passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
- passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
- passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
- passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
- passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
- passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
- passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
- sage/all__sagemath_graphs.py +39 -0
- sage/combinat/abstract_tree.py +2723 -0
- sage/combinat/all__sagemath_graphs.py +34 -0
- sage/combinat/binary_tree.py +5306 -0
- sage/combinat/cluster_algebra_quiver/all.py +22 -0
- sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
- sage/combinat/cluster_algebra_quiver/interact.py +124 -0
- sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
- sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
- sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
- sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
- sage/combinat/designs/MOLS_handbook_data.py +570 -0
- sage/combinat/designs/all.py +58 -0
- sage/combinat/designs/bibd.py +1655 -0
- sage/combinat/designs/block_design.py +1071 -0
- sage/combinat/designs/covering_array.py +269 -0
- sage/combinat/designs/covering_design.py +530 -0
- sage/combinat/designs/database.py +5615 -0
- sage/combinat/designs/design_catalog.py +122 -0
- sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/designs_pyx.pxd +21 -0
- sage/combinat/designs/designs_pyx.pyx +993 -0
- sage/combinat/designs/difference_family.py +3951 -0
- sage/combinat/designs/difference_matrices.py +279 -0
- sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
- sage/combinat/designs/ext_rep.py +1064 -0
- sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
- sage/combinat/designs/group_divisible_designs.py +361 -0
- sage/combinat/designs/incidence_structures.py +2357 -0
- sage/combinat/designs/latin_squares.py +581 -0
- sage/combinat/designs/orthogonal_arrays.py +2244 -0
- sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
- sage/combinat/designs/resolvable_bibd.py +815 -0
- sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
- sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/subhypergraph_search.pyx +530 -0
- sage/combinat/designs/twographs.py +306 -0
- sage/combinat/finite_state_machine.py +14874 -0
- sage/combinat/finite_state_machine_generators.py +2006 -0
- sage/combinat/graph_path.py +448 -0
- sage/combinat/interval_posets.py +3908 -0
- sage/combinat/nu_tamari_lattice.py +269 -0
- sage/combinat/ordered_tree.py +1446 -0
- sage/combinat/posets/all.py +46 -0
- sage/combinat/posets/bubble_shuffle.py +247 -0
- sage/combinat/posets/cartesian_product.py +493 -0
- sage/combinat/posets/d_complete.py +182 -0
- sage/combinat/posets/elements.py +273 -0
- sage/combinat/posets/forest.py +30 -0
- sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/hasse_cython.pyx +174 -0
- sage/combinat/posets/hasse_diagram.py +3672 -0
- sage/combinat/posets/hochschild_lattice.py +158 -0
- sage/combinat/posets/incidence_algebras.py +794 -0
- sage/combinat/posets/lattices.py +5117 -0
- sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/linear_extension_iterator.pyx +292 -0
- sage/combinat/posets/linear_extensions.py +1037 -0
- sage/combinat/posets/mobile.py +275 -0
- sage/combinat/posets/moebius_algebra.py +776 -0
- sage/combinat/posets/poset_examples.py +2178 -0
- sage/combinat/posets/posets.py +9360 -0
- sage/combinat/rooted_tree.py +1070 -0
- sage/combinat/shard_order.py +239 -0
- sage/combinat/tamari_lattices.py +384 -0
- sage/combinat/yang_baxter_graph.py +923 -0
- sage/databases/all__sagemath_graphs.py +1 -0
- sage/databases/knotinfo_db.py +1231 -0
- sage/ext_data/all__sagemath_graphs.py +1 -0
- sage/ext_data/graphs/graph_plot_js.html +330 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/graphs/all.py +42 -0
- sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/asteroidal_triples.pyx +320 -0
- sage/graphs/base/all.py +1 -0
- sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/boost_graph.pxd +106 -0
- sage/graphs/base/boost_graph.pyx +3045 -0
- sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/c_graph.pxd +106 -0
- sage/graphs/base/c_graph.pyx +5096 -0
- sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/dense_graph.pxd +28 -0
- sage/graphs/base/dense_graph.pyx +801 -0
- sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/graph_backends.pxd +5 -0
- sage/graphs/base/graph_backends.pyx +797 -0
- sage/graphs/base/overview.py +85 -0
- sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/sparse_graph.pxd +90 -0
- sage/graphs/base/sparse_graph.pyx +1653 -0
- sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_dense_graph.pxd +5 -0
- sage/graphs/base/static_dense_graph.pyx +1032 -0
- sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_backend.pxd +27 -0
- sage/graphs/base/static_sparse_backend.pyx +1583 -0
- sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_graph.pxd +37 -0
- sage/graphs/base/static_sparse_graph.pyx +1375 -0
- sage/graphs/bipartite_graph.py +2732 -0
- sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/centrality.pyx +1038 -0
- sage/graphs/cographs.py +519 -0
- sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/comparability.pyx +851 -0
- sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/connectivity.pxd +157 -0
- sage/graphs/connectivity.pyx +4813 -0
- sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/convexity_properties.pxd +16 -0
- sage/graphs/convexity_properties.pyx +870 -0
- sage/graphs/digraph.py +4754 -0
- sage/graphs/digraph_generators.py +1993 -0
- sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/distances_all_pairs.pxd +12 -0
- sage/graphs/distances_all_pairs.pyx +2938 -0
- sage/graphs/domination.py +1363 -0
- sage/graphs/dot2tex_utils.py +100 -0
- sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/edge_connectivity.pyx +1215 -0
- sage/graphs/generators/all.py +1 -0
- sage/graphs/generators/basic.py +1769 -0
- sage/graphs/generators/chessboard.py +538 -0
- sage/graphs/generators/classical_geometries.py +1611 -0
- sage/graphs/generators/degree_sequence.py +235 -0
- sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generators/distance_regular.pyx +2846 -0
- sage/graphs/generators/families.py +4759 -0
- sage/graphs/generators/intersection.py +565 -0
- sage/graphs/generators/platonic_solids.py +262 -0
- sage/graphs/generators/random.py +2623 -0
- sage/graphs/generators/smallgraphs.py +5741 -0
- sage/graphs/generators/world_map.py +724 -0
- sage/graphs/generic_graph.py +26867 -0
- sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generic_graph_pyx.pxd +34 -0
- sage/graphs/generic_graph_pyx.pyx +1673 -0
- sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/genus.pyx +622 -0
- sage/graphs/graph.py +9645 -0
- sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_coloring.pyx +2284 -0
- sage/graphs/graph_database.py +1177 -0
- sage/graphs/graph_decompositions/all.py +1 -0
- sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
- sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
- sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
- sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
- sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
- sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/graph_products.pyx +508 -0
- sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
- sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
- sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
- sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
- sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
- sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
- sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
- sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
- sage/graphs/graph_editor.py +82 -0
- sage/graphs/graph_generators.py +3314 -0
- sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_generators_pyx.pyx +95 -0
- sage/graphs/graph_input.py +812 -0
- sage/graphs/graph_latex.py +2064 -0
- sage/graphs/graph_list.py +410 -0
- sage/graphs/graph_plot.py +1756 -0
- sage/graphs/graph_plot_js.py +338 -0
- sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/hyperbolicity.pyx +1704 -0
- sage/graphs/hypergraph_generators.py +364 -0
- sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/independent_sets.pxd +13 -0
- sage/graphs/independent_sets.pyx +402 -0
- sage/graphs/isgci.py +1033 -0
- sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/isoperimetric_inequalities.pyx +489 -0
- sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/line_graph.pyx +743 -0
- sage/graphs/lovasz_theta.py +77 -0
- sage/graphs/matching.py +1633 -0
- sage/graphs/matching_covered_graph.py +3590 -0
- sage/graphs/orientations.py +1489 -0
- sage/graphs/partial_cube.py +459 -0
- sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/path_enumeration.pyx +2040 -0
- sage/graphs/pq_trees.py +1129 -0
- sage/graphs/print_graphs.py +201 -0
- sage/graphs/schnyder.py +865 -0
- sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/spanning_tree.pyx +1457 -0
- sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/strongly_regular_db.pyx +3340 -0
- sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/traversals.pxd +9 -0
- sage/graphs/traversals.pyx +1872 -0
- sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/trees.pxd +15 -0
- sage/graphs/trees.pyx +310 -0
- sage/graphs/tutte_polynomial.py +713 -0
- sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/views.pyx +794 -0
- sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/weakly_chordal.pyx +604 -0
- sage/groups/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
- sage/knots/all.py +6 -0
- sage/knots/free_knotinfo_monoid.py +507 -0
- sage/knots/gauss_code.py +291 -0
- sage/knots/knot.py +682 -0
- sage/knots/knot_table.py +284 -0
- sage/knots/knotinfo.py +2900 -0
- sage/knots/link.py +4715 -0
- sage/sandpiles/all.py +13 -0
- sage/sandpiles/examples.py +225 -0
- sage/sandpiles/sandpile.py +6365 -0
- sage/topology/all.py +22 -0
- sage/topology/cell_complex.py +1214 -0
- sage/topology/cubical_complex.py +1976 -0
- sage/topology/delta_complex.py +1806 -0
- sage/topology/filtered_simplicial_complex.py +744 -0
- sage/topology/moment_angle_complex.py +823 -0
- sage/topology/simplicial_complex.py +5160 -0
- sage/topology/simplicial_complex_catalog.py +92 -0
- sage/topology/simplicial_complex_examples.py +1680 -0
- sage/topology/simplicial_complex_homset.py +205 -0
- sage/topology/simplicial_complex_morphism.py +836 -0
- sage/topology/simplicial_set.py +4102 -0
- sage/topology/simplicial_set_catalog.py +55 -0
- sage/topology/simplicial_set_constructions.py +2954 -0
- sage/topology/simplicial_set_examples.py +865 -0
- sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,1375 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-graphs
|
2
|
+
# cython: binding=True
|
3
|
+
# distutils: language = c++
|
4
|
+
r"""
|
5
|
+
Static sparse graphs
|
6
|
+
|
7
|
+
What is the point ?
|
8
|
+
-------------------
|
9
|
+
|
10
|
+
This class implements a Cython (di)graph structure made for efficiency. The
|
11
|
+
graphs are *static*, i.e. no add/remove vertex/edges methods are available, nor
|
12
|
+
can they easily or efficiently be implemented within this data structure.
