('invalid input for building a multizeta value')
944
+
945
+ def algebra_generators(self, n) -> list:
946
+ """
947
+ Return a set of multiplicative generators in weight ``n``.
948
+
949
+ This is obtained from hardcoded data, available only up to weight 17.
950
+
951
+ INPUT:
952
+
953
+ - ``n`` -- integer
954
+
955
+ EXAMPLES::
956
+
957
+ sage: M = Multizetas(QQ)
958
+ sage: M.algebra_generators(5)
959
+ [ζ(5)]
960
+ sage: M.algebra_generators(8)
961
+ [ζ(3,5)]
962
+ """
963
+ W = self.basis().keys()
964
+ return [self._monomial(W(b, check=False)) for b in B_data[n]]
965
+
966
+ def basis_data(self, basering, n) -> Iterator:
967
+ """
968
+ Return an iterator for a basis in weight ``n``.
969
+
970
+ This is obtained from hardcoded data, available only up to weight 17.
971
+
972
+ INPUT:
973
+
974
+ - ``n`` -- integer
975
+
976
+ EXAMPLES::
977
+
978
+ sage: M = Multizetas(QQ)
979
+ sage: list(M.basis_data(QQ, 4))
980
+ [4*ζ(1,3) + 2*ζ(2,2)]
981
+ """
982
+ basis_MZV = extend_multiplicative_basis(B_data, n)
983
+ W = self.basis().keys()
984
+ return (prod(self._monomial(W(compo, check=False))
985
+ for compo in term) for term in basis_MZV)
986
+
987
+ def basis_brown(self, n) -> list:
988
+ r"""
989
+ Return a basis of the algebra of multiple zeta values in weight ``n``.
990
+
991
+ It was proved by Francis Brown that this is a basis of motivic
992
+ multiple zeta values.
993
+
994
+ This is made of all `\zeta(n_1, ..., n_r)` with parts in {2,3}.
995
+
996
+ INPUT:
997
+
998
+ - ``n`` -- integer
999
+
1000
+ EXAMPLES::
1001
+
1002
+ sage: M = Multizetas(QQ)
1003
+ sage: M.basis_brown(3)
1004
+ [ζ(3)]
1005
+ sage: M.basis_brown(4)
1006
+ [ζ(2,2)]
1007
+ sage: M.basis_brown(5)
1008
+ [ζ(3,2), ζ(2,3)]
1009
+ sage: M.basis_brown(6)
1010
+ [ζ(3,3), ζ(2,2,2)]
1011
+ """
1012
+ W = self.basis().keys()
1013
+ return [self._monomial(W(tuple(c), check=False))
1014
+ for c in IntegerVectors(n, min_part=2, max_part=3)]
1015
+
1016
+ @cached_method
1017
+ def basis_filtration(self, d, reverse=False):
1018
+ r"""
1019
+ Return a module basis of the homogeneous components of weight ``d`` compatible with
1020
+ the length filtration.
1021
+
1022
+ INPUT:
1023
+
1024
+ - ``d`` -- nonnegative integer; the weight
1025
+
1026
+ - ``reverse`` -- boolean (default: ``False``); change the ordering of compositions
1027
+
1028
+ EXAMPLES::
1029
+
1030
+ sage: M = Multizetas(QQ)
1031
+
1032
+ sage: M.basis_filtration(5)
1033
+ [ζ(5), ζ(1,4)]
1034
+ sage: M.basis_filtration(6)
1035
+ [ζ(6), ζ(1,5)]
1036
+ sage: M.basis_filtration(8)
1037
+ [ζ(8), ζ(1,7), ζ(2,6), ζ(1,1,6)]
1038
+ sage: M.basis_filtration(8, reverse=True)
1039
+ [ζ(8), ζ(6,2), ζ(5,3), ζ(5,1,2)]
1040
+
1041
+ sage: M.basis_filtration(0)
1042
+ [ζ()]
1043
+ sage: M.basis_filtration(1)
1044
+ []
1045
+ """
1046
+ if d < 0:
1047
+ raise ValueError('d must be a nonnegative integer')
1048
+ if d == 0:
1049
+ return [self([])]
1050
+ if d == 1:
1051
+ return []
1052
+
1053
+ W = self.basis().keys()
1054
+ Values.reset(max_weight=d)
1055
+ dim = len(self((d,)).phi_as_vector())
1056
+ V = VectorSpace(QQ, dim)
1057
+ U = V.subspace([])
1058
+ basis: list = []
1059
+ k = 1
1060
+ while len(basis) < dim:
1061
+ for c in Compositions(d, length=k):
1062
+ if reverse:
1063
+ if c[-1] == 1:
1064
+ continue
1065
+ c = tuple(c)
1066
+ else:
1067
+ if c[0] == 1:
1068
+ continue
1069
+ c = c[::-1]
1070
+ mon_c = self._monomial(W(c, check=False))
1071
+ v = mon_c.phi_as_vector()
1072
+ if v in U:
1073
+ continue
1074
+ U = V.subspace(U.basis() + [v])
1075
+ basis.append(mon_c)
1076
+ k += 1
1077
+ return basis
1078
+
1079
+ class Element(CombinatorialFreeModule.Element):
1080
+ def iterated(self):
1081
+ """
1082
+ Convert to the algebra of iterated integrals.
1083
+
1084
+ Beware that this conversion involves signs.
1085
+
1086
+ EXAMPLES::
1087
+
1088
+ sage: M = Multizetas(QQ)
1089
+ sage: x = M((2,3,4))
1090
+ sage: x.iterated()
1091
+ -I(101001000)
1092
+ """
1093
+ return self.parent().iterated(self)
1094
+
1095
+ def single_valued(self):
1096
+ r"""
1097
+ Return the single-valued version of ``self``.
1098
+
1099
+ This is the projection map onto the sub-algebra of
1100
+ single-valued motivic multiple zeta values, as defined by
1101
+ F. Brown in [Bro2013]_.
1102
+
1103
+ This morphism of algebras sends in particular `\zeta(2)` to `0`.
1104
+
1105
+ EXAMPLES::
1106
+
1107
+ sage: M = Multizetas(QQ)
1108
+ sage: x = M((2,))
1109
+ sage: x.single_valued()
1110
+ 0
1111
+ sage: x = M((3,))
1112
+ sage: x.single_valued()
1113
+ 2*ζ(3)
1114
+ sage: x = M((5,))
1115
+ sage: x.single_valued()
1116
+ 2*ζ(5)
1117
+ sage: x = M((2,3))
1118
+ sage: x.single_valued()
1119
+ -11*ζ(5)
1120
+
1121
+ sage: Z = Multizeta
1122
+ sage: Z(3,5).single_valued() == -10*Z(3)*Z(5)
1123
+ True
1124
+ sage: Z(5,3).single_valued() == 14*Z(3)*Z(5)
1125
+ True
1126
+ """
1127
+ return rho_inverse(self.phi().single_valued())
1128
+
1129
+ def simplify(self):
1130
+ """
1131
+ Gather terms using the duality relations.
1132
+
1133
+ This can help to lower the number of monomials.
1134
+
1135
+ EXAMPLES::
1136
+
1137
+ sage: M = Multizetas(QQ)
1138
+ sage: z = 3*M((3,)) + 5*M((1,2))
1139
+ sage: z.simplify()
1140
+ 8*ζ(3)
1141
+ """
1142
+ return self.iterated().simplify().composition()
1143
+
1144
+ def simplify_full(self, basis=None):
1145
+ r"""
1146
+ Rewrite the term in a given basis.
1147
+
1148
+ INPUT:
1149
+
1150
+ - ``basis`` -- either ``None`` (default) or a function such that
1151
+ ``basis(d)`` is a basis of the weight ``d`` multiple zeta values.
1152
+ If ``None``, the Hoffman basis is used.
