passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
  2. passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
  3. passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
  4. passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
  5. passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
  6. passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
  7. passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
  8. sage/all__sagemath_graphs.py +39 -0
  9. sage/combinat/abstract_tree.py +2723 -0
  10. sage/combinat/all__sagemath_graphs.py +34 -0
  11. sage/combinat/binary_tree.py +5306 -0
  12. sage/combinat/cluster_algebra_quiver/all.py +22 -0
  13. sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
  14. sage/combinat/cluster_algebra_quiver/interact.py +124 -0
  15. sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
  16. sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
  17. sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
  18. sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
  19. sage/combinat/designs/MOLS_handbook_data.py +570 -0
  20. sage/combinat/designs/all.py +58 -0
  21. sage/combinat/designs/bibd.py +1655 -0
  22. sage/combinat/designs/block_design.py +1071 -0
  23. sage/combinat/designs/covering_array.py +269 -0
  24. sage/combinat/designs/covering_design.py +530 -0
  25. sage/combinat/designs/database.py +5615 -0
  26. sage/combinat/designs/design_catalog.py +122 -0
  27. sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  28. sage/combinat/designs/designs_pyx.pxd +21 -0
  29. sage/combinat/designs/designs_pyx.pyx +993 -0
  30. sage/combinat/designs/difference_family.py +3951 -0
  31. sage/combinat/designs/difference_matrices.py +279 -0
  32. sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  33. sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
  34. sage/combinat/designs/ext_rep.py +1064 -0
  35. sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
  36. sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
  37. sage/combinat/designs/group_divisible_designs.py +361 -0
  38. sage/combinat/designs/incidence_structures.py +2357 -0
  39. sage/combinat/designs/latin_squares.py +581 -0
  40. sage/combinat/designs/orthogonal_arrays.py +2244 -0
  41. sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
  42. sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
  43. sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
  44. sage/combinat/designs/resolvable_bibd.py +815 -0
  45. sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
  46. sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
  47. sage/combinat/designs/subhypergraph_search.pyx +530 -0
  48. sage/combinat/designs/twographs.py +306 -0
  49. sage/combinat/finite_state_machine.py +14874 -0
  50. sage/combinat/finite_state_machine_generators.py +2006 -0
  51. sage/combinat/graph_path.py +448 -0
  52. sage/combinat/interval_posets.py +3908 -0
  53. sage/combinat/nu_tamari_lattice.py +269 -0
  54. sage/combinat/ordered_tree.py +1446 -0
  55. sage/combinat/posets/all.py +46 -0
  56. sage/combinat/posets/bubble_shuffle.py +247 -0
  57. sage/combinat/posets/cartesian_product.py +493 -0
  58. sage/combinat/posets/d_complete.py +182 -0
  59. sage/combinat/posets/elements.py +273 -0
  60. sage/combinat/posets/forest.py +30 -0
  61. sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
  62. sage/combinat/posets/hasse_cython.pyx +174 -0
  63. sage/combinat/posets/hasse_diagram.py +3672 -0
  64. sage/combinat/posets/hochschild_lattice.py +158 -0
  65. sage/combinat/posets/incidence_algebras.py +794 -0
  66. sage/combinat/posets/lattices.py +5117 -0
  67. sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
  68. sage/combinat/posets/linear_extension_iterator.pyx +292 -0
  69. sage/combinat/posets/linear_extensions.py +1037 -0
  70. sage/combinat/posets/mobile.py +275 -0
  71. sage/combinat/posets/moebius_algebra.py +776 -0
  72. sage/combinat/posets/poset_examples.py +2178 -0
  73. sage/combinat/posets/posets.py +9360 -0
  74. sage/combinat/rooted_tree.py +1070 -0
  75. sage/combinat/shard_order.py +239 -0
  76. sage/combinat/tamari_lattices.py +384 -0
  77. sage/combinat/yang_baxter_graph.py +923 -0
  78. sage/databases/all__sagemath_graphs.py +1 -0
  79. sage/databases/knotinfo_db.py +1231 -0
  80. sage/ext_data/all__sagemath_graphs.py +1 -0
  81. sage/ext_data/graphs/graph_plot_js.html +330 -0
  82. sage/ext_data/kenzo/CP2.txt +45 -0
  83. sage/ext_data/kenzo/CP3.txt +349 -0
  84. sage/ext_data/kenzo/CP4.txt +4774 -0
  85. sage/ext_data/kenzo/README.txt +49 -0
  86. sage/ext_data/kenzo/S4.txt +20 -0
  87. sage/graphs/all.py +42 -0
  88. sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
  89. sage/graphs/asteroidal_triples.pyx +320 -0
  90. sage/graphs/base/all.py +1 -0
  91. sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  92. sage/graphs/base/boost_graph.pxd +106 -0
  93. sage/graphs/base/boost_graph.pyx +3045 -0
  94. sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  95. sage/graphs/base/c_graph.pxd +106 -0
  96. sage/graphs/base/c_graph.pyx +5096 -0
  97. sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  98. sage/graphs/base/dense_graph.pxd +28 -0
  99. sage/graphs/base/dense_graph.pyx +801 -0
  100. sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
  101. sage/graphs/base/graph_backends.pxd +5 -0
  102. sage/graphs/base/graph_backends.pyx +797 -0
  103. sage/graphs/base/overview.py +85 -0
  104. sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  105. sage/graphs/base/sparse_graph.pxd +90 -0
  106. sage/graphs/base/sparse_graph.pyx +1653 -0
  107. sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  108. sage/graphs/base/static_dense_graph.pxd +5 -0
  109. sage/graphs/base/static_dense_graph.pyx +1032 -0
  110. sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
  111. sage/graphs/base/static_sparse_backend.pxd +27 -0