|
13
|
+
|
14
|
+
The data structure, however, is made to save the maximum amount of computations
|
15
|
+
for graph algorithms whose main operation is to *list the out-neighbours of a
|
16
|
+
vertex* (which is precisely what BFS, DFS, distance computations and the
|
17
|
+
flow-related stuff waste their life on).
|
18
|
+
|
19
|
+
The code contained in this module is written C-style. The purpose is efficiency
|
20
|
+
and simplicity.
|
21
|
+
|
22
|
+
For an overview of graph data structures in sage, see
|
23
|
+
:mod:`~sage.graphs.base.overview`.
|
24
|
+
|
25
|
+
Author:
|
26
|
+
|
27
|
+
- Nathann Cohen (2011)
|
28
|
+
|
29
|
+
Data structure
|
30
|
+
--------------
|
31
|
+
|
32
|
+
.. image:: ../../../media/structure.png
|
33
|
+
|
34
|
+
The data structure is actually pretty simple and compact. ``short_digraph`` has
|
35
|
+
five fields
|
36
|
+
|
37
|
+
- ``n`` -- integer; the number of vertices in the graph
|
38
|
+
|
39
|
+
- ``m`` -- integer; the number of edges in the graph
|
40
|
+
|
41
|
+
- ``edges`` -- ``uint32_t *``; array whose length is the number of edges of the
|
42
|
+
graph
|
43
|
+
|
44
|
+
- ``neighbors`` -- ``uint32_t **``; this array has size `n+1`, and describes how
|
45
|
+
the data of ``edges`` should be read : the neighbors of vertex `i` are the
|
46
|
+
elements of ``edges`` addressed by ``neighbors[i]...neighbors[i+1]-1``. The
|
47
|
+
element ``neighbors[n]``, which corresponds to no vertex (they are numbered
|
48
|
+
from `0` to `n-1`) is present so that it remains easy to enumerate the
|
49
|
+
neighbors of vertex `n-1` : the last of them is the element addressed by
|
50
|
+
``neighbors[n]-1``.
|
51
|
+
The arrays ``neighbors[i]`` are guaranteed to be sorted so the time
|
52
|
+
complexity for deciding if ``g`` has edge `(u, v)` is `O(\log{m})` using
|
53
|
+
binary search.
|
54
|
+
|
55
|
+
- ``edge_labels`` -- list; this cython list associates a label to each edge
|
56
|
+
of the graph. If a given edge is represented by ``edges[i]``, this its
|
57
|
+
associated label can be found at ``edge_labels[i]``. This object is usually
|
58
|
+
NULL, unless the call to ``init_short_digraph`` explicitly requires the labels
|
59
|
+
to be stored in the data structure.
|
60
|
+
|
61
|
+
In the example given above, vertex 0 has 2,3,5,7,8 and 9 as out-neighbors, but
|
62
|
+
not 4, which is an out-neighbour of vertex 1. Vertex `n-1` has 2, 5, 8 and 9 as
|
63
|
+
out-neighbors. ``neighbors[n]`` points toward the cell immediately *after* the
|
64
|
+
end of ``edges``, hence *outside of the allocated memory*. It is used to
|
65
|
+
indicate the end of the outneighbors of vertex `n-1`
|
66
|
+
|
67
|
+
**Iterating over the edges**
|
68
|
+
|
69
|
+
This is *the one thing* to have in mind when working with this data structure::
|
70
|
+
|
71
|
+
cdef list_edges(short_digraph g):
|
72
|
+
cdef int i, j
|
73
|
+
for i in range(g.n):
|
74
|
+
for j in range(g.neighbors[i+1]-g.neighbors[i]):
|
75
|
+
print("There is an edge from {} to {}".format(i, g.neighbors[i][j]))
|
76
|
+
|
77
|
+
**Advantages**
|
78
|
+
|
79
|
+
Two great points :
|
80
|
+
|
81
|
+
- The neighbors of a vertex are C types, and are contiguous in memory.
|
82
|
+
- Storing such graphs is incredibly cheaper than storing Python structures.
|
83
|
+
|
84
|
+
Well, I think it would be hard to have anything more efficient than that to
|
85
|
+
enumerate out-neighbors in sparse graphs ! :-)
|
86
|
+
|
87
|
+
Technical details
|
88
|
+
-----------------
|
89
|
+
|
90
|
+
* When creating a ``short_digraph`` from a ``Graph`` or ``DiGraph`` named ``G``,
|
91
|
+
the `i^{\text{th}}` vertex corresponds *by default* to ``list(G)[i]``.
|
92
|
+
Using optional parameter ``vertex_list``, you can specify the order of the
|
93
|
+
vertices. Then `i^{\text{th}}` vertex will corresponds to ``vertex_list[i]``.
|
94
|
+
|
95
|
+
* Some methods return ``bitset_t`` objects when lists could be expected. There
|
96
|
+
is a very useful ``bitset_list`` function for this kind of problems :-)
|
97
|
+
|
98
|
+
* When the edges are labelled, most of the space taken by this graph is taken by
|
99
|
+
edge labels. If no edge is labelled then this space is not allocated, but if
|
100
|
+
*any* edge has a label then a (possibly empty) label is stored for each edge,
|
101
|
+
which can double the memory needs.
|
102
|
+
|
103
|
+
* The data structure stores the number of edges, even though it appears that
|
104
|
+
this number can be reconstructed with ``g.neighbors[n]-g.neighbors[0]``. The
|
105
|
+
trick is that not all elements of the ``g.edges`` array are necessarily used :
|
106
|
+
when an undirected graph contains loops, only one entry of the array of size
|
107
|
+
`2m` is used to store it, instead of the expected two. Storing the number of
|
108
|
+
edges is the only way to avoid an uselessly costly computation to obtain the
|
109
|
+
number of edges of an undirected, looped, AND labelled graph (think of several
|
110
|
+
loops on the same vertex with different labels).
|
111
|
+
|
112
|
+
* The codes of this module are well documented, and many answers can be found
|
113
|
+
directly in the code.
|
114
|
+
|
115
|
+
Cython functions
|
116
|
+
----------------
|
117
|
+
|
118
|
+
.. csv-table::
|
119
|
+
:class: contentstable
|
120
|
+
:widths: 30, 70
|
121
|
+
:delim: |
|
122
|
+
|
123
|
+
``init_short_digraph(short_digraph g, G, edge_labelled, vertex_list)`` | Initialize ``short_digraph g`` from a Sage (Di)Graph.
|
124
|
+
``int n_edges(short_digraph g)`` | Return the number of edges in ``g``
|
125
|
+
``int out_degree(short_digraph g, int i)`` | Return the out-degree of vertex `i` in ``g``
|
126
|
+
``has_edge(short_digraph g, int u, int v)`` | Test the existence of an edge.
|
127
|
+
``edge_label(short_digraph g, int * edge)`` | Return the label associated with a given edge
|
128
|
+
``init_empty_copy(short_digraph dst, short_digraph src)`` | Allocate ``dst`` so that it can contain as many vertices and edges as ``src``.
|
129
|
+
``init_reverse(short_digraph dst, short_digraph src)`` | Initialize ``dst`` to a copy of ``src`` with all edges in the opposite direction.
|
130
|
+
``free_short_digraph(short_digraph g)`` | Free the resources used by ``g``
|
131
|
+
|
132
|
+
**Connectivity**
|
133
|
+
|
134
|
+
``can_be_reached_from(short_digraph g, int src, bitset_t reached)``
|
135
|
+
|
136
|
+
Assuming ``bitset_t reached`` has size at least ``g.n``, this method updates
|
137
|
+
``reached`` so that it represents the set of vertices that can be reached
|
138
|
+
from ``src`` in ``g``.
|
139
|
+
|
140
|
+
``strongly_connected_component_containing_vertex(short_digraph g, short_digraph g_reversed, int v, bitset_t scc)``
|
141
|
+
|
142
|
+
Assuming ``bitset_t reached`` has size at least ``g.n``, this method updates
|
143
|
+
``scc`` so that it represents the vertices of the strongly connected
|
144
|
+
component containing ``v`` in ``g``. The variable ``g_reversed`` is assumed
|
145
|
+
to represent the reverse of ``g``.
|
146
|
+
|
147
|
+
``tarjan_strongly_connected_components_C(short_digraph g, int *scc)``
|
148
|
+
|
149
|
+
Assuming ``scc`` is already allocated and has size at least ``g.n``, this
|
150
|
+
method computes the strongly connected components of ``g``, and outputs in
|
151
|
+
``scc[v]`` the number of the strongly connected component containing ``v``.
|
152
|
+
It returns the number of strongly connected components.
|
153
|
+
|
154
|
+
``strongly_connected_components_digraph_C(short_digraph g, int nscc, int *scc, short_digraph output):``
|
155
|
+
|
156
|
+
Assuming ``nscc`` and ``scc`` are the outputs of
|
157
|
+
``tarjan_strongly_connected_components_C`` on ``g``, this routine
|
158
|
+
sets ``output`` to the
|
159
|
+
strongly connected component digraph of ``g``, that is, the vertices of
|
160
|
+
``output`` are the strongly connected components of ``g`` (numbers are
|
161
|
+
provided by ``scc``), and ``output`` contains an arc ``(C1,C2)`` if ``g``
|
162
|
+
has an arc from a vertex in ``C1`` to a vertex in ``C2``.
|
163
|
+
|
164
|
+
What is this module used for ?
|
165
|
+
------------------------------
|
166
|
+
|
167
|
+
It is for instance used in the :mod:`sage.graphs.distances_all_pairs` module,
|
168
|
+
and in the :meth:`~sage.graphs.digraph.DiGraph.strongly_connected_components`
|
169
|
+
method.
|
170
|
+
|
171
|
+
Python functions
|
172
|
+
----------------
|
173
|
+
|
174
|
+
These functions are available so that Python modules from Sage can call the
|
175
|
+
Cython routines this module implements (as they cannot directly call methods
|
176
|
+
with C arguments).