1153
+
1154
+ EXAMPLES::
1155
+
1156
+ sage: z = Multizeta(5) + Multizeta(1,4) + Multizeta(3,2) - 5 * Multizeta(2,3)
1157
+ sage: z.simplify_full()
1158
+ -22/5*ζ(2,3) + 12/5*ζ(3,2)
1159
+ sage: z.simplify_full(basis=z.parent().basis_filtration)
1160
+ 18*ζ(1,4) - ζ(5)
1161
+
1162
+ sage: z == z.simplify_full() == z.simplify_full(basis=z.parent().basis_filtration)
1163
+ True
1164
+
1165
+ Be careful, that this does not optimize the number of terms::
1166
+
1167
+ sage: Multizeta(7).simplify_full()
1168
+ 352/151*ζ(2,2,3) + 672/151*ζ(2,3,2) + 528/151*ζ(3,2,2)
1169
+
1170
+ TESTS::
1171
+
1172
+ sage: Multizetas(QQ).one().simplify_full()
1173
+ ζ()
1174
+ """
1175
+ if basis is None:
1176
+ basis = self.parent().basis_brown
1177
+ support = {sum(d) for d in self.support()}
1178
+ result = self.parent().zero()
1179
+ for d in sorted(support):
1180
+ h = self.homogeneous_component(d)
1181
+ v = h.phi_as_vector()
1182
+ if v:
1183
+ Bd = basis(d)
1184
+ P = matrix(QQ, [z.phi_as_vector() for z in Bd])
1185
+ result += sum(x * z for x, z in zip(P.solve_left(v), Bd))
1186
+ return result
1187
+
1188
+ def __bool__(self) -> bool:
1189
+ r"""
1190
+ EXAMPLES::
1191
+
1192
+ sage: bool(Multizeta(2))
1193
+ True
1194
+ sage: bool(3*Multizeta(4) - 4*Multizeta(2,2))
1195
+ False
1196
+ """
1197
+ return bool(self.iterated())
1198
+
1199
+ def is_zero(self) -> bool:
1200
+ r"""
1201
+ Return whether this element is zero.
1202
+
1203
+ EXAMPLES::
1204
+
1205
+ sage: M = Multizeta
1206
+
1207
+ sage: (4*M(2,3) + 6*M(3,2) - 5*M(5)).is_zero()
1208
+ True
1209
+ sage: (3*M(4) - 4*M(2,2)).is_zero()
1210
+ True
1211
+ sage: (4*M(2,3) + 6*M(3,2) + 3*M(4) - 5*M(5) - 4*M(2,2)).is_zero()
1212
+ True
1213
+
1214
+ sage: (4*M(2,3) + 6*M(3,2) - 4*M(5)).is_zero()
1215
+ False
1216
+ sage: (M(4) - M(2,2)).is_zero()
1217
+ False
1218
+ sage: (4*M(2,3) + 6*M(3,2) + 3*M(4) - 4*M(5) - 4*M(2,2)).is_zero()
1219
+ False
1220
+ """
1221
+ return not self
1222
+
1223
+ def _richcmp_(self, other, op) -> bool:
1224
+ """
1225
+ Comparison.
1226
+
1227
+ This means equality as motivic multiple zeta value, computed
1228
+ using the morphism ``phi``.
1229
+
1230
+ EXAMPLES::
1231
+
1232
+ sage: M = Multizeta
1233
+ sage: 4*M(1,3) == M(4)
1234
+ True
1235
+ sage: our_pi2 = 6*M(2)
1236
+ sage: Multizeta(2,2,2) == our_pi2**3 / 7.factorial()
1237
+ True
1238
+
1239
+ sage: M(2,2,2) != M(6)
1240
+ True
1241
+
1242
+ sage: M(4) == M(66) + M(33,33)
1243
+ False
1244
+ sage: M(33) + M(22,11) == M(3)
1245
+ False
1246
+ sage: M(5) == 1
1247
+ False
1248
+ sage: M() == 1
1249
+ True
1250
+ sage: (0*M()) == 0
1251
+ True
1252
+ """
1253
+ if op not in [op_EQ, op_NE]:
1254
+ raise TypeError('invalid comparison for multizetas')
1255
+ return self.iterated()._richcmp_(other.iterated(), op)
1256
+
1257
+ def __hash__(self) -> int:
1258
+ """
1259
+ Return the hash of ``self``.
1260
+
1261
+ EXAMPLES::
1262
+
1263
+ sage: M = Multizeta
1264
+ sage: hash(M(1,2)) != hash(M(6))
1265
+ True
1266
+ """
1267
+ return hash(self.iterated().phi())
1268
+
1269
+ def phi(self):
1270
+ """
1271
+ Return the image of ``self`` by the morphism ``phi``.
1272
+
1273
+ This sends multiple zeta values to the auxiliary F-algebra.
1274
+
1275
+ EXAMPLES::
1276
+
1277
+ sage: M = Multizetas(QQ)
1278
+ sage: M((1,2)).phi()
1279
+ f3
1280
+
1281
+ TESTS::
1282
+
1283
+ sage: A = QQ['u']
1284
+ sage: u = A.gen()
1285
+ sage: M = Multizetas(A)
1286
+ sage: tst = u*M((1,2))+M((3,))
1287
+ sage: tst.phi()
1288
+ (u+1)*f3
1289
+ """
1290
+ return self.parent().phi(self)
1291
+
1292
+ def phi_as_vector(self):
1293
+ """
1294
+ Return the image of ``self`` by the morphism ``phi`` as a vector.
1295
+
1296
+ The morphism ``phi`` sends multiple zeta values to the algebra
1297
+ :func:`F_ring`. Then the image is expressed as a vector in
1298
+ a fixed basis of one graded component of this algebra.
1299
+
1300
+ This is only defined for homogeneous elements.
1301
+
1302
+ EXAMPLES::
1303
+
1304
+ sage: M = Multizetas(QQ)
1305
+ sage: M((3,2)).phi_as_vector()
1306
+ (9/2, -2)
1307
+ sage: M(0).phi_as_vector()
1308
+ ()
1309
+
1310
+ TESTS::
1311
+
1312
+ sage: (M((4,))+M((1,2))).phi_as_vector()
1313
+ Traceback (most recent call last):
1314
+ ...
1315
+ ValueError: only defined for homogeneous elements
1316
+ """
1317
+ if not self.is_homogeneous():
1318
+ raise ValueError('only defined for homogeneous elements')
1319
+ return self.parent().phi(self).homogeneous_to_vector()
1320
+
1321
+ def _numerical_approx_pari(self):
1322
+ r"""
1323
+ The numerical values of individual multiple zeta are obtained via
1324
+ the class :class:`MultizetaValues` that performs some caching.
1325
+
1326
+ TESTS::
1327
+
1328
+ sage: M = Multizetas(QQ)
1329
+ sage: a = M((3,2)) - 2*M((7,))
1330
+ sage: a._numerical_approx_pari()
1331
+ -1.30513235721327
1332
+ sage: type(a._numerical_approx_pari())
1333
+ <class 'cypari2.gen.Gen'>
1334
+ """
1335
+ return sum(cf * Values.pari_eval(tuple(w)) for w, cf in self.monomial_coefficients().items())
1336
+
1337
+ def numerical_approx(self, prec=None, digits=None, algorithm=None):
1338
+ """
1339
+ Return a numerical value for this element.
1340
+
1341
+ EXAMPLES::
1342
+
1343
+ sage: M = Multizetas(QQ)
1344
+ sage: M(Word((3,2))).n() # indirect doctest
1345
+ 0.711566197550572
1346
+ sage: parent(M(Word((3,2))).n())
1347
+ Real Field with 53 bits of precision
1348
+
1349
+ sage: (M((3,)) * M((2,))).n(prec=80)
1350
+ 1.9773043502972961181971
1351
+ sage: M((1,2)).n(70)
1352
+ 1.2020569031595942854
1353
+
1354
+ sage: M((3,)).n(digits=10)
1355
+ 1.202056903
1356
+
1357
+ If you plan to use intensively numerical approximation at high precision,
1358
+ you might want to add more values and/or accuracy to the cache::
1359
+
1360
+ sage: from sage.modular.multiple_zeta import MultizetaValues
1361
+ sage: M = MultizetaValues()
1362
+ sage: M.update(max_weight=9, prec=2048)
1363
+ sage: M
1364
+ Cached multiple zeta values at precision 2048 up to weight 9
1365
+ sage: M.reset() # restore precision for the other doctests
1366
+
1367
+ TESTS::
1368
+
1369
+ sage: Multizetas(QQ).zero().n()
1370
+ 0.000000000000000
1371
+ """
1372
+ if prec is None:
1373
+ if digits:
1374
+ from sage.arith.numerical_approx import digits_to_bits
1375
+ prec = digits_to_bits(digits)
1376
+ else:
1377
+ prec = 53
1378
+ if algorithm is not None:
1379
+ raise ValueError("unknown algorithm")
1380
+ if not self.monomial_coefficients():
1381
+ return ZZ(0).n(prec=prec, digits=digits, algorithm=algorithm)
1382
+ if prec < Values.prec:
1383
+ s = sum(cf * Values(tuple(w)) for w, cf in self.monomial_coefficients().items())
1384
+ return s.n(prec=prec)
1385
+ return sum(cf * Values(tuple(w), prec=prec) for w, cf in self.monomial_coefficients().items())
1386
+
1387
+
1388
+ class Multizetas_iterated(CombinatorialFreeModule):
1389
+ r"""
1390
+ Secondary class for the algebra of multiple zeta values.