  112. sage/graphs/base/static_sparse_backend.pyx +1583 -0
  113. sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  114. sage/graphs/base/static_sparse_graph.pxd +37 -0
  115. sage/graphs/base/static_sparse_graph.pyx +1375 -0
  116. sage/graphs/bipartite_graph.py +2732 -0
  117. sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
  118. sage/graphs/centrality.pyx +1038 -0
  119. sage/graphs/cographs.py +519 -0
  120. sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
  121. sage/graphs/comparability.pyx +851 -0
  122. sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  123. sage/graphs/connectivity.pxd +157 -0
  124. sage/graphs/connectivity.pyx +4813 -0
  125. sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
  126. sage/graphs/convexity_properties.pxd +16 -0
  127. sage/graphs/convexity_properties.pyx +870 -0
  128. sage/graphs/digraph.py +4754 -0
  129. sage/graphs/digraph_generators.py +1993 -0
  130. sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
  131. sage/graphs/distances_all_pairs.pxd +12 -0
  132. sage/graphs/distances_all_pairs.pyx +2938 -0
  133. sage/graphs/domination.py +1363 -0
  134. sage/graphs/dot2tex_utils.py +100 -0
  135. sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  136. sage/graphs/edge_connectivity.pyx +1215 -0
  137. sage/graphs/generators/all.py +1 -0
  138. sage/graphs/generators/basic.py +1769 -0
  139. sage/graphs/generators/chessboard.py +538 -0
  140. sage/graphs/generators/classical_geometries.py +1611 -0
  141. sage/graphs/generators/degree_sequence.py +235 -0
  142. sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
  143. sage/graphs/generators/distance_regular.pyx +2846 -0
  144. sage/graphs/generators/families.py +4759 -0
  145. sage/graphs/generators/intersection.py +565 -0
  146. sage/graphs/generators/platonic_solids.py +262 -0
  147. sage/graphs/generators/random.py +2623 -0
  148. sage/graphs/generators/smallgraphs.py +5741 -0
  149. sage/graphs/generators/world_map.py +724 -0
  150. sage/graphs/generic_graph.py +26867 -0
  151. sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  152. sage/graphs/generic_graph_pyx.pxd +34 -0
  153. sage/graphs/generic_graph_pyx.pyx +1673 -0
  154. sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
  155. sage/graphs/genus.pyx +622 -0
  156. sage/graphs/graph.py +9645 -0
  157. sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
  158. sage/graphs/graph_coloring.pyx +2284 -0
  159. sage/graphs/graph_database.py +1177 -0
  160. sage/graphs/graph_decompositions/all.py +1 -0
  161. sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  162. sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
  163. sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
  164. sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
  165. sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  166. sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
  167. sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
  168. sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
  169. sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
  170. sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
  171. sage/graphs/graph_decompositions/graph_products.pyx +508 -0
  172. sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  173. sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
  174. sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
  175. sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  176. sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
  177. sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
  178. sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  179. sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
  180. sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
  181. sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
  182. sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
  183. sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
  184. sage/graphs/graph_editor.py +82 -0
  185. sage/graphs/graph_generators.py +3314 -0
  186. sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  187. sage/graphs/graph_generators_pyx.pyx +95 -0
  188. sage/graphs/graph_input.py +812 -0
  189. sage/graphs/graph_latex.py +2064 -0
  190. sage/graphs/graph_list.py +410 -0
  191. sage/graphs/graph_plot.py +1756 -0
  192. sage/graphs/graph_plot_js.py +338 -0
  193. sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
  194. sage/graphs/hyperbolicity.pyx +1704 -0
  195. sage/graphs/hypergraph_generators.py +364 -0
  196. sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  197. sage/graphs/independent_sets.pxd +13 -0
  198. sage/graphs/independent_sets.pyx +402 -0
  199. sage/graphs/isgci.py +1033 -0
  200. sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
  201. sage/graphs/isoperimetric_inequalities.pyx +489 -0
  202. sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  203. sage/graphs/line_graph.pyx +743 -0
  204. sage/graphs/lovasz_theta.py +77 -0
  205. sage/graphs/matching.py +1633 -0
  206. sage/graphs/matching_covered_graph.py +3590 -0
  207. sage/graphs/orientations.py +1489 -0
  208. sage/graphs/partial_cube.py +459 -0
  209. sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
  210. sage/graphs/path_enumeration.pyx +2040 -0
  211. sage/graphs/pq_trees.py +1129 -0
  212. sage/graphs/print_graphs.py +201 -0
  213. sage/graphs/schnyder.py +865 -0
  214. sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
  215. sage/graphs/spanning_tree.pyx +1457 -0
  216. sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
  217. sage/graphs/strongly_regular_db.pyx +3340 -0
  218. sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
  219. sage/graphs/traversals.pxd +9 -0
  220. sage/graphs/traversals.pyx +1872 -0
  221. sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
  222. sage/graphs/trees.pxd +15 -0