|
177
|
+
"""
|
178
|
+
# ****************************************************************************
|
179
|
+
# Copyright (C) 2010 Nathann Cohen <nathann.cohen@gmail.com>
|
180
|
+
#
|
181
|
+
# This program is free software: you can redistribute it and/or modify
|
182
|
+
# it under the terms of the GNU General Public License as published by
|
183
|
+
# the Free Software Foundation, either version 2 of the License, or
|
184
|
+
# (at your option) any later version.
|
185
|
+
# https://www.gnu.org/licenses/
|
186
|
+
# ****************************************************************************
|
187
|
+
|
188
|
+
cimport cpython
|
189
|
+
from libc.limits cimport INT_MAX
|
190
|
+
from libc.math cimport sqrt
|
191
|
+
from libcpp.vector cimport vector
|
192
|
+
from cysignals.memory cimport check_allocarray, check_calloc, sig_free
|
193
|
+
from cysignals.signals cimport sig_on, sig_off
|
194
|
+
from cython.operator cimport postincrement
|
195
|
+
from memory_allocator cimport MemoryAllocator
|
196
|
+
|
197
|
+
from sage.data_structures.bitset_base cimport *
|
198
|
+
from sage.graphs.base.static_sparse_backend cimport StaticSparseCGraph
|
199
|
+
from sage.graphs.base.static_sparse_backend cimport StaticSparseBackend
|
200
|
+
|
201
|
+
|
202
|
+
cdef extern from "fenv.h":
|
203
|
+
int FE_TONEAREST
|
204
|
+
int FE_UPWARD
|
205
|
+
int FE_DOWNWARD
|
206
|
+
int FE_TOWARDZERO
|
207
|
+
int fegetround ()
|
208
|
+
int fesetround (int)
|
209
|
+
|
210
|
+
|
211
|
+
cdef int init_short_digraph(short_digraph g, G, edge_labelled=False,
|
212
|
+
vertex_list=None) except -1:
|
213
|
+
r"""
|
214
|
+
Initialize ``short_digraph g`` from a Sage (Di)Graph.
|
215
|
+
|
216
|
+
INPUT:
|
217
|
+
|
218
|
+
- ``g`` -- a short_digraph
|
219
|
+
|
220
|
+
- ``G`` -- a ``Graph`` or a ``DiGraph``. If ``G`` is a ``Graph`` object,
|
221
|
+
then any edge between two vertices `u` and `v` is replaced by two arcs in
|
222
|
+
both directions.
|
223
|
+
|
224
|
+
- ``edge_labelled`` -- boolean (default: ``False``); whether to store the
|
225
|
+
label of edges or not
|
226
|
+
|
227
|
+
- ``vertex_list`` -- list (default: ``None``); list of all vertices of ``G``
|
228
|
+
in some order. When given, it is used to map the vertices of the graph to
|
229
|
+
consecutive integers. Otherwise, the result of ``list(G)`` is used
|
230
|
+
instead. Beware that if ``vertex_list`` is not ``None``, it is not checked
|
231
|
+
and this function assumes that it contains a permutation of the vertices
|
232
|
+
of the graph ``G``.
|
233
|
+
|
234
|
+
COMPLEXITY:
|
235
|
+
|
236
|
+
The time complexity for initializing ``g`` is `O(n + m)` for ``SparseGraph``
|
237
|
+
and `O(n^2)` for ``DenseGraph``.
|
238
|
+
|
239
|
+
TESTS:
|
240
|
+
|
241
|
+
Indirect doctests for sorted output::
|
242
|
+
|
243
|
+
sage: from sage.graphs.base.static_sparse_backend import StaticSparseBackend
|
244
|
+
sage: G = graphs.CompleteGraph(5).relabel(list('abcde'), inplace=False)
|
245
|
+
sage: B = StaticSparseBackend(G, sort=False)
|
246
|
+
sage: list(B.iterator_nbrs('a'))
|
247
|
+
['b', 'c', 'd', 'e']
|
248
|
+
sage: G = graphs.CompleteGraph(5).relabel(list('badec'), inplace=False)
|
249
|
+
sage: B = StaticSparseBackend(G, sort=False)
|
250
|
+
sage: list(B.iterator_nbrs('a'))
|
251
|
+
['b', 'd', 'e', 'c']
|
252
|
+
|
253
|
+
Same with labels::
|
254
|
+
|
255
|
+
sage: from sage.graphs.base.static_sparse_backend import StaticSparseBackend
|
256
|
+
sage: G = graphs.CompleteGraph(5).relabel(list('abcde'), inplace=False)
|
257
|
+
sage: for i, (u, v, _) in enumerate(G.edges()):
|
258
|
+
....: G.set_edge_label(u, v, f'{u}{v}')
|
259
|
+
sage: B = StaticSparseBackend(G, sort=False)
|
260
|
+
sage: list(B.iterator_edges('a', True))
|
261
|
+
[('a', 'b', 'ab'), ('a', 'c', 'ac'), ('a', 'd', 'ad'), ('a', 'e', 'ae')]
|
262
|
+
sage: G = graphs.CompleteGraph(5).relabel(list('badec'), inplace=False)
|
263
|
+
sage: for i, (u, v, _) in enumerate(G.edges()):
|
264
|
+
....: G.set_edge_label(u, v, f'{u}{v}')
|
265
|
+
sage: B = StaticSparseBackend(G, sort=False)
|
266
|
+
sage: list(B.iterator_edges('a', True))
|
267
|
+
[('a', 'b', 'ab'), ('a', 'd', 'ad'), ('a', 'e', 'ae'), ('a', 'c', 'ac')]
|
268
|
+
"""
|
269
|
+
from sage.graphs.graph import Graph
|
270
|
+
from sage.graphs.digraph import DiGraph
|
271
|
+
|
272
|
+
if not isinstance(G, (Graph, DiGraph)):
|
273
|
+
raise ValueError("The source graph must be either a DiGraph or a Graph"
|
274
|
+
"object !")
|
275
|
+
|
276
|
+
if G.order() >= INT_MAX:
|
277
|
+
raise ValueError(f"short_digraph can handle at most {INT_MAX} vertices")
|
278
|
+
|
279
|
+
g.edge_labels = NULL
|
280
|
+
g.n = G.order()
|
281
|
+
g.m = G.size()
|
282
|
+
|
283
|
+
cdef int isdigraph = G.is_directed()
|
284
|
+
cdef uint32_t i, j
|
285
|
+
cdef list vertices = vertex_list if vertex_list is not None else list(G)
|
286
|
+
cdef dict v_to_id = {v: i for i, v in enumerate(vertices)}
|
287
|
+
cdef list edge_labels
|
288
|
+
# Loops are not stored twice for undirected graphs
|
289
|
+
cdef int n_edges = g.m if isdigraph else 2*g.m - G.number_of_loops()
|
290
|
+
|
291
|
+
g.edges = <uint32_t *>check_allocarray(n_edges, sizeof(uint32_t))
|
292
|
+
g.neighbors = <uint32_t **>check_allocarray(1 + g.n, sizeof(uint32_t *))
|
293
|
+
|
294
|
+
# Initializing the value of neighbors
|
295
|
+
g.neighbors[0] = g.edges
|
296
|
+
|
297
|
+
if not G.has_loops():
|
298
|
+
# Normal case
|
299
|
+
for i, v in enumerate(vertices):
|
300
|
+
g.neighbors[i+1] = g.neighbors[i] + <int>(G.out_degree(v) if isdigraph else G.degree(v))
|
301
|
+
else:
|
302
|
+
# In the presence of loops. For a funny reason, if a vertex v has a loop
|
303
|
+
# attached to it and no other incident edge, Sage declares that it has
|
304
|
+
# degree 2. This way, the sum of the degrees of the vertices is twice
|
305
|
+
# the number of edges, but then the degree of a vertex is not the number
|
306
|
+
# of its neighbors anymore. One should never try to think. It never ends
|
307
|
+
# well.
|
308
|
+
for i, v in enumerate(vertices):
|
309
|
+
g.neighbors[i+1] = g.neighbors[i] + <int> len(G.edges_incident(v))
|
310
|
+
|
311
|
+
if edge_labelled:
|
312
|
+
edge_labels = [None] * n_edges
|
313
|
+
|
314
|
+
# Note that neighbors[i] will be naturally sorted by increasing id,
|
315
|
+
# because the arrays will be built by appending vertices in the same
|
316
|
+
# order as they appear in ``vertices``
|
317
|
+
for i, v in enumerate(vertices):
|
318
|
+
if isdigraph:
|
319
|
+
edge_iterator = G.incoming_edge_iterator(v,
|
320
|
+
labels=edge_labelled)
|
321
|
+
else:
|
322
|
+
edge_iterator = G.edge_iterator(v, labels=edge_labelled,
|
323
|
+
sort_vertices=False)
|
324
|
+
for e in edge_iterator:
|
325
|
+
u = e[0] if v == e[1] else e[1]
|
326
|
+
j = v_to_id[u]
|
327
|
+
# Handle the edge u -> v of G (= the edge j -> i of g)
|
328
|
+
g.neighbors[j][0] = i
|
329
|
+
# Note: cannot use the dereference Cython operator here, do not
|
330
|
+
# known why but the following line does not compile
|
331
|
+
# dereference(g.neighbors[j]) = i
|
332
|
+
if edge_labelled:
|
333
|
+
edge_labels[g.neighbors[j] - g.edges] = e[2]
|
334
|
+
postincrement(g.neighbors[j]) # increment pointer to next item
|
335
|
+
|
336
|
+
# Reinitializing the value of neighbors
|
337
|
+
for i in range(g.n-1, 0, -1):
|
338
|
+
g.neighbors[i] = g.neighbors[i-1]
|
339
|
+
g.neighbors[0] = g.edges
|
340
|
+
|
341
|
+
if edge_labelled:
|
342
|
+
g.edge_labels = <PyObject *> <void *> edge_labels
|
343
|
+
cpython.Py_XINCREF(g.edge_labels)
|
344
|
+
|
345
|
+
|
346
|
+
cdef inline int n_edges(short_digraph g) noexcept:
|
347
|
+
"""
|
348
|
+
Return the number of edges in ``g``.
|
349
|
+
|
350
|
+
The number of edges is nothing but a difference of pointers
|
351
|
+
"""
|
352
|
+
return <int> (g.neighbors[g.n] - g.edges)
|
353
|
+
|
354
|
+
|
355
|
+
cdef inline int out_degree(short_digraph g, int i) noexcept:
|
356
|
+
"""
|
357
|
+
Return the out-degree of vertex `i` in ``g``.
