passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (260) hide show
  1. passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
  2. passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
  3. passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
  4. passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
  5. passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
  6. passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
  7. passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
  8. sage/all__sagemath_graphs.py +39 -0
  9. sage/combinat/abstract_tree.py +2723 -0
  10. sage/combinat/all__sagemath_graphs.py +34 -0
  11. sage/combinat/binary_tree.py +5306 -0
  12. sage/combinat/cluster_algebra_quiver/all.py +22 -0
  13. sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
  14. sage/combinat/cluster_algebra_quiver/interact.py +124 -0
  15. sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
  16. sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
  17. sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
  18. sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
  19. sage/combinat/designs/MOLS_handbook_data.py +570 -0
  20. sage/combinat/designs/all.py +58 -0
  21. sage/combinat/designs/bibd.py +1655 -0
  22. sage/combinat/designs/block_design.py +1071 -0
  23. sage/combinat/designs/covering_array.py +269 -0
  24. sage/combinat/designs/covering_design.py +530 -0
  25. sage/combinat/designs/database.py +5615 -0
  26. sage/combinat/designs/design_catalog.py +122 -0
  27. sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  28. sage/combinat/designs/designs_pyx.pxd +21 -0
  29. sage/combinat/designs/designs_pyx.pyx +993 -0
  30. sage/combinat/designs/difference_family.py +3951 -0
  31. sage/combinat/designs/difference_matrices.py +279 -0
  32. sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  33. sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
  34. sage/combinat/designs/ext_rep.py +1064 -0
  35. sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
  36. sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
  37. sage/combinat/designs/group_divisible_designs.py +361 -0
  38. sage/combinat/designs/incidence_structures.py +2357 -0
  39. sage/combinat/designs/latin_squares.py +581 -0
  40. sage/combinat/designs/orthogonal_arrays.py +2244 -0
  41. sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
  42. sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
  43. sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
  44. sage/combinat/designs/resolvable_bibd.py +815 -0
  45. sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
  46. sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
  47. sage/combinat/designs/subhypergraph_search.pyx +530 -0
  48. sage/combinat/designs/twographs.py +306 -0
  49. sage/combinat/finite_state_machine.py +14874 -0
  50. sage/combinat/finite_state_machine_generators.py +2006 -0
  51. sage/combinat/graph_path.py +448 -0
  52. sage/combinat/interval_posets.py +3908 -0
  53. sage/combinat/nu_tamari_lattice.py +269 -0
  54. sage/combinat/ordered_tree.py +1446 -0
  55. sage/combinat/posets/all.py +46 -0
  56. sage/combinat/posets/bubble_shuffle.py +247 -0
  57. sage/combinat/posets/cartesian_product.py +493 -0
  58. sage/combinat/posets/d_complete.py +182 -0
  59. sage/combinat/posets/elements.py +273 -0
  60. sage/combinat/posets/forest.py +30 -0
  61. sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
  62. sage/combinat/posets/hasse_cython.pyx +174 -0
  63. sage/combinat/posets/hasse_diagram.py +3672 -0
  64. sage/combinat/posets/hochschild_lattice.py +158 -0
  65. sage/combinat/posets/incidence_algebras.py +794 -0
  66. sage/combinat/posets/lattices.py +5117 -0
  67. sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
  68. sage/combinat/posets/linear_extension_iterator.pyx +292 -0
  69. sage/combinat/posets/linear_extensions.py +1037 -0
  70. sage/combinat/posets/mobile.py +275 -0
  71. sage/combinat/posets/moebius_algebra.py +776 -0
  72. sage/combinat/posets/poset_examples.py +2178 -0
  73. sage/combinat/posets/posets.py +9360 -0
  74. sage/combinat/rooted_tree.py +1070 -0
  75. sage/combinat/shard_order.py +239 -0
  76. sage/combinat/tamari_lattices.py +384 -0
  77. sage/combinat/yang_baxter_graph.py +923 -0
  78. sage/databases/all__sagemath_graphs.py +1 -0
  79. sage/databases/knotinfo_db.py +1231 -0
  80. sage/ext_data/all__sagemath_graphs.py +1 -0
  81. sage/ext_data/graphs/graph_plot_js.html +330 -0
  82. sage/ext_data/kenzo/CP2.txt +45 -0
  83. sage/ext_data/kenzo/CP3.txt +349 -0
  84. sage/ext_data/kenzo/CP4.txt +4774 -0
  85. sage/ext_data/kenzo/README.txt +49 -0
  86. sage/ext_data/kenzo/S4.txt +20 -0
  87. sage/graphs/all.py +42 -0
  88. sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
  89. sage/graphs/asteroidal_triples.pyx +320 -0
  90. sage/graphs/base/all.py +1 -0
  91. sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  92. sage/graphs/base/boost_graph.pxd +106 -0