1391
+
1392
+ This is used to represent multiple zeta values as iterated integrals
1393
+ of the differential forms `\omega_0 = dt/t` and `\omega_1 = dt/(t-1)`.
1394
+
1395
+ EXAMPLES::
1396
+
1397
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1398
+ sage: M = Multizetas_iterated(QQ); M
1399
+ Algebra of motivic multiple zeta values as convergent iterated
1400
+ integrals over Rational Field
1401
+ sage: M((1,0))
1402
+ I(10)
1403
+ sage: M((1,0))**2
1404
+ 4*I(1100) + 2*I(1010)
1405
+ sage: M((1,0))*M((1,0,0))
1406
+ 6*I(11000) + 3*I(10100) + I(10010)
1407
+ """
1408
+ def __init__(self, R) -> None:
1409
+ """
1410
+ TESTS::
1411
+
1412
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1413
+ sage: M = Multizetas_iterated(QQ)
1414
+ sage: TestSuite(M).run() # not tested
1415
+ sage: M.category()
1416
+ Category of commutative no zero divisors graded algebras
1417
+ with basis over Rational Field
1418
+ """
1419
+ if R not in Rings():
1420
+ raise TypeError("argument R must be a ring")
1421
+ cat = GradedAlgebrasWithBasis(R).Commutative()
1422
+ if R in Domains():
1423
+ cat = cat & Domains()
1424
+ CombinatorialFreeModule.__init__(self, R, Words10, prefix='I',
1425
+ category=cat)
1426
+
1427
+ def _repr_(self) -> str:
1428
+ """
1429
+ Return a string representation for the ring.
1430
+
1431
+ EXAMPLES::
1432
+
1433
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1434
+ sage: M = Multizetas_iterated(QQ); M
1435
+ Algebra of motivic multiple zeta values
1436
+ as convergent iterated integrals over Rational Field
1437
+ """
1438
+ return f"Algebra of motivic multiple zeta values as convergent iterated integrals over {self.base_ring()}"
1439
+
1440
+ def _repr_term(self, m) -> str:
1441
+ """
1442
+ Return a custom string representation for the monomials.
1443
+
1444
+ EXAMPLES::
1445
+
1446
+ sage: Multizeta(1,0,1,0) # indirect doctest
1447
+ I(1010)
1448
+ """
1449
+ return "I(" + ''.join(str(letter) for letter in m) + ")"
1450
+
1451
+ @cached_method
1452
+ def one_basis(self):
1453
+ r"""
1454
+ Return the index of the unit for the algebra.
1455
+
1456
+ This is the empty word.
1457
+
1458
+ EXAMPLES::
1459
+
1460
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1461
+ sage: M = Multizetas_iterated(QQ)
1462
+ sage: M.one_basis()
1463
+ word:
1464
+ """
1465
+ return self.basis().keys()([], check=False)
1466
+
1467
+ def product_on_basis(self, w1, w2):
1468
+ r"""
1469
+ Compute the product of two monomials.
1470
+
1471
+ This is the shuffle product.
1472
+
1473
+ INPUT:
1474
+
1475
+ - ``w1``, ``w2`` -- words in 0 and 1
1476
+
1477
+ EXAMPLES::
1478
+
1479
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1480
+ sage: M = Multizetas_iterated(QQ)
1481
+ sage: x = Word([1,0])
1482
+ sage: M.product_on_basis(x,x)
1483
+ 4*I(1100) + 2*I(1010)
1484
+ sage: y = Word([1,1,0])
1485
+ sage: M.product_on_basis(y,x)
1486
+ I(10110) + 3*I(11010) + 6*I(11100)
1487
+ """
1488
+ return self._sum_of_monomials(shuffle(w1, w2, False))
1489
+
1490
+ def half_product_on_basis(self, w1, w2):
1491
+ r"""
1492
+ Compute half of the product of two monomials.
1493
+
1494
+ This is half of the shuffle product.
1495
+
1496
+ .. WARNING:: This is not a motivic operation.
1497
+
1498
+ INPUT:
1499
+
1500
+ - ``w1``, ``w2`` -- monomials
1501
+
1502
+ EXAMPLES::
1503
+
1504
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1505
+ sage: M = Multizetas_iterated(QQ)
1506
+ sage: x = Word([1,0])
1507
+ sage: M.half_product_on_basis(x,x)
1508
+ 2*I(1100) + I(1010)
1509
+ """
1510
+ assert w1
1511
+ W = self.basis().keys()
1512
+ u1 = W([w1[0]], check=False)
1513
+ r1 = w1[1:]
1514
+ B = self.basis()
1515
+ return sum(B[u1 + u] for u in shuffle(r1, w2, False))
1516
+
1517
+ @lazy_attribute
1518
+ def half_product(self):
1519
+ r"""
1520
+ Compute half of the product of two elements.
1521
+
1522
+ This is half of the shuffle product.
1523
+
1524
+ .. WARNING:: This is not a motivic operation.
1525
+
1526
+ INPUT:
1527
+
1528
+ - ``w1``, ``w2`` -- elements
1529
+
1530
+ EXAMPLES::
1531
+
1532
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1533
+ sage: M = Multizetas_iterated(QQ)
1534
+ sage: x = M(Word([1,0]))
1535
+ sage: M.half_product(x,x)
1536
+ 2*I(1100) + I(1010)
1537
+ """
1538
+ half = self.half_product_on_basis
1539
+ return self._module_morphism(self._module_morphism(half, position=0,
1540
+ codomain=self),
1541
+ position=1)
1542
+
1543
+ def coproduct_on_basis(self, w):
1544
+ """
1545
+ Return the motivic coproduct of a monomial.
1546
+
1547
+ EXAMPLES::
1548
+
1549
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1550
+ sage: M = Multizetas_iterated(QQ)
1551
+ sage: M.coproduct_on_basis([1,0])
1552
+ I() # I(10)
1553
+
1554
+ sage: M.coproduct_on_basis((1,0,1,0))
1555
+ I() # I(1010)
1556
+ """
1557
+ seq = [0] + list(w) + [1]
1558
+ terms = coproduct_iterator(([0], seq))
1559
+ M_all = All_iterated(self.base_ring())
1560
+
1561
+ def split_word(indices):
1562
+ L = self.one()
1563
+ for i in range(len(indices) - 1):
1564
+ w = Word(seq[indices[i]:indices[i + 1] + 1])
1565
+ if len(w) == 2: # this factor is one
1566
+ continue
1567
+ if len(w) <= 4 or len(w) == 6 or w[0] == w[-1]:
1568
+ # vanishing factors
1569
+ return self.zero()
1570
+ value = M_all(w)
1571
+ L *= value.regularise().simplify()
1572
+ return L
1573
+
1574
+ resu = self.tensor_square().zero()
1575
+ for indices in terms:
1576
+ resu += split_word(indices).tensor(
1577
+ M_all(Word(seq[i] for i in indices)).regularise().simplify())
1578
+ return resu
1579
+
1580
+ @lazy_attribute
1581
+ def coproduct(self):
1582
+ """
1583
+ Return the motivic coproduct of an element.
1584
+
1585
+ EXAMPLES::
1586
+
1587
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1588
+ sage: M = Multizetas_iterated(QQ)
1589
+ sage: a = 3*Multizeta(1,4) + Multizeta(2,3)
1590
+ sage: M.coproduct(a.iterated())
1591
+ 3*I() # I(11000) + I() # I(10100) + 3*I(11000) # I()
1592
+ + I(10100) # I()
1593
+ """
1594
+ cop = self.coproduct_on_basis
1595
+ return self._module_morphism(cop, codomain=self.tensor_square())
1596
+
1597
+ @lazy_attribute
1598
+ def composition(self):
1599
+ """
1600
+ Convert to the algebra of multiple zeta values of composition style.