|
358
|
+
|
359
|
+
The out-degree is nothing but a difference of pointers
|
360
|
+
"""
|
361
|
+
return <int> (g.neighbors[i + 1] - g.neighbors[i])
|
362
|
+
|
363
|
+
|
364
|
+
cdef int init_empty_copy(short_digraph dst, short_digraph src) except -1:
|
365
|
+
"""
|
366
|
+
Allocate ``dst`` so that it can contain as many vertices and edges as
|
367
|
+
``src``.
|
368
|
+
"""
|
369
|
+
dst.n = src.n
|
370
|
+
dst.m = src.m
|
371
|
+
dst.edge_labels = NULL
|
372
|
+
cdef list edge_labels
|
373
|
+
|
374
|
+
dst.edges = <uint32_t *>check_allocarray(n_edges(src), sizeof(uint32_t))
|
375
|
+
dst.neighbors = <uint32_t **>check_allocarray(src.n + 1, sizeof(uint32_t *))
|
376
|
+
|
377
|
+
if src.edge_labels != NULL:
|
378
|
+
edge_labels = [None] * n_edges(src)
|
379
|
+
dst.edge_labels = <PyObject *> <void *> edge_labels
|
380
|
+
cpython.Py_XINCREF(dst.edge_labels)
|
381
|
+
|
382
|
+
|
383
|
+
cdef int init_reverse(short_digraph dst, short_digraph src) except -1:
|
384
|
+
"""
|
385
|
+
Initialize ``dst`` to a copy of ``src`` with all edges in the opposite
|
386
|
+
direction.
|
387
|
+
|
388
|
+
TESTS:
|
389
|
+
|
390
|
+
Indirect doctests for sorted output::
|
391
|
+
|
392
|
+
sage: from sage.graphs.base.static_sparse_backend import StaticSparseBackend
|
393
|
+
sage: D = digraphs.Complete(5).relabel(list('abcde'), inplace=False)
|
394
|
+
sage: for i, (u, v, _) in enumerate(D.edges()):
|
395
|
+
....: D.set_edge_label(u, v, f'{u}{v}')
|
396
|
+
sage: B = StaticSparseBackend(D, sort=False)
|
397
|
+
sage: list(B.iterator_in_edges('a', True))
|
398
|
+
[('b', 'a', 'ba'), ('c', 'a', 'ca'), ('d', 'a', 'da'), ('e', 'a', 'ea')]
|
399
|
+
sage: D = digraphs.Complete(5).relabel(list('badec'), inplace=False)
|
400
|
+
sage: for i, (u, v, _) in enumerate(D.edges()):
|
401
|
+
....: D.set_edge_label(u, v, f'{u}{v}')
|
402
|
+
sage: B = StaticSparseBackend(D, sort=False)
|
403
|
+
sage: list(B.iterator_in_edges('a', True))
|
404
|
+
[('b', 'a', 'ba'), ('d', 'a', 'da'), ('e', 'a', 'ea'), ('c', 'a', 'ca')]
|
405
|
+
"""
|
406
|
+
cdef int i, j, v
|
407
|
+
# Allocates memory for dst
|
408
|
+
init_empty_copy(dst, src)
|
409
|
+
|
410
|
+
# Avoiding a later segfault
|
411
|
+
if not dst.n:
|
412
|
+
return 0
|
413
|
+
|
414
|
+
# 1/3
|
415
|
+
#
|
416
|
+
# In a first pass, we count the in-degrees of each vertex and store it in a
|
417
|
+
# vector. With this information, we can initialize dst.neighbors to its
|
418
|
+
# correct value. The content of dst.edges is not touched at this level.
|
419
|
+
cdef int * in_degree = <int *>check_calloc(src.n, sizeof(int))
|
420
|
+
|
421
|
+
for i in range(n_edges(src)):
|
422
|
+
in_degree[src.edges[i]] += 1
|
423
|
+
|
424
|
+
# Updating dst.neighbors
|
425
|
+
dst.neighbors[0] = dst.edges
|
426
|
+
for i in range(1, src.n + 1):
|
427
|
+
dst.neighbors[i] = dst.neighbors[i - 1] + in_degree[i - 1]
|
428
|
+
sig_free(in_degree)
|
429
|
+
|
430
|
+
# 2/3
|
431
|
+
#
|
432
|
+
# Second pass : we list the edges again, and add them in dst.edges. Doing
|
433
|
+
# so, we will change the value of dst.neighbors, but that is not so bad as
|
434
|
+
# we can fix it afterwards.
|
435
|
+
# Note that neighbors[i] will be naturally sorted by increasing id,
|
436
|
+
# because the arrays will be built by appending vertices in the same
|
437
|
+
# order as they appear in ``vertices``
|
438
|
+
for i in range(0, src.n):
|
439
|
+
for j in range(out_degree(src, i)):
|
440
|
+
v = src.neighbors[i][j]
|
441
|
+
dst.neighbors[v][0] = i
|
442
|
+
|
443
|
+
if dst.edge_labels:
|
444
|
+
(<list> dst.edge_labels)[dst.neighbors[v] - dst.edges] = edge_label(src, src.neighbors[i] + j)
|
445
|
+
|
446
|
+
dst.neighbors[v] += 1
|
447
|
+
|
448
|
+
# 3/3
|
449
|
+
#
|
450
|
+
# Third step : set the correct values of dst.neighbors again. It is easy, as
|
451
|
+
# the correct value of dst.neighbors[i] is actually dst.neighbors[i-1]
|
452
|
+
for i in range(src.n - 1, 0, -1):
|
453
|
+
dst.neighbors[i] = dst.neighbors[i - 1]
|
454
|
+
dst.neighbors[0] = dst.edges
|
455
|
+
|
456
|
+
return 0
|
457
|
+
|
458
|
+
|
459
|
+
cdef int compare_uint32_p(const_void *a, const_void *b) noexcept:
|
460
|
+
"""
|
461
|
+
Comparison function needed for ``bsearch``.
|
462
|
+
"""
|
463
|
+
return (<uint32_t *> a)[0] - (<uint32_t *> b)[0]
|
464
|
+
|
465
|
+
|
466
|
+
cdef inline uint32_t * has_edge(short_digraph g, int u, int v) noexcept:
|
467
|
+
r"""
|
468
|
+
Test the existence of an edge.
|
469
|
+
|
470
|
+
Return a pointer to ``v`` in the list of neighbors of ``u`` if found and
|
471
|
+
``NULL`` otherwise.
|
472
|
+
|
473
|
+
.. NOTE::
|
474
|
+
|
475
|
+
Use the fact that the array ``g.neighbors[u]`` is guaranteed to be sorted.
|
476
|
+
"""
|
477
|
+
# The neighbors of u are sorted by increasing label. We can use binary
|
478
|
+
# search to decide if g has edge (u, v)
|
479
|
+
return <uint32_t *> bsearch(&v, g.neighbors[u],
|
480
|
+
g.neighbors[u+1] - g.neighbors[u],
|
481
|
+
sizeof(uint32_t), compare_uint32_p)
|
482
|
+
|
483
|
+
|
484
|
+
cdef inline object edge_label(short_digraph g, uint32_t * edge):
|
485
|
+
r"""
|
486
|
+
Return the label associated with a given edge
|
487
|
+
"""
|
488
|
+
if not g.edge_labels:
|
489
|
+
return None
|
490
|
+
return (<list> g.edge_labels)[edge - g.edges]
|
491
|
+
|
492
|
+
|
493
|
+
cdef uint32_t simple_BFS(short_digraph g,
|
494
|
+
uint32_t source,
|
495
|
+
uint32_t *distances,
|
496
|
+
uint32_t *predecessors,
|
497
|
+
uint32_t *waiting_list,
|
498
|
+
bitset_t seen) noexcept:
|
499
|
+
"""
|
500
|
+
Perform a breadth first search (BFS) using the same method as in
|
501
|
+
sage.graphs.distances_all_pairs.all_pairs_shortest_path_BFS
|
502
|
+
|
503
|
+
Furthermore, the method returns the eccentricity of the source which is
|
504
|
+
either the last computed distance when all vertices are seen, or a very
|
505
|
+
large number (UINT32_MAX) when the graph is not connected.
|
506
|
+
|
507
|
+
INPUT:
|
508
|
+
|
509
|
+
- ``g`` -- a short_digraph
|
510
|
+
|
511
|
+
- ``source`` -- starting node of the BFS
|
512
|
+
|
513
|
+
- ``distances`` -- array of size ``n`` to store BFS distances from
|
514
|
+
``source``. This method assumes that this array has already been
|
515
|
+
allocated. However, there is no need to initialize it.
|
516
|
+
|
517
|
+
- ``predecessors`` -- array of size ``n`` to store the first predecessor of
|
518
|
+
each vertex during the BFS search from ``source``. The predecessor of the
|
519
|
+
``source`` is itself. This method assumes that this array has already
|
520
|
+
been allocated. However, it is possible to pass a ``NULL`` pointer in
|
521
|
+
which case the predecessors are not recorded.
|
522
|
+
|
523
|
+
- ``waiting_list`` -- array of size ``n`` to store the order in which the
|
524
|
+
vertices are visited during the BFS search from ``source``. This method
|
525
|
+
assumes that this array has already been allocated. However, there is no
|
526
|
+
need to initialize it.
|
527
|
+
|
528
|
+
- ``seen`` -- bitset of size ``n`` that must be initialized before calling
|
529
|
+
this method (i.e., bitset_init(seen, n)). However, there is no need to
|
530
|
+
clear it.