  93. sage/graphs/base/boost_graph.pyx +3045 -0
  94. sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  95. sage/graphs/base/c_graph.pxd +106 -0
  96. sage/graphs/base/c_graph.pyx +5096 -0
  97. sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  98. sage/graphs/base/dense_graph.pxd +28 -0
  99. sage/graphs/base/dense_graph.pyx +801 -0
  100. sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
  101. sage/graphs/base/graph_backends.pxd +5 -0
  102. sage/graphs/base/graph_backends.pyx +797 -0
  103. sage/graphs/base/overview.py +85 -0
  104. sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  105. sage/graphs/base/sparse_graph.pxd +90 -0
  106. sage/graphs/base/sparse_graph.pyx +1653 -0
  107. sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  108. sage/graphs/base/static_dense_graph.pxd +5 -0
  109. sage/graphs/base/static_dense_graph.pyx +1032 -0
  110. sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
  111. sage/graphs/base/static_sparse_backend.pxd +27 -0
  112. sage/graphs/base/static_sparse_backend.pyx +1583 -0
  113. sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  114. sage/graphs/base/static_sparse_graph.pxd +37 -0
  115. sage/graphs/base/static_sparse_graph.pyx +1375 -0
  116. sage/graphs/bipartite_graph.py +2732 -0
  117. sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
  118. sage/graphs/centrality.pyx +1038 -0
  119. sage/graphs/cographs.py +519 -0
  120. sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
  121. sage/graphs/comparability.pyx +851 -0
  122. sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  123. sage/graphs/connectivity.pxd +157 -0
  124. sage/graphs/connectivity.pyx +4813 -0
  125. sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
  126. sage/graphs/convexity_properties.pxd +16 -0
  127. sage/graphs/convexity_properties.pyx +870 -0
  128. sage/graphs/digraph.py +4754 -0
  129. sage/graphs/digraph_generators.py +1993 -0
  130. sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
  131. sage/graphs/distances_all_pairs.pxd +12 -0
  132. sage/graphs/distances_all_pairs.pyx +2938 -0
  133. sage/graphs/domination.py +1363 -0
  134. sage/graphs/dot2tex_utils.py +100 -0
  135. sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
  136. sage/graphs/edge_connectivity.pyx +1215 -0
  137. sage/graphs/generators/all.py +1 -0
  138. sage/graphs/generators/basic.py +1769 -0
  139. sage/graphs/generators/chessboard.py +538 -0
  140. sage/graphs/generators/classical_geometries.py +1611 -0
  141. sage/graphs/generators/degree_sequence.py +235 -0
  142. sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
  143. sage/graphs/generators/distance_regular.pyx +2846 -0
  144. sage/graphs/generators/families.py +4759 -0
  145. sage/graphs/generators/intersection.py +565 -0
  146. sage/graphs/generators/platonic_solids.py +262 -0
  147. sage/graphs/generators/random.py +2623 -0
  148. sage/graphs/generators/smallgraphs.py +5741 -0
  149. sage/graphs/generators/world_map.py +724 -0
  150. sage/graphs/generic_graph.py +26867 -0
  151. sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  152. sage/graphs/generic_graph_pyx.pxd +34 -0
  153. sage/graphs/generic_graph_pyx.pyx +1673 -0
  154. sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
  155. sage/graphs/genus.pyx +622 -0
  156. sage/graphs/graph.py +9645 -0
  157. sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
  158. sage/graphs/graph_coloring.pyx +2284 -0
  159. sage/graphs/graph_database.py +1177 -0
  160. sage/graphs/graph_decompositions/all.py +1 -0
  161. sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  162. sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
  163. sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
  164. sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
  165. sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
  166. sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
  167. sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
  168. sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
  169. sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
  170. sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
  171. sage/graphs/graph_decompositions/graph_products.pyx +508 -0
  172. sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  173. sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
  174. sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
  175. sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  176. sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
  177. sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
  178. sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
  179. sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
  180. sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
  181. sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
  182. sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
  183. sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
  184. sage/graphs/graph_editor.py +82 -0