1601
+
1602
+ This means the algebra :class:`Multizetas`.
1603
+
1604
+ This is also available as a method of elements.
1605
+
1606
+ EXAMPLES::
1607
+
1608
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1609
+ sage: M = Multizetas_iterated(QQ)
1610
+ sage: x = M((1,0))
1611
+ sage: M.composition(2*x)
1612
+ -2*ζ(2)
1613
+ sage: x = M((1,0,1,0,0))
1614
+ sage: M.composition(x)
1615
+ ζ(2,3)
1616
+ """
1617
+ cod = Multizetas(self.base_ring())
1618
+ return self.module_morphism(self.composition_on_basis, codomain=cod)
1619
+
1620
+ def composition_on_basis(self, w, basering=None):
1621
+ """
1622
+ Convert to the algebra of multiple zeta values of composition style.
1623
+
1624
+ INPUT:
1625
+
1626
+ - ``basering`` -- (optional) choice of the coefficient ring
1627
+
1628
+ EXAMPLES::
1629
+
1630
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1631
+ sage: M = Multizetas_iterated(QQ)
1632
+ sage: x = Word((1,0,1,0,0))
1633
+ sage: M.composition_on_basis(x)
1634
+ ζ(2,3)
1635
+ sage: x = Word((1,0,1,0,0,1,0))
1636
+ sage: M.composition_on_basis(x)
1637
+ -ζ(2,3,2)
1638
+ """
1639
+ if basering is None:
1640
+ basering = self.base_ring()
1641
+ codomain = Multizetas(basering)
1642
+ return (-1)**w.count(1) * codomain(iterated_to_composition(w))
1643
+
1644
+ def dual_on_basis(self, w):
1645
+ """
1646
+ Return the order of the word and exchange letters 0 and 1.
1647
+
1648
+ This is an involution.
1649
+
1650
+ INPUT:
1651
+
1652
+ - ``w`` -- a word in 0 and 1
1653
+
1654
+ EXAMPLES::
1655
+
1656
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1657
+ sage: M = Multizetas_iterated(QQ)
1658
+ sage: x = Word((1,0,1,0,0))
1659
+ sage: M.dual_on_basis(x)
1660
+ -I(11010)
1661
+ """
1662
+ rev = [1 - x for x in reversed(w)]
1663
+ image = self._monomial(self.basis().keys()(rev, check=False))
1664
+ return -image if len(w) % 2 else image
1665
+
1666
+ def degree_on_basis(self, w):
1667
+ """
1668
+ Return the degree of the monomial ``w``.
1669
+
1670
+ This is the length of the word.
1671
+
1672
+ INPUT:
1673
+
1674
+ - ``w`` -- a word in 0 and 1
1675
+
1676
+ EXAMPLES::
1677
+
1678
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1679
+ sage: M = Multizetas_iterated(QQ)
1680
+ sage: x = Word((1,0,1,0,0))
1681
+ sage: M.degree_on_basis(x)
1682
+ 5
1683
+ """
1684
+ return ZZ(len(w))
1685
+
1686
+ def D_on_basis(self, k, w):
1687
+ """
1688
+ Return the action of the operator `D_k` on the monomial ``w``.
1689
+
1690
+ This is one main tool in the procedure that allows
1691
+ to map the algebra of multiple zeta values to
1692
+ the F Ring.
1693
+
1694
+ INPUT:
1695
+
1696
+ - ``k`` -- an odd integer, at least 3
1697
+
1698
+ - ``w`` -- a word in 0 and 1
1699
+
1700
+ EXAMPLES::
1701
+
1702
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1703
+ sage: M = Multizetas_iterated(QQ)
1704
+ sage: M.D_on_basis(3,(1,1,1,0,0))
1705
+ I(110) # I(10) + 2*I(100) # I(10)
1706
+
1707
+ sage: M.D_on_basis(3,(1,0,1,0,0))
1708
+ 3*I(100) # I(10)
1709
+ sage: M.D_on_basis(5,(1,0,0,0,1,0,0,1,0,0))
1710
+ 10*I(10000) # I(10100)
1711
+ """
1712
+ Im = All_iterated(self.base_ring())
1713
+ MZV_MZV = self.tensor_square()
1714
+ N = len(w)
1715
+ it = [0] + list(w) + [1]
1716
+ coprod = MZV_MZV.zero()
1717
+ for p in range(N + 1 - k):
1718
+ left = Im(it[p: p + k + 2])
1719
+ right = Im(it[:p + 1] + it[p + k + 1:])
1720
+ if left and right:
1721
+ coprod += left.regularise().tensor(right.regularise())
1722
+ return coprod
1723
+
1724
+ def D(self, k):
1725
+ """
1726
+ Return the operator `D_k`.
1727
+
1728
+ INPUT:
1729
+
1730
+ - ``k`` -- an odd integer, at least 3
1731
+
1732
+ EXAMPLES::
1733
+
1734
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1735
+ sage: M = Multizetas_iterated(QQ)
1736
+ sage: D3 = M.D(3)
1737
+ sage: elt = M((1,0,1,0,0)) + 2 * M((1,1,0,0,1,0))
1738
+ sage: D3(elt)
1739
+ -6*I(100) # I(110) + 3*I(100) # I(10)
1740
+ """
1741
+ def map_on_basis(elt):
1742
+ return self.D_on_basis(k, elt)
1743
+ cod = Multizetas_iterated(self.base_ring()).tensor_square()
1744
+ return self.module_morphism(map_on_basis, position=0,
1745
+ codomain=cod)
1746
+
1747
+ @cached_method
1748
+ def phi_extended(self, w):
1749
+ r"""
1750
+ Return the image of the monomial ``w`` by the morphism ``phi``.
1751
+
1752
+ INPUT:
1753
+
1754
+ - ``w`` -- a word in 0 and 1
1755
+
1756
+ OUTPUT: an element in the auxiliary F-algebra
1757
+
1758
+ The coefficients are in the base ring.
1759
+
1760
+ EXAMPLES::
1761
+
1762
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1763
+ sage: M = Multizetas_iterated(QQ)
1764
+ sage: M.phi_extended((1,0))
1765
+ -f2
1766
+ sage: M.phi_extended((1,0,0))
1767
+ -f3
1768
+ sage: M.phi_extended((1,1,0))
1769
+ f3
1770
+ sage: M.phi_extended((1,0,1,0,0))
1771
+ -11/2*f5 + 3*f2*f3
1772
+
1773
+ More complicated examples::
1774
+
1775
+ sage: from sage.modular.multiple_zeta import composition_to_iterated
1776
+ sage: M.phi_extended(composition_to_iterated((4,3)))
1777
+ -18*f7 + 10*f2*f5 + 2/5*f2^2*f3
1778
+
1779
+ sage: M.phi_extended(composition_to_iterated((3,4)))
1780
+ 17*f7 - 10*f2*f5
1781
+
1782
+ sage: M.phi_extended(composition_to_iterated((4,2)))
1783
+ -2*f3f3 + 10/21*f2^3
1784
+ sage: M.phi_extended(composition_to_iterated((3,5)))
1785
+ -5*f5f3
1786
+ sage: M.phi_extended(composition_to_iterated((3,7)))
1787
+ -6*f5f5 - 14*f7f3
1788
+
1789
+ sage: M.phi_extended(composition_to_iterated((3,3,2)))
1790
+ 9*f3f5 - 9/2*f5f3 - 4*f2*f3f3 - 793/875*f2^4
1791
+
1792
+ TESTS::
1793
+
1794
+ sage: M.phi_extended(tuple())
1795
+ 1
1796
+ """
1797
+ # this is now hardcoded
1798
+ # prec = 1024
1799
+ F = F_algebra(self.base_ring())
1800
+ f = F.gen
1801
+ if not w:
1802
+ return F.one()
1803
+ N = len(w)
1804
+ compo = tuple(iterated_to_composition(w))
1805
+ if compo in B_data[N]:
1806
+ # do not forget the sign
1807
+ return (-1)**len(compo) * phi_on_multiplicative_basis(compo)
1808
+ u = compute_u_on_basis(w)
1809
+ rho_inverse_u = rho_inverse(u)
1810
+ xi = self.composition_on_basis(w, QQ)
1811
+ c_xi = (xi - rho_inverse_u)._numerical_approx_pari()
1812
+ c_xi /= Multizeta(N)._numerical_approx_pari()
1813
+ c_xi = c_xi.bestappr().sage() # in QQ
1814
+ return u + c_xi * f(N)
1815
+
1816
+ @lazy_attribute
1817
+ def phi(self):
1818
+ """
1819
+ Return the morphism ``phi``.