|
531
|
+
"""
|
532
|
+
cdef uint32_t v, u
|
533
|
+
cdef uint32_t waiting_beginning = 0
|
534
|
+
cdef uint32_t waiting_end = 0
|
535
|
+
cdef uint32_t * p_tmp
|
536
|
+
cdef uint32_t * end
|
537
|
+
cdef uint32_t n = g.n
|
538
|
+
cdef uint32_t ** p_vertices = g.neighbors
|
539
|
+
|
540
|
+
# the source is seen
|
541
|
+
bitset_clear(seen)
|
542
|
+
bitset_add(seen, source)
|
543
|
+
distances[source] = 0
|
544
|
+
if predecessors!=NULL:
|
545
|
+
predecessors[source] = source
|
546
|
+
|
547
|
+
# and added to the queue
|
548
|
+
waiting_list[0] = source
|
549
|
+
waiting_beginning = 0
|
550
|
+
waiting_end = 0
|
551
|
+
|
552
|
+
# For as long as there are vertices left to explore
|
553
|
+
while waiting_beginning <= waiting_end:
|
554
|
+
|
555
|
+
# We pick the first one
|
556
|
+
v = waiting_list[waiting_beginning]
|
557
|
+
p_tmp = p_vertices[v]
|
558
|
+
end = p_vertices[v + 1]
|
559
|
+
|
560
|
+
# and we iterate over all the outneighbors u of v
|
561
|
+
while p_tmp < end:
|
562
|
+
u = p_tmp[0]
|
563
|
+
|
564
|
+
# If we notice one of these neighbors is not seen yet, we set its
|
565
|
+
# parameters and add it to the queue to be explored later.
|
566
|
+
if not bitset_in(seen, u):
|
567
|
+
distances[u] = distances[v] + 1
|
568
|
+
bitset_add(seen, u)
|
569
|
+
waiting_end += 1
|
570
|
+
waiting_list[waiting_end] = u
|
571
|
+
if predecessors:
|
572
|
+
predecessors[u] = v
|
573
|
+
|
574
|
+
p_tmp += 1
|
575
|
+
|
576
|
+
waiting_beginning += 1
|
577
|
+
|
578
|
+
# We return the eccentricity of the source
|
579
|
+
return distances[waiting_list[waiting_end]] if waiting_end == n - 1 else UINT32_MAX
|
580
|
+
|
581
|
+
|
582
|
+
cdef int can_be_reached_from(short_digraph g, int src, bitset_t reached) except -1:
|
583
|
+
"""
|
584
|
+
Feed ``reached`` with the vertices reachable from ``src``.
|
585
|
+
"""
|
586
|
+
if not g.n:
|
587
|
+
return 0
|
588
|
+
|
589
|
+
# Initializing the set of vertices reached by setting only bit src
|
590
|
+
bitset_set_first_n(reached, 0)
|
591
|
+
bitset_add(reached, src)
|
592
|
+
|
593
|
+
# We will be doing a Depth-First Search. We allocate the stack we need for
|
594
|
+
# that, and put "src" on top of it.
|
595
|
+
cdef int * stack = <int *>check_allocarray(g.n, sizeof(int))
|
596
|
+
|
597
|
+
stack[0] = src
|
598
|
+
cdef int stack_size = 1
|
599
|
+
|
600
|
+
# What we need to iterate over the edges
|
601
|
+
cdef int i
|
602
|
+
cdef uint32_t * v
|
603
|
+
cdef uint32_t * end
|
604
|
+
|
605
|
+
# Plain old DFS ...
|
606
|
+
#
|
607
|
+
# If there is something left on the stack, we remove it consider each of its
|
608
|
+
# neighbors. If we find any which has not been reached yet, we set its
|
609
|
+
# corresponding bit in the reached bitset, and add it on top of the stack.
|
610
|
+
|
611
|
+
while stack_size:
|
612
|
+
stack_size -= 1
|
613
|
+
i = stack[stack_size]
|
614
|
+
|
615
|
+
v = g.neighbors[i]
|
616
|
+
end = g.neighbors[i + 1]
|
617
|
+
|
618
|
+
while v < end:
|
619
|
+
if not bitset_in(reached, v[0]):
|
620
|
+
bitset_add(reached, v[0])
|
621
|
+
stack[stack_size] = v[0]
|
622
|
+
stack_size += 1
|
623
|
+
|
624
|
+
v += 1
|
625
|
+
|
626
|
+
sig_free(stack)
|
627
|
+
|
628
|
+
|
629
|
+
cdef int tarjan_strongly_connected_components_C(short_digraph g, int *scc) noexcept:
|
630
|
+
r"""
|
631
|
+
The Tarjan algorithm to compute strongly connected components (SCCs).
|
632
|
+
|
633
|
+
This routine returns the number of SCCs `k` and, stores in ``scc[v]`` an
|
634
|
+
integer between `0` and `k-1`, corresponding to the SCC containing v. SCCs
|
635
|
+
are numbered in reverse topological order, that is, if `(v,w)` is an edge
|
636
|
+
in the graph, ``scc[v] <= scc[w]``.
|
637
|
+
|
638
|
+
The basic idea of the algorithm is this: a depth-first search (DFS) begins
|
639
|
+
from an arbitrary start node (and subsequent DFSes are
|
640
|
+
conducted on any nodes that have not yet been found). As usual with DFSes,
|
641
|
+
the search visits every node of the graph exactly once, declining to revisit
|
642
|
+
any node that has already been explored. Thus, the collection of search
|
643
|
+
trees is a spanning forest of the graph. The strongly connected components
|
644
|
+
are the subtrees of this spanning forest having no edge directed outside the
|
645
|
+
subtree.
|
646
|
+
|
647
|
+
To recover these components, during the DFS, we keep the index of a node,
|
648
|
+
that is, the position in the DFS tree, and the lowlink: as soon as the
|
649
|
+
subtree rooted at `v` has been fully explored, the lowlink of `v` is the
|
650
|
+
smallest index reachable from `v` passing from descendants of `v`. If the
|
651
|
+
subtree rooted at `v` has been fully explored, and the index of `v` equals
|
652
|
+
the lowlink of `v`, that whole subtree is a new SCC.
|
653
|
+
"""
|
654
|
+
cdef MemoryAllocator mem = MemoryAllocator()
|
655
|
+
cdef int u, v, w, n = g.n, current_index = 0, currentscc = 0
|
656
|
+
cdef int *index = <int *> mem.malloc(n * sizeof(int))
|
657
|
+
cdef int *pred = <int *> mem.malloc(n * sizeof(int))
|
658
|
+
cdef int *lowlink = <int *> mem.malloc(n * sizeof(int))
|
659
|
+
cdef int *dfs_stack = <int *> mem.malloc((n_edges(g) + 1) * sizeof(int))
|
660
|
+
cdef int dfs_stack_end
|
661
|
+
cdef int *scc_stack = <int *> mem.malloc(n * sizeof(int)) # Used to keep track of which nodes are in the "current" SCC
|
662
|
+
cdef short *in_scc_stack = <short *> mem.calloc(n, sizeof(short))
|
663
|
+
cdef uint32_t *p_tmp
|
664
|
+
cdef short *visited = <short *> mem.calloc(n, sizeof(short))
|
665
|
+
# The variable visited[v] is 0 if the vertex has never been visited, 1 if
|
666
|
+
# it is an ancestor of the current vertex, 2 otherwise.
|
667
|
+
|
668
|
+
for u in range(n):
|
669
|
+
if visited[u]:
|
670
|
+
continue
|
671
|
+
|
672
|
+
# Perform a DFS from u
|
673
|
+
dfs_stack_end = 1
|
674
|
+
scc_stack_end = 0
|
675
|
+
dfs_stack[0] = u
|
676
|
+
pred[u] = u
|
677
|
+
|
678
|
+
while dfs_stack_end:
|
679
|
+
v = dfs_stack[dfs_stack_end - 1]
|
680
|
+
if not visited[v]:
|
681
|
+
# It means that this is the first time we visit v.
|
682
|
+
# We set the index and the lowlink to be equal: during the
|
683
|
+
# algorithm, the lowlink may decrease.
|
684
|
+
visited[v] = 1
|
685
|
+
index[v] = current_index
|
686
|
+
lowlink[v] = current_index
|
687
|
+
current_index = current_index + 1
|
688
|
+
# We add v to the stack of vertices in the current SCC
|
689
|
+
scc_stack[scc_stack_end] = v
|
690
|
+
scc_stack_end = scc_stack_end + 1
|
691
|
+
in_scc_stack[v] = 1
|
692
|
+
|
693
|
+
# We iterate over all neighbors of v
|
694
|
+
p_tmp = g.neighbors[v]
|
695
|
+
while p_tmp < g.neighbors[v + 1]:
|
696
|
+
w = p_tmp[0]
|
697
|
+
p_tmp += 1
|
698
|
+
if not visited[w]:
|
699
|
+
# Vertex w is added to the DFS stack
|
700
|
+
pred[w] = v
|
701
|
+
dfs_stack[dfs_stack_end] = w
|
702
|
+
dfs_stack_end += 1
|
703
|
+
elif in_scc_stack[w]:
|
704
|
+
# We update the lowlink of v (later, we will "pass"
|
705
|
+
# this updated value to all ancestors of v.
|
706
|
+
lowlink[v] = min(lowlink[v], lowlink[w])
|
707
|
+
else:
|
708
|
+
# The vertex v has already been visited.
|
709
|
+
dfs_stack_end -= 1
|
710
|
+
|
711
|
+
if visited[v] == 1:
|
712
|
+
# It means that we have just processed all the DFS
|
713
|
+
# subtree rooted at v. Hence, the lowlink of v is the
|
714
|
+
# final value, and we "pass" this value to the
|
715
|
+
# predecessor of v.
|
716
|
+
lowlink[pred[v]] = min(lowlink[pred[v]], lowlink[v])
|
717
|
+
|
718
|
+
if lowlink[v] == index[v]:
|
719
|
+
# The DFS subtree rooted at v is a new SCC. We
|
720
|
+
# recover the SCC from scc_stack.
|
721
|
+
w = -1
|
722
|
+
while w != v:
|
723
|
+
scc_stack_end -= 1
|
724
|
+
w = scc_stack[scc_stack_end]
|
725
|
+
in_scc_stack[w] = 0
|
726
|
+
scc[w] = currentscc
|
727
|
+
currentscc += 1
|
728
|
+
visited[v] = 2
|
729
|
+
|
730
|
+
return currentscc
|
731
|
+
|
732
|
+
|
733
|
+
def tarjan_strongly_connected_components(G):
|
734
|
+
r"""
|
735
|
+
Return the lists of vertices in each strongly connected components (SCCs).
|
736
|
+
|
737
|
+
This method implements the Tarjan algorithm to compute the strongly
|
738
|
+
connected components of the digraph. It returns a list of lists of vertices,
|
739
|
+
each list of vertices representing a strongly connected component.