  185. sage/graphs/graph_generators.py +3314 -0
  186. sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
  187. sage/graphs/graph_generators_pyx.pyx +95 -0
  188. sage/graphs/graph_input.py +812 -0
  189. sage/graphs/graph_latex.py +2064 -0
  190. sage/graphs/graph_list.py +410 -0
  191. sage/graphs/graph_plot.py +1756 -0
  192. sage/graphs/graph_plot_js.py +338 -0
  193. sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
  194. sage/graphs/hyperbolicity.pyx +1704 -0
  195. sage/graphs/hypergraph_generators.py +364 -0
  196. sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
  197. sage/graphs/independent_sets.pxd +13 -0
  198. sage/graphs/independent_sets.pyx +402 -0
  199. sage/graphs/isgci.py +1033 -0
  200. sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
  201. sage/graphs/isoperimetric_inequalities.pyx +489 -0
  202. sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
  203. sage/graphs/line_graph.pyx +743 -0
  204. sage/graphs/lovasz_theta.py +77 -0
  205. sage/graphs/matching.py +1633 -0
  206. sage/graphs/matching_covered_graph.py +3590 -0
  207. sage/graphs/orientations.py +1489 -0
  208. sage/graphs/partial_cube.py +459 -0
  209. sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
  210. sage/graphs/path_enumeration.pyx +2040 -0
  211. sage/graphs/pq_trees.py +1129 -0
  212. sage/graphs/print_graphs.py +201 -0
  213. sage/graphs/schnyder.py +865 -0
  214. sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
  215. sage/graphs/spanning_tree.pyx +1457 -0
  216. sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
  217. sage/graphs/strongly_regular_db.pyx +3340 -0
  218. sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
  219. sage/graphs/traversals.pxd +9 -0
  220. sage/graphs/traversals.pyx +1872 -0
  221. sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
  222. sage/graphs/trees.pxd +15 -0
  223. sage/graphs/trees.pyx +310 -0
  224. sage/graphs/tutte_polynomial.py +713 -0
  225. sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
  226. sage/graphs/views.pyx +794 -0
  227. sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
  228. sage/graphs/weakly_chordal.pyx +604 -0
  229. sage/groups/all__sagemath_graphs.py +1 -0
  230. sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
  231. sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
  232. sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
  233. sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
  234. sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
  235. sage/knots/all.py +6 -0
  236. sage/knots/free_knotinfo_monoid.py +507 -0
  237. sage/knots/gauss_code.py +291 -0
  238. sage/knots/knot.py +682 -0
  239. sage/knots/knot_table.py +284 -0
  240. sage/knots/knotinfo.py +2900 -0
  241. sage/knots/link.py +4715 -0
  242. sage/sandpiles/all.py +13 -0
  243. sage/sandpiles/examples.py +225 -0
  244. sage/sandpiles/sandpile.py +6365 -0
  245. sage/topology/all.py +22 -0
  246. sage/topology/cell_complex.py +1214 -0
  247. sage/topology/cubical_complex.py +1976 -0
  248. sage/topology/delta_complex.py +1806 -0
  249. sage/topology/filtered_simplicial_complex.py +744 -0
  250. sage/topology/moment_angle_complex.py +823 -0
  251. sage/topology/simplicial_complex.py +5160 -0
  252. sage/topology/simplicial_complex_catalog.py +92 -0
  253. sage/topology/simplicial_complex_examples.py +1680 -0
  254. sage/topology/simplicial_complex_homset.py +205 -0
  255. sage/topology/simplicial_complex_morphism.py +836 -0
  256. sage/topology/simplicial_set.py +4102 -0
  257. sage/topology/simplicial_set_catalog.py +55 -0
  258. sage/topology/simplicial_set_constructions.py +2954 -0
  259. sage/topology/simplicial_set_examples.py +865 -0
  260. sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,508 @@
1
+ # sage_setup: distribution = sagemath-graphs
2
+ # cython: binding=True
3
+ r"""
4
+ Products of graphs
5
+
6
+ This module gathers everything related to graph products. At the moment it
7
+ contains an implementation of a recognition algorithm for graphs that can be
8
+ written as a Cartesian product of smaller ones.
9
+
10
+ Author:
11
+
12
+ - Nathann Cohen (May 2012 -- coded while watching the election of Francois
13
+ Hollande on TV)
14
+
15
+ Cartesian product of graphs -- the recognition problem
16
+ ------------------------------------------------------
17
+
18
+ First, a definition:
19
+
20
+ **Definition** The Cartesian product of two graphs `G` and `H`, denoted
21
+ `G\square H`, is a graph defined on the pairs `(g, h)\in V(G)\times V(H)`.
22
+
23
+ Two elements `(g, h),(g', h')\in V(G\square H)` are adjacent in `G\square H`
24
+ if and only if :
25
+
26
+ - `g=g'` and `hh'\in H`; or
27
+ - `h=h'` and `gg'\in G`
28
+
29
+ Two remarks follow :
30
+
31
+ #. The Cartesian product is commutative
32
+
33
+ #. Any edge `uv` of a graph `G_1 \square \cdots \square G_k` can be given a
34
+ color `i` corresponding to the unique index `i` such that `u_i` and `v_i`
35
+ differ.