1820
+
1821
+ This sends multiple zeta values to the auxiliary F-algebra.
1822
+
1823
+ EXAMPLES::
1824
+
1825
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1826
+ sage: M = Multizetas_iterated(QQ)
1827
+ sage: m = Multizeta(1,0,1,0) + 2*Multizeta(1,1,0,0); m
1828
+ 2*I(1100) + I(1010)
1829
+ sage: M.phi(m)
1830
+ 1/2*f2^2
1831
+
1832
+ sage: Z = Multizeta
1833
+ sage: B5 = [3*Z(1,4) + 2*Z(2,3) + Z(3,2), 3*Z(1,4) + Z(2,3)]
1834
+ sage: [M.phi(b.iterated()) for b in B5]
1835
+ [-1/2*f5 + f2*f3, 1/2*f5]
1836
+
1837
+ sage: B6 = [6*Z(1,5) + 3*Z(2,4) + Z(3,3),
1838
+ ....: 6*Z(1,1,4) + 4*Z(1,2,3) + 2*Z(1,3,2) + 2*Z(2,1,3) + Z(2,2,2)]
1839
+ sage: [M.phi(b.iterated()) for b in B6]
1840
+ [f3f3, 1/6*f2^3]
1841
+ """
1842
+ cod = F_algebra(self.base_ring())
1843
+ return self.module_morphism(self.phi_extended, codomain=cod)
1844
+
1845
+ def _element_constructor_(self, x):
1846
+ r"""
1847
+ Convert ``x`` into ``self``.
1848
+
1849
+ INPUT:
1850
+
1851
+ - ``x`` -- either a list, tuple, word or a multiple zeta value
1852
+
1853
+ EXAMPLES::
1854
+
1855
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1856
+ sage: M = Multizetas_iterated(QQ)
1857
+ sage: x = Word((1,0,1,0,0))
1858
+ sage: M(x)
1859
+ I(10100)
1860
+ sage: y = M((1,1,0,0)); y
1861
+ I(1100)
1862
+ sage: y == M(y)
1863
+ True
1864
+ """
1865
+ if isinstance(x, (str, (FiniteWord_class, tuple, list))):
1866
+ if x:
1867
+ assert all(letter in (0, 1) for letter in x), 'bad letter'
1868
+ assert x[0] == 1, 'bad first letter, should be 1'
1869
+ assert x[-1] == 0, 'bad last letter, should be 0'
1870
+ W = self.basis().keys()
1871
+ if isinstance(x, list):
1872
+ x = tuple(x)
1873
+ return self._monomial(W(x, check=False))
1874
+
1875
+ P = x.parent()
1876
+ if isinstance(P, Multizetas_iterated):
1877
+ if P is self:
1878
+ return x
1879
+ if P is not self.base_ring():
1880
+ return self.element_class(self, x.monomial_coefficients())
1881
+ elif isinstance(P, Multizetas):
1882
+ return x.iterated()
1883
+
1884
+ R = self.base_ring()
1885
+ # coercion via base ring
1886
+ x = R(x)
1887
+ if x == 0:
1888
+ return self.element_class(self, {})
1889
+ return self.from_base_ring_from_one_basis(x)
1890
+
1891
+ class Element(CombinatorialFreeModule.Element):
1892
+ def simplify(self):
1893
+ """
1894
+ Gather terms using the duality relations.
1895
+
1896
+ This can help to lower the number of monomials.
1897
+
1898
+ EXAMPLES::
1899
+
1900
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1901
+ sage: M = Multizetas_iterated(QQ)
1902
+ sage: z = 4*M((1,0,0)) + 3*M((1,1,0))
1903
+ sage: z.simplify()
1904
+ I(100)
1905
+ """
1906
+ summing = self.parent().sum_of_terms
1907
+ return summing(minimize_term(w, cf)
1908
+ for w, cf in self.monomial_coefficients().items())
1909
+
1910
+ def coproduct(self):
1911
+ """
1912
+ Return the coproduct of ``self``.
1913
+
1914
+ EXAMPLES::
1915
+
1916
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1917
+ sage: M = Multizetas_iterated(QQ)
1918
+ sage: a = 3*Multizeta(1,3) + Multizeta(2,3)
1919
+ sage: a.iterated().coproduct()
1920
+ 3*I() # I(1100) + I() # I(10100) + I(10100) # I() + 3*I(100) # I(10)
1921
+ """
1922
+ return self.parent().coproduct(self)
1923
+
1924
+ def composition(self):
1925
+ """
1926
+ Convert to the algebra of multiple zeta values of composition style.
1927
+
1928
+ This means the algebra :class:`Multizetas`.
1929
+
1930
+ EXAMPLES::
1931
+
1932
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1933
+ sage: M = Multizetas_iterated(QQ)
1934
+ sage: x = M((1,0,1,0))
1935
+ sage: x.composition()
1936
+ ζ(2,2)
1937
+ sage: x = M((1,0,1,0,0))
1938
+ sage: x.composition()
1939
+ ζ(2,3)
1940
+ sage: x = M((1,0,1,0,0,1,0))
1941
+ sage: x.composition()
1942
+ -ζ(2,3,2)
1943
+ """
1944
+ return self.parent().composition(self)
1945
+
1946
+ def numerical_approx(self, prec=None, digits=None, algorithm=None):
1947
+ """
1948
+ Return a numerical approximation as a sage real.
1949
+
1950
+ EXAMPLES::
1951
+
1952
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1953
+ sage: M = Multizetas_iterated(QQ)
1954
+ sage: x = M((1,0,1,0))
1955
+ sage: y = M((1, 0, 0))
1956
+ sage: (3*x+y).n() # indirect doctest
1957
+ 1.23317037269047
1958
+ """
1959
+ return self.composition().numerical_approx(prec=prec, digits=digits, algorithm=algorithm)
1960
+
1961
+ def phi(self):
1962
+ """
1963
+ Return the image of ``self`` by the morphism ``phi``.
1964
+
1965
+ This sends multiple zeta values to the auxiliary F-algebra.
1966
+
1967
+ EXAMPLES::
1968
+
1969
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1970
+ sage: M = Multizetas_iterated(QQ)
1971
+ sage: M((1,1,0)).phi()
1972
+ f3
1973
+ """
1974
+ return self.parent().phi(self)
1975
+
1976
+ def __bool__(self) -> bool:
1977
+ r"""
1978
+ TESTS::
1979
+
1980
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
1981
+ sage: M = Multizetas_iterated(QQ)
1982
+ sage: bool(M(0))
1983
+ False
1984
+ sage: bool(M(1))
1985
+ True
1986
+ sage: bool(M((1,0,0)))
1987
+ True
1988
+ """
1989
+ P = self.parent()
1990
+ deg = P.degree_on_basis
1991
+ phi = P.phi
1992
+ for d in sorted({deg(w) for w in self.support()}):
1993
+ z = self.homogeneous_component(d)
1994
+ if not phi(z).is_zero():
1995
+ return True
1996
+ return False
1997
+
1998
+ def is_zero(self) -> bool:
1999
+ r"""
2000
+ Return whether this element is zero.
2001
+
2002
+ EXAMPLES::
2003
+
2004
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
2005
+ sage: M = Multizetas_iterated(QQ)
2006
+ sage: M(0).is_zero()
2007
+ True
2008
+ sage: M(1).is_zero()
2009
+ False
2010
+ sage: (M((1,1,0)) - -M((1,0,0))).is_zero()
2011
+ True
2012
+ """
2013
+ return not self
2014
+
2015
+ def _richcmp_(self, other, op) -> bool:
2016
+ """
2017
+ Test for equality.
2018
+
2019
+ This means equality as motivic multiple zeta value, computed
2020
+ using the morphism ``phi``.