|
740
|
+
|
741
|
+
The basic idea of the algorithm is this: a depth-first search (DFS) begins
|
742
|
+
from an arbitrary start node (and subsequent DFSes are
|
743
|
+
conducted on any nodes that have not yet been found). As usual with DFSes,
|
744
|
+
the search visits every node of the graph exactly once, declining to revisit
|
745
|
+
any node that has already been explored. Thus, the collection of search
|
746
|
+
trees is a spanning forest of the graph. The strongly connected components
|
747
|
+
correspond to the subtrees of this spanning forest that have no edge
|
748
|
+
directed outside the subtree.
|
749
|
+
|
750
|
+
To recover these components, during the DFS, we keep the index of a node,
|
751
|
+
that is, the position in the DFS tree, and the lowlink: as soon as the
|
752
|
+
subtree rooted at `v` has been fully explored, the lowlink of `v` is the
|
753
|
+
smallest index reachable from `v` passing from descendants of `v`. If the
|
754
|
+
subtree rooted at `v` has been fully explored, and the index of `v` equals
|
755
|
+
the lowlink of `v`, that whole subtree is a new SCC.
|
756
|
+
|
757
|
+
For more information, see the
|
758
|
+
:wikipedia:`Tarjan%27s_strongly_connected_components_algorithm`.
|
759
|
+
|
760
|
+
EXAMPLES::
|
761
|
+
|
762
|
+
sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components
|
763
|
+
sage: tarjan_strongly_connected_components(digraphs.Path(3))
|
764
|
+
[[2], [1], [0]]
|
765
|
+
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
|
766
|
+
sage: D.connected_components(sort=True)
|
767
|
+
[[0, 1, 2, 3], [4, 5, 6]]
|
768
|
+
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
|
769
|
+
sage: D.strongly_connected_components()
|
770
|
+
[[3], [2], [1], [0], [6], [5], [4]]
|
771
|
+
sage: D.add_edge([2,0])
|
772
|
+
sage: D.strongly_connected_components()
|
773
|
+
[[3], [0, 1, 2], [6], [5], [4]]
|
774
|
+
sage: D = DiGraph([('a','b'), ('b','c'), ('c', 'd'), ('d', 'b'), ('c', 'e')])
|
775
|
+
sage: [sorted(scc) for scc in D.strongly_connected_components()]
|
776
|
+
[['e'], ['b', 'c', 'd'], ['a']]
|
777
|
+
|
778
|
+
TESTS:
|
779
|
+
|
780
|
+
Checking that the result is correct::
|
781
|
+
|
782
|
+
sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components
|
783
|
+
sage: import random
|
784
|
+
sage: for i in range(10): # long time
|
785
|
+
....: n = random.randint(2,20)
|
786
|
+
....: m = random.randint(1, n*(n-1))
|
787
|
+
....: g = digraphs.RandomDirectedGNM(n,m)
|
788
|
+
....: sccs = tarjan_strongly_connected_components(g)
|
789
|
+
....: for scc in sccs:
|
790
|
+
....: scc_check = g.strongly_connected_component_containing_vertex(scc[0])
|
791
|
+
....: assert(sorted(scc) == sorted(scc_check))
|
792
|
+
|
793
|
+
Checking against NetworkX::
|
794
|
+
|
795
|
+
sage: import networkx # needs networkx
|
796
|
+
sage: for i in range(10): # long time # needs networkx
|
797
|
+
....: g = digraphs.RandomDirectedGNP(100,.05)
|
798
|
+
....: h = g.networkx_graph()
|
799
|
+
....: scc1 = g.strongly_connected_components()
|
800
|
+
....: scc2 = networkx.strongly_connected_components(h)
|
801
|
+
....: s1 = Set(map(Set,scc1))
|
802
|
+
....: s2 = Set(map(Set,scc2))
|
803
|
+
....: if s1 != s2:
|
804
|
+
....: print("Ooch !")
|
805
|
+
|
806
|
+
Immutable digraphs::
|
807
|
+
|
808
|
+
sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components
|
809
|
+
sage: G = digraphs.RandomDirectedGNP(10, .4)
|
810
|
+
sage: G._backend
|
811
|
+
<sage.graphs.base.sparse_graph.SparseGraphBackend ...>
|
812
|
+
sage: H = DiGraph(G, immutable=True)
|
813
|
+
sage: H._backend
|
814
|
+
<sage.graphs.base.static_sparse_backend.StaticSparseBackend ...>
|
815
|
+
sage: tarjan_strongly_connected_components(G) == tarjan_strongly_connected_components(H)
|
816
|
+
True
|
817
|
+
"""
|
818
|
+
from sage.graphs.digraph import DiGraph
|
819
|
+
|
820
|
+
if not isinstance(G, DiGraph):
|
821
|
+
raise ValueError("G must be a DiGraph.")
|
822
|
+
|
823
|
+
cdef list int_to_vertex
|
824
|
+
cdef StaticSparseCGraph cg
|
825
|
+
cdef short_digraph g
|
826
|
+
if isinstance(G, StaticSparseBackend):
|
827
|
+
cg = <StaticSparseCGraph> G._cg
|
828
|
+
g = <short_digraph> cg.g
|
829
|
+
int_to_vertex = cg._vertex_to_labels
|
830
|
+
else:
|
831
|
+
int_to_vertex = list(G)
|
832
|
+
init_short_digraph(g, G, edge_labelled=False, vertex_list=int_to_vertex)
|
833
|
+
|
834
|
+
cdef MemoryAllocator mem = MemoryAllocator()
|
835
|
+
cdef int * scc = <int*> mem.malloc(g.n * sizeof(int))
|
836
|
+
sig_on()
|
837
|
+
cdef int nscc = tarjan_strongly_connected_components_C(g, scc)
|
838
|
+
sig_off()
|
839
|
+
|
840
|
+
if not isinstance(G, StaticSparseBackend):
|
841
|
+
free_short_digraph(g)
|
842
|
+
|
843
|
+
cdef int i
|
844
|
+
cdef list output = [[] for i in range(nscc)]
|
845
|
+
|
846
|
+
for i, v in enumerate(int_to_vertex):
|
847
|
+
output[scc[i]].append(v)
|
848
|
+
return output
|
849
|
+
|
850
|
+
|
851
|
+
cdef void strongly_connected_components_digraph_C(short_digraph g, int nscc, int *scc, short_digraph output) noexcept:
|
852
|
+
r"""
|
853
|
+
Compute the strongly connected components (SCCs) digraph of `g`.
|
854
|
+
|
855
|
+
The strongly connected components digraph of `g` is a graph having a vertex
|
856
|
+
for each SCC of `g` and an arc from component `C_1` to component `C_2` if
|
857
|
+
and only if there is an arc in `g` from a vertex in `C_1` to a vertex in
|
858
|
+
`C_2`. The strongly connected components digraph is acyclic by definition.
|
859
|
+
|
860
|
+
This routine inputs the graph ``g``, the number of SCCs ``nscc``, and an
|
861
|
+
array containing in position ``v`` the SCC of vertex ``v`` (these values
|
862
|
+
must be already computed). The output is stored in variable ``output``,
|
863
|
+
which should be empty at the beginning.
|
864
|
+
"""
|
865
|
+
cdef MemoryAllocator mem = MemoryAllocator()
|
866
|
+
cdef size_t v, w, i
|
867
|
+
cdef size_t s_nscc = <size_t>nscc
|
868
|
+
cdef vector[vector[int]] scc_list = vector[vector[int]](nscc, vector[int]())
|
869
|
+
cdef vector[vector[int]] sons = vector[vector[int]](nscc + 1, vector[int]())
|
870
|
+
cdef short *neighbors = <short *> mem.calloc(nscc, sizeof(short))
|
871
|
+
cdef long m = 0
|
872
|
+
cdef uint32_t *p_tmp
|
873
|
+
|
874
|
+
for v in range(s_nscc):
|
875
|
+
scc_list[v] = vector[int]()
|
876
|
+
sons[v] = vector[int]()
|
877
|
+
sons[nscc] = vector[int]()
|
878
|
+
|
879
|
+
for i in range(<size_t>g.n):
|
880
|
+
scc_list[scc[i]].push_back(i)
|
881
|
+
|
882
|
+
for v in range(s_nscc):
|
883
|
+
for i in range(scc_list[v].size()):
|
884
|
+
p_tmp = g.neighbors[scc_list[v][i]]
|
885
|
+
while p_tmp<g.neighbors[scc_list[v][i] + 1]:
|
886
|
+
w = <int> scc[p_tmp[0]]
|
887
|
+
p_tmp += 1
|
888
|
+
if not (neighbors[w] or w == v):
|
889
|
+
neighbors[w] = 1
|
890
|
+
sons[v].push_back(w)
|
891
|
+
m += 1
|
892
|
+
for w in range(sons[v].size()):
|
893
|
+
neighbors[sons[v][w]] = 0
|
894
|
+
|
895
|
+
output.n = nscc
|
896
|
+
output.m = m
|
897
|
+
output.edge_labels = NULL
|
898
|
+
|
899
|
+
output.neighbors = <uint32_t **> check_allocarray((1+<int>output.n), sizeof(uint32_t *))
|
900
|
+
|
901
|
+
if not m:
|
902
|
+
output.edges = NULL
|
903
|
+
for v in range(1, s_nscc + 1):
|
904
|
+
output.neighbors[v] = NULL
|
905
|
+
|
906
|
+
output.edges = <uint32_t *> check_allocarray(m, sizeof(uint32_t))
|
907
|
+
output.neighbors[0] = output.edges
|
908
|
+
|
909
|
+
for v in range(1, s_nscc + 1):
|
910
|
+
output.neighbors[v] = output.neighbors[v - 1] + sons[v - 1].size()
|
911
|
+
for i in range(sons[v].size()):
|
912
|
+
output.neighbors[v][i] = sons[v][i]
|
913
|
+
|
914
|
+
|
915
|
+
def strongly_connected_components_digraph(G):
|
916
|
+
r"""
|
917
|
+
Return the digraph of the strongly connected components (SCCs).
|
918
|
+
|
919
|
+
This routine is used to test ``strongly_connected_components_digraph_C``,
|
920
|
+
but it is not used by the Sage digraph. It outputs a pair ``[g_scc,scc]``,
|
921
|
+
where ``g_scc`` is the SCC digraph of g, ``scc`` is a dictionary associating
|
922
|
+
to each vertex ``v`` the number of the SCC of ``v``, as it appears in
|
923
|
+
``g_scc``.