36
+
37
+ The problem that is of interest to us in the present module is the following:
38
+
39
+ **Recognition problem** Given a graph `G`, can we guess whether there exist
40
+ graphs `G_1, ..., G_k` such that `G=G_1\square \cdots \square G_k` ?
41
+
42
+ This problem can actually be solved, and the resulting factorization is
43
+ unique. What is explained below can be found in the book *Handbook of Product
44
+ Graphs* [HIK2011]_.
45
+
46
+ Everything is actually based on simple observations. Given a graph `G`, finding
47
+ out whether `G` can be written as the product of several graphs can be attempted
48
+ by trying to color its edges according to some rules. Indeed, if we are to color
49
+ the edges of `G` in such a way that each color class represents a factor of `G`,
50
+ we must ensure several things.
51
+
52
+ **Remark 1** In any cycle of `G` no color can appear exactly once.
53
+
54
+ Indeed, if only one edge `uv` of a cycle were labelled with color `i`, it
55
+ would mean that:
56
+
57
+ #. The only difference between `u` and `v` lies in their `i` th coordinate
58
+
59
+ #. It is possible to go from `u` to `v` by changing only coordinates
60
+ different from the `i` th
61
+
62
+ A contradiction indeed.
63
+
64
+ .. image:: ../../../media/cycle.png
65
+
66
+ That means that, for instance, the edges of a triangle necessarily have the
67
+ same color.
68
+
69
+ **Remark 2** If two consecutive edges `u_1u_2` and `u_2u_3` have different
70
+ colors, there necessarily exists a unique vertex `u_4` different from `u_2`
71
+ and incident to both `u_1` and `u_3`.
72
+
73
+ In this situation, opposed edges necessarily have the same colors because of
74
+ the previous remark.
75
+
76
+ .. image:: ../../../media/square.png
77
+
78
+ **1st criterion** : As a corollary, we know that:
79
+
80
+ #. If two vertices `u,v` have a *unique* common neighbor `x`, then `ux` and
81
+ `xv` have the same color.
82
+
83
+ #. If two vertices `u, v` have more that two common neighbors `x_1, ...,
84
+ x_k` then all edges between the `x_i` and the vertices of `u,v` have the
85
+ same color. This is also a consequence of the first remark.
86
+
87
+ **2nd criterion** : if two edges `uv` and `u'v'` of the product graph
88
+ `G\square H` are such that `d(u,u')+d(v,v')\neq d(u,v') + d(v,u')` then the
89
+ two edges `uv` and `u'v'` necessarily have the same color.
90
+
91
+ This is a consequence of the fact that for any two vertices `u,v` of
92
+ `G\square H` (where `u=(u_G,u_H)` and `v=(v_G,v_H)`), we have `d(u,v) =
93
+ d_G(u_G,v_G)+d_H(u_H,v_H)`. Indeed, a shortest path from `u` to `v` in
94
+ `G\square H` contains the information of a shortest path from `u_G` to `v_G`
95
+ in `G`, and a shortest path from `u_H` to `v_H` in `H`.
96
+
97
+ The algorithm
98
+ ^^^^^^^^^^^^^
99
+
100
+ The previous remarks tell us that some edges are in some way equivalent to some
101
+ others, i.e. that their colors are equal. In order to compute the coloring we
102
+ are looking for, we therefore build a graph on the *edges* of a graph `G`,
103
+ linking two edges whenever they are found to be equivalent according to the
104
+ previous remarks.
105
+
106
+ All that is left to do is to compute the connected components of this new graph,
107
+ as each of them representing the edges of a factor. Of course, only one
108
+ connected component indicates that the graph has no factorization.
109
+
110
+ Then again, please refer to [HIK2011]_ for any technical question.
111
+
112
+ To Do
113
+ ^^^^^
114
+
115
+ This implementation is made at Python level, and some parts of the algorithm
116
+ could be rewritten in Cython to save time. Especially when enumerating all pairs
117
+ of edges and computing their distances. This can easily be done in C with the
118
+ functions from the :mod:`sage.graphs.distances_all_pairs` module.
119
+
120
+ Methods
121
+ -------
122
+ """
123
+
124
+ # ****************************************************************************
125
+ # Copyright (C) 2012 Nathann Cohen <nathann.cohen@gmail.com>
126
+ #
127
+ # This program is free software: you can redistribute it and/or modify
128
+ # it under the terms of the GNU General Public License as published by
129
+ # the Free Software Foundation, either version 2 of the License, or
130
+ # (at your option) any later version.