2021
+
2022
+ EXAMPLES::
2023
+
2024
+ sage: from sage.modular.multiple_zeta import Multizetas_iterated
2025
+ sage: M = Multizetas_iterated(QQ)
2026
+ sage: M((1,1,0)) == -M((1,0,0))
2027
+ True
2028
+
2029
+ sage: M = Multizetas(QQ)
2030
+ sage: a = 28*M((3,9))+150*M((5,7))+168*M((7,5))
2031
+ sage: b = 5197/691*M((12,))
2032
+ sage: a.iterated() == b.iterated() # not tested, long time (20s)
2033
+ True
2034
+ """
2035
+ if op not in [op_EQ, op_NE]:
2036
+ raise TypeError('invalid comparison for multizetas')
2037
+ return (self - other).is_zero() == (op == op_EQ)
2038
+
2039
+
2040
+ class All_iterated(CombinatorialFreeModule):
2041
+ r"""
2042
+ Auxiliary class for multiple zeta value as generalized iterated integrals.
2043
+
2044
+ This is used to represent multiple zeta values as possibly
2045
+ divergent iterated integrals
2046
+ of the differential forms `\omega_0 = dt/t` and `\omega_1 = dt/(t-1)`.
2047
+
2048
+ This means that the elements are symbols
2049
+ `I(a_0 ; a_1,a_2,...a_n ; a_{n+1})`
2050
+ where all arguments, including the starting and ending points
2051
+ can be 0 or 1.
2052
+
2053
+ This comes with a "regularise" method mapping
2054
+ to :class:`Multizetas_iterated`.
2055
+
2056
+ EXAMPLES::
2057
+
2058
+ sage: from sage.modular.multiple_zeta import All_iterated
2059
+ sage: M = All_iterated(QQ); M
2060
+ Space of motivic multiple zeta values as general iterated integrals
2061
+ over Rational Field
2062
+ sage: M((0,1,0,1))
2063
+ I(0;10;1)
2064
+ sage: x = M((1,1,0,0)); x
2065
+ I(1;10;0)
2066
+ sage: x.regularise()
2067
+ -I(10)
2068
+ """
2069
+ def __init__(self, R) -> None:
2070
+ """
2071
+ TESTS::
2072
+
2073
+ sage: from sage.modular.multiple_zeta import All_iterated
2074
+ sage: M = All_iterated(QQ)
2075
+ sage: TestSuite(M).run() # not tested
2076
+ """
2077
+ if R not in Rings():
2078
+ raise TypeError("argument R must be a ring")
2079
+ CombinatorialFreeModule.__init__(self, R, Words10, prefix='I')
2080
+
2081
+ def _repr_(self) -> str:
2082
+ """
2083
+ Return a string representation of the module.
2084
+
2085
+ EXAMPLES::
2086
+
2087
+ sage: from sage.modular.multiple_zeta import All_iterated
2088
+ sage: M = All_iterated(QQ); M
2089
+ Space of motivic multiple zeta values as general iterated integrals over Rational Field
2090
+ """
2091
+ txt = "Space of motivic multiple zeta values as general iterated integrals over {}"
2092
+ return txt.format(self.base_ring())
2093
+
2094
+ def _repr_term(self, m) -> str:
2095
+ """
2096
+ Return a custom string representation for the monomials.
2097
+
2098
+ EXAMPLES::
2099
+
2100
+ sage: from sage.modular.multiple_zeta import All_iterated
2101
+ sage: M = All_iterated(QQ)
2102
+ sage: x = Word((1,0,1,0,0))
2103
+ sage: M(x) # indirect doctest
2104
+ I(1;010;0)
2105
+ """
2106
+ start = str(m[0])
2107
+ end = str(m[-1])
2108
+ mid = ''.join(str(letter) for letter in m[1:-1])
2109
+ return "I(" + start + ";" + mid + ";" + end + ")"
2110
+
2111
+ def _element_constructor_(self, x):
2112
+ r"""
2113
+ Convert ``x`` into ``self``.
2114
+
2115
+ INPUT:
2116
+
2117
+ - ``x`` -- either a list, tuple, word
2118
+
2119
+ EXAMPLES::
2120
+
2121
+ sage: from sage.modular.multiple_zeta import All_iterated
2122
+ sage: M = All_iterated(QQ)
2123
+ sage: y = M((1,1,0,0)); y
2124
+ I(1;10;0)
2125
+ sage: y == M(y)
2126
+ True
2127
+
2128
+ sage: M((1,0,1,0,1))
2129
+ 0
2130
+ sage: M((1,0,0,0,0))
2131
+ 0
2132
+ """
2133
+ if not isinstance(x, (FiniteWord_class, tuple, list)):
2134
+ raise TypeError('invalid input for building iterated integral')
2135
+ if not x:
2136
+ return self.zero()
2137
+ if any(letter not in (0, 1) for letter in x):
2138
+ raise ValueError('bad letter')
2139
+
2140
+ W = self.basis().keys()
2141
+ w = W(x, check=False)
2142
+ # condition R1 of F. Brown
2143
+ if w[0] == w[-1] or (len(w) >= 4 and
2144
+ all(x == w[1] for x in w[2:-1])):
2145
+ return self.zero()
2146
+ return self._monomial(w)
2147
+
2148
+ def dual_on_basis(self, w):
2149
+ """
2150
+ Reverse the word and exchange the letters 0 and 1.
2151
+
2152
+ This is the operation R4 in [Brown2012]_.
2153
+
2154
+ This should be used only when `a_0 = 0` and `a_{n+1} = 1`.
2155
+
2156
+ EXAMPLES::
2157
+
2158
+ sage: from sage.modular.multiple_zeta import All_iterated
2159
+ sage: M = All_iterated(QQ)
2160
+ sage: x = Word((0,0,1,0,1))
2161
+ sage: M.dual_on_basis(x)
2162
+ I(0;010;1)
2163
+ sage: x = Word((0,1,0,1,1))
2164
+ sage: M.dual_on_basis(x)
2165
+ -I(0;010;1)
2166
+ """
2167
+ W = self.basis().keys()
2168
+ if w[-2] == 0:
2169
+ return self._monomial(w)
2170
+ rev = [1 - x for x in reversed(w)]
2171
+ image = self._monomial(W(rev, check=False))
2172
+ return -image if len(w) % 2 else image
2173
+
2174
+ @lazy_attribute
2175
+ def dual(self):
2176
+ """
2177
+ Reverse words and exchange the letters 0 and 1.
2178
+
2179
+ This is the operation R4 in [Brown2012]_.
2180
+
2181
+ This should be used only when `a_0 = 0` and `a_{n+1} = 1`.
2182
+
2183
+ EXAMPLES::
2184
+
2185
+ sage: from sage.modular.multiple_zeta import All_iterated
2186
+ sage: M = All_iterated(QQ)
2187
+ sage: x = Word((0,0,1,1,1))
2188
+ sage: y = Word((0,0,1,0,1))
2189
+ sage: M.dual(M(x)+5*M(y))
2190
+ 5*I(0;010;1) - I(0;001;1)
2191
+ """
2192
+ return self.module_morphism(self.dual_on_basis, codomain=self)
2193
+
2194
+ def reversal_on_basis(self, w):
2195
+ """
2196
+ Reverse the word if necessary.
2197
+
2198
+ This is the operation R3 in [Brown2012]_.
2199
+
2200
+ This reverses the word only if `a_0 = 0` and `a_{n+1} = 1`.
2201
+
2202
+ EXAMPLES::
2203
+
2204
+ sage: from sage.modular.multiple_zeta import All_iterated
2205
+ sage: M = All_iterated(QQ)
2206
+ sage: x = Word((1,0,1,0,0))
2207
+ sage: M.reversal_on_basis(x)
2208
+ -I(0;010;1)
2209
+ sage: x = Word((0,0,1,1,1))
2210
+ sage: M.reversal_on_basis(x)
2211
+ I(0;011;1)
2212
+ """
2213
+ if w[0] == 0 and w[-1] == 1:
2214
+ return self._monomial(w)
2215
+ W = self.basis().keys()
2216
+ image = self._monomial(W(list(reversed(w)), check=False))
2217
+ return -image if len(w) % 2 else image
2218
+
2219
+ @lazy_attribute
2220
+ def reversal(self):
2221
+ """
2222
+ Reverse words if necessary.
2223
+
2224
+ This is the operation R3 in [Brown2012]_.
2225
+
2226
+ This reverses the word only if `a_0 = 0` and `a_{n+1} = 1`.