|
924
|
+
|
925
|
+
EXAMPLES::
|
926
|
+
|
927
|
+
sage: from sage.graphs.base.static_sparse_graph import strongly_connected_components_digraph
|
928
|
+
sage: strongly_connected_components_digraph(digraphs.Path(3))
|
929
|
+
(Digraph on 3 vertices, {0: 2, 1: 1, 2: 0})
|
930
|
+
sage: strongly_connected_components_digraph(DiGraph(4))
|
931
|
+
(Digraph on 4 vertices, {0: 0, 1: 1, 2: 2, 3: 3})
|
932
|
+
|
933
|
+
TESTS::
|
934
|
+
|
935
|
+
sage: from sage.graphs.base.static_sparse_graph import strongly_connected_components_digraph
|
936
|
+
sage: import random
|
937
|
+
sage: for i in range(100):
|
938
|
+
....: n = random.randint(2,20)
|
939
|
+
....: m = random.randint(1, n*(n-1))
|
940
|
+
....: g = digraphs.RandomDirectedGNM(n,m)
|
941
|
+
....: scc_digraph,sccs = strongly_connected_components_digraph(g)
|
942
|
+
....: assert(scc_digraph.is_directed_acyclic())
|
943
|
+
....: for e in g.edges(sort=False):
|
944
|
+
....: assert(sccs[e[0]]==sccs[e[1]] or scc_digraph.has_edge(sccs[e[0]],sccs[e[1]]))
|
945
|
+
....: assert(sccs[e[0]] >= sccs[e[1]])
|
946
|
+
|
947
|
+
Immutable digraphs::
|
948
|
+
|
949
|
+
sage: from sage.graphs.base.static_sparse_graph import strongly_connected_components_digraph
|
950
|
+
sage: G = digraphs.RandomDirectedGNP(10, .4)
|
951
|
+
sage: G._backend
|
952
|
+
<sage.graphs.base.sparse_graph.SparseGraphBackend ...>
|
953
|
+
sage: H = DiGraph(G, immutable=True)
|
954
|
+
sage: H._backend
|
955
|
+
<sage.graphs.base.static_sparse_backend.StaticSparseBackend ...>
|
956
|
+
sage: A = strongly_connected_components_digraph(G)[0]
|
957
|
+
sage: B = strongly_connected_components_digraph(H)[0]
|
958
|
+
sage: A.is_isomorphic(B)
|
959
|
+
True
|
960
|
+
"""
|
961
|
+
from sage.graphs.digraph import DiGraph
|
962
|
+
if not isinstance(G, DiGraph):
|
963
|
+
raise ValueError("G must be a DiGraph.")
|
964
|
+
|
965
|
+
cdef list int_to_vertex
|
966
|
+
cdef StaticSparseCGraph cg
|
967
|
+
cdef short_digraph g, scc_g
|
968
|
+
if isinstance(G, StaticSparseBackend):
|
969
|
+
cg = <StaticSparseCGraph> G._cg
|
970
|
+
g = <short_digraph> cg.g
|
971
|
+
int_to_vertex = cg._vertex_to_labels
|
972
|
+
else:
|
973
|
+
int_to_vertex = list(G)
|
974
|
+
init_short_digraph(g, G, edge_labelled=False, vertex_list=int_to_vertex)
|
975
|
+
|
976
|
+
cdef MemoryAllocator mem = MemoryAllocator()
|
977
|
+
cdef int * scc = <int*> mem.malloc(g.n * sizeof(int))
|
978
|
+
cdef int i, j, nscc
|
979
|
+
cdef list edges = []
|
980
|
+
|
981
|
+
sig_on()
|
982
|
+
nscc = tarjan_strongly_connected_components_C(g, scc)
|
983
|
+
strongly_connected_components_digraph_C(g, nscc, scc, scc_g)
|
984
|
+
|
985
|
+
output = DiGraph(nscc)
|
986
|
+
|
987
|
+
for i in range(scc_g.n):
|
988
|
+
for j in range(scc_g.neighbors[i + 1] - scc_g.neighbors[i]):
|
989
|
+
edges.append((i, scc_g.neighbors[i][j]))
|
990
|
+
output.add_edges(edges)
|
991
|
+
sig_off()
|
992
|
+
|
993
|
+
if not isinstance(G, StaticSparseBackend):
|
994
|
+
free_short_digraph(g)
|
995
|
+
free_short_digraph(scc_g)
|
996
|
+
|
997
|
+
return output, {v: scc[i] for i, v in enumerate(int_to_vertex)}
|
998
|
+
|
999
|
+
|
1000
|
+
cdef strongly_connected_component_containing_vertex(short_digraph g, short_digraph g_reversed, int v, bitset_t scc):
|
1001
|
+
"""
|
1002
|
+
Feed ``scc`` with the vertices in the strongly connected component of ``v``.
|
1003
|
+
"""
|
1004
|
+
# Computing the set of vertices that can be reached from v in g
|
1005
|
+
can_be_reached_from(g, v, scc)
|
1006
|
+
# Computing the set of vertices that can be reached from v in g *reversed*
|
1007
|
+
cdef bitset_t scc_reversed
|
1008
|
+
bitset_init(scc_reversed, g.n)
|
1009
|
+
can_be_reached_from(g_reversed, v, scc_reversed)
|
1010
|
+
# The scc containing v is the intersection of both sets
|
1011
|
+
bitset_intersection(scc, scc, scc_reversed)
|
1012
|
+
|
1013
|
+
|
1014
|
+
cdef void free_short_digraph(short_digraph g) noexcept:
|
1015
|
+
"""
|
1016
|
+
Free the resources used by ``g``
|
1017
|
+
"""
|
1018
|
+
sig_free(g.edges)
|
1019
|
+
sig_free(g.neighbors)
|
1020
|
+
if g.edge_labels != NULL:
|
1021
|
+
cpython.Py_XDECREF(g.edge_labels)
|
1022
|
+
|
1023
|
+
|
1024
|
+
def triangles_count(G):
|
1025
|
+
r"""
|
1026
|
+
Return the number of triangles containing `v`, for every `v`.
|
1027
|
+
|
1028
|
+
INPUT:
|
1029
|
+
|
1030
|
+
- ``G`` -- a graph
|
1031
|
+
|
1032
|
+
EXAMPLES::
|
1033
|
+
|
1034
|
+
sage: from sage.graphs.base.static_sparse_graph import triangles_count
|
1035
|
+
sage: triangles_count(graphs.PetersenGraph())
|
1036
|
+
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
|
1037
|
+
sage: sum(triangles_count(graphs.CompleteGraph(15)).values()) == 3*binomial(15,3) # needs sage.symbolic
|
1038
|
+
True
|
1039
|
+
|
1040
|
+
TESTS:
|
1041
|
+
|
1042
|
+
Immutable graphs::
|
1043
|
+
|
1044
|
+
sage: from sage.graphs.base.static_sparse_graph import triangles_count
|
1045
|
+
sage: G = graphs.RandomGNP(10, .7)
|
1046
|
+
sage: G._backend
|
1047
|
+
<sage.graphs.base.sparse_graph.SparseGraphBackend ...>
|
1048
|
+
sage: H = Graph(G, immutable=True)
|
1049
|
+
sage: H._backend
|
1050
|
+
<sage.graphs.base.static_sparse_backend.StaticSparseBackend ...>
|
1051
|
+
sage: triangles_count(G) == triangles_count(H)
|
1052
|
+
True
|
1053
|
+
"""
|
1054
|
+
from sage.rings.integer import Integer
|
1055
|
+
G._scream_if_not_simple()
|
1056
|
+
|
1057
|
+
# g is a copy of G. If G is internally a static sparse graph, we use it.
|
1058
|
+
cdef list int_to_vertex
|
1059
|
+
cdef StaticSparseCGraph cg
|
1060
|
+
cdef short_digraph g
|
1061
|
+
if isinstance(G, StaticSparseBackend):
|
1062
|
+
cg = <StaticSparseCGraph> G._cg
|
1063
|
+
g = <short_digraph> cg.g
|
1064
|
+
int_to_vertex = cg._vertex_to_labels
|
1065
|
+
else:
|
1066
|
+
int_to_vertex = list(G)
|
1067
|
+
init_short_digraph(g, G, edge_labelled=False, vertex_list=int_to_vertex)
|
1068
|
+
|
1069
|
+
cdef uint64_t * count = <uint64_t *> check_calloc(G.order(), sizeof(uint64_t))
|
1070
|
+
|
1071
|
+
cdef uint64_t tmp_count = 0
|
1072
|
+
cdef uint32_t u, v, i
|
1073
|
+
cdef uint32_t * p1
|
1074
|
+
cdef uint32_t * p2
|
1075
|
+
|
1076
|
+
for u in range(<uint32_t>g.n):
|
1077
|
+
for i in range(<uint32_t>out_degree(g, u)):
|
1078
|
+
v = g.neighbors[u][i]
|
1079
|
+
if v <= u:
|
1080
|
+
continue
|
1081
|
+
|
1082
|
+
# Size of [N(u) inter N(v)]. Both are sorted lists.
|
1083
|
+
p1 = g.neighbors[u]
|
1084
|
+
p2 = g.neighbors[v]
|
1085
|
+
tmp_count = 0
|
1086
|
+
while (p1 < g.neighbors[u + 1] and p2 < g.neighbors[v + 1]):
|
1087
|
+
if p1[0] == p2[0]:
|
1088
|
+
tmp_count += 1
|
1089
|
+
p1 += 1
|
1090
|
+
p2 += 1
|
1091
|
+
elif p1[0] < p2[0]:
|
1092
|
+
p1 += 1
|
1093
|
+
else:
|
1094
|
+
p2 += 1
|
1095
|
+
|
1096
|
+
count[u] += tmp_count
|
1097
|
+
count[v] += tmp_count
|
1098
|
+
|
1099
|
+
ans = {w: Integer(count[i] // 2) for i, w in enumerate(int_to_vertex)}
|
1100
|
+
|
1101
|
+
if not isinstance(G, StaticSparseBackend):
|
1102
|
+
free_short_digraph(g)
|
1103
|
+
sig_free(count)
|
1104
|
+
return ans
|
1105
|
+
|
1106
|
+
|
1107
|
+
def spectral_radius(G, prec=1e-10):
|
1108
|
+
r"""
|
1109
|
+
Return an interval of floating point number that encloses the spectral
|
1110
|
+
radius of this graph
|
1111
|
+
|
1112
|
+
The input graph ``G`` must be *strongly connected*.