131
+ # https://www.gnu.org/licenses/
132
+ # ****************************************************************************
133
+
134
+
135
+ def is_cartesian_product(g, certificate=False, relabeling=False, immutable=None):
136
+ r"""
137
+ Test whether the graph is a Cartesian product.
138
+
139
+ INPUT:
140
+
141
+ - ``certificate`` -- boolean (default: ``False``); if ``certificate =
142
+ False`` (default) the method only returns ``True`` or ``False``
143
+ answers. If ``certificate = True``, the ``True`` answers are replaced by
144
+ the list of the factors of the graph.
145
+
146
+ - ``relabeling`` -- boolean (default: ``False``); if ``relabeling = True``
147
+ (implies ``certificate = True``), the method also returns a dictionary
148
+ associating to each vertex its natural coordinates as a vertex of a
149
+ product graph. If `g` is not a Cartesian product, ``None`` is returned
150
+ instead.
151
+
152
+ - ``immutable`` -- boolean (default: ``None``); whether to create a
153
+ mutable/immutable graph. ``immutable=None`` (default) means that the
154
+ graph and its factors will behave the same way.
155
+
156
+ .. SEEALSO::
157
+
158
+ - :meth:`sage.graphs.generic_graph.GenericGraph.cartesian_product`
159
+
160
+ - :mod:`~sage.graphs.graph_decompositions.graph_products` -- a module on
161
+ graph products
162
+
163
+ .. NOTE::
164
+
165
+ This algorithm may run faster whenever the graph's vertices are integers
166
+ (see :meth:`~sage.graphs.generic_graph.GenericGraph.relabel`). Give it a
167
+ try if it is too slow !
168
+
169
+ EXAMPLES:
170
+
171
+ The Petersen graph is prime::
172
+
173
+ sage: from sage.graphs.graph_decompositions.graph_products import is_cartesian_product
174
+ sage: g = graphs.PetersenGraph()
175
+ sage: is_cartesian_product(g)
176
+ False
177
+
178
+ A 2d grid is the product of paths::
179
+
180
+ sage: g = graphs.Grid2dGraph(5,5)
181
+ sage: p1, p2 = is_cartesian_product(g, certificate = True)
182
+ sage: p1.is_isomorphic(graphs.PathGraph(5))
183
+ True
184
+ sage: p2.is_isomorphic(graphs.PathGraph(5))
185
+ True
186
+
187
+ Forgetting the graph's labels, then finding them back::
188
+
189
+ sage: g.relabel()
190
+ sage: b,D = g.is_cartesian_product(g, relabeling=True)
191
+ sage: b
192
+ True
193
+ sage: D # random isomorphism
194
+ {0: (20, 0), 1: (20, 1), 2: (20, 2), 3: (20, 3), 4: (20, 4),
195
+ 5: (15, 0), 6: (15, 1), 7: (15, 2), 8: (15, 3), 9: (15, 4),
196
+ 10: (10, 0), 11: (10, 1), 12: (10, 2), 13: (10, 3), 14: (10, 4),
197
+ 15: (5, 0), 16: (5, 1), 17: (5, 2), 18: (5, 3), 19: (5, 4),
198
+ 20: (0, 0), 21: (0, 1), 22: (0, 2), 23: (0, 3), 24: (0, 4)}
199
+
200
+ And of course, we find the factors back when we build a graph from a
201
+ product::
202
+
203
+ sage: g = graphs.PetersenGraph().cartesian_product(graphs.CycleGraph(3))
204
+ sage: g1, g2 = is_cartesian_product(g, certificate = True)
205
+ sage: any( x.is_isomorphic(graphs.PetersenGraph()) for x in [g1,g2])
206
+ True
207
+ sage: any( x.is_isomorphic(graphs.CycleGraph(3)) for x in [g1,g2])
208
+ True
209
+
210
+ TESTS:
211
+
212
+ Wagner's Graph (:issue:`13599`)::
213
+
214
+ sage: g = graphs.WagnerGraph() # needs networkx
215
+ sage: g.is_cartesian_product() # needs networkx
216
+ False
217
+
218
+ Empty and one-element graph (:issue:`19546`)::
219
+
220
+ sage: Graph().is_cartesian_product()
221
+ False
222
+ sage: Graph({0:[]}).is_cartesian_product()
223
+ False
224
+
225
+ Check the behaviour of parameter ``immutable``::
226
+
227
+ sage: G = graphs.Grid2dGraph(3, 3)
228
+ sage: any(f.is_immutable() for f in G.is_cartesian_product(certificate=True))
229
+ False
230
+ sage: all(f.is_immutable() for f in G.is_cartesian_product(certificate=True, immutable=True))
231
+ True
232
+ sage: G = G.copy(immutable=True)
233
+ sage: all(f.is_immutable() for f in G.is_cartesian_product(certificate=True))
234
+ True
235
+ sage: any(f.is_immutable() for f in G.is_cartesian_product(certificate=True, immutable=False))
236
+ False
237
+ """
238
+ g._scream_if_not_simple()
239
+ if g.is_directed():
240
+ raise NotImplementedError("recognition of Cartesian product is not implemented for directed graphs")
241
+ if relabeling:
242
+ certificate = True
243
+
244
+ from sage.rings.integer import Integer
245
+
246
+ if not g.is_connected():
247
+ raise NotImplementedError("recognition of Cartesian product is not implemented for disconnected graphs")
248
+
249
+ # Of course the number of vertices of g cannot be prime !