  223. sage/graphs/trees.pyx +310 -0
  224. sage/graphs/tutte_polynomial.py +713 -0
  225. sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
  226. sage/graphs/views.pyx +794 -0
  227. sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
  228. sage/graphs/weakly_chordal.pyx +604 -0
  229. sage/groups/all__sagemath_graphs.py +1 -0
  230. sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
  231. sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
  232. sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
  233. sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
  234. sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
  235. sage/knots/all.py +6 -0
  236. sage/knots/free_knotinfo_monoid.py +507 -0
  237. sage/knots/gauss_code.py +291 -0
  238. sage/knots/knot.py +682 -0
  239. sage/knots/knot_table.py +284 -0
  240. sage/knots/knotinfo.py +2900 -0
  241. sage/knots/link.py +4715 -0
  242. sage/sandpiles/all.py +13 -0
  243. sage/sandpiles/examples.py +225 -0
  244. sage/sandpiles/sandpile.py +6365 -0
  245. sage/topology/all.py +22 -0
  246. sage/topology/cell_complex.py +1214 -0
  247. sage/topology/cubical_complex.py +1976 -0
  248. sage/topology/delta_complex.py +1806 -0
  249. sage/topology/filtered_simplicial_complex.py +744 -0
  250. sage/topology/moment_angle_complex.py +823 -0
  251. sage/topology/simplicial_complex.py +5160 -0
  252. sage/topology/simplicial_complex_catalog.py +92 -0
  253. sage/topology/simplicial_complex_examples.py +1680 -0
  254. sage/topology/simplicial_complex_homset.py +205 -0
  255. sage/topology/simplicial_complex_morphism.py +836 -0
  256. sage/topology/simplicial_set.py +4102 -0
  257. sage/topology/simplicial_set_catalog.py +55 -0
  258. sage/topology/simplicial_set_constructions.py +2954 -0
  259. sage/topology/simplicial_set_examples.py +865 -0
  260. sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,743 @@
1
+ # sage_setup: distribution = sagemath-graphs
2
+ # cython: binding=True
3
+ r"""
4
+ Line graphs
5
+
6
+ This module gather everything which is related to line graphs. Right now, this
7
+ amounts to the following functions :
8
+
9
+ .. csv-table::
10
+ :class: contentstable
11
+ :widths: 30, 70
12
+ :delim: |
13
+
14
+ :meth:`line_graph` | Return the line graph of a given graph
15
+ :meth:`is_line_graph` | Check whether a graph is a line graph
16
+ :meth:`root_graph` | Return the root graph corresponding to the given graph
17
+
18
+ Author:
19
+
20
+ - Nathann Cohen (01-2013), :meth:`root_graph` method and module documentation.
21
+ Written while listening to Nina Simone *"I wish I knew how it would feel to be
22
+ free"*. Crazy good song. And *"Prendre ta douleur"*, too.
23
+
24
+ - David Coudert (10-2018), use maximal cliques iterator in :meth:`root_graph`,
25
+ and use :meth:`root_graph` instead of forbidden subgraph search in
26
+ :meth:`is_line_graph` (:issue:`26444`).
27
+
28
+ Definition
29
+ -----------
30
+
31
+ Given a graph `G`, the *line graph* `L(G)` of `G` is the graph such that
32
+
33
+ .. MATH::
34
+
35
+ V(L(G)) =& E(G)\\
36
+ E(L(G)) =& \{(e,e'):\text{ and }e,e'\text{ have a common endpoint in }G\}\\
37
+
38
+ The definition is extended to directed graphs. In this situation, there is an
39
+ arc `(e,e')` in `L(G)` if the destination of `e` is the origin of `e'`.
40
+
41
+ For more information, see the :wikipedia:`Line_graph`.
42
+
43
+ Root graph
44
+ ----------
45
+
46
+ A graph whose line graph is `LG` is called the *root graph* of `LG`. The root
47
+ graph of a (connected) graph is unique ([Whi1932]_, [Har1969]_), except when
48
+ `LG=K_3`, as both `L(K_3)` and `L(K_{1,3})` are equal to `K_3`.
49
+
50
+ Here is how we can *"see"* `G` by staring (very intently) at `LG` :
51
+
52
+ A graph `LG` is the line graph of `G` if there exists a collection
53
+ `(S_v)_{v\in G}` of subsets of `V(LG)` such that :
54
+
55
+ * Every `S_v` is a complete subgraph of `LG`.
56
+
57
+ * Every `v\in LG` belongs to exactly two sets of the family `(S_v)_{v\in G}`.
58
+
59
+ * Any two sets of `(S_v)_{v\in G}` have at most one common elements
60
+
61
+ * For any edge `(u,v)\in LG` there exists a set of `(S_v)_{v\in G}` containing
62
+ both `u` and `v`.
63
+
64
+ In this family, each set `S_v` represent a vertex of `G`, and contains "the
65
+ set of edges incident to `v` in `G`". Two elements `S_v,S_{v'}` have a
66
+ nonempty intersection whenever `vv'` is an edge of `G`.
67
+
68
+ Hence, finding the root graph of `LG` is the job of finding this collection of
69
+ sets.
70
+
71
+ In particular, what we know for sure is that a maximal clique `S` of size `2` or
72
+ `\geq 4` in `LG` corresponds to a vertex of degree `|S|` in `G`, whose incident
73
+ edges are the elements of `S` itself.
74
+
75
+ The main problem lies with maximal cliques of size 3, i.e. triangles. Those we
76
+ have to split into two categories, *even* and *odd* triangles :
77
+
78
+ A triangle `\{e_1,e_2,e_3\}\subseteq V(LG)` is said to be an *odd* triangle if
79
+ there exists a vertex `e\in V(G)` incident to exactly *one* or *all* of
80
+ `\{e_1,e_2,e_3\}`, and it is said to be *even* otherwise.
81
+
82
+ The very good point of this definition is that an inclusionwise maximal clique
83
+ which is an odd triangle will always correspond to a vertex of degree 3 in `G`,
84
+ while an even triangle could result from either a vertex of degree 3 in `G` or a
85
+ triangle in `G`. And in order to build the root graph we obviously have to
86
+ decide *which*.
87
+
88
+ Beineke proves in [Bei1970]_ that the collection of sets we are looking for
89
+ can be easily found. Indeed it turns out that it is the union of :
90
+
91
+ #. The family of all maximal cliques of `LG` of size 2 or `\geq 4`, as well as
92
+ all odd triangles.
93
+
94
+ #. The family of all pairs of adjacent vertices which appear in exactly *one*
95
+ maximal clique which is an even triangle.
