passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
  2. passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
  3. passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
  4. passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
  5. passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
  6. passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
  7. passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
  8. sage/all__sagemath_graphs.py +39 -0
  9. sage/combinat/abstract_tree.py +2723 -0
  10. sage/combinat/all__sagemath_graphs.py +34 -0
  11. sage/combinat/binary_tree.py +5306 -0
  12. sage/combinat/cluster_algebra_quiver/all.py +22 -0
  13. sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
  14. sage/combinat/cluster_algebra_quiver/interact.py +124 -0
  15. sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
  16. sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
  17. sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
  18. sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
  19. sage/combinat/designs/MOLS_handbook_data.py +570 -0
  20. sage/combinat/designs/all.py +58 -0
  21. sage/combinat/designs/bibd.py +1655 -0
  22. sage/combinat/designs/block_design.py +1071 -0
  23. sage/combinat/designs/covering_array.py +269 -0
  24. sage/combinat/designs/covering_design.py +530 -0
  25. sage/combinat/designs/database.py +5615 -0
  26. sage/combinat/designs/design_catalog.py +122 -0
  27. sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  28. sage/combinat/designs/designs_pyx.pxd +21 -0
  29. sage/combinat/designs/designs_pyx.pyx +993 -0
  30. sage/combinat/designs/difference_family.py +3951 -0
  31. sage/combinat/designs/difference_matrices.py +279 -0
  32. sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  33. sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
  34. sage/combinat/designs/ext_rep.py +1064 -0
  35. sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
  36. sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
  37. sage/combinat/designs/group_divisible_designs.py +361 -0
  38. sage/combinat/designs/incidence_structures.py +2357 -0
  39. sage/combinat/designs/latin_squares.py +581 -0
  40. sage/combinat/designs/orthogonal_arrays.py +2244 -0
  41. sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
  42. sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
  43. sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
  44. sage/combinat/designs/resolvable_bibd.py +815 -0
  45. sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
  46. sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
  47. sage/combinat/designs/subhypergraph_search.pyx +530 -0
  48. sage/combinat/designs/twographs.py +306 -0
  49. sage/combinat/finite_state_machine.py +14874 -0
  50. sage/combinat/finite_state_machine_generators.py +2006 -0
  51. sage/combinat/graph_path.py +448 -0
  52. sage/combinat/interval_posets.py +3908 -0
  53. sage/combinat/nu_tamari_lattice.py +269 -0
  54. sage/combinat/ordered_tree.py +1446 -0
  55. sage/combinat/posets/all.py +46 -0
  56. sage/combinat/posets/bubble_shuffle.py +247 -0
  57. sage/combinat/posets/cartesian_product.py +493 -0
  58. sage/combinat/posets/d_complete.py +182 -0
  59. sage/combinat/posets/elements.py +273 -0
  60. sage/combinat/posets/forest.py +30 -0
  61. sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
  62. sage/combinat/posets/hasse_cython.pyx +174 -0
  63. sage/combinat/posets/hasse_diagram.py +3672 -0
  64. sage/combinat/posets/hochschild_lattice.py +158 -0
  65. sage/combinat/posets/incidence_algebras.py +794 -0
  66. sage/combinat/posets/lattices.py +5117 -0
  67. sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
  68. sage/combinat/posets/linear_extension_iterator.pyx +292 -0
  69. sage/combinat/posets/linear_extensions.py +1037 -0
  70. sage/combinat/posets/mobile.py +275 -0
  71. sage/combinat/posets/moebius_algebra.py +776 -0
  72. sage/combinat/posets/poset_examples.py +2178 -0
  73. sage/combinat/posets/posets.py +9360 -0
  74. sage/combinat/rooted_tree.py +1070 -0
  75. sage/combinat/shard_order.py +239 -0
  76. sage/combinat/tamari_lattices.py +384 -0
  77. sage/combinat/yang_baxter_graph.py +923 -0
  78. sage/databases/all__sagemath_graphs.py +1 -0
  79. sage/databases/knotinfo_db.py +1231 -0
  80. sage/ext_data/all__sagemath_graphs.py +1 -0
  81. sage/ext_data/graphs/graph_plot_js.html +330 -0
  82. sage/ext_data/kenzo/CP2.txt +45 -0
  83. sage/ext_data/kenzo/CP3.txt +349 -0
  84. sage/ext_data/kenzo/CP4.txt +4774 -0
  85. sage/ext_data/kenzo/README.txt +49 -0
  86. sage/ext_data/kenzo/S4.txt +20 -0
  87. sage/graphs/all.py +42 -0
  88. sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
  89. sage/graphs/asteroidal_triples.pyx +320 -0
  90. sage/graphs/base/all.py +1 -0
  91. sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  92. sage/graphs/base/boost_graph.pxd +106 -0
  93. sage/graphs/base/boost_graph.pyx +3045 -0
  94. sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  95. sage/graphs/base/c_graph.pxd +106 -0
  96. sage/graphs/base/c_graph.pyx +5096 -0
  97. sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  98. sage/graphs/base/dense_graph.pxd +28 -0
  99. sage/graphs/base/dense_graph.pyx +801 -0
  100. sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
  101. sage/graphs/base/graph_backends.pxd +5 -0
  102. sage/graphs/base/graph_backends.pyx +797 -0
  103. sage/graphs/base/overview.py +85 -0
  104. sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  105. sage/graphs/base/sparse_graph.pxd +90 -0
  106. sage/graphs/base/sparse_graph.pyx +1653 -0
  107. sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  108. sage/graphs/base/static_dense_graph.pxd +5 -0
  109. sage/graphs/base/static_dense_graph.pyx +1032 -0
  110. sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
  111. sage/graphs/base/static_sparse_backend.pxd +27 -0
  112. sage/graphs/base/static_sparse_backend.pyx +1583 -0
  113. sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  114. sage/graphs/base/static_sparse_graph.pxd +37 -0
  115. sage/graphs/base/static_sparse_graph.pyx +1375 -0
  116. sage/graphs/bipartite_graph.py +2732 -0
  117. sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
  118. sage/graphs/centrality.pyx +1038 -0
  119. sage/graphs/cographs.py +519 -0
  120. sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
  121. sage/graphs/comparability.pyx +851 -0
  122. sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  123. sage/graphs/connectivity.pxd +157 -0
  124. sage/graphs/connectivity.pyx +4813 -0
  125. sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
  126. sage/graphs/convexity_properties.pxd +16 -0
  127. sage/graphs/convexity_properties.pyx +870 -0
  128. sage/graphs/digraph.py +4754 -0
  129. sage/graphs/digraph_generators.py +1993 -0
  130. sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
  131. sage/graphs/distances_all_pairs.pxd +12 -0
  132. sage/graphs/distances_all_pairs.pyx +2938 -0
  133. sage/graphs/domination.py +1363 -0
  134. sage/graphs/dot2tex_utils.py +100 -0
  135. sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  136. sage/graphs/edge_connectivity.pyx +1215 -0
  137. sage/graphs/generators/all.py +1 -0
  138. sage/graphs/generators/basic.py +1769 -0
  139. sage/graphs/generators/chessboard.py +538 -0
  140. sage/graphs/generators/classical_geometries.py +1611 -0
  141. sage/graphs/generators/degree_sequence.py +235 -0
  142. sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
  143. sage/graphs/generators/distance_regular.pyx +2846 -0
  144. sage/graphs/generators/families.py +4759 -0
  145. sage/graphs/generators/intersection.py +565 -0
  146. sage/graphs/generators/platonic_solids.py +262 -0
  147. sage/graphs/generators/random.py +2623 -0
  148. sage/graphs/generators/smallgraphs.py +5741 -0
  149. sage/graphs/generators/world_map.py +724 -0
  150. sage/graphs/generic_graph.py +26867 -0
  151. sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  152. sage/graphs/generic_graph_pyx.pxd +34 -0
  153. sage/graphs/generic_graph_pyx.pyx +1673 -0
  154. sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
  155. sage/graphs/genus.pyx +622 -0
  156. sage/graphs/graph.py +9645 -0
  157. sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
  158. sage/graphs/graph_coloring.pyx +2284 -0
  159. sage/graphs/graph_database.py +1177 -0
  160. sage/graphs/graph_decompositions/all.py +1 -0
  161. sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  162. sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
  163. sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
  164. sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
  165. sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  166. sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
  167. sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
  168. sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
  169. sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
  170. sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
  171. sage/graphs/graph_decompositions/graph_products.pyx +508 -0
  172. sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  173. sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
  174. sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
  175. sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  176. sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
  177. sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
  178. sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  179. sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
  180. sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
  181. sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
  182. sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
  183. sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
  184. sage/graphs/graph_editor.py +82 -0
  185. sage/graphs/graph_generators.py +3314 -0
  186. sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  187. sage/graphs/graph_generators_pyx.pyx +95 -0
  188. sage/graphs/graph_input.py +812 -0
  189. sage/graphs/graph_latex.py +2064 -0
  190. sage/graphs/graph_list.py +410 -0
  191. sage/graphs/graph_plot.py +1756 -0
  192. sage/graphs/graph_plot_js.py +338 -0
  193. sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
  194. sage/graphs/hyperbolicity.pyx +1704 -0
  195. sage/graphs/hypergraph_generators.py +364 -0
  196. sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  197. sage/graphs/independent_sets.pxd +13 -0
  198. sage/graphs/independent_sets.pyx +402 -0
  199. sage/graphs/isgci.py +1033 -0
  200. sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
  201. sage/graphs/isoperimetric_inequalities.pyx +489 -0
  202. sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  203. sage/graphs/line_graph.pyx +743 -0
  204. sage/graphs/lovasz_theta.py +77 -0
  205. sage/graphs/matching.py +1633 -0
  206. sage/graphs/matching_covered_graph.py +3590 -0
  207. sage/graphs/orientations.py +1489 -0
  208. sage/graphs/partial_cube.py +459 -0
  209. sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
  210. sage/graphs/path_enumeration.pyx +2040 -0
  211. sage/graphs/pq_trees.py +1129 -0
  212. sage/graphs/print_graphs.py +201 -0
  213. sage/graphs/schnyder.py +865 -0
  214. sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
  215. sage/graphs/spanning_tree.pyx +1457 -0
  216. sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
  217. sage/graphs/strongly_regular_db.pyx +3340 -0
  218. sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
  219. sage/graphs/traversals.pxd +9 -0
  220. sage/graphs/traversals.pyx +1872 -0
  221. sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
  222. sage/graphs/trees.pxd +15 -0
  223. sage/graphs/trees.pyx +310 -0
  224. sage/graphs/tutte_polynomial.py +713 -0
  225. sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
  226. sage/graphs/views.pyx +794 -0
  227. sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
  228. sage/graphs/weakly_chordal.pyx +604 -0
  229. sage/groups/all__sagemath_graphs.py +1 -0
  230. sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
  231. sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
  232. sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
  233. sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
  234. sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
  235. sage/knots/all.py +6 -0
  236. sage/knots/free_knotinfo_monoid.py +507 -0
  237. sage/knots/gauss_code.py +291 -0
  238. sage/knots/knot.py +682 -0
  239. sage/knots/knot_table.py +284 -0
  240. sage/knots/knotinfo.py +2900 -0
  241. sage/knots/link.py +4715 -0
  242. sage/sandpiles/all.py +13 -0
  243. sage/sandpiles/examples.py +225 -0
  244. sage/sandpiles/sandpile.py +6365 -0
  245. sage/topology/all.py +22 -0
  246. sage/topology/cell_complex.py +1214 -0
  247. sage/topology/cubical_complex.py +1976 -0
  248. sage/topology/delta_complex.py +1806 -0
  249. sage/topology/filtered_simplicial_complex.py +744 -0
  250. sage/topology/moment_angle_complex.py +823 -0
  251. sage/topology/simplicial_complex.py +5160 -0
  252. sage/topology/simplicial_complex_catalog.py +92 -0
  253. sage/topology/simplicial_complex_examples.py +1680 -0
  254. sage/topology/simplicial_complex_homset.py +205 -0
  255. sage/topology/simplicial_complex_morphism.py +836 -0
  256. sage/topology/simplicial_set.py +4102 -0
  257. sage/topology/simplicial_set_catalog.py +55 -0
  258. sage/topology/simplicial_set_constructions.py +2954 -0
  259. sage/topology/simplicial_set_examples.py +865 -0
  260. sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,1611 @@
1
+ # sage_setup: distribution = sagemath-graphs
2
+ # sage.doctest: needs sage.modules
3
+ r"""
4
+ Families of graphs derived from classical geometries over finite fields
5
+
6
+ These include graphs of polar spaces, affine polar graphs, graphs
7
+ related to Hermitean unitals, graphs on nonisotropic points, etc.