250
+ if g.order() <= 3 or Integer(g.order()).is_prime():
251
+ return (False, None) if relabeling else False
252
+
253
+ from sage.graphs.graph import Graph
254
+
255
+ # As we need the vertices of g to be linearly ordered, we copy the graph and
256
+ # relabel it
257
+ cdef list int_to_vertex = list(g)
258
+ cdef dict vertex_to_int = {vert: i for i, vert in enumerate(int_to_vertex)}
259
+ g_int = g.relabel(perm=vertex_to_int, inplace=False)
260
+
261
+ # Reorder the vertices of an edge
262
+ def r(x, y):
263
+ return (x, y) if x < y else (y, x)
264
+
265
+ cdef int x, y, u, v
266
+ cdef set un, intersect
267
+
268
+ # The equivalence graph on the edges of g
269
+ h = Graph()
270
+ h.add_vertices(r(x, y) for x, y in g_int.edge_iterator(labels=False))
271
+
272
+ # For all pairs of vertices u,v of G, according to their number of common
273
+ # neighbors... See the module's documentation !
274
+ for u in g_int:
275
+ un = set(g_int.neighbor_iterator(u))
276
+ for v in g_int.breadth_first_search(u):
277
+
278
+ # u and v are different
279
+ if u == v:
280
+ continue
281
+
282
+ # List of common neighbors
283
+ intersect = un & set(g_int.neighbor_iterator(v))
284
+
285
+ # If u and v have no neighbors and uv is not an edge then their
286
+ # distance is at least 3. As we enumerate the vertices in a
287
+ # breadth-first search, it means that we already checked all the
288
+ # vertices at distance less than two from u, and we are done with
289
+ # this loop !
290
+ if not intersect:
291
+ if g_int.has_edge(u, v):
292
+ continue
293
+ else:
294
+ break
295
+
296
+ # If uv is an edge
297
+ if g_int.has_edge(u, v):
298
+ h.add_path([r(u, x) for x in intersect] + [r(v, x) for x in intersect])
299
+
300
+ # Only one common neighbor
301
+ elif len(intersect) == 1:
302
+ x = intersect.pop()
303
+ h.add_edge(r(u, x), r(v, x))
304
+
305
+ # Exactly 2 neighbors
306
+ elif len(intersect) == 2:
307
+ x, y = intersect
308
+ h.add_edge(r(u, x), r(v, y))
309
+ h.add_edge(r(v, x), r(u, y))
310
+ # More
311
+ else:
312
+ h.add_path([r(u, x) for x in intersect] + [r(v, x) for x in intersect])
313
+
314
+ # Edges uv and u'v' such that d(u,u')+d(v,v') != d(u,v')+d(v,u') are also
315
+ # equivalent
316
+
317
+ cdef list edges = list(g_int.edges(labels=False, sort=False))
318
+ cdef dict d = g_int.distance_all_pairs()
319
+ cdef int uu, vv
320
+ for i, (u, v) in enumerate(edges):
321
+ du = d[u]
322
+ dv = d[v]
323
+ for j in range(i + 1, g_int.size()):
324
+ uu, vv = edges[j]
325
+ if du[uu] + dv[vv] != du[vv] + dv[uu]:
326
+ h.add_edge(r(u, v), r(uu, vv))
327
+
328
+ # Gathering the connected components, relabeling the vertices on-the-fly
329
+ edges = [[(int_to_vertex[u], int_to_vertex[v]) for u, v in cc]
330
+ for cc in h.connected_components(sort=False)]
331
+
332
+ # Only one connected component ?