96
+
97
+ There are actually four special cases to which the decomposition above does not
98
+ apply, i.e. graphs containing an edge which belongs to exactly two even
99
+ triangles. We deal with those independently.
100
+
101
+ * The :meth:`Complete graph
102
+ <sage.graphs.graph_generators.GraphGenerators.CompleteGraph>` `K_3`.
103
+
104
+ * The :meth:`Diamond graph
105
+ <sage.graphs.graph_generators.GraphGenerators.DiamondGraph>` -- the line graph
106
+ of `K_{1,3}` plus an edge.
107
+
108
+ * The :meth:`Wheel graph
109
+ <sage.graphs.graph_generators.GraphGenerators.WheelGraph>` on `4+1` vertices
110
+ -- the line graph of the :meth:`Diamond graph
111
+ <sage.graphs.graph_generators.GraphGenerators.DiamondGraph>`
112
+
113
+ * The :meth:`Octahedron
114
+ <sage.graphs.graph_generators.GraphGenerators.OctahedralGraph>` -- the line
115
+ graph of `K_4`.
116
+
117
+ This decomposition turns out to be very easy to implement :-)
118
+
119
+ .. WARNING::
120
+
121
+ Even though the root graph is *NOT UNIQUE* for the triangle, this method
122
+ returns `K_{1,3}` (and not `K_3`) in this case. Pay *very close* attention
123
+ to that, for this answer is not theoretically correct : there is no unique
124
+ answer in this case, and we deal with it by returning one of the two
125
+ possible answers.
126
+
127
+ Functions
128
+ ---------
129
+ """
130
+
131
+ from sage.structure.element cimport parent
132
+
133
+
134
+ def is_line_graph(g, certificate=False):
135
+ r"""
136
+ Check whether the graph `g` is a line graph.
137
+
138
+ INPUT:
139
+
140
+ - ``certificate`` -- boolean; whether to return a certificate along with
141
+ the boolean result. Here is what happens when ``certificate = True``:
142
+
143
+ - If the graph is not a line graph, the method returns a pair ``(b,
144
+ subgraph)`` where ``b`` is ``False`` and ``subgraph`` is a subgraph
145
+ isomorphic to one of the 9 forbidden induced subgraphs of a line graph.
146
+
147
+ - If the graph is a line graph, the method returns a triple ``(b,R,isom)``
148
+ where ``b`` is ``True``, ``R`` is a graph whose line graph is the graph
149
+ given as input, and ``isom`` is a map associating an edge of ``R`` to
150
+ each vertex of the graph.
151
+
152
+ .. NOTE::
153
+
154
+ This method wastes a bit of time when the input graph is not connected.
155
+ If you have performance in mind, it is probably better to only feed it
156
+ with connected graphs only.
157
+
158
+ .. SEEALSO::
159
+
160
+ - The :mod:`line_graph <sage.graphs.line_graph>` module.
161
+
162
+ - :meth:`~sage.graphs.graph_generators.GraphGenerators.line_graph_forbidden_subgraphs`
163
+ -- the forbidden subgraphs of a line graph.
164
+
165
+ - :meth:`~sage.graphs.generic_graph.GenericGraph.line_graph`
166
+
167
+ EXAMPLES:
168
+
169
+ A complete graph is always the line graph of a star::
170
+
171
+ sage: graphs.CompleteGraph(5).is_line_graph()
172
+ True
173
+
174
+ The Petersen Graph not being claw-free, it is not a line
175
+ graph::
176
+
177
+ sage: graphs.PetersenGraph().is_line_graph()
178
+ False
179
+
180
+ This is indeed the subgraph returned::
181
+
182
+ sage: C = graphs.PetersenGraph().is_line_graph(certificate=True)[1] # needs sage.modules
183
+ sage: C.is_isomorphic(graphs.ClawGraph()) # needs sage.modules
184
+ True
185
+
186
+ The house graph is a line graph::
187
+
188
+ sage: g = graphs.HouseGraph()
189
+ sage: g.is_line_graph()
190
+ True
191
+
192
+ But what is the graph whose line graph is the house ?::
193
+
194
+ sage: # needs sage.modules
195
+ sage: is_line, R, isom = g.is_line_graph(certificate=True)
196
+ sage: R.sparse6_string()
197
+ ':DaHI~'
198
+ sage: R.show() # needs sage.plot
199
+ sage: isom
200
+ {0: (0, 1), 1: (0, 2), 2: (1, 3), 3: (2, 3), 4: (3, 4)}
201
+
202
+ TESTS:
203
+
204
+ Disconnected graphs::
205
+
206
+ sage: g = 2 * graphs.CycleGraph(3)
207
+ sage: gl = g.line_graph().relabel(inplace=False)
208
+ sage: new_g = gl.is_line_graph(certificate=True)[1] # needs sage.modules
209
+ sage: g.line_graph().is_isomorphic(gl) # needs sage.modules
210
+ True
211
+
212
+ Verify that :issue:`29740` is fixed::
213
+
214
+ sage: g = Graph('O{e[{}^~z`MDZBZBkXzE^')
215
+ sage: g.is_line_graph()
216
+ False
217
+ """
218
+ g._scream_if_not_simple()
219
+
220
+ def get_certificate(gg):
221
+ """
222
+ Assuming that gg is not a line graph, return a forbidden induced
223
+ subgraph.