8
+
9
+ The methods defined here appear in :mod:`sage.graphs.graph_generators`.
10
+ """
11
+
12
+ # ****************************************************************************
13
+ # Copyright (C) 2015 Sagemath project
14
+ #
15
+ # This program is free software: you can redistribute it and/or modify
16
+ # it under the terms of the GNU General Public License as published by
17
+ # the Free Software Foundation, either version 2 of the License, or
18
+ # (at your option) any later version.
19
+ # https://www.gnu.org/licenses/
20
+ # ****************************************************************************
21
+
22
+ from sage.graphs.graph import Graph
23
+ from sage.arith.misc import is_prime_power
24
+ from sage.rings.finite_rings.finite_field_constructor import FiniteField
25
+
26
+
27
+ def SymplecticPolarGraph(d, q, algorithm=None):
28
+ r"""
29
+ Return the Symplectic Polar Graph `Sp(d,q)`.
30
+
31
+ The Symplectic Polar Graph `Sp(d,q)` is built from a projective space of
32
+ dimension `d-1` over a field `F_q`, and a symplectic form `f`. Two vertices
33
+ `u,v` are made adjacent if `f(u,v)=0`.
34
+
35
+ See the page `on symplectic graphs on Andries Brouwer's website
36
+ <https://www.win.tue.nl/~aeb/graphs/Sp.html>`_.
37
+
38
+ INPUT:
39
+
40
+ - ``d``, ``q`` -- integers; note that only even values of `d` are accepted
41
+ by the function
42
+
43
+ - ``algorithm`` -- string (default: ``None``); if set to ``'gap'``, then the
44
+ computation is carried via GAP library interface, computing totally
45
+ singular subspaces, which is faster for `q>3`. Otherwise it is done
46
+ directly.
47
+
48
+ EXAMPLES:
49
+
50
+ Computation of the spectrum of `Sp(6,2)`::
51
+
52
+ sage: g = graphs.SymplecticPolarGraph(6, 2)
53
+ sage: g.is_strongly_regular(parameters=True)
54
+ (63, 30, 13, 15)
55
+ sage: set(g.spectrum()) == {-5, 3, 30} # needs sage.rings.number_field
56
+ True
57
+
58
+ The parameters of `Sp(4,q)` are the same as of `O(5,q)`, but they are
59
+ not isomorphic if `q` is odd::
60
+
61
+ sage: G = graphs.SymplecticPolarGraph(4, 3)
62
+ sage: G.is_strongly_regular(parameters=True)
63
+ (40, 12, 2, 4)
64
+
65
+ sage: # needs sage.libs.gap
66
+ sage: O = graphs.OrthogonalPolarGraph(5, 3)
67
+ sage: O.is_strongly_regular(parameters=True)
68
+ (40, 12, 2, 4)
69
+ sage: O.is_isomorphic(G)
70
+ False
71
+ sage: S = graphs.SymplecticPolarGraph(6, 4, algorithm='gap') # not tested (long time)
72
+ sage: S.is_strongly_regular(parameters=True) # not tested (long time)
73
+ (1365, 340, 83, 85)
74
+
75
+ TESTS::
76
+
77
+ sage: graphs.SymplecticPolarGraph(4,4,algorithm='gap').is_strongly_regular(parameters=True) # needs sage.libs.gap
78
+ (85, 20, 3, 5)
79
+ sage: graphs.SymplecticPolarGraph(4,4).is_strongly_regular(parameters=True) # needs sage.libs.pari
80
+ (85, 20, 3, 5)
81
+ sage: graphs.SymplecticPolarGraph(4,4,algorithm='blah')
82
+ Traceback (most recent call last):
83
+ ...
84
+ ValueError: unknown algorithm!
85
+ """
86
+ if d < 1 or d % 2:
87
+ raise ValueError("d must be even and greater than 2")
88
+
89
+ if algorithm == "gap": # faster for larger (q>3) fields
90
+ from sage.libs.gap.libgap import libgap
91
+ G = _polar_graph(d, q, libgap.SymplecticGroup(d, q))
92
+
93
+ elif algorithm is None: # faster for small (q<4) fields
94
+ from sage.modules.free_module import VectorSpace
95
+ from sage.schemes.projective.projective_space import ProjectiveSpace
96
+ from sage.matrix.constructor import identity_matrix, block_matrix, zero_matrix
97
+
98
+ F = FiniteField(q, "x")
99
+ M = block_matrix(F, 2, 2,
100
+ [zero_matrix(F, d/2),
101
+ identity_matrix(F, d/2),
102
+ -identity_matrix(F, d/2),
103
+ zero_matrix(F, d/2)])
104
+
105
+ V = VectorSpace(F, d)
106
+ PV = list(ProjectiveSpace(d - 1, F))
107
+ G = Graph([[tuple(_) for _ in PV], lambda x, y: V(x)*(M*V(y)) == 0], loops=False)
108
+
109
+ else:
110
+ raise ValueError("unknown algorithm!")
111
+
112
+ G.name("Symplectic Polar Graph Sp({},{})".format(d, q))
113
+ G.relabel()
114
+ return G
115
+
116
+
117
+ def AffineOrthogonalPolarGraph(d, q, sign='+'):
118
+ r"""
119
+ Return the affine polar graph `VO^+(d,q),VO^-(d,q)` or `VO(d,q)`.
120
+
121
+ Affine Polar graphs are built from a `d`-dimensional vector space over
122
+ `F_q`, and a quadratic form which is hyperbolic, elliptic or parabolic
123
+ according to the value of ``sign``.
124
+
125
+ Note that `VO^+(d,q),VO^-(d,q)` are strongly regular graphs, while `VO(d,q)`
126
+ is not.
127
+
128
+ For more information on Affine Polar graphs, see `Affine Polar Graphs page
129
+ of Andries Brouwer's website <https://www.win.tue.nl/~aeb/graphs/VO.html>`_.
130
+
131
+ INPUT:
132
+
133
+ - ``d`` -- integer; ``d`` must be even if ``sign is not None``, and odd
134
+ otherwise
135
+
136
+ - ``q`` -- integer; a power of a prime number, as `F_q` must exist
137
+
138
+ - ``sign`` -- string (default: ``'+'``); must be equal to ``'+'``, ``'-'``,
139
+ or ``None`` to compute (respectively) `VO^+(d,q),VO^-(d,q)` or
140
+ `VO(d,q)`
141
+
142
+ .. NOTE::
143
+
144
+ The graph `VO^\epsilon(d,q)` is the graph induced by the
145
+ non-neighbors of a vertex in an :meth:`Orthogonal Polar Graph
146
+ <OrthogonalPolarGraph>` `O^\epsilon(d+2,q)`.
147
+
148
+ EXAMPLES:
149
+
150
+ The :meth:`Brouwer-Haemers graph <BrouwerHaemersGraph>` is isomorphic to
151
+ `VO^-(4,3)`::
152
+
153
+ sage: g = graphs.AffineOrthogonalPolarGraph(4,3,"-") # needs sage.libs.gap
154
+ sage: g.is_isomorphic(graphs.BrouwerHaemersGraph()) # needs sage.libs.gap
155
+ True
156
+
157
+ Some examples from `Brouwer's table or strongly regular graphs
158
+ <https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html>`_::
159
+
160
+ sage: # needs sage.libs.gap
161
+ sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"-"); g
162
+ Affine Polar Graph VO^-(6,2): Graph on 64 vertices
163
+ sage: g.is_strongly_regular(parameters=True)
164
+ (64, 27, 10, 12)
165
+ sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"+"); g
166
+ Affine Polar Graph VO^+(6,2): Graph on 64 vertices
167
+ sage: g.is_strongly_regular(parameters=True)
168
+ (64, 35, 18, 20)
169
+
170
+ When ``sign is None``::
171
+
172
+ sage: # needs sage.libs.gap
173
+ sage: g = graphs.AffineOrthogonalPolarGraph(5,2,None); g
174
+ Affine Polar Graph VO^-(5,2): Graph on 32 vertices
175
+ sage: g.is_strongly_regular(parameters=True)
176
+ False
177
+ sage: g.is_regular()
178
+ True
179
+ sage: g.is_vertex_transitive()
180
+ True
181
+ """
182
+ if sign in ["+", "-"]:
183
+ s = 1 if sign == "+" else -1
184
+ if d % 2:
185
+ raise ValueError("d must be even when sign is not None")
186
+ else:
187
+ if not d % 2:
188
+ raise ValueError("d must be odd when sign is None")
189
+ s = 0
190
+
191
+ from sage.modules.free_module import VectorSpace
192
+ from sage.matrix.constructor import Matrix
193
+ from sage.libs.gap.libgap import libgap
194
+ from itertools import combinations
195
+
196
+ M = Matrix(libgap.InvariantQuadraticForm(libgap.GeneralOrthogonalGroup(s, d, q))['matrix'])
197
+ F = libgap.GF(q).sage()
198
+ V = list(VectorSpace(F, d))
199
+
200
+ G = Graph()
201
+ G.add_vertices([tuple(_) for _ in V])
202
+ for x, y in combinations(V, 2):
203
+ if not (x - y)*M*(x - y):
204
+ G.add_edge(tuple(x), tuple(y))
205
+
206
+ G.name("Affine Polar Graph VO^" + str('+' if s == 1 else '-') + "(" + str(d) + "," + str(q) + ")")
207
+ G.relabel()
208
+ return G
209
+
210
+
211
+ def _orthogonal_polar_graph(m, q, sign='+', point_type=[0]):
212
+ r"""
213
+ A helper function to build ``OrthogonalPolarGraph`` and ``NO2,3,5`` graphs.
214
+
215
+ See the `page of
216
+ Andries Brouwer's website <https://www.win.tue.nl/~aeb/graphs/srghub.html>`_.