333
+ if len(edges) == 1:
334
+ return (False, None) if relabeling else False
335
+
336
+ if immutable is None:
337
+ immutable = g.is_immutable()
338
+
339
+ # Building the list of factors
340
+ cdef list factors = []
341
+ for cc in edges:
342
+ tmp = Graph(cc, format='list_of_edges', immutable=immutable)
343
+ factors.append(tmp.subgraph(vertices=tmp.connected_components(sort=False)[0]))
344
+
345
+ # Computing the product of these graphs
346
+ answer = factors[0]
347
+ for i in range(1, len(factors)):
348
+ answer = answer.cartesian_product(factors[i])
349
+
350
+ # Checking that the resulting graph is indeed isomorphic to what we have.
351
+ isiso, dictt = g.is_isomorphic(answer, certificate=True)
352
+ if not isiso:
353
+ raise ValueError("something weird happened during the algorithm... "
354
+ "Please report the bug and give us the graph instance"
355
+ " that made it fail !")
356
+ if relabeling:
357
+ return isiso, dictt
358
+ if certificate:
359
+ return factors
360
+ return True
361
+
362
+
363
+ def rooted_product(G, H, root=None, immutable=None):
364
+ r"""
365
+ Return the rooted product of `G` and `H`.
366
+
367
+ The rooted product of two graphs `G` and `H` is the graph `R` defined as
368
+ follows: take a copy of `G` and `|V(G)|` copies of `H`, and for every vertex
369
+ `g_i` of `G`, identify `g_i` with the root of the `i`-th copy of `H`.
370
+ Mode formally, let `V(G) = \{g_1, g_2, \ldots, g_n\}`,
371
+ `V(H) = \{h_1, h_2, \ldots, h_m\}`, and let `h_1` be the root vertex of `H`.
372
+ The vertex set `V(R)` is equal to the cartesian product of the sets of
373
+ vertices `V(G)` and `V(H)`, that is
374
+ `V(R) = \{(g_i, h_j) : g_i \in V(G), h_j \in V(H)\}`. The edge set `E(R)`
375
+ is the union of the edges of a copy of `G`, that is
376
+ `\{((g_i, h_1), (g_j, h_1)) : (g_i, g_j) \in E(G)\}`, and the edges of the
377
+ copies of `H` for every `g_i \in V(G)`, that is
378
+ `\{((g_i, h_j), (g_i, h_k)) : (h_j, h_k) \in V(H)\}`.
379
+
380
+ See :wikipedia:`Rooted_product_of_graphs` for more details.
381
+
382
+ .. SEEALSO::
383
+
384
+ - :meth:`~sage.graphs.generic_graph.cartesian_product`
385
+ -- return the cartesian product of two graphs
386
+
387
+ - :mod:`~sage.graphs.graph_decompositions.graph_products`
388
+ -- a module on graph products
389
+
390
+ INPUT:
391
+
392
+ - ``G, H`` -- two (di)graphs
393
+
394
+ - ``immutable`` -- boolean (default: ``None``); whether to create a
395
+ mutable/immutable (di)graph. When ``immutable=None`` (default) the rooted
396
+ product will be mutable if one of ``G`` or ``H`` is mutable and immutable
397
+ otherwise.
398
+
399
+ EXAMPLES:
400
+
401
+ The rooted product of two trees is a tree::
402
+
403
+ sage: T1 = graphs.RandomTree(7)
404
+ sage: T2 = graphs.RandomTree(8)
405
+ sage: T = T1.rooted_product(T2)
406
+ sage: T.is_tree()
407
+ True
408
+
409
+ The rooted product of `G` and `H` depends on the selected root in `H`::
410
+
411
+ sage: G = graphs.CycleGraph(4)
412
+ sage: H = graphs.PathGraph(3)
413
+ sage: R1 = G.rooted_product(H, root=0)
414
+ sage: R2 = G.rooted_product(H, root=1)
415
+ sage: R1.is_isomorphic(R2)
416
+ False
417
+ sage: sorted(R1.degree())
418
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
419
+ sage: sorted(R2.degree())
420
+ [1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4]
421
+
422
+ The domination number of the rooted product of any graph `G` and a path of
423
+ order 2 is the order of `G`::
424
+
425
+ sage: G = graphs.RandomGNP(20, .3)
426
+ sage: P = graphs.PathGraph(2)
427
+ sage: R = G.rooted_product(P)
428
+ sage: len(R.dominating_set()) == G.order() # needs sage.numerical.mip
429
+ True
430
+ sage: G = digraphs.RandomDirectedGNP(20, .3)
431
+ sage: P = digraphs.Path(2)
432
+ sage: R = G.rooted_product(P)
433
+ sage: len(R.dominating_set()) == G.order() # needs sage.numerical.mip
434
+ True
435
+
436
+ The rooted product of two graphs is a subgraph of the cartesian product of
437
+ the same two graphs::
438
+
439
+ sage: G = graphs.RandomGNP(6, .4)
440
+ sage: H = graphs.RandomGNP(7, .4)
441
+ sage: R = G.rooted_product(H)
442
+ sage: C = G.cartesian_product(H)
443
+ sage: R.is_subgraph(C, induced=False)
444
+ True
445
+
446
+ Corner cases::
447
+
448
+ sage: Graph().rooted_product(Graph())
449
+ Rooted product of Graph on 0 vertices and Graph on 0 vertices: Graph on 0 vertices
450
+ sage: Graph(1).rooted_product(Graph())
451
+ Rooted product of Graph on 1 vertex and Graph on 0 vertices: Graph on 0 vertices
452
+ sage: Graph().rooted_product(Graph(1))
453
+ Rooted product of Graph on 0 vertices and Graph on 1 vertex: Graph on 0 vertices
454
+ sage: Graph(1).rooted_product(Graph(1))
455
+ Rooted product of Graph on 1 vertex and Graph on 1 vertex: Graph on 1 vertex
456
+
457
+ TESTS::
458
+
459
+ sage: Graph().rooted_product(DiGraph())
460
+ Traceback (most recent call last):
461
+ ...