224
+ """
225
+ from sage.graphs.graph_generators import graphs
226
+ for fg in graphs.line_graph_forbidden_subgraphs():
227
+ h = gg.subgraph_search(fg, induced=True)
228
+ if h is not None:
229
+ return h
230
+
231
+ if g.is_connected():
232
+ try:
233
+ # To check whether g is a line graph, we try to construct its root
234
+ # graph
235
+ R, isom = root_graph(g)
236
+ if certificate:
237
+ return True, R, isom
238
+ return True
239
+ except ValueError as VE:
240
+ if str(VE) == "this graph is not a line graph !":
241
+ # g is not a line graph
242
+ if certificate:
243
+ return False, get_certificate(g)
244
+ return False
245
+ raise VE
246
+
247
+ # g is not connected, so we apply the above procedure to each connected
248
+ # component
249
+ from sage.graphs.graph import Graph
250
+ R = Graph()
251
+ for gg in g.connected_components_subgraphs():
252
+ try:
253
+ RR, isom = root_graph(gg)
254
+ R += RR
255
+ except ValueError as VE:
256
+ if str(VE) == "this graph is not a line graph !":
257
+ # gg is not a line graph
258
+ if certificate:
259
+ return False, get_certificate(gg)
260
+ return False
261
+ raise VE
262
+
263
+ if certificate:
264
+ _, isom = g.is_isomorphic(R.line_graph(labels=False), certificate=True)
265
+ return True, R, isom
266
+ return True
267
+
268
+
269
+ def line_graph(g, labels=True, return_labels=False, immutable=None):
270
+ """
271
+ Return the line graph of the (di)graph ``g`` (multiedges and loops allowed).
272
+
273
+ INPUT:
274
+
275
+ - ``labels`` -- boolean (default: ``True``); whether edge labels should be
276
+ taken in consideration. If ``labels=True``, the vertices of the line graph
277
+ will be triples ``(u,v,label)``, and pairs of vertices otherwise. In case
278
+ of multiple edges, the vertices of the line graph will be triples
279
+ ``(u,v,an integer)``.
280
+
281
+ - ``return_labels`` -- boolean (default: ``False``); whether edge labels should
282
+ be stored or not. If g has multiple edges and if ``return_labels=True``, the
283
+ method returns a list the first element of which is the line-graph of g
284
+ and the second element is a dictionary {vertex of the line-graph: former
285
+ corresponding edge with its original label}. If ``return_labels=False``,
286
+ the method returns only the line-graph.
287
+
288
+ - ``immutable`` -- boolean (default: ``None``); whether to create a
289
+ mutable/immutable (di)graph. ``immutable=None`` (default) means that the
290
+ (di)graph and its line (di)graph will behave the same way.
291
+
292
+ The line graph of an undirected graph G is an undirected simple graph H such
293
+ that the vertices of H are the edges of G and two vertices e and f of H are
294
+ adjacent if e and f share a common vertex in G. In other words, an edge in H
295
+ represents a path of length 2 in G.
296
+
297
+ Loops are not adjacent to themselves.
298
+
299
+ The line graph of a directed graph G is a directed graph H such that the
300
+ vertices of H are the edges of G and two vertices e and f of H are adjacent
301
+ if e and f share a common vertex in G and the terminal vertex of e is the
302
+ initial vertex of f. In other words, an edge in H represents a (directed)
303
+ path of length 2 in G.
304
+
305
+ .. NOTE::
306
+
307
+ As a :class:`Graph` object only accepts hashable objects as vertices
308
+ (and as the vertices of the line graph are the edges of the graph), this
309
+ code will fail if edge labels are not hashable. You can also set the
310
+ argument ``labels=False`` to ignore labels.
311
+
312
+ .. SEEALSO::
313
+
314
+ - The :mod:`line_graph <sage.graphs.line_graph>` module
315
+
316
+ - :meth:`~sage.graphs.graph_generators.GraphGenerators.line_graph_forbidden_subgraphs`
317
+ -- the forbidden subgraphs of a line graph
318
+
319
+ - :meth:`~Graph.is_line_graph` -- tests whether a graph is a line graph
320
+
321
+ EXAMPLES::
322
+
323
+ sage: g = graphs.CompleteGraph(4)
324
+ sage: h = g.line_graph()
325
+ sage: h.vertices(sort=True)
326
+ [(0, 1, None),
327
+ (0, 2, None),
328
+ (0, 3, None),
329
+ (1, 2, None),
330
+ (1, 3, None),
331
+ (2, 3, None)]
332
+ sage: h.am() # needs sage.modules
333
+ [0 1 1 1 1 0]
334
+ [1 0 1 1 0 1]
335
+ [1 1 0 0 1 1]
336
+ [1 1 0 0 1 1]
337
+ [1 0 1 1 0 1]
338
+ [0 1 1 1 1 0]
339
+ sage: h2 = g.line_graph(labels=False)
340
+ sage: h2.vertices(sort=True)
341
+ [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
342
+ sage: h2.am() == h.am() # needs sage.modules
343
+ True
344