217
+
218
+ INPUT:
219
+
220
+ - ``m``, ``q`` -- integers; `q` must be a prime power
221
+
222
+ - ``sign`` -- string (default: ``'+'``); must be ``'+'`` or ``'-'`` if `m`
223
+ is even, ``'+'`` (default) otherwise
224
+
225
+ - ``point_type`` -- list of elements from `F_q`
226
+
227
+ EXAMPLES:
228
+
229
+ Petersen graph::
230
+
231
+ sage: from sage.graphs.generators.classical_geometries import _orthogonal_polar_graph
232
+ sage: g = _orthogonal_polar_graph(3,5,point_type=[2,3]) # needs sage.libs.gap
233
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
234
+ (10, 3, 0, 1)
235
+
236
+ A locally Petersen graph (a.k.a. Doro graph, a.k.a. Hall graph)::
237
+
238
+ sage: g = _orthogonal_polar_graph(4,5,'-',point_type=[2,3]) # needs sage.libs.gap
239
+ sage: g.is_distance_regular(parameters=True) # needs sage.libs.gap
240
+ ([10, 6, 4, None], [None, 1, 2, 5])
241
+
242
+ Various big and slow to build graphs:
243
+
244
+ `NO^+(7,3)`::
245
+
246
+ sage: g = _orthogonal_polar_graph(7,3,point_type=[1]) # not tested (long time)
247
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
248
+ (378, 117, 36, 36)
249
+
250
+ `NO^-(7,3)`::
251
+
252
+ sage: g = _orthogonal_polar_graph(7,3,point_type=[-1]) # not tested (long time)
253
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
254
+ (351, 126, 45, 45)
255
+
256
+ `NO^+(6,3)`::
257
+
258
+ sage: g = _orthogonal_polar_graph(6,3,point_type=[1]) # needs sage.libs.gap
259
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
260
+ (117, 36, 15, 9)
261
+
262
+ `NO^-(6,3)`::
263
+
264
+ sage: g = _orthogonal_polar_graph(6,3,'-',point_type=[1]) # needs sage.libs.gap
265
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
266
+ (126, 45, 12, 18)
267
+
268
+ `NO^{-,\perp}(5,5)`::
269
+
270
+ sage: g = _orthogonal_polar_graph(5,5,point_type=[2,3]) # long time, needs sage.libs.gap
271
+ sage: g.is_strongly_regular(parameters=True) # long time, needs sage.libs.gap
272
+ (300, 65, 10, 15)
273
+
274
+ `NO^{+,\perp}(5,5)`::
275
+
276
+ sage: g = _orthogonal_polar_graph(5,5,point_type=[1,-1]) # not tested (long time)
277
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
278
+ (325, 60, 15, 10)
279
+
280
+ TESTS::
281
+
282
+ sage: # needs sage.libs.gap
283
+ sage: g = _orthogonal_polar_graph(5,3,point_type=[-1])
284
+ sage: g.is_strongly_regular(parameters=True)
285
+ (45, 12, 3, 3)
286
+ sage: g = _orthogonal_polar_graph(5,3,point_type=[1])
287
+ sage: g.is_strongly_regular(parameters=True)
288
+ (36, 15, 6, 6)
289
+ """
290
+ from sage.schemes.projective.projective_space import ProjectiveSpace
291
+ from sage.modules.free_module_element import free_module_element as vector
292
+ from sage.matrix.constructor import Matrix
293
+ from sage.libs.gap.libgap import libgap
294
+
295
+ if not m % 2:
296
+ if sign != "+" and sign != "-":
297
+ raise ValueError("sign must be equal to either '-' or '+' when "
298
+ "m is even")
299
+ else:
300
+ if sign != "" and sign != "+":
301
+ raise ValueError("sign must be equal to either '' or '+' when "
302
+ "m is odd")
303
+ sign = ""
304
+
305
+ e = {'+': 1,
306
+ '-': -1,
307
+ '': 0}[sign]
308
+
309
+ M = Matrix(libgap.InvariantQuadraticForm(libgap.GeneralOrthogonalGroup(e, m, q))['matrix'])
310
+ Fq = libgap.GF(q).sage()
311
+ PG = [vector(s) for s in ProjectiveSpace(m - 1, Fq)]
312
+
313
+ for v in PG:
314
+ v.set_immutable()
315
+
316
+ def F(x):
317
+ return x*M*x
318
+
319
+ if not q % 2:
320
+ def P(x, y):
321
+ return F(x - y)
322
+ else:
323
+ def P(x, y):
324
+ return x*M*y + y*M*x
325
+
326
+ V = [x for x in PG if F(x) in point_type]
327
+
328
+ G = Graph([V, lambda x, y: P(x, y) == 0], loops=False)
329
+
330
+ G.relabel()
331
+ return G
332
+
333
+
334
+ def OrthogonalPolarGraph(m, q, sign='+'):
335
+ r"""
336
+ Return the Orthogonal Polar Graph `O^{\epsilon}(m,q)`.
337
+
338
+ For more information on Orthogonal Polar graphs, see the `page of Andries
339
+ Brouwer's website <https://www.win.tue.nl/~aeb/graphs/srghub.html>`_.
340
+
341
+ INPUT:
342
+
343
+ - ``m``, ``q`` -- integers; `q` must be a prime power
344
+
345
+ - ``sign`` -- string (default: ``'+'``); must be ``'+'`` or ``'-'`` if `m`
346
+ is even, ``'+'`` (default) otherwise
347
+
348
+ EXAMPLES::
349
+
350
+ sage: # needs sage.libs.gap
351
+ sage: G = graphs.OrthogonalPolarGraph(6,3,"+"); G
352
+ Orthogonal Polar Graph O^+(6, 3): Graph on 130 vertices
353
+ sage: G.is_strongly_regular(parameters=True)
354
+ (130, 48, 20, 16)
355
+ sage: G = graphs.OrthogonalPolarGraph(6,3,"-"); G
356
+ Orthogonal Polar Graph O^-(6, 3): Graph on 112 vertices
357
+ sage: G.is_strongly_regular(parameters=True)
358
+ (112, 30, 2, 10)
359
+ sage: G = graphs.OrthogonalPolarGraph(5,3); G
360
+ Orthogonal Polar Graph O(5, 3): Graph on 40 vertices
361
+ sage: G.is_strongly_regular(parameters=True)
362
+ (40, 12, 2, 4)
363
+ sage: G = graphs.OrthogonalPolarGraph(8,2,"+"); G
364
+ Orthogonal Polar Graph O^+(8, 2): Graph on 135 vertices
365
+ sage: G.is_strongly_regular(parameters=True)
366
+ (135, 70, 37, 35)
367
+ sage: G = graphs.OrthogonalPolarGraph(8,2,"-"); G
368
+ Orthogonal Polar Graph O^-(8, 2): Graph on 119 vertices
369
+ sage: G.is_strongly_regular(parameters=True)
370
+ (119, 54, 21, 27)
371
+
372
+ TESTS::
373
+
374
+ sage: G = graphs.OrthogonalPolarGraph(4,3,"") # needs sage.libs.gap
375
+ Traceback (most recent call last):
376
+ ...
377
+ ValueError: sign must be equal to either '-' or '+' when m is even
378
+ sage: G = graphs.OrthogonalPolarGraph(5,3,"-") # needs sage.libs.gap
379
+ Traceback (most recent call last):
380
+ ...
381
+ ValueError: sign must be equal to either '' or '+' when m is odd
382
+ """
383
+ G = _orthogonal_polar_graph(m, q, sign=sign)
384
+ if m % 2:
385
+ sign = ""
386
+ G.name("Orthogonal Polar Graph O" + ("^" + sign if sign else "") + str((m, q)))
387
+ return G
388
+
389
+
390
+ def NonisotropicOrthogonalPolarGraph(m, q, sign='+', perp=None):
391
+ r"""
392
+ Return the Graph `NO^{\epsilon,\perp}_{m}(q)`.
393
+
394
+ Let the vectorspace of dimension `m` over `F_q` be endowed with a
395
+ nondegenerate quadratic form `F`, of type ``sign`` for `m` even.
396
+
397
+ * `m` even: assume further that `q=2` or `3`. Returns the graph of the
398
+ points (in the underlying projective space) `x` satisfying `F(x)=1`, with
399
+ adjacency given by orthogonality w.r.t. `F`. Parameter ``perp`` is
400
+ ignored.
401
+
402
+ * `m` odd: if ``perp`` is not ``None``, then we assume that `q=5` and return
403
+ the graph of the points `x` satisfying `F(x)=\pm 1` if ``sign="+"``,
404
+ respectively `F(x) \in \{2,3\}` if ``sign="-"``, with adjacency given by
405
+ orthogonality w.r.t. `F` (cf. Sect 7.D of [BL1984]_). Otherwise return
406
+ the graph of nongenerate hyperplanes of type ``sign``, adjacent whenever
407
+ the intersection is degenerate (cf. Sect. 7.C of [BL1984]_).
408
+ Note that for `q=2` one will get a complete graph.
409
+
410
+ For more information, see Sect. 9.9 of [BH2012]_ and [BL1984]_. Note that
411
+ the `page of Andries Brouwer's website
412
+ <https://www.win.tue.nl/~aeb/graphs/srghub.html>`_ uses different notation.
413
+
414
+ INPUT:
415
+
416
+ - ``m`` -- integer; half the dimension of the underlying vectorspace
417
+
418
+ - ``q`` -- a power of a prime number, the size of the underlying field
419
+
420
+ - ``sign`` -- string (default: ``'+'``); must be either ``'+'`` or ``'-'``
421
+
422
+ EXAMPLES:
423
+
424
+ `NO^-(4,2)` is isomorphic to Petersen graph::
425
+
426
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(4,2,'-'); g # needs sage.libs.gap
427
+ NO^-(4, 2): Graph on 10 vertices
428
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
429
+ (10, 3, 0, 1)
430
+
431
+ `NO^-(6,2)` and `NO^+(6,2)`::
432
+
433
+ sage: # needs sage.libs.gap
434
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,2,'-')
435
+ sage: g.is_strongly_regular(parameters=True)
436
+ (36, 15, 6, 6)
437
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,2,'+'); g
438
+ NO^+(6, 2): Graph on 28 vertices
439
+ sage: g.is_strongly_regular(parameters=True)
440
+ (28, 15, 6, 10)
441
+
442
+ `NO^+(8,2)`::
443
+
444
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(8,2,'+') # needs sage.libs.gap
445
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
446
+ (120, 63, 30, 36)
447
+
448
+ Wilbrink's graphs for `q=5`::
449
+
450
+ sage: # needs sage.libs.gap
451
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,5,perp=1)
452
+ sage: g.is_strongly_regular(parameters=True) # long time
453
+ (325, 60, 15, 10)
454
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,5,'-',perp=1)
455
+ sage: g.is_strongly_regular(parameters=True) # long time
456
+ (300, 65, 10, 15)
457
+
458
+ Wilbrink's graphs::
459
+
460
+ sage: # needs sage.libs.gap
461
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,4,'+')
462
+ sage: g.is_strongly_regular(parameters=True)
463
+ (136, 75, 42, 40)
464
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,4,'-')
465
+ sage: g.is_strongly_regular(parameters=True)
466
+ (120, 51, 18, 24)
467
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(7,4,'+'); g # not tested (long time)
468
+ NO^+(7, 4): Graph on 2080 vertices
469
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
470
+ (2080, 1071, 558, 544)
471
+
472
+ TESTS::
473
+
474
+ sage: # needs sage.libs.gap
475
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(4,2); g
476
+ NO^+(4, 2): Graph on 6 vertices
477
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(4,3,'-')
478
+ sage: g.is_strongly_regular(parameters=True)
479
+ (15, 6, 1, 3)
480
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(3,5,'-',perp=1); g
481
+ NO^-,perp(3, 5): Graph on 10 vertices
482
+ sage: g.is_strongly_regular(parameters=True)
483
+ (10, 3, 0, 1)
484
+
485
+ sage: # long time, needs sage.libs.gap
486
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,3,'+')
487
+ sage: g.is_strongly_regular(parameters=True)
488
+ (117, 36, 15, 9)
489
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,3,'-'); g
490
+ NO^-(6, 3): Graph on 126 vertices
491
+ sage: g.is_strongly_regular(parameters=True)
492
+ (126, 45, 12, 18)
493
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,5,'-')
494
+ sage: g.is_strongly_regular(parameters=True)
495
+ (300, 104, 28, 40)
496
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,5,'+')
497
+ sage: g.is_strongly_regular(parameters=True)
498
+ (325, 144, 68, 60)
499
+
500
+ sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,4,'+')
501
+ Traceback (most recent call last):
502
+ ...