2227
+
2228
+ EXAMPLES::
2229
+
2230
+ sage: from sage.modular.multiple_zeta import All_iterated
2231
+ sage: M = All_iterated(QQ)
2232
+ sage: x = Word((1,0,1,0,0))
2233
+ sage: y = Word((0,0,1,1,1))
2234
+ sage: M.reversal(M(x)+2*M(y))
2235
+ 2*I(0;011;1) - I(0;010;1)
2236
+ """
2237
+ return self.module_morphism(self.reversal_on_basis, codomain=self)
2238
+
2239
+ def expand_on_basis(self, w):
2240
+ """
2241
+ Perform an expansion as a linear combination.
2242
+
2243
+ This is the operation R2 in [Brown2012]_.
2244
+
2245
+ This should be used only when `a_0 = 0` and `a_{n+1} = 1`.
2246
+
2247
+ EXAMPLES::
2248
+
2249
+ sage: from sage.modular.multiple_zeta import All_iterated
2250
+ sage: M = All_iterated(QQ)
2251
+ sage: x = Word((0,0,1,0,1))
2252
+ sage: M.expand_on_basis(x)
2253
+ -2*I(0;100;1)
2254
+
2255
+ sage: x = Word((0,0,0,1,0,1,0,0,1))
2256
+ sage: M.expand_on_basis(x)
2257
+ 6*I(0;1010000;1) + 6*I(0;1001000;1) + 3*I(0;1000100;1)
2258
+
2259
+ sage: x = Word((0,1,1,0,1))
2260
+ sage: M.expand_on_basis(x)
2261
+ I(0;110;1)
2262
+ """
2263
+ if w[1] == 1:
2264
+ return self._monomial(w)
2265
+
2266
+ W = self.basis().keys()
2267
+ n_zeros = []
2268
+ k = 0
2269
+ for x in w[1:-1]:
2270
+ if x == 0:
2271
+ k += 1
2272
+ else:
2273
+ n_zeros.append(k)
2274
+ k = 1
2275
+ n_zeros.append(k)
2276
+ k = n_zeros[0]
2277
+ n_zeros = n_zeros[1:]
2278
+ r = len(n_zeros)
2279
+
2280
+ resu = self.zero()
2281
+ for idx in IntegerVectors(k, r):
2282
+ coeff = ZZ.prod(ZZ(nj + ij - 1).binomial(ij)
2283
+ for nj, ij in zip(n_zeros, idx))
2284
+ indice = [0]
2285
+ for nj, ij in zip(n_zeros, idx):
2286
+ indice += [1] + [0] * (nj + ij - 1)
2287
+ resu += coeff * self._monomial(W(tuple(indice + [1]),
2288
+ check=False))
2289
+ return (-1)**k * resu # attention au signe
2290
+
2291
+ @lazy_attribute
2292
+ def expand(self):
2293
+ """
2294
+ Perform an expansion as a linear combination.
2295
+
2296
+ This is the operation R2 in [Brown2012]_.
2297
+
2298
+ This should be used only when `a_0 = 0` and `a_{n+1} = 1`.
2299
+
2300
+ EXAMPLES::
2301
+
2302
+ sage: from sage.modular.multiple_zeta import All_iterated
2303
+ sage: M = All_iterated(QQ)
2304
+ sage: x = Word((0,0,1,0,1))
2305
+ sage: y = Word((0,0,1,1,1))
2306
+ sage: M.expand(M(x)+2*M(y))
2307
+ -2*I(0;110;1) - 2*I(0;101;1) - 2*I(0;100;1)
2308
+ sage: M.expand(M([0,1,1,0,1]))
2309
+ I(0;110;1)
2310
+ sage: M.expand(M([0,1,0,0,1]))
2311
+ I(0;100;1)
2312
+ """
2313
+ return self.module_morphism(self.expand_on_basis, codomain=self)
2314
+
2315
+ class Element(CombinatorialFreeModule.Element):
2316
+ def conversion(self):
2317
+ """
2318
+ Conversion to the :class:`Multizetas_iterated`.
2319
+
2320
+ This assumed that the element has been prepared.
2321
+
2322
+ Not to be used directly.
2323
+
2324
+ EXAMPLES::
2325
+
2326
+ sage: from sage.modular.multiple_zeta import All_iterated
2327
+ sage: M = All_iterated(QQ)
2328
+ sage: x = Word((0,1,0,0,1))
2329
+ sage: y = M(x).conversion(); y
2330
+ I(100)
2331
+ sage: y.parent()
2332
+ Algebra of motivic multiple zeta values as convergent iterated
2333
+ integrals over Rational Field
2334
+ """
2335
+ M = Multizetas_iterated(self.parent().base_ring())
2336
+ return M.sum_of_terms((w[1:-1], cf) for w, cf in self)
2337
+
2338
+ def regularise(self):
2339
+ """
2340
+ Conversion to the :class:`Multizetas_iterated`.
2341
+
2342
+ This is the regularisation procedure, done in several steps.
2343
+
2344
+ EXAMPLES::
2345
+
2346
+ sage: from sage.modular.multiple_zeta import All_iterated
2347
+ sage: M = All_iterated(QQ)
2348
+ sage: x = Word((0,0,1,0,1))
2349
+ sage: M(x).regularise()
2350
+ -2*I(100)
2351
+ sage: x = Word((0,1,1,0,1))
2352
+ sage: M(x).regularise()
2353
+ I(110)
2354
+
2355
+ sage: x = Word((1,0,1,0,0))
2356
+ sage: M(x).regularise()
2357
+ 2*I(100)
2358
+ """
2359
+ P = self.parent()
2360
+ step1 = P.reversal(self) # R3
2361
+ step2 = P.expand(step1) # R2
2362
+ step3 = P.dual(step2) # R4
2363
+ step4 = P.expand(step3) # R2
2364
+ return step4.conversion() # dans Multizetas_iterated
2365
+
2366
+
2367
+ # **************** procedures after F. Brown ************
2368
+
2369
+ def coeff_phi(w):
2370
+ """
2371
+ Return the coefficient of `f_k` in the image by ``phi``.
2372
+
2373
+ INPUT:
2374
+
2375
+ - ``w`` -- a word in 0 and 1 with `k` letters (where `k` is odd)
2376
+
2377
+ OUTPUT: a rational number
2378
+
2379
+ EXAMPLES::
2380
+
2381
+ sage: from sage.modular.multiple_zeta import coeff_phi
2382
+ sage: coeff_phi(Word([1,0,0]))
2383
+ -1
2384
+ sage: coeff_phi(Word([1,1,0]))
2385
+ 1
2386
+ sage: coeff_phi(Word([1,1,0,1,0]))
2387
+ 11/2
2388
+ sage: coeff_phi(Word([1,1,0,0,0,1,0]))
2389
+ 109/16
2390
+ """
2391
+ if all(x == 0 for x in w[1:]):
2392
+ return -1 # beware the sign
2393
+ k = len(w)
2394
+ assert k % 2
2395
+ M = Multizetas_iterated(QQ)
2396
+ z = M.phi_extended(w)
2397
+ W = z.parent().basis().keys()
2398
+ w = W((0, [k]))
2399
+ return z.coefficient(w) # in QQ
2400
+
2401
+
2402
+ def phi_on_multiplicative_basis(compo):
2403
+ """
2404
+ Compute ``phi`` on one single multiple zeta value.
2405
+
2406
+ INPUT:
2407
+
2408
+ - ``compo`` -- a composition (in the hardcoded multiplicative base)
2409
+
2410
+ OUTPUT: an element in :func:`F_ring` with rational coefficients
2411
+
2412
+ EXAMPLES::
2413
+
2414
+ sage: from sage.modular.multiple_zeta import phi_on_multiplicative_basis
2415
+ sage: phi_on_multiplicative_basis((2,))
2416
+ f2
2417
+ sage: phi_on_multiplicative_basis((3,))
2418
+ f3
2419
+ """
2420
+ f = F_algebra(QQ).gen
2421
+
2422
+ if tuple(compo) == (2,):
2423
+ return f(2)
2424
+
2425
+ if len(compo) == 1:
2426
+ n, = compo
2427
+ return f(n)
2428
+
2429
+ return compute_u_on_compo(compo)
2430
+
2431
+
2432
+ def phi_on_basis(L):
2433
+ """
2434
+ Compute the value of phi on the hardcoded basis.