462
+ TypeError: the graphs should be both directed or both undirected
463
+
464
+ Check the behaviour of parameter ``immutable``::
465
+
466
+ sage: G = graphs.CycleGraph(4)
467
+ sage: H = graphs.PathGraph(3)
468
+ sage: G.rooted_product(H).is_immutable()
469
+ False
470
+ sage: G.rooted_product(H, immutable=True).is_immutable()
471
+ True
472
+ sage: G = G.copy(immutable=True)
473
+ sage: G.rooted_product(H).is_immutable()
474
+ False
475
+ sage: G.rooted_product(H, immutable=True).is_immutable()
476
+ True
477
+ sage: H = H.copy(immutable=True)
478
+ sage: G.rooted_product(H).is_immutable()
479
+ True
480
+ sage: G.rooted_product(H, immutable=False).is_immutable()
481
+ False
482
+ """
483
+ G._scream_if_not_simple(allow_loops=True)
484
+ if G._directed is not H._directed:
485
+ raise TypeError('the graphs should be both directed or both undirected')
486
+
487
+ loops = G.has_loops() or H.has_loops()
488
+ name = f'Rooted product of {G} and {H}'
489
+ if immutable is None:
490
+ immutable = G.is_immutable() and H.is_immutable()
491
+
492
+ if not G or not H:
493
+ return G.parent()(loops=loops, name=name, immutable=immutable)
494
+ if root is None:
495
+ root = next(H.vertex_iterator())
496
+ elif root not in H:
497
+ raise ValueError("the specified root is not a vertex of H")
498
+
499
+ vertices = ((u, x) for u in G for x in H)
500
+
501
+ def edges():
502
+ for u, v in G.edge_iterator(labels=False):
503
+ yield ((u, root), (v, root))
504
+ for x, y in H.edge_iterator(labels=False):
505
+ yield from (((u, x), (u, y)) for u in G)
506
+
507
+ return G.parent()([vertices, edges()], format='vertices_and_edges',
508
+ name=name, loops=loops, immutable=immutable)
@@ -0,0 +1,27 @@
1
+ # sage_setup: distribution = sagemath-graphs
2
+ from libcpp cimport bool
3
+ from libcpp.list cimport list as cpplist
4
+ from libcpp.vector cimport vector
5
+
6
+ cdef extern from "modular_decomposition.hpp":
7
+ cdef cppclass SDData:
8
+ void set_from_data(size_t lex_label_offset, const int* sigma,
9
+ const size_t *xslice_len,
10
+ const vector[int] *lex_label)
11
+
12
+ cdef cppclass md_tree_node:
13
+ bool is_leaf() const
14
+ bool is_prime() const
15
+ bool is_parallel() const
16
+ bool is_series() const
17
+ cpplist[md_tree_node *] children
18
+ # If is_leaf() is true, the attribute 'vertex' contains the id of the
19
+ # corresponding vertex. If is_leaf() is false, the attribute 'vertex'
20
+ # contains the id of a vertex corresponding to any leaf below
21
+ # the node (i.e., 'vertex' contains the id of a vertex belonging to the
22
+ # module corresponding to the node).
23
+ int vertex
24
+
25
+ void dealloc_md_tree_nodes_recursively(md_tree_node *)
26
+
27
+ cdef md_tree_node * corneil_habib_paul_tedder_inner(const SDData &SD)