503
+ ValueError: for m even q must be 2 or 3
504
+ """
505
+ p, k = is_prime_power(q, get_data=True)
506
+ if not k:
507
+ raise ValueError('q must be a prime power')
508
+ dec = ''
509
+ if not m % 2:
510
+ if q in [2, 3]:
511
+ G = _orthogonal_polar_graph(m, q, sign=sign, point_type=[1])
512
+ else:
513
+ raise ValueError("for m even q must be 2 or 3")
514
+ elif perp is not None:
515
+ if q == 5:
516
+ pt = [-1, 1] if sign == '+' else [2, 3] if sign == '-' else []
517
+ G = _orthogonal_polar_graph(m, q, point_type=pt)
518
+ dec = ",perp"
519
+ else:
520
+ raise ValueError("for perp not None q must be 5")
521
+ else:
522
+ if sign not in ['+', '-']:
523
+ raise ValueError("sign must be '+' or '-'")
524
+ from sage.libs.gap.libgap import libgap
525
+ g0 = libgap.GeneralOrthogonalGroup(m, q)
526
+ g = libgap.Group(libgap.List(g0.GeneratorsOfGroup(), libgap.TransposedMat))
527
+ F = libgap.GF(q) # F_q
528
+ W = libgap.FullRowSpace(F, m) # F_q^m
529
+ e = 1 if sign == '+' else -1
530
+ n = (m - 1)/2
531
+ # we build (q^n(q^n+e)/2, (q^n-e)(q^(n-1)+e), 2(q^(2n-2)-1)+eq^(n-1)(q-1),
532
+ # 2q^(n-1)(q^(n-1)+e))-srg
533
+ # **use** v and k to select appropriate orbit and orbital
534
+ nvert = (q**n)*(q**n + e)/2 # v
535
+ deg = (q**n - e)*(q**(n - 1) + e) # k
536
+ S = [libgap.Elements(libgap.Basis(x))[0]
537
+ for x in libgap.Elements(libgap.Subspaces(W, 1))]
538
+ (V,) = (x for x in libgap.Orbits(g, S, libgap.OnLines)
539
+ if len(x) == nvert)
540
+ gp = libgap.Action(g, V, libgap.OnLines) # make a permutation group
541
+ h = libgap.Stabilizer(gp, 1)
542
+ (Vh,) = (x for x in libgap.Orbits(h, libgap.Orbit(gp, 1))
543
+ if len(x) == deg)
544
+ Vh = Vh[0]
545
+ L = libgap.Orbit(gp, [1, Vh], libgap.OnSets)
546
+ G = Graph()
547
+ G.add_edges(L)
548
+ G.name("NO^" + sign + dec + str((m, q)))
549
+ return G
550
+
551
+
552
+ def _polar_graph(m, q, g, intersection_size=None):
553
+ r"""
554
+ The helper function to build graphs `(D)U(m,q)` and `(D)Sp(m,q)`.
555
+
556
+ Building a graph on an orbit of a group `g` of `m\times m` matrices over
557
+ `GF(q)` on the points (or subspaces of dimension ``m//2``) isotropic
558
+ w.r.t. the form `F` left invariant by the group `g`.
559
+
560
+ The only constraint is that the first ``m//2`` elements of the standard
561
+ basis must generate a totally isotropic w.r.t. `F` subspace; this is the
562
+ case with these groups coming from GAP; namely, `F` has the anti-diagonal
563
+ all-1 matrix.
564
+
565
+ INPUT:
566
+
567
+ - ``m`` -- the dimension of the underlying vector space
568
+
569
+ - ``q`` -- the size of the field
570
+
571
+ - ``g`` -- the group acting
572
+
573
+ - ``intersection_size`` -- (default: ``None``) if ``None``, build the graph
574
+ on the isotropic points, with adjacency being orthogonality w.r.t. `F`.
575
+ Otherwise, build the graph on the maximal totally isotropic subspaces,
576
+ with adjacency specified by ``intersection_size`` being as given.
577
+
578
+ TESTS::
579
+
580
+ sage: from sage.graphs.generators.classical_geometries import _polar_graph
581
+ sage: _polar_graph(4, 4, libgap.GeneralUnitaryGroup(4, 2)) # needs sage.libs.gap
582
+ Graph on 45 vertices
583
+ sage: _polar_graph(4, 4, libgap.GeneralUnitaryGroup(4, 2), intersection_size=1) # needs sage.libs.gap
584
+ Graph on 27 vertices
585
+ """
586
+ from sage.libs.gap.libgap import libgap
587
+ from itertools import combinations
588
+ W = libgap.FullRowSpace(libgap.GF(q), m) # F_q^m
589
+ B = libgap.Elements(libgap.Basis(W)) # the standard basis of W
590
+ V = libgap.Orbit(g, B[0], libgap.OnLines) # orbit on isotropic points
591
+ gp = libgap.Action(g, V, libgap.OnLines) # make a permutation group
592
+ s = libgap.Subspace(W, [B[i] for i in range(m//2)]) # a totally isotropic subspace
593
+ # and the points there
594
+ sp = [libgap.Elements(libgap.Basis(x))[0] for x in libgap.Elements(s.Subspaces(1))]
595
+ h = libgap.Set([libgap.Position(V, x) for x in sp]) # indices of the points in s
596
+ L = libgap.Orbit(gp, h, libgap.OnSets) # orbit on these subspaces
597
+ if intersection_size is None:
598
+ G = Graph()
599
+ for x in L: # every pair of points in the subspace is adjacent to each other in G
600
+ G.add_edges(combinations(x, 2))
601
+ return G
602
+ else:
603
+ return Graph([L, lambda i, j: libgap.Size(libgap.Intersection(i, j)) == intersection_size],
604
+ loops=False)
605
+
606
+
607
+ def UnitaryPolarGraph(m, q, algorithm='gap'):
608
+ r"""
609
+ Return the Unitary Polar Graph `U(m,q)`.
610
+
611
+ For more information on Unitary Polar graphs, see the `page of Andries
612
+ Brouwer's website <https://www.win.tue.nl/~aeb/graphs/srghub.html>`_.
613
+
614
+ INPUT:
615
+
616
+ - ``m``, ``q`` -- integers; `q` must be a prime power
617
+
618
+ - ``algorithm`` -- string (default: ``'gap'``); if set to ``'gap'`` then the
619
+ computation is carried via GAP library interface, computing totally
620
+ singular subspaces, which is faster for large examples (especially with
621
+ `q>2`). Otherwise it is done directly.
622
+
623
+ EXAMPLES::
624
+
625
+ sage: # needs sage.libs.gap
626
+ sage: G = graphs.UnitaryPolarGraph(4,2); G
627
+ Unitary Polar Graph U(4, 2); GQ(4, 2): Graph on 45 vertices
628
+ sage: G.is_strongly_regular(parameters=True)
629
+ (45, 12, 3, 3)
630
+ sage: graphs.UnitaryPolarGraph(5,2).is_strongly_regular(parameters=True)
631
+ (165, 36, 3, 9)
632
+ sage: graphs.UnitaryPolarGraph(6,2) # not tested (long time)
633
+ Unitary Polar Graph U(6, 2): Graph on 693 vertices
634
+
635
+ TESTS::
636
+
637
+ sage: graphs.UnitaryPolarGraph(4,3, algorithm='gap').is_strongly_regular(parameters=True) # needs sage.libs.gap
638
+ (280, 36, 8, 4)
639
+ sage: graphs.UnitaryPolarGraph(4,3).is_strongly_regular(parameters=True) # needs sage.libs.gap
640
+ (280, 36, 8, 4)
641
+ sage: graphs.UnitaryPolarGraph(4,3, algorithm='foo')
642
+ Traceback (most recent call last):
643
+ ...
644
+ ValueError: unknown algorithm!
645
+ """
646
+ if algorithm == "gap":
647
+ from sage.libs.gap.libgap import libgap
648
+ G = _polar_graph(m, q**2, libgap.GeneralUnitaryGroup(m, q))
649
+
650
+ elif algorithm is None: # slow on large examples
651
+ from sage.schemes.projective.projective_space import ProjectiveSpace
652
+ from sage.modules.free_module_element import free_module_element as vector
653
+ Fq = FiniteField(q**2, 'a')
654
+ PG = map(vector, ProjectiveSpace(m - 1, Fq))
655
+
656
+ for v in PG:
657
+ v.set_immutable()
658
+
659
+ def P(x, y):
660
+ return sum(x[j] * y[m - 1 - j] ** q for j in range(m)) == 0
661
+
662
+ V = [x for x in PG if P(x, x)]
663
+ # bottleneck is here, of course
664
+ G = Graph([V, lambda x, y: P(x, y)], loops=False)
665
+ else:
666
+ raise ValueError("unknown algorithm!")
667
+
668
+ G.relabel()
669
+ G.name("Unitary Polar Graph U" + str((m, q)))
670
+ if m == 4:
671
+ G.name(G.name() + '; GQ' + str((q**2, q)))
672
+ if m == 5:
673
+ G.name(G.name() + '; GQ' + str((q**2, q**3)))
674
+ return G
675
+
676
+
677
+ def NonisotropicUnitaryPolarGraph(m, q):
678
+ r"""
679
+ Return the Graph `NU(m,q)`.
680
+
681
+ This returns the graph on nonisotropic, with respect to a nondegenerate
682
+ Hermitean form, points of the `(m-1)`-dimensional projective space over
683
+ `F_q`, with points adjacent whenever they lie on a tangent (to the set of
684
+ isotropic points) line. For more information, see Sect. 9.9 of [BH2012]_
685
+ and series C14 in [Hub1975]_.
686
+
687
+ INPUT:
688
+
689
+ - ``m``, ``q`` -- integers; `q` must be a prime power
690
+
691
+ EXAMPLES::
692
+
693
+ sage: g = graphs.NonisotropicUnitaryPolarGraph(5,2); g # needs sage.libs.gap
694
+ NU(5, 2): Graph on 176 vertices
695
+ sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
696
+ (176, 135, 102, 108)
697
+
698
+ TESTS::
699
+
700
+ sage: graphs.NonisotropicUnitaryPolarGraph(4,2).is_strongly_regular(parameters=True) # needs sage.libs.gap
701
+ (40, 27, 18, 18)
702
+ sage: graphs.NonisotropicUnitaryPolarGraph(4,3).is_strongly_regular(parameters=True) # long time, needs sage.libs.gap
703
+ (540, 224, 88, 96)
704
+ sage: graphs.NonisotropicUnitaryPolarGraph(6,6)
705
+ Traceback (most recent call last):
706
+ ...