+ sage: g = DiGraph([[1..4], lambda i,j: i < j])
345
+ sage: h = g.line_graph()
346
+ sage: h.vertices(sort=True)
347
+ [(1, 2, None),
348
+ (1, 3, None),
349
+ (1, 4, None),
350
+ (2, 3, None),
351
+ (2, 4, None),
352
+ (3, 4, None)]
353
+ sage: h.edges(sort=True)
354
+ [((1, 2, None), (2, 3, None), None),
355
+ ((1, 2, None), (2, 4, None), None),
356
+ ((1, 3, None), (3, 4, None), None),
357
+ ((2, 3, None), (3, 4, None), None)]
358
+
359
+ Examples with multiple edges::
360
+
361
+ sage: L = Graph([(0,1),(0,1),(1,2)],multiedges=True).line_graph()
362
+ sage: L.edges()
363
+ [((0, 1, 0), (0, 1, 1), None), ((0, 1, 1), (1, 2, 2), None),
364
+ ((0, 1, 0), (1, 2, 2), None)]
365
+ sage: G = Graph([(0,1),(0,1,'a'),(0,1,'b'),(0,2),(1,2,'c')],
366
+ ....: multiedges=True)
367
+ sage: L = G.line_graph(False,True)
368
+ sage: L[0].edges()
369
+ [((0, 1, 1), (0, 1, 2), None), ((0, 1, 0), (0, 1, 2), None),
370
+ ((0, 1, 2), (0, 2, 3), None), ((0, 1, 2), (1, 2, 4), None), ((0, 1, 0),
371
+ (0, 1, 1), None), ((0, 1, 1), (0, 2, 3), None), ((0, 1, 1),
372
+ (1, 2, 4), None), ((0, 1, 0), (0, 2, 3), None), ((0, 1, 0),
373
+ (1, 2, 4), None), ((0, 2, 3), (1, 2, 4), None)]
374
+ sage: L[1]
375
+ {(0, 1, 0): (0, 1, None),
376
+ (0, 1, 1): (0, 1, 'b'),
377
+ (0, 1, 2): (0, 1, 'a'),
378
+ (0, 2, 3): (0, 2, None),
379
+ (1, 2, 4): (1, 2, 'c')}
380
+ sage: g = DiGraph([(0,1),(0,1),(1,2)],multiedges=True)
381
+ sage: g.line_graph().edges()
382
+ [((0, 1, 1), (1, 2, 2), None), ((0, 1, 0), (1, 2, 2), None)]
383
+
384
+ An example with a loop::
385
+
386
+ sage: g = Graph([(0,0),(0,1),(0,2),(1,2)],multiedges=True,loops=True)
387
+ sage: L = g.line_graph()
388
+ sage: L.edges()
389
+ [((0, 0, None), (0, 1, None), None), ((0, 0, None), (0, 2, None), None),
390
+ ((0, 1, None), (0, 2, None), None), ((0, 1, None), (1, 2, None), None),
391
+ ((0, 2, None), (1, 2, None), None)]
392
+
393
+ TESTS:
394
+
395
+ :issue:`13787`::
396
+
397
+ sage: g = graphs.KneserGraph(7,1)
398
+ sage: C = graphs.CompleteGraph(7)
399
+ sage: C.is_isomorphic(g)
400
+ True
401
+ sage: C.line_graph().is_isomorphic(g.line_graph())
402
+ True
403
+
404
+ Check the behavior of parameter ``immutable``::
405
+
406
+ sage: G = Graph([(0, 1), (1, 2)])
407
+ sage: G.line_graph().is_immutable()
408
+ False
409
+ sage: G.line_graph(immutable=True).is_immutable()
410
+ True
411
+ sage: G = Graph([(0, 1), (1, 2)], immutable=True)
412
+ sage: G.line_graph().is_immutable()
413
+ True
414
+ sage: G.line_graph(immutable=False).is_immutable()
415
+ False
416
+ sage: G = Graph([(0, 1), (0, 1), (1, 2)], multiedges=True)
417
+ sage: G.line_graph().is_immutable()
418
+ False
419
+ sage: G.line_graph(immutable=True).is_immutable()
420
+ True
421
+ sage: G = Graph([(0, 1), (0, 1), (1, 2)], multiedges=True, immutable=True)
422
+ sage: G.line_graph().is_immutable()
423
+ True
424
+ sage: G.line_graph(immutable=False).is_immutable()
425
+ False
426
+ sage: G = DiGraph([(0, 1), (1, 2)])
427
+ sage: G.line_graph().is_immutable()
428
+ False
429
+ sage: G.line_graph(immutable=True).is_immutable()
430
+ True
431
+ """
432
+ cdef dict conflicts = {}
433
+ cdef dict origlabels_dic = {} # stores original labels of edges in case of multiple edges
434
+
435
+ multiple = g.has_multiple_edges()
436
+
437
+ if immutable is None:
438
+ immutable = g.is_immutable()
439
+
440
+ if multiple:
441
+ # As the edges of g are the vertices of its line graph, we need to distinguish between the multiple edges of g.
442
+ # To this aim, we assign to each edge of g an integer label (between 0 and g.size() - 1) and set labels to True
443
+ # in order to keep these labels during the construction of the line graph.
444
+ labels = True
445
+ origlabels_dic = {(u, v, id): (u, v, label)
446
+ for id, (u, v, label) in enumerate(g.edge_iterator())}
447
+ g = parent(g)([g, origlabels_dic.keys()], format='vertices_and_edges', multiedges=True)
448
+
449
+ if g._directed:
450
+ from sage.graphs.digraph import DiGraph
451
+ # Connect appropriate incident edges of each vertex v
452
+ arcs = ((e, f) for v in g
453
+ for e in g.incoming_edge_iterator(v, labels=labels)
454
+ for f in g.outgoing_edge_iterator(v, labels=labels))
455
+ G = DiGraph([g.edge_iterator(labels=labels), arcs],
456
+ format='vertices_and_edges', immutable=immutable)
457
+ if return_labels and multiple:
458
+ return [G, origlabels_dic]
459
+ return G
460
+
461
+ # We must sort the edges' endpoints so that (1,2,None) is seen as the
462
+ # same edge as (2,1,None).