2435
+
2436
+ INPUT:
2437
+
2438
+ - ``L`` -- list of compositions; each composition in the hardcoded basis
2439
+
2440
+ This encodes a product of multiple zeta values.
2441
+
2442
+ OUTPUT: an element in :func:`F_ring`
2443
+
2444
+ EXAMPLES::
2445
+
2446
+ sage: from sage.modular.multiple_zeta import phi_on_basis
2447
+ sage: phi_on_basis([(3,),(3,)])
2448
+ 2*f3f3
2449
+ sage: phi_on_basis([(2,),(2,)])
2450
+ f2^2
2451
+ sage: phi_on_basis([(2,),(3,),(3,)])
2452
+ 2*f2*f3f3
2453
+ """
2454
+ F = F_algebra(QQ)
2455
+ return F.prod(phi_on_multiplicative_basis(compo) for compo in L)
2456
+
2457
+
2458
+ def D_on_compo(k, compo):
2459
+ """
2460
+ Return the value of the operator `D_k` on a multiple zeta value.
2461
+
2462
+ This is now only used as a place to keep many doctests.
2463
+
2464
+ INPUT:
2465
+
2466
+ - ``k`` -- an odd integer
2467
+
2468
+ - ``compo`` -- a composition
2469
+
2470
+ EXAMPLES::
2471
+
2472
+ sage: from sage.modular.multiple_zeta import D_on_compo
2473
+ sage: D_on_compo(3,(2,3))
2474
+ 3*I(100) # I(10)
2475
+
2476
+ sage: D_on_compo(3,(4,3))
2477
+ I(100) # I(1000)
2478
+ sage: D_on_compo(5,(4,3))
2479
+ 10*I(10000) # I(10)
2480
+
2481
+ sage: [D_on_compo(k, [3,5]) for k in (3,5,7)]
2482
+ [0, -5*I(10000) # I(100), 0]
2483
+
2484
+ sage: [D_on_compo(k, [3,7]) for k in (3,5,7,9)]
2485
+ [0, -6*I(10000) # I(10000), -14*I(1000000) # I(100), 0]
2486
+
2487
+ sage: D_on_compo(3,(4,3,3))
2488
+ -I(100) # I(1000100)
2489
+ sage: D_on_compo(5,(4,3,3))
2490
+ -10*I(10000) # I(10100)
2491
+ sage: D_on_compo(7,(4,3,3))
2492
+ 4*I(1001000) # I(100) + 2*I(1000100) # I(100)
2493
+
2494
+ sage: [D_on_compo(k,(1,3,1,3,1,3)) for k in range(3,10,2)]
2495
+ [0, 0, 0, 0]
2496
+ """
2497
+ it = composition_to_iterated(compo)
2498
+ M = Multizetas_iterated(QQ)
2499
+ return (-1)**len(compo) * M.D_on_basis(k, it)
2500
+
2501
+
2502
+ def compute_u_on_compo(compo):
2503
+ r"""
2504
+ Compute the value of the map ``u`` on a multiple zeta value.
2505
+
2506
+ INPUT:
2507
+
2508
+ - ``compo`` -- a composition
2509
+
2510
+ OUTPUT: an element of :func:`F_ring` over `\QQ`
2511
+
2512
+ EXAMPLES::
2513
+
2514
+ sage: from sage.modular.multiple_zeta import compute_u_on_compo
2515
+ sage: compute_u_on_compo((2,4))
2516
+ 2*f3f3
2517
+ sage: compute_u_on_compo((2,3,2))
2518
+ -11/2*f2*f5
2519
+ sage: compute_u_on_compo((3,2,3,2))
2520
+ -75/4*f3f7 + 81/4*f5f5 + 75/8*f7f3 + 11*f2*f3f5 - 9*f2*f5f3
2521
+ """
2522
+ it = composition_to_iterated(compo)
2523
+ return (-1)**len(compo) * compute_u_on_basis(it)
2524
+
2525
+
2526
+ def compute_u_on_basis(w):
2527
+ r"""
2528
+ Compute the value of ``u`` on a multiple zeta value.
2529
+
2530
+ INPUT:
2531
+
2532
+ - ``w`` -- a word in 0,1
2533
+
2534
+ OUTPUT: an element of :func:`F_ring` over `\QQ`
2535
+
2536
+ EXAMPLES::
2537
+
2538
+ sage: from sage.modular.multiple_zeta import compute_u_on_basis
2539
+ sage: compute_u_on_basis((1,0,0,0,1,0))
2540
+ -2*f3f3
2541
+
2542
+ sage: compute_u_on_basis((1,1,1,0,0))
2543
+ f2*f3
2544
+
2545
+ sage: compute_u_on_basis((1,0,0,1,0,0,0,0))
2546
+ -5*f5f3
2547
+
2548
+ sage: compute_u_on_basis((1,0,1,0,0,1,0))
2549
+ 11/2*f2*f5
2550
+
2551
+ sage: compute_u_on_basis((1,0,0,1,0,1,0,0,1,0))
2552
+ -75/4*f3f7 + 81/4*f5f5 + 75/8*f7f3 + 11*f2*f3f5 - 9*f2*f5f3
2553
+ """
2554
+ M = Multizetas_iterated(QQ)
2555
+ F = F_algebra(QQ)
2556
+ N = len(w)
2557
+ xi_dict = {}
2558
+ for k in range(3, N, 2):
2559
+ xi_dict[k] = F.sum(cf * coeff_phi(ww[0]) * M.phi_extended(tuple(ww[1]))
2560
+ for ww, cf in M.D_on_basis(k, w))
2561
+ return F.sum(F.half_product(F.gen(k), xi_dict[k])
2562
+ for k in range(3, N, 2))
2563
+
2564
+
2565
+ @cached_function
2566
+ def rho_matrix_inverse(n):
2567
+ """
2568
+ Return the matrix of the inverse of ``rho``.
2569
+
2570
+ This is the matrix in the chosen bases, namely the hardcoded basis
2571
+ of multiple zeta values and the natural basis of the F ring.
2572
+
2573
+ INPUT:
2574
+
2575
+ - ``n`` -- integer
2576
+
2577
+ EXAMPLES::
2578
+
2579
+ sage: from sage.modular.multiple_zeta import rho_matrix_inverse
2580
+ sage: rho_matrix_inverse(3)
2581
+ [1]
2582
+ sage: rho_matrix_inverse(8)
2583
+ [-1/5 0 0 0]
2584
+ [ 1/5 1 0 0]
2585
+ [ 0 0 1/2 0]
2586
+ [ 0 0 0 1]
2587
+ """
2588
+ base = extend_multiplicative_basis(B_data, n)
2589
+ resu = []
2590
+ for b in base:
2591
+ phi_b = phi_on_basis(b)
2592
+ resu.append(phi_b.homogeneous_to_vector())
2593
+ dN = len(resu)
2594
+ return ~matrix(QQ, dN, dN, resu)
2595
+
2596
+
2597
+ def rho_inverse(elt):
2598
+ """
2599
+ Return the image by the inverse of ``rho``.
2600
+
2601
+ INPUT:
2602
+
2603
+ - ``elt`` -- an homogeneous element of the F ring
2604
+
2605
+ OUTPUT: a linear combination of multiple zeta values
2606
+
2607
+ EXAMPLES::
2608
+
2609
+ sage: from sage.modular.multiple_zeta import rho_inverse
2610
+ sage: from sage.modular.multiple_zeta_F_algebra import F_algebra
2611
+ sage: A = F_algebra(QQ)
2612
+ sage: f = A.gen
2613
+ sage: rho_inverse(f(3))
2614
+ ζ(3)
2615
+ sage: rho_inverse(f(9))
2616
+ ζ(9)
2617
+ sage: rho_inverse(A("53"))
2618
+ -1/5*ζ(3,5)
2619
+ """
2620
+ pa = elt.parent()
2621
+ BR = pa.base_ring().base_ring()
2622
+ M_BR = Multizetas(BR)
2623
+ if elt == pa.zero():
2624
+ return M_BR.zero()
2625
+
2626
+ pw, _ = next(iter(elt))
2627
+ p, w = pw
2628
+ N = 2 * p + sum(int(c) for c in w)
2629
+
2630
+ v = elt.homogeneous_to_vector()
2631
+ w = v * rho_matrix_inverse(N)
2632
+ return sum(cf * b for cf, b in zip(w, M_BR.basis_data(BR, N)))