707
+ ValueError: q must be a prime power
708
+ """
709
+ p, k = is_prime_power(q, get_data=True)
710
+ if not k:
711
+ raise ValueError('q must be a prime power')
712
+ from sage.libs.gap.libgap import libgap
713
+ from itertools import combinations
714
+ F = libgap.GF(q**2) # F_{q^2}
715
+ W = libgap.FullRowSpace(F, m) # F_{q^2}^m
716
+ B = libgap.Elements(libgap.Basis(W)) # the standard basis of W
717
+ if m % 2:
718
+ point = B[(m - 1)/2]
719
+ else:
720
+ if p == 2:
721
+ point = B[m/2] + F.PrimitiveRoot()*B[(m - 2)/2]
722
+ else:
723
+ point = B[(m - 2)/2] + B[m/2]
724
+ g = libgap.GeneralUnitaryGroup(m, q)
725
+ V = libgap.Orbit(g, point, libgap.OnLines) # orbit on nonisotropic points
726
+ gp = libgap.Action(g, V, libgap.OnLines) # make a permutation group
727
+
728
+ s = libgap.Subspace(W, [point, point + B[0]]) # a tangent line on point
729
+
730
+ # and the points there
731
+ sp = [libgap.Elements(libgap.Basis(x))[0] for x in libgap.Elements(s.Subspaces(1))]
732
+ h = libgap.Set([libgap.Position(V, x)
733
+ for x in libgap.Intersection(V, sp)]) # indices
734
+ L = libgap.Orbit(gp, h, libgap.OnSets) # orbit on the tangent lines
735
+ G = Graph()
736
+ for x in L: # every pair of points in the subspace is adjacent to each other in G
737
+ G.add_edges(combinations(x, 2))
738
+ G.relabel()
739
+ G.name("NU" + str((m, q)))
740
+ return G
741
+
742
+
743
+ def UnitaryDualPolarGraph(m, q):
744
+ r"""
745
+ Return the Dual Unitary Polar Graph `U(m,q)`.
746
+
747
+ For more information on Unitary Dual Polar graphs, see [BCN1989]_ and
748
+ Sect. 2.3.1 of [Coh1981]_.
749
+
750
+ INPUT:
751
+
752
+ - ``m``, ``q`` -- integers; `q` must be a prime power
753
+
754
+ EXAMPLES:
755
+
756
+ The point graph of a generalized quadrangle (see
757
+ :wikipedia:`Generalized_quadrangle`, [PT2009]_) of order (8,4)::
758
+
759
+ sage: G = graphs.UnitaryDualPolarGraph(5,2); G # long time # needs sage.libs.gap
760
+ Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
761
+ sage: G.is_strongly_regular(parameters=True) # long time # needs sage.libs.gap
762
+ (297, 40, 7, 5)
763
+
764
+ Another way to get the generalized quadrangle of order (2,4)::
765
+
766
+ sage: G = graphs.UnitaryDualPolarGraph(4,2); G # needs sage.libs.gap
767
+ Unitary Dual Polar Graph DU(4, 2); GQ(2, 4): Graph on 27 vertices
768
+ sage: G.is_isomorphic(graphs.OrthogonalPolarGraph(6,2,'-')) # needs sage.libs.gap
769
+ True
770
+
771
+ A bigger graph::
772
+
773
+ sage: G = graphs.UnitaryDualPolarGraph(6,2); G # not tested (long time)
774
+ Unitary Dual Polar Graph DU(6, 2): Graph on 891 vertices
775
+ sage: G.is_distance_regular(parameters=True) # not tested (long time)
776
+ ([42, 40, 32, None], [None, 1, 5, 21])
777
+
778
+ TESTS::
779
+
780
+ sage: graphs.UnitaryDualPolarGraph(6,6) # needs sage.libs.gap
781
+ Traceback (most recent call last):
782
+ ...
783
+ GAPError: Error, <subfield> must be a prime or a finite field
784
+ """
785
+ from sage.libs.gap.libgap import libgap
786
+ G = _polar_graph(m, q**2, libgap.GeneralUnitaryGroup(m, q),
787
+ intersection_size=int((q**(2*(m//2 - 1)) - 1)/(q**2 - 1)))
788
+ G.relabel()
789
+ G.name("Unitary Dual Polar Graph DU" + str((m, q)))
790
+ if m == 4:
791
+ G.name(G.name() + '; GQ' + str((q, q**2)))
792
+ if m == 5:
793
+ G.name(G.name() + '; GQ' + str((q**3, q**2)))
794
+ return G
795
+
796
+
797
+ def SymplecticDualPolarGraph(m, q):
798
+ r"""
799
+ Return the Symplectic Dual Polar Graph `DSp(m,q)`.
800
+
801
+ For more information on Symplectic Dual Polar graphs, see [BCN1989]_ and
802
+ Sect. 2.3.1 of [Coh1981]_.
803
+
804
+ INPUT:
805
+
806
+ - ``m``, ``q`` -- integers; `q` must be a prime power, and `m` must be even
807
+
808
+ EXAMPLES::
809
+
810
+ sage: G = graphs.SymplecticDualPolarGraph(6,3); G # not tested (long time)
811
+ Symplectic Dual Polar Graph DSp(6, 3): Graph on 1120 vertices
812
+ sage: G.is_distance_regular(parameters=True) # not tested (long time)
813
+ ([39, 36, 27, None], [None, 1, 4, 13])
814
+
815
+ TESTS::
816
+
817
+ sage: G = graphs.SymplecticDualPolarGraph(6,2); G # needs sage.libs.gap
818
+ Symplectic Dual Polar Graph DSp(6, 2): Graph on 135 vertices
819
+ sage: G.is_distance_regular(parameters=True) # needs sage.libs.gap
820
+ ([14, 12, 8, None], [None, 1, 3, 7])
821
+ sage: graphs.SymplecticDualPolarGraph(6,6) # needs sage.libs.gap
822
+ Traceback (most recent call last):
823
+ ...
824
+ GAPError: Error, <subfield> must be a prime or a finite field
825
+ """
826
+ from sage.libs.gap.libgap import libgap
827
+ G = _polar_graph(m, q, libgap.SymplecticGroup(m, q),
828
+ intersection_size=int((q**(m/2 - 1) - 1)/(q - 1)))
829
+
830
+ G.relabel()
831
+ G.name("Symplectic Dual Polar Graph DSp" + str((m, q)))
832
+ if m == 4:
833
+ G.name(G.name() + '; GQ' + str((q, q)))
834
+ return G
835
+
836
+
837
+ def TaylorTwographDescendantSRG(q, clique_partition=False):
838
+ r"""
839
+ Return the descendant graph of the Taylor's two-graph for `U_3(q)`, `q` odd.
840
+
841
+ This is a strongly regular graph with parameters
842
+ `(v,k,\lambda,\mu)=(q^3, (q^2+1)(q-1)/2, (q-1)^3/4-1, (q^2+1)(q-1)/4)`
843
+ obtained as a two-graph descendant of the
844
+ :func:`Taylor's two-graph <sage.combinat.designs.twographs.taylor_twograph>` `T`.
845
+ This graph admits a partition into cliques of size `q`, which are useful in
846
+ :func:`~sage.graphs.graph_generators.GraphGenerators.TaylorTwographSRG`,
847
+ a strongly regular graph on `q^3+1` vertices in the
848
+ Seidel switching class of `T`, for which we need `(q^2+1)/2` cliques.
849
+ The cliques are the `q^2` lines on `v_0` of the projective plane containing
850
+ the unital for `U_3(q)`, and intersecting the unital (i.e. the vertices of
851
+ the graph and the point we remove) in `q+1` points. This is all taken from
852
+ §7E of [BL1984]_.
853
+
854
+ INPUT:
855
+
856
+ - ``q`` -- a power of an odd prime number
857
+
858
+ - ``clique_partition`` -- boolean (default: ``False``); when set to
859
+ ``True``, return `q^2-1` cliques of size `q` with empty pairwise
860
+ intersection. (Removing all of them leaves a clique, too), and the point
861
+ removed from the unital.
862
+
863
+ EXAMPLES::
864
+
865
+ sage: # needs sage.rings.finite_rings
866
+ sage: g = graphs.TaylorTwographDescendantSRG(3); g
867
+ Taylor two-graph descendant SRG: Graph on 27 vertices
868
+ sage: g.is_strongly_regular(parameters=True)
869
+ (27, 10, 1, 5)
870
+ sage: from sage.combinat.designs.twographs import taylor_twograph
871
+ sage: T = taylor_twograph(3) # long time
872
+ sage: g.is_isomorphic(T.descendant(T.ground_set()[1])) # long time
873
+ True
874
+ sage: g = graphs.TaylorTwographDescendantSRG(5) # not tested (long time)
875
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
876
+ (125, 52, 15, 26)
877
+
878
+ TESTS::
879
+
880
+ sage: # needs sage.rings.finite_rings
881
+ sage: g,l,_ = graphs.TaylorTwographDescendantSRG(3, clique_partition=True)
882
+ sage: all(g.is_clique(x) for x in l)
883
+ True
884
+ sage: graphs.TaylorTwographDescendantSRG(4)
885
+ Traceback (most recent call last):
886
+ ...
887
+ ValueError: q must be an odd prime power
888
+ sage: graphs.TaylorTwographDescendantSRG(6)
889
+ Traceback (most recent call last):
890
+ ...
891
+ ValueError: q must be an odd prime power
892
+ """
893
+ p, k = is_prime_power(q, get_data=True)
894
+ if not k or p == 2:
895
+ raise ValueError('q must be an odd prime power')
896
+ from sage.schemes.projective.projective_space import ProjectiveSpace
897
+ from sage.rings.finite_rings.integer_mod import mod
898
+ Fq = FiniteField(q**2, 'a')
899
+ PG = map(tuple, ProjectiveSpace(2, Fq))
900
+
901
+ def S(x, y):
902
+ return sum(x[j] * y[2 - j] ** q for j in range(3))
903
+
904
+ V = [x for x in PG if S(x, x) == 0] # the points of the unital
905
+ v0 = V[0]
906
+ V.remove(v0)
907
+ if mod(q, 4) == 1:
908
+ G = Graph([V, lambda y, z: not (S(v0, y)*S(y, z)*S(z, v0)).is_square()], loops=False)
909
+ else:
910
+ G = Graph([V, lambda y, z: (S(v0, y)*S(y, z)*S(z, v0)).is_square()], loops=False)
911
+ G.name("Taylor two-graph descendant SRG")
912
+ if clique_partition:
913
+ lines = [[t for t in V if t[0] + z * t[1] == 0]
914
+ for z in Fq if z]
915
+ return (G, lines, v0)
916
+ else:
917
+ return G
918
+
919
+
920
+ def TaylorTwographSRG(q):
921
+ r"""
922
+ Return a strongly regular graph from the Taylor's two-graph for `U_3(q)`,
923
+ `q` odd
924
+
925
+ This is a strongly regular graph with parameters
926
+ `(v,k,\lambda,\mu)=(q^3+1, q(q^2+1)/2, (q^2+3)(q-1)/4, (q^2+1)(q+1)/4)`
927
+ in the Seidel switching class of
928
+ :func:`Taylor two-graph <sage.combinat.designs.twographs.taylor_twograph>`.
929
+ Details are in §7E of [BL1984]_.
930
+
931
+ INPUT:
932
+
933
+ - ``q`` -- a power of an odd prime number
934
+
935
+ .. SEEALSO::
936
+
937
+ * :meth:`~sage.graphs.graph_generators.GraphGenerators.TaylorTwographDescendantSRG`
938
+
939
+ EXAMPLES::
940
+
941
+ sage: t = graphs.TaylorTwographSRG(3); t # needs sage.rings.finite_rings
942
+ Taylor two-graph SRG: Graph on 28 vertices
943
+ sage: t.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings
944
+ (28, 15, 6, 10)
945
+ """
946
+ G, l, v0 = TaylorTwographDescendantSRG(q, clique_partition=True)
947
+ G.add_vertex(v0)
948
+ G.seidel_switching(sum(l[:(q**2 + 1)/2], []))
949
+ G.name("Taylor two-graph SRG")
950
+ return G
951
+
952
+
953
+ def AhrensSzekeresGeneralizedQuadrangleGraph(q, dual=False):
954
+ r"""
955
+ Return the collinearity graph of the generalized quadrangle `AS(q)`, or of
956
+ its dual
957
+
958
+ Let `q` be an odd prime power. `AS(q)` is a generalized quadrangle
959
+ (:wikipedia:`Generalized_quadrangle`) of
960
+ order `(q-1,q+1)`, see 3.1.5 in [PT2009]_. Its points are elements
961
+ of `F_q^3`, and lines are sets of size `q` of the form
962
+
963
+ * `\{ (\sigma, a, b) \mid \sigma\in F_q \}`
964
+ * `\{ (a, \sigma, b) \mid \sigma\in F_q \}`
965
+ * `\{ (c \sigma^2 - b \sigma + a, -2 c \sigma + b, \sigma) \mid \sigma\in F_q \}`,
966
+
967
+ where `a`, `b`, `c` are arbitrary elements of `F_q`.