463
+ #
464
+ # We do so by comparing hashes, just in case all the natural order (<)
465
+ # on vertices would not be a total order (for instance when vertices are
466
+ # sets). If two adjacent vertices have the same hash, then we store the
467
+ # pair in the dictionary of conflicts
468
+
469
+ # 1) List of vertices in the line graph
470
+ cdef list vertices = []
471
+ for e in g.edge_iterator(labels=labels):
472
+ if hash(e[0]) < hash(e[1]):
473
+ vertices.append(e)
474
+ elif hash(e[0]) > hash(e[1]):
475
+ vertices.append((e[1], e[0]) + e[2:])
476
+ else:
477
+ # Settle the conflict arbitrarily
478
+ conflicts[e] = e
479
+ conflicts[(e[1], e[0]) + e[2:]] = e
480
+ vertices.append(e)
481
+
482
+ # 2) adjacencies in the line graph
483
+ cdef list edges = []
484
+ cdef list elist
485
+ from itertools import combinations
486
+ for v in g:
487
+ elist = []
488
+
489
+ # Add the edge to the list, according to hashes, as previously
490
+ for e in g.edge_iterator(v, labels=labels): # iterates over the edges incident to v
491
+ if hash(e[0]) < hash(e[1]):
492
+ elist.append(e)
493
+ elif hash(e[0]) > hash(e[1]):
494
+ elist.append((e[1], e[0]) + e[2:])
495
+ else:
496
+ elist.append(conflicts[e])
497
+
498
+ # All pairs of elements in elist are edges of the line graph
499
+ # if g has multiple edges, some pairs appear more than once but as G is defined as simple,
500
+ # the corresponding edges are not added as multiedges (as it should be).
501
+ edges.extend(combinations(elist, 2))
502
+
503
+ from sage.graphs.graph import Graph
504
+ G = Graph([vertices, edges], format='vertices_and_edges',
505
+ immutable=immutable)
506
+ if return_labels and multiple:
507
+ return [G, origlabels_dic]
508
+ return G
509
+
510
+
511
+ def root_graph(g, verbose=False, immutable=None):
512
+ r"""
513
+ Return the root graph corresponding to the given graph ``g``.
514
+
515
+ See the documentation of :mod:`sage.graphs.line_graph` to know how it works.
516
+
517
+ INPUT:
518
+
519
+ - ``g`` -- a graph
520
+
521
+ - ``verbose`` -- boolean (default: ``False``); display some information
522
+ about what is happening inside of the algorithm
523
+
524
+ - ``immutable`` -- boolean (default: ``None``); whether to create a
525
+ mutable/immutable (di)graph. ``immutable=None`` (default) means that the
526
+ (di)graph and its root (di)graph will behave the same way.
527
+
528
+ .. WARNING::
529
+
530
+ This code assumes that `g` is a line graph, and is a connected,
531
+ undirected graph without multiple edges.
532
+
533
+ TESTS:
534
+
535
+ All connected graphs on 6 vertices::
536
+
537
+ sage: from sage.graphs.line_graph import root_graph
538
+ sage: def test(g):
539
+ ....: gl = g.line_graph(labels=False)
540
+ ....: d = root_graph(gl)
541
+ sage: for i,g in enumerate(graphs(6)): # long time
542
+ ....: if not g.is_connected():
543
+ ....: continue
544
+ ....: test(g)
545
+
546
+ Non line-graphs::
547
+
548
+ sage: root_graph(graphs.PetersenGraph())
549
+ Traceback (most recent call last):
550
+ ...
551
+ ValueError: this graph is not a line graph !
552
+
553
+ sage: root_graph(Graph('O{e[{}^~z`MDZBZBkXzE^'))
554
+ Traceback (most recent call last):
555
+ ...
556
+ ValueError: this graph is not a line graph !
557
+
558
+ Small corner-cases::
559
+
560
+ sage: from sage.graphs.line_graph import root_graph
561
+ sage: root_graph(graphs.CompleteGraph(3))
562
+ (Complete bipartite graph of order 1+3: Graph on 4 vertices,
563
+ {0: (0, 1), 1: (0, 2), 2: (0, 3)})
564
+ sage: G, D = root_graph(graphs.OctahedralGraph()); G
565
+ Complete graph: Graph on 4 vertices
566
+ sage: G, D = root_graph(graphs.DiamondGraph()); G
567
+ Graph on 4 vertices
568
+ sage: G, D = root_graph(graphs.WheelGraph(5)); G
569
+ Diamond Graph: Graph on 4 vertices
570
+
571
+ Check the behavior of parameter ``immutable``::
572
+
573
+ sage: G = graphs.CycleGraph(4)
574
+ sage: root_graph(G)[0].is_immutable()
575
+ False
576
+ sage: root_graph(G, immutable=True)[0].is_immutable()
577
+ True
578
+ sage: G = graphs.CycleGraph(4, immutable=True)
579
+ sage: root_graph(G)[0].is_immutable()
580
+ True
581
+ sage: root_graph(G, immutable=True)[0].is_immutable()
582
+ True
583
+ """
584
+ from sage.graphs.digraph import DiGraph
585
+
586
+ if isinstance(g, DiGraph):
587
+ raise ValueError("g cannot be a DiGraph !")
588
+ if g.has_multiple_edges():
589
+ raise ValueError("g cannot have multiple edges !")
590
+ if not g.is_connected():
591
+ raise ValueError("g is not connected !")
592
+ # is_line_graph expects a particular error message when g is not a line graph
593
+ not_line_graph = "this graph is not a line graph !"
594
+
595
+ if immutable is None:
596
+ immutable = g.is_immutable()
597
+
598
+ # Complete Graph ?
599
+ if g.is_clique():
600
+ from sage.graphs.generators.basic import CompleteBipartiteGraph
601
+ return (CompleteBipartiteGraph(1, g.order(), immutable=immutable),
602
+ {v: (0, 1 + i) for i, v in enumerate(g)})
603
+
604
+ # Diamond Graph ?
605
+ elif g.order() == 4 and g.size() == 5:
606
+ from sage.graphs.graph import Graph
607
+ root = Graph([(0, 1), (1, 2), (2, 0), (0, 3)], immutable=immutable)
608
+ return (root,
609
+ g.is_isomorphic(root.line_graph(labels=False), certificate=True)[1])
610
+
611
+ # Wheel on 5 vertices ?