968
+
969
+ INPUT:
970
+
971
+ - ``q`` -- a power of an odd prime number
972
+
973
+ - ``dual`` -- boolean (default: ``False``); whether to return the
974
+ collinearity graph of `AS(q)` or of the dual `AS(q)` (when ``True``)
975
+
976
+ EXAMPLES::
977
+
978
+ sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5); g
979
+ AS(5); GQ(4, 6): Graph on 125 vertices
980
+ sage: g.is_strongly_regular(parameters=True)
981
+ (125, 28, 3, 7)
982
+ sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5, dual=True); g
983
+ AS(5)*; GQ(6, 4): Graph on 175 vertices
984
+ sage: g.is_strongly_regular(parameters=True)
985
+ (175, 30, 5, 5)
986
+ """
987
+ from sage.combinat.designs.incidence_structures import IncidenceStructure
988
+ p, k = is_prime_power(q, get_data=True)
989
+ if not k or p == 2:
990
+ raise ValueError('q must be an odd prime power')
991
+ F = FiniteField(q, 'a')
992
+ L = []
993
+ for a in F:
994
+ for b in F:
995
+ L.append(tuple((s, a, b) for s in F))
996
+ L.append(tuple((a, s, b) for s in F))
997
+ for c in F:
998
+ L.append(tuple((c*s**2 - b*s + a, -2*c*s + b, s) for s in F))
999
+ if dual:
1000
+ G = IncidenceStructure(L).intersection_graph()
1001
+ G.name('AS(' + str(q) + ')*; GQ' + str((q + 1, q - 1)))
1002
+ else:
1003
+ G = IncidenceStructure(L).dual().intersection_graph()
1004
+ G.name('AS(' + str(q) + '); GQ' + str((q - 1, q + 1)))
1005
+ return G
1006
+
1007
+
1008
+ def T2starGeneralizedQuadrangleGraph(q, dual=False, hyperoval=None, field=None, check_hyperoval=True):
1009
+ r"""
1010
+ Return the collinearity graph of the generalized quadrangle `T_2^*(q)`, or
1011
+ of its dual
1012
+
1013
+ Let `q=2^k` and `\Theta=PG(3,q)`. `T_2^*(q)` is a generalized quadrangle
1014
+ (:wikipedia:`Generalized_quadrangle`)
1015
+ of order `(q-1,q+1)`, see 3.1.3 in [PT2009]_. Fix a plane `\Pi \subset
1016
+ \Theta` and a
1017
+ `hyperoval <http://en.wikipedia.org/wiki/Oval_(projective_plane)#Even_q>`__
1018
+ `O \subset \Pi`. The points of `T_2^*(q):=T_2^*(O)` are the points of
1019
+ `\Theta` outside `\Pi`, and the lines are the lines of `\Theta` outside
1020
+ `\Pi` that meet `\Pi` in a point of `O`.
1021
+
1022
+ INPUT:
1023
+
1024
+ - ``q`` -- a power of two
1025
+
1026
+ - ``dual`` -- boolean (default: ``False``); whether to return the graph of
1027
+ `T_2^*(O)` or of the dual `T_2^*(O)` (when ``True``)
1028
+
1029
+ - ``hyperoval`` -- a hyperoval (i.e. a complete 2-arc; a set of points in
1030
+ the plane meeting every line in 0 or 2 points) in the plane of points with
1031
+ 0th coordinate 0 in `PG(3,q)` over the field ``field``. Each point of
1032
+ ``hyperoval`` must be a length 4 vector over ``field`` with 1st non-0
1033
+ coordinate equal to 1. By default, ``hyperoval`` and ``field`` are not
1034
+ specified, and constructed on the fly. In particular, ``hyperoval`` we
1035
+ build is the classical one, i.e. a conic with the point of intersection of
1036
+ its tangent lines.
1037
+
1038
+ - ``field`` -- an instance of a finite field of order `q`, must be provided
1039
+ if ``hyperoval`` is provided
1040
+
1041
+ - ``check_hyperoval`` -- boolean (default: ``True``); whether to check
1042
+ ``hyperoval`` for correctness or not
1043
+
1044
+ EXAMPLES:
1045
+
1046
+ using the built-in construction::
1047
+
1048
+ sage: # needs sage.combinat sage.rings.finite_rings
1049
+ sage: g = graphs.T2starGeneralizedQuadrangleGraph(4); g
1050
+ T2*(O,4); GQ(3, 5): Graph on 64 vertices
1051
+ sage: g.is_strongly_regular(parameters=True)
1052
+ (64, 18, 2, 6)
1053
+ sage: g = graphs.T2starGeneralizedQuadrangleGraph(4, dual=True); g
1054
+ T2*(O,4)*; GQ(5, 3): Graph on 96 vertices
1055
+ sage: g.is_strongly_regular(parameters=True)
1056
+ (96, 20, 4, 4)
1057
+
1058
+ supplying your own hyperoval::
1059
+
1060
+ sage: # needs sage.combinat sage.rings.finite_rings
1061
+ sage: F = GF(4,'b')
1062
+ sage: O = [vector(F,(0,0,0,1)),vector(F,(0,0,1,0))] + [vector(F, (0,1,x^2,x))
1063
+ ....: for x in F]
1064
+ sage: g = graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F); g
1065
+ T2*(O,4); GQ(3, 5): Graph on 64 vertices
1066
+ sage: g.is_strongly_regular(parameters=True)
1067
+ (64, 18, 2, 6)
1068
+
1069
+ TESTS::
1070
+
1071
+ sage: # needs sage.combinat sage.rings.finite_rings
1072
+ sage: F = GF(4,'b') # repeating a point...
1073
+ sage: O = [vector(F,(0,1,0,0)),vector(F,(0,0,1,0))]+[vector(F, (0,1,x^2,x)) for x in F]
1074
+ sage: graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F)
1075
+ Traceback (most recent call last):
1076
+ ...
1077
+ RuntimeError: incorrect hyperoval size
1078
+ sage: O = [vector(F,(0,1,1,0)),vector(F,(0,0,1,0))]+[vector(F, (0,1,x^2,x)) for x in F]
1079
+ sage: graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F)
1080
+ Traceback (most recent call last):
1081
+ ...
1082
+ RuntimeError: incorrect hyperoval
1083
+ """
1084
+ from sage.combinat.designs.incidence_structures import IncidenceStructure
1085
+ from sage.combinat.designs.block_design import ProjectiveGeometryDesign as PG
1086
+
1087
+ p, k = is_prime_power(q, get_data=True)
1088
+ if not k or p != 2:
1089
+ raise ValueError('q must be a power of 2')
1090
+ if field is None:
1091
+ F = FiniteField(q, 'a')
1092
+ else:
1093
+ F = field
1094
+
1095
+ Theta = PG(3, 1, F, point_coordinates=1)
1096
+ Pi = set(x for x in Theta.ground_set() if x[0] == F.zero())
1097
+ if hyperoval is None:
1098
+ HO = set(x for x in Pi
1099
+ if (x[1] + x[2] * x[3] == 0) or
1100
+ (x[1] == 1 and x[2] == x[3] == 0))
1101
+ else:
1102
+ for v in hyperoval:
1103
+ v.set_immutable()
1104
+
1105
+ HO = set(hyperoval)
1106
+ if check_hyperoval:
1107
+ if len(HO) != q + 2:
1108
+ raise RuntimeError("incorrect hyperoval size")
1109
+ for L in Theta.blocks():
1110
+ if set(L).issubset(Pi):
1111
+ if len(HO.intersection(L)) not in [0, 2]:
1112
+ raise RuntimeError("incorrect hyperoval")
1113
+
1114
+ L = [[y for y in z if y not in HO]
1115
+ for z in [x for x in Theta.blocks() if len(HO.intersection(x)) == 1]]
1116
+
1117
+ if dual:
1118
+ G = IncidenceStructure(L).intersection_graph()
1119
+ G.name('T2*(O,' + str(q) + ')*; GQ' + str((q + 1, q - 1)))
1120
+ else:
1121
+ G = IncidenceStructure(L).dual().intersection_graph()
1122
+ G.name('T2*(O,' + str(q) + '); GQ' + str((q - 1, q + 1)))
1123
+ return G
1124
+
1125
+
1126
+ def HaemersGraph(q, hyperoval=None, hyperoval_matching=None, field=None, check_hyperoval=True):
1127
+ r"""
1128
+ Return the Haemers graph obtained from `T_2^*(q)^*`.
1129
+
1130
+ Let `q` be a power of 2. In Sect. 8.A of [BL1984]_ one finds a construction
1131
+ of a strongly regular graph with parameters `(q^2(q+2),q^2+q-1,q-2,q)` from
1132
+ the graph of `T_2^*(q)^*`, constructed by
1133
+ :func:`~sage.graphs.graph_generators.GraphGenerators.T2starGeneralizedQuadrangleGraph`,
1134
+ by redefining adjacencies in the way specified by an arbitrary
1135
+ ``hyperoval_matching`` of the points (i.e. partitioning into size two parts)
1136
+ of ``hyperoval`` defining `T_2^*(q)^*`.
1137
+
1138
+ While [BL1984]_ gives the construction in geometric terms, it can be
1139
+ formulated, and is implemented, in graph-theoretic ones, of re-adjusting the
1140
+ edges. Namely, `G=T_2^*(q)^*` has a partition into `q+2` independent sets
1141
+ `I_k` of size `q^2` each. Each vertex in `I_j` is adjacent to `q` vertices
1142
+ from `I_k`. Each `I_k` is paired to some `I_{k'}`, according to
1143
+ ``hyperoval_matching``. One adds edges `(s,t)` for `s,t \in I_k` whenever
1144
+ `s` and `t` are adjacent to some `u \in I_{k'}`, and removes all the edges
1145
+ between `I_k` and `I_{k'}`.
1146
+
1147
+ INPUT:
1148
+
1149
+ - ``q`` -- a power of two
1150
+
1151
+ - ``hyperoval_matching`` -- if ``None`` (default), pair each `i`-th point of
1152
+ ``hyperoval`` with `(i+1)`-th. Otherwise, specifies the pairing
1153
+ in the format `((i_1,i'_1),(i_2,i'_2),...)`.
1154
+
1155
+ - ``hyperoval`` -- a hyperoval defining `T_2^*(q)^*`. If ``None`` (default),
1156
+ the classical hyperoval obtained from a conic is used. See the
1157
+ documentation of
1158
+ :func:`~sage.graphs.graph_generators.GraphGenerators.T2starGeneralizedQuadrangleGraph`,
1159
+ for more information.
1160
+
1161
+ - ``field`` -- an instance of a finite field of order `q`, must be provided
1162
+ if ``hyperoval`` is provided
1163
+
1164
+ - ``check_hyperoval`` -- boolean (default: ``True``); whether to check
1165
+ ``hyperoval`` for correctness or not
1166
+
1167
+ EXAMPLES:
1168
+
1169
+ using the built-in constructions::
1170
+
1171
+ sage: # needs sage.combinat sage.rings.finite_rings
1172
+ sage: g = graphs.HaemersGraph(4); g
1173
+ Haemers(4): Graph on 96 vertices
1174
+ sage: g.is_strongly_regular(parameters=True)
1175
+ (96, 19, 2, 4)
1176
+
1177
+ supplying your own hyperoval_matching::
1178
+
1179
+ sage: # needs sage.combinat sage.rings.finite_rings
1180
+ sage: g = graphs.HaemersGraph(4, hyperoval_matching=((0,5),(1,4),(2,3))); g
1181
+ Haemers(4): Graph on 96 vertices
1182
+ sage: g.is_strongly_regular(parameters=True)
1183
+ (96, 19, 2, 4)
1184
+
1185
+ TESTS::
1186
+
1187
+ sage: # needs sage.combinat sage.rings.finite_rings
1188
+ sage: F = GF(4,'b') # repeating a point...
1189
+ sage: O = [vector(F,(0,1,0,0)),vector(F,(0,0,1,0))]+[vector(F, (0,1,x^2,x)) for x in F]
1190
+ sage: graphs.HaemersGraph(4, hyperoval=O, field=F)
1191
+ Traceback (most recent call last):
1192
+ ...
1193
+ RuntimeError: incorrect hyperoval size
1194
+ sage: O = [vector(F,(0,1,1,0)),vector(F,(0,0,1,0))]+[vector(F, (0,1,x^2,x)) for x in F]
1195
+ sage: graphs.HaemersGraph(4, hyperoval=O, field=F)
1196
+ Traceback (most recent call last):
1197
+ ...
1198
+ RuntimeError: incorrect hyperoval
1199
+
1200
+ sage: g = graphs.HaemersGraph(8); g # not tested (long time) # needs sage.rings.finite_rings
1201
+ Haemers(8): Graph on 640 vertices
1202
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time) # needs sage.rings.finite_rings
1203
+ (640, 71, 6, 8)
1204
+ """
1205
+ from sage.modules.free_module_element import free_module_element as vector
1206
+ from sage.rings.finite_rings.finite_field_constructor import GF
1207
+ from itertools import combinations
1208
+
1209
+ p, k = is_prime_power(q, get_data=True)
1210
+ if not k or p != 2:
1211
+ raise ValueError('q must be a power of 2')
1212
+
1213
+ if hyperoval_matching is None:
1214
+ hyperoval_matching = [(2 * K + 1, 2 * K) for K in range(1 + q // 2)]
1215
+ if field is None:
1216
+ F = GF(q, 'a')
1217
+ else:
1218
+ F = field
1219
+
1220
+ # for q=8, 95% of CPU time taken by this function is spent in the following call
1221
+ G = T2starGeneralizedQuadrangleGraph(q, field=F, dual=True,
1222
+ hyperoval=hyperoval,
1223
+ check_hyperoval=check_hyperoval)
1224
+
1225
+ def normalize(v): # make sure the 1st non-0 coordinate is 1.
1226
+ d = next(x for x in v if x != F.zero())
1227
+ return vector([x / d for x in v])
1228
+
1229
+ # build the partition into independent sets
1230
+ P = [tuple(normalize(v[0] - v[1])) for v in G.vertices(sort=True)]
1231
+ Pi_to_int = {Pi: i for i, Pi in enumerate(set(P))}
1232
+ I_ks = {x: [] for x in range(q + 2)} # the partition into I_k's
1233
+ for i, Pi in enumerate(P):
1234
+ I_ks[Pi_to_int[tuple(Pi)]].append(i)
1235
+
1236
+ # perform the adjustment of the edges, as described.
1237
+ G.relabel(range(G.order()))
1238
+ cliques = []
1239
+ for i, j in hyperoval_matching:
1240
+ Pij = set(I_ks[i] + I_ks[j])
1241
+ for v in Pij:
1242
+ cliques.append(Pij.intersection(G.neighbors(v)))
1243
+ G.delete_edges(G.edge_boundary(I_ks[i], I_ks[j])) # edges on (I_i,I_j)
1244
+ G.add_edges(e for c in cliques for e in combinations(c, 2))
1245
+ G.name('Haemers(' + str(q) + ')')
1246
+ return G
1247
+
1248
+
1249
+ def CossidentePenttilaGraph(q):
1250
+ r"""
1251
+ Return the Cossidente-Penttila
1252
+ `((q^3+1)(q+1)/2,(q^2+1)(q-1)/2,(q-3)/2,(q-1)^2/2)`-strongly regular graph
1253
+
1254
+ For each odd prime power `q`, one can partition the points of the
1255
+ `O_6^-(q)`-generalized quadrangle `GQ(q,q^2)` into two parts, so that on any
1256
+ of them the induced subgraph of the point graph of the GQ has parameters as
1257
+ above [CP2005]_.
1258
+
1259
+ Directly following the construction in [CP2005]_ is not efficient, as one
1260
+ then needs to construct the dual `GQ(q^2,q)`. Thus we describe here a more
1261
+ efficient approach that we came up with, following a suggestion by
1262
+ T.Penttila. Namely, this partition is invariant under the subgroup
1263
+ `H=\Omega_3(q^2)<O_6^-(q)`. We build the appropriate `H`, which leaves the
1264
+ form `B(X,Y,Z)=XY+Z^2` invariant, and pick up two orbits of `H` on the
1265
+ `F_q`-points. One them is `B`-isotropic, and we take the representative
1266
+ `(1:0:0)`. The other one corresponds to the points of `PG(2,q^2)` that have
1267
+ all the lines on them either missing the conic specified by `B`, or
1268
+ intersecting the conic in two points. We take `(1:1:e)` as the
1269
+ representative. It suffices to pick `e` so that `e^2+1` is not a square in
1270
+ `F_{q^2}`. Indeed, The conic can be viewed as the union of `\{(0:1:0)\}` and
1271
+ `\{(1:-t^2:t) | t \in F_{q^2}\}`. The coefficients of a generic line on
1272
+ `(1:1:e)` are `[1:-1-eb:b]`, for `-1\neq eb`. Thus, to make sure the
1273
+ intersection with the conic is always even, we need that the discriminant of
1274
+ `1+(1+eb)t^2+tb=0` never vanishes, and this is if and only if `e^2+1` is not
1275
+ a square. Further, we need to adjust `B`, by multiplying it by appropriately
1276
+ chosen `\nu`, so that `(1:1:e)` becomes isotropic under the relative trace
1277
+ norm `\nu B(X,Y,Z)+(\nu B(X,Y,Z))^q`. The latter is used then to define the
1278
+ graph.
1279
+
1280
+ INPUT:
1281
+
1282
+ - ``q`` -- an odd prime power
1283
+
1284
+ EXAMPLES:
1285
+
1286
+ For `q=3` one gets Sims-Gewirtz graph. ::
1287
+
1288
+ sage: G = graphs.CossidentePenttilaGraph(3) # optional - gap_package_grape
1289
+ sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
1290
+ (56, 10, 0, 2)
1291
+
1292
+ For `q>3` one gets new graphs. ::
1293
+
1294
+ sage: G = graphs.CossidentePenttilaGraph(5) # optional - gap_package_grape
1295
+ sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
1296
+ (378, 52, 1, 8)
1297
+
1298
+ TESTS::
1299
+
1300
+ sage: G = graphs.CossidentePenttilaGraph(7) # optional - gap_package_grape, long time
1301
+ sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape, long time
1302
+ (1376, 150, 2, 18)
1303
+ sage: graphs.CossidentePenttilaGraph(2)
1304
+ Traceback (most recent call last):
1305
+ ...
1306
+ ValueError: q(=2) must be an odd prime power
1307
+ """
1308
+ p, k = is_prime_power(q, get_data=True)
1309
+ if not k or p == 2:
1310
+ raise ValueError('q(={}) must be an odd prime power'.format(q))
1311
+
1312
+ from sage.features.gap import GapPackage
1313
+ GapPackage("grape", spkg='gap_packages').require()
1314
+
1315
+ from sage.libs.gap.libgap import libgap
1316
+ adj_list = libgap.function_factory("""function(q)
1317
+ local z, e, so, G, nu, G1, G0, B, T, s, O1, O2, x, sqo;
1318
+ LoadPackage("grape");
1319
+ G0:=SO(3,q^2);
1320
+ so:=GeneratorsOfGroup(G0);
1321
+ G1:=Group(Comm(so[1],so[2]),Comm(so[1],so[3]),Comm(so[2],so[3]));
1322
+ B:=InvariantBilinearForm(G0).matrix;
1323
+ z:=Z(q^2); e:=z; sqo:=(q^2-1)/2;
1324
+ if IsInt(sqo/Order(e^2+z^0)) then
1325
+ e:=z^First([2..q^2-2], x-> not IsInt(sqo/Order(z^(2*x)+z^0)));
1326
+ fi;
1327
+ nu:=z^First([0..q^2-2], x->z^x*(e^2+z^0)+(z^x*(e^2+z^0))^q=0*z);
1328
+ T:=function(x)
1329
+ local r;
1330
+ r:=nu*x*B*x;
1331
+ return r+r^q;
1332
+ end;
1333
+ s:=Group([Z(q)*IdentityMat(3,GF(q))]);
1334
+ O1:=Orbit(G1, Set(Orbit(s,z^0*[1,0,0])), OnSets);
1335
+ O2:=Orbit(G1, Set(Orbit(s,z^0*[1,1,e])), OnSets);
1336
+ G:=Graph(G1,Concatenation(O1,O2),OnSets,
1337
+ function(x,y) return x<>y and 0*z=T(x[1]+y[1]); end);
1338
+ return List([1..OrderGraph(G)],x->Adjacency(G,x));
1339
+ end;""")
1340
+
1341
+ adj = adj_list(q) # for each vertex, we get the list of vertices it is adjacent to
1342
+ G = Graph(((i, int(j - 1))
1343
+ for i, ni in enumerate(adj) for j in ni),
1344
+ format='list_of_edges', multiedges=False)
1345
+ G.name('CossidentePenttila(' + str(q) + ')')
1346
+ return G
1347
+
1348
+
1349
+ def Nowhere0WordsTwoWeightCodeGraph(q, hyperoval=None, field=None, check_hyperoval=True):
1350
+ r"""
1351
+ Return the subgraph of nowhere 0 words from two-weight code of projective
1352
+ plane hyperoval.
1353
+
1354
+ Let `q=2^k` and `\Pi=PG(2,q)`. Fix a
1355
+ `hyperoval <http://en.wikipedia.org/wiki/Oval_(projective_plane)#Even_q>`__
1356
+ `O \subset \Pi`. Let `V=F_q^3` and `C` the two-weight 3-dimensional linear
1357
+ code over `F_q` with words `c(v)` obtained from `v\in V` by computing
1358
+
1359
+ .. MATH::
1360
+
1361
+ c(v)=(\langle v,o_1 \rangle,...,\langle v,o_{q+2} \rangle), o_j \in O.
1362
+
1363
+ `C` contains `q(q-1)^2/2` words without 0 entries. The subgraph of the
1364
+ strongly regular graph of `C` induced on the latter words is also strongly
1365
+ regular, assuming `q>4`. This is a construction due to A.E.Brouwer
1366
+ [Bro2016]_, and leads to graphs with parameters also given by a construction
1367
+ in [HHL2009]_. According to [Bro2016]_, these two constructions are likely
1368
+ to produce isomorphic graphs.