612
+ elif g.order() == 5 and g.size() == 8 and min(g.degree()) == 3:
613
+ from sage.graphs.generators.basic import DiamondGraph
614
+ root = DiamondGraph(immutable=immutable)
615
+ return (root,
616
+ g.is_isomorphic(root.line_graph(labels=False), certificate=True)[1])
617
+
618
+ # Octahedron ?
619
+ elif g.order() == 6 and g.size() == 12 and g.is_regular(k=4):
620
+ from sage.graphs.generators.platonic_solids import OctahedralGraph
621
+ if g.is_isomorphic(OctahedralGraph()):
622
+ from sage.graphs.generators.basic import CompleteGraph
623
+ root = CompleteGraph(4, immutable=immutable)
624
+ return (root,
625
+ g.is_isomorphic(root.line_graph(labels=False), certificate=True)[1])
626
+
627
+ # From now on we can assume (thanks to Beineke) that no edge belongs to two
628
+ # even triangles at once.
629
+
630
+ # Better to work on integers... Everything takes more time otherwise.
631
+ G = g.relabel(inplace=False)
632
+
633
+ # Dictionary of (pairs of) cliques, i.e. the two cliques associated with
634
+ # each vertex.
635
+ cdef dict v_cliques = {v: [] for v in G}
636
+ # All the even triangles we meet
637
+ cdef list even_triangles = []
638
+
639
+ # We iterate over all maximal cliques of the graph.
640
+
641
+ # As method G.cliques_maximal() returns the list of all maximal cliques
642
+ # (which takes an exponential time on general graphs, while it is obviously
643
+ # polynomial on line graphs), we instead use IndependentSet to iterate over
644
+ # all the maximal cliques. This way, we can say early that the graph is not
645
+ # a line graph.
646
+
647
+ from sage.graphs.independent_sets import IndependentSets
648
+ for S in IndependentSets(G, maximal=True, complement=True):
649
+
650
+ # Triangles... even or odd ?
651
+ if len(S) == 3:
652
+
653
+ # If a vertex of G has an odd number of neighbors among the vertices
654
+ # of S, then the triangle is odd. We compute the list of such
655
+ # vertices by taking the symmetric difference of the neighborhood of
656
+ # our three vertices.
657
+ #
658
+ # Note that the elements of S do not appear in this set as they are
659
+ # all seen exactly twice.
660
+
661
+ odd_neighbors = set(G.neighbor_iterator(S[0]))
662
+ odd_neighbors.symmetric_difference_update(G.neighbor_iterator(S[1]))
663
+ odd_neighbors.symmetric_difference_update(G.neighbor_iterator(S[2]))
664
+
665
+ # Even triangles
666
+ if not odd_neighbors:
667
+ even_triangles.append(tuple(S))
668
+ continue
669
+
670
+ # We manage odd triangles the same way we manage other cliques ...
671
+
672
+ # We now associate the clique to all the vertices it contains.
673
+ for v in S:
674
+ if len(v_cliques[v]) == 2:
675
+ raise ValueError(not_line_graph)
676
+ v_cliques[v].append(tuple(S))
677
+
678
+ if verbose:
679
+ print("Added clique", S)
680
+
681
+ # Deal with even triangles
682
+ for u, v, w in even_triangles:
683
+
684
+ # According to Beineke, we must go through all even triangles, and for
685
+ # each triangle uvw consider its three pairs of adjacent vertices uv,
686
+ # vw, wu. For all pairs xy among those such that xy do not appear
687
+ # together in any clique we have found so far, we add xy to the list of
688
+ # cliques describing our covering.
689
+
690
+ for x, y in [(u, v), (v, w), (w, u)]:
691
+
692
+ # If edge xy does not appear in any of the cliques associated with y
693
+ if all(x not in C for C in v_cliques[y]):
694
+ if len(v_cliques[y]) >= 2 or len(v_cliques[x]) >= 2:
695
+ raise ValueError("this graph is not a line graph !")
696
+
697
+ v_cliques[x].append((x, y))
698
+ v_cliques[y].append((x, y))
699
+
700
+ if verbose:
701
+ print("Adding pair", (x, y),
702
+ "appearing in the even triangle", (u, v, w))
703
+
704
+ # Deal with vertices contained in only one clique. All edges must be defined
705
+ # by TWO endpoints, so we add a fake clique.
706
+ for x, clique_list in v_cliques.items():
707
+ if len(clique_list) == 1:
708
+ clique_list.append((x,))
709
+
710
+ # We now have all our cliques. Let's build the root graph to check that it
711
+ # all fits !
712
+
713
+ # Associates an integer to each clique
714
+ cdef dict relabel = {}
715
+
716
+ # Associates to each vertex of G its pair of coordinates in R
717
+ cdef dict vertex_to_map = {}
718
+
719
+ for v, L in v_cliques.items():
720
+
721
+ # Add cliques to relabel dictionary
722
+ for S in L:
723
+ if S not in relabel:
724
+ relabel[S] = len(relabel)
725
+
726
+ # The coordinates of edge v
727
+ vertex_to_map[v] = relabel[L[0]], relabel[L[1]]
728
+
729
+ if verbose:
730
+ print("Final associations :")
731
+ for v, L in v_cliques.items():
732
+ print(v, L)
733
+
734
+ # We now build R
735
+ from sage.graphs.graph import Graph
736
+ R = Graph(vertex_to_map.values(), format='list_of_edges', immutable=immutable)
737
+
738
+ # If g is a line graph, then it is isomorphic to the line graph of the graph
739
+ # R that we have constructed, so we return R (and the isomorphism).
740
+ is_isom, isom = g.is_isomorphic(R.line_graph(labels=False), certificate=True)
741
+ if is_isom:
742
+ return R, isom
743
+ raise ValueError(not_line_graph)