1369
+
1370
+ INPUT:
1371
+
1372
+ - ``q`` -- a power of two
1373
+
1374
+ - ``hyperoval`` -- a hyperoval (i.e. a complete 2-arc; a set of points in
1375
+ the plane meeting every line in 0 or 2 points) in `PG(2,q)` over the field
1376
+ ``field``. Each point of ``hyperoval`` must be a length 3 vector over
1377
+ ``field`` with 1st non-0 coordinate equal to 1. By default, ``hyperoval``
1378
+ and ``field`` are not specified, and constructed on the fly. In
1379
+ particular, ``hyperoval`` we build is the classical one, i.e. a conic with
1380
+ the point of intersection of its tangent lines.
1381
+
1382
+ - ``field`` -- an instance of a finite field of order `q`; must be provided
1383
+ if ``hyperoval`` is provided
1384
+
1385
+ - ``check_hyperoval`` -- boolean (default: ``True``); whether to check
1386
+ ``hyperoval`` for correctness or not
1387
+
1388
+ .. SEEALSO::
1389
+
1390
+ - :func:`~sage.graphs.strongly_regular_db.is_nowhere0_twoweight`
1391
+
1392
+ EXAMPLES:
1393
+
1394
+ using the built-in construction::
1395
+
1396
+ sage: # needs sage.combinat sage.rings.finite_rings
1397
+ sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8); g
1398
+ Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
1399
+ sage: g.is_strongly_regular(parameters=True)
1400
+ (196, 60, 14, 20)
1401
+ sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(16) # not tested (long time)
1402
+ sage: g.is_strongly_regular(parameters=True) # not tested (long time)
1403
+ (1800, 728, 268, 312)
1404
+
1405
+ supplying your own hyperoval::
1406
+
1407
+ sage: # needs sage.combinat sage.rings.finite_rings
1408
+ sage: F = GF(8)
1409
+ sage: O = [vector(F,(0,0,1)),vector(F,(0,1,0))] + [vector(F, (1,x^2,x))
1410
+ ....: for x in F]
1411
+ sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8,hyperoval=O,field=F); g
1412
+ Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
1413
+ sage: g.is_strongly_regular(parameters=True)
1414
+ (196, 60, 14, 20)
1415
+
1416
+ TESTS::
1417
+
1418
+ sage: # needs sage.combinat sage.rings.finite_rings
1419
+ sage: F = GF(8) # repeating a point...
1420
+ sage: O = [vector(F,(1,0,0)),vector(F,(0,1,0))]+[vector(F, (1,x^2,x)) for x in F]
1421
+ sage: graphs.Nowhere0WordsTwoWeightCodeGraph(8,hyperoval=O,field=F)
1422
+ Traceback (most recent call last):
1423
+ ...
1424
+ RuntimeError: incorrect hyperoval size
1425
+ sage: O = [vector(F,(1,1,0)),vector(F,(0,1,0))]+[vector(F, (1,x^2,x)) for x in F]
1426
+ sage: graphs.Nowhere0WordsTwoWeightCodeGraph(8,hyperoval=O,field=F)
1427
+ Traceback (most recent call last):
1428
+ ...
1429
+ RuntimeError: incorrect hyperoval
1430
+ """
1431
+ from sage.combinat.designs.block_design import ProjectiveGeometryDesign as PG
1432
+ from sage.matrix.constructor import matrix
1433
+
1434
+ p, k = is_prime_power(q, get_data=True)
1435
+ if not k or p != 2:
1436
+ raise ValueError('q must be a power of 2')
1437
+ if k < 3:
1438
+ raise ValueError('q must be a at least 8')
1439
+ if field is None:
1440
+ F = FiniteField(q, 'a')
1441
+ else:
1442
+ F = field
1443
+
1444
+ Theta = PG(2, 1, F, point_coordinates=1)
1445
+ Pi = Theta.ground_set()
1446
+ if hyperoval is None:
1447
+ hyperoval = [x for x in Pi
1448
+ if (x[0] + x[1] * x[2] == 0) or
1449
+ (x[0] == 1 and x[1] == x[2] == 0)]
1450
+ else:
1451
+ for v in hyperoval:
1452
+ v.set_immutable()
1453
+
1454
+ if check_hyperoval:
1455
+ HO = set(hyperoval)
1456
+ if len(HO) != q + 2:
1457
+ raise RuntimeError("incorrect hyperoval size")
1458
+ for L in Theta.blocks():
1459
+ if set(L).issubset(Pi):
1460
+ if len(HO.intersection(L)) not in [0, 2]:
1461
+ raise RuntimeError("incorrect hyperoval")
1462
+ M = matrix(hyperoval)
1463
+ F_0 = F.zero()
1464
+ C = [p for p in [M*x for x in F**3] if F_0 not in p]
1465
+
1466
+ for x in C:
1467
+ x.set_immutable()
1468
+ G = Graph([C, lambda x, y: F.zero() not in x + y])
1469
+ G.name('Nowhere0WordsTwoWeightCodeGraph(' + str(q) + ')')
1470
+ G.relabel()
1471
+ return G
1472
+
1473
+
1474
+ def OrthogonalDualPolarGraph(e, d, q):
1475
+ r"""
1476
+ Return the dual polar graph on `GO^e(n,q)` of diameter `d`.
1477
+
1478
+ The value of `n` is determined by `d` and `e`.
1479
+
1480
+ The graph is distance-regular with classical parameters `(d, q, 0, q^e)`.
1481
+
1482
+ INPUT:
1483
+
1484
+ - ``e`` -- integer; type of the orthogonal polar space to consider;
1485
+ must be `-1, 0` or `1`
1486
+
1487
+ - ``d`` -- integer; diameter of the graph
1488
+
1489
+ - ``q`` -- integer; prime power; order of the finite field over which to
1490
+ build the polar space
1491
+
1492
+ EXAMPLES::
1493
+
1494
+ sage: # needs sage.libs.gap
1495
+ sage: G = graphs.OrthogonalDualPolarGraph(1,3,2)
1496
+ sage: G.is_distance_regular(True)
1497
+ ([7, 6, 4, None], [None, 1, 3, 7])
1498
+ sage: G = graphs.OrthogonalDualPolarGraph(0,3,3) # long time
1499
+ sage: G.is_distance_regular(True) # long time
1500
+ ([39, 36, 27, None], [None, 1, 4, 13])
1501
+ sage: G.order() # long time
1502
+ 1120
1503
+
1504
+ REFERENCES:
1505
+
1506
+ See [BCN1989]_ pp. 274-279 or [VDKT2016]_ p. 22.
1507
+
1508
+ TESTS::
1509
+
1510
+ sage: # needs sage.libs.gap
1511
+ sage: G = graphs.OrthogonalDualPolarGraph(0,3,2)
1512
+ sage: G.is_distance_regular(True)
1513
+ ([14, 12, 8, None], [None, 1, 3, 7])
1514
+ sage: G = graphs.OrthogonalDualPolarGraph(-1,3,2) # long time
1515
+ sage: G.is_distance_regular(True) # long time
1516
+ ([28, 24, 16, None], [None, 1, 3, 7])
1517
+ sage: G = graphs.OrthogonalDualPolarGraph(1,3,4)
1518
+ sage: G.is_distance_regular(True)
1519
+ ([21, 20, 16, None], [None, 1, 5, 21])
1520
+ sage: G = graphs.OrthogonalDualPolarGraph(1,4,2)
1521
+ sage: G.is_distance_regular(True)
1522
+ ([15, 14, 12, 8, None], [None, 1, 3, 7, 15])
1523
+ """
1524
+ from sage.libs.gap.libgap import libgap
1525
+ from sage.matrix.constructor import Matrix
1526
+ from sage.modules.free_module import VectorSpace
1527
+ from sage.rings.finite_rings.finite_field_constructor import GF
1528
+ import itertools
1529
+
1530
+ def hashable(v):
1531
+ v.set_immutable()
1532
+ return v
1533
+
1534
+ if e not in {0, 1, -1}:
1535
+ raise ValueError("e must by 0, +1 or -1")
1536
+
1537
+ m = 2*d + 1 - e
1538
+
1539
+ group = libgap.GeneralOrthogonalGroup(e, m, q)
1540
+ M = Matrix(libgap.InvariantQuadraticForm(group)["matrix"])
1541
+ # Q(x) = xMx is our quadratic form
1542
+
1543
+ # we need to find a totally isotropic subspace of dimension d
1544
+ K = M.kernel()
1545
+ isotropicBasis = list(K.basis())
1546
+
1547
+ # extend K to a maximal isotropic subspace
1548
+ if K.dimension() < d:
1549
+ V = VectorSpace(GF(q), m)
1550
+
1551
+ # get all projective points not in K
1552
+ candidates = set(map(hashable, [P.basis()[0] for P in V.subspaces(1)]))
1553
+ hashableK = map(hashable, [P.basis()[0] for P in K.subspaces(1)])
1554
+ candidates = candidates.difference(hashableK)
1555
+
1556
+ nonZeroScalars = [x for x in GF(q) if not x.is_zero()]
1557
+ while K.dimension() < d:
1558
+ found = False
1559
+ while not found:
1560
+ v = candidates.pop()
1561
+ if v*M*v == 0:
1562
+ # found another isotropic point
1563
+ # check if we can add it to K
1564
+ found = True
1565
+ for w in isotropicBasis:
1566
+ if w*M*v + v*M*w != 0:
1567
+ found = False
1568
+ break
1569
+ # here we found a valid point
1570
+ isotropicBasis.append(v)
1571
+
1572
+ # remove new points of K
1573
+ newVectors = map(hashable,
1574
+ [k + s*v for k in K for s in nonZeroScalars])
1575
+ candidates.difference(newVectors)
1576
+ K = V.span(isotropicBasis)
1577
+
1578
+ # here K is a totally isotropic subspace of dimension d
1579
+ isotropicBasis = list(K.basis())
1580
+
1581
+ W = libgap.FullRowSpace(libgap.GF(q), m)
1582
+ isoS = libgap.Subspace(W, isotropicBasis) # gap version of K
1583
+
1584
+ allIsoPoints = libgap.Orbit(group, isotropicBasis[0], libgap.OnLines)
1585
+ permutation = libgap.Action(group, allIsoPoints, libgap.OnLines)
1586
+ # this is the permutation group generated by GO^e(n,q) acting on
1587
+ # projective isotropic points
1588
+
1589
+ # convert isoS into a list of ints representing the projective points
1590
+ isoSPoints = [libgap.Elements(libgap.Basis(x))[0]
1591
+ for x in libgap.Elements(isoS.Subspaces(1))]
1592
+ isoSPointsInt = libgap.Set([libgap.Position(allIsoPoints, x)
1593
+ for x in isoSPoints])
1594
+
1595
+ # all isotropic subspaces of dimension d
1596
+ allIsoSubspaces = libgap.Orbit(permutation, isoSPointsInt, libgap.OnSets)
1597
+
1598
+ # number of projective points in a (d-1)-subspace
1599
+ intersection_size = (q**(d-1) - 1) // (q-1)
1600
+
1601
+ edges = []
1602
+ n = len(allIsoSubspaces)
1603
+ for i, j in itertools.combinations(range(n), 2):
1604
+ if libgap.Size(libgap.Intersection(allIsoSubspaces[i],
1605
+ allIsoSubspaces[j])) \
1606
+ == intersection_size:
1607
+ edges.append((i, j))
1608
+
1609
+ G = Graph(edges, format='list_of_edges')
1610
+ G.name("Dual Polar Graph on Orthogonal group (%d, %d, %d)" % (e, m, q))
1611
+ return G