|
1113
|
+
|
1114
|
+
INPUT:
|
1115
|
+
|
1116
|
+
- ``prec`` -- (default: ``1e-10``) an upper bound for the relative precision
|
1117
|
+
of the interval
|
1118
|
+
|
1119
|
+
The algorithm is iterative and uses an inequality valid for nonnegative
|
1120
|
+
matrices. Namely, if `A` is a nonnegative square matrix with
|
1121
|
+
Perron-Frobenius eigenvalue `\lambda` then the following inequality is valid
|
1122
|
+
for any vector `x`
|
1123
|
+
|
1124
|
+
.. MATH::
|
1125
|
+
|
1126
|
+
\min_i \frac{(Ax)_i}{x_i} \leq \lambda \leq \max_i \frac{(Ax)_i}{x_i}
|
1127
|
+
|
1128
|
+
.. NOTE::
|
1129
|
+
|
1130
|
+
The speed of convergence of the algorithm is governed by the spectral
|
1131
|
+
gap (the distance to the second largest modulus of other eigenvalues).
|
1132
|
+
If this gap is small, then this function might not be appropriate.
|
1133
|
+
|
1134
|
+
The algorithm is not smart and not parallel! It uses basic interval
|
1135
|
+
arithmetic and native floating point arithmetic.
|
1136
|
+
|
1137
|
+
EXAMPLES::
|
1138
|
+
|
1139
|
+
sage: from sage.graphs.base.static_sparse_graph import spectral_radius
|
1140
|
+
|
1141
|
+
sage: G = DiGraph([(0,0),(0,1),(1,0)], loops=True)
|
1142
|
+
sage: phi = (RR(1) + RR(5).sqrt() ) / 2
|
1143
|
+
sage: phi # abs tol 1e-14
|
1144
|
+
1.618033988749895
|
1145
|
+
sage: e_min, e_max = spectral_radius(G, 1e-14)
|
1146
|
+
sage: e_min, e_max # abs tol 1e-14
|
1147
|
+
(1.618033988749894, 1.618033988749896)
|
1148
|
+
sage: (e_max - e_min) # abs tol 1e-14
|
1149
|
+
1e-14
|
1150
|
+
sage: e_min < phi < e_max
|
1151
|
+
True
|
1152
|
+
|
1153
|
+
This function also works for graphs::
|
1154
|
+
|
1155
|
+
sage: G = Graph([(0,1),(0,2),(1,2),(1,3),(2,4),(3,4)])
|
1156
|
+
sage: e_min, e_max = spectral_radius(G, 1e-14)
|
1157
|
+
sage: e = max(G.adjacency_matrix().charpoly().roots(AA, multiplicities=False)) # needs sage.modules sage.rings.number_field
|
1158
|
+
sage: e_min < e < e_max # needs sage.modules sage.rings.number_field sage.symbolic
|
1159
|
+
True
|
1160
|
+
|
1161
|
+
sage: G.spectral_radius() # abs tol 1e-9
|
1162
|
+
(2.48119430408, 2.4811943041)
|
1163
|
+
|
1164
|
+
A larger example::
|
1165
|
+
|
1166
|
+
sage: # needs sage.modules
|
1167
|
+
sage: G = DiGraph()
|
1168
|
+
sage: G.add_edges((i,i+1) for i in range(200))
|
1169
|
+
sage: G.add_edge(200,0)
|
1170
|
+
sage: G.add_edge(1,0)
|
1171
|
+
sage: e_min, e_max = spectral_radius(G, 0.00001)
|
1172
|
+
sage: p = G.adjacency_matrix(sparse=True).charpoly()
|
1173
|
+
sage: p
|
1174
|
+
x^201 - x^199 - 1
|
1175
|
+
sage: r = p.roots(AA, multiplicities=False)[0] # needs sage.rings.number_field
|
1176
|
+
sage: e_min < r < e_max # needs sage.rings.number_field
|
1177
|
+
True
|
1178
|
+
|
1179
|
+
A much larger example::
|
1180
|
+
|
1181
|
+
sage: G = DiGraph(100000)
|
1182
|
+
sage: r = list(range(100000))
|
1183
|
+
sage: while not G.is_strongly_connected():
|
1184
|
+
....: shuffle(r)
|
1185
|
+
....: G.add_edges(enumerate(r), loops=False)
|
1186
|
+
sage: spectral_radius(G, 1e-10) # random # long time
|
1187
|
+
(1.9997956006500042, 1.9998043797692782)
|
1188
|
+
|
1189
|
+
The algorithm takes care of multiple edges::
|
1190
|
+
|
1191
|
+
sage: G = DiGraph(2,loops=True,multiedges=True)
|
1192
|
+
sage: G.add_edges([(0,0),(0,0),(0,1),(1,0)])
|
1193
|
+
sage: spectral_radius(G, 1e-14) # abs tol 1e-14
|
1194
|
+
(2.414213562373094, 2.414213562373095)
|
1195
|
+
sage: max(G.adjacency_matrix().eigenvalues(AA)) # needs sage.modules sage.rings.number_field
|
1196
|
+
2.414213562373095?
|
1197
|
+
|
1198
|
+
Some bipartite graphs::
|
1199
|
+
|
1200
|
+
sage: G = Graph([(0,1),(0,3),(2,3)])
|
1201
|
+
sage: G.spectral_radius() # abs tol 1e-10
|
1202
|
+
(1.6180339887253428, 1.6180339887592732)
|
1203
|
+
|
1204
|
+
sage: G = DiGraph([(0,1),(0,3),(2,3),(3,0),(1,0),(1,2)])
|
1205
|
+
sage: G.spectral_radius() # abs tol 1e-10
|
1206
|
+
(1.5537739740270458, 1.553773974033029)
|
1207
|
+
|
1208
|
+
sage: G = graphs.CompleteBipartiteGraph(1,3)
|
1209
|
+
sage: G.spectral_radius() # abs tol 1e-10
|
1210
|
+
(1.7320508075688772, 1.7320508075688774)
|
1211
|
+
|
1212
|
+
TESTS::
|
1213
|
+
|
1214
|
+
sage: from sage.graphs.base.static_sparse_graph import spectral_radius
|
1215
|
+
|
1216
|
+
sage: Graph(1).spectral_radius()
|
1217
|
+
(0.0, 0.0)
|
1218
|
+
sage: Graph([(0,0)], loops=True).spectral_radius()
|
1219
|
+
(1.0, 1.0)
|
1220
|
+
|
1221
|
+
sage: spectral_radius(Graph([(0,1),(0,2)]), 1e-20)
|
1222
|
+
Traceback (most recent call last):
|
1223
|
+
...
|
1224
|
+
ValueError: precision (=1.00000000000000e-20) is too small
|
1225
|
+
|
1226
|
+
sage: for _ in range(100): # needs sage.modules sage.rings.number_field
|
1227
|
+
....: G = digraphs.RandomDirectedGNM(10,35)
|
1228
|
+
....: if not G.is_strongly_connected():
|
1229
|
+
....: continue
|
1230
|
+
....: e = max(G.adjacency_matrix().charpoly().roots(AA,multiplicities=False))
|
1231
|
+
....: e_min, e_max = G.spectral_radius(1e-13)
|
1232
|
+
....: assert e_min < e < e_max
|
1233
|
+
|
1234
|
+
sage: spectral_radius(Graph(), 1e-10)
|
1235
|
+
Traceback (most recent call last):
|
1236
|
+
...
|
1237
|
+
ValueError: empty graph
|
1238
|
+
|
1239
|
+
sage: G = DiGraph([(0,1),(1,2),(2,0),(2,0)], multiedges=True)
|
1240
|
+
sage: G.spectral_radius()
|
1241
|
+
Traceback (most recent call last):
|
1242
|
+
...
|
1243
|
+
ValueError: the graph must be aperiodic
|
1244
|
+
"""
|
1245
|
+
if not G:
|
1246
|
+
raise ValueError("empty graph")
|
1247
|
+
if G.is_directed():
|
1248
|
+
if not G.is_strongly_connected():
|
1249
|
+
raise ValueError("G must be strongly connected")
|
1250
|
+
elif not G.is_connected():
|
1251
|
+
raise ValueError("G must be connected")
|
1252
|
+
|
1253
|
+
cdef double e_min, e_max
|
1254
|
+
|
1255
|
+
if G.num_verts() == 1:
|
1256
|
+
e_min = e_max = G.num_edges()
|
1257
|
+
return (e_min, e_max)
|
1258
|
+
|
1259
|
+
is_bipartite, colors = G.is_bipartite(certificate=True)
|
1260
|
+
if is_bipartite:
|
1261
|
+
# NOTE: for bipartite graph there are two eigenvalues of maximum modulus
|
1262
|
+
# and the iteration is likely to reach a cycle of length 2 and hence the
|
1263
|
+
# algorithm never terminate. Here we compute the "square" reduced to
|
1264
|
+
# one component of the bipartition.
|
1265
|
+
from sage.graphs.digraph import DiGraph
|
1266
|
+
H = DiGraph(loops=True, multiedges=True)
|
1267
|
+
if G.is_directed():
|
1268
|
+
neighbors_iterator = G.neighbor_out_iterator
|
1269
|
+
else:
|
1270
|
+
neighbors_iterator = G.neighbor_iterator
|
1271
|
+
for u0 in G:
|
1272
|
+
if colors[u0] == 0:
|
1273
|
+
for u1 in neighbors_iterator(u0):
|
1274
|
+
for u2 in neighbors_iterator(u1):
|
1275
|
+
H.add_edge(u0, u2)
|
1276
|
+
|
1277
|
+
e_min, e_max = spectral_radius(H, prec)
|
1278
|
+
return sqrt(e_min), sqrt(e_max)
|
1279
|
+
|
1280
|
+
cdef double c_prec = prec
|
1281
|
+
if 1+c_prec/2 == 1:
|
1282
|
+
raise ValueError("precision (={!r}) is too small".format(prec))
|
1283
|
+
|
1284
|
+
# test if the graph is aperiodic
|
1285
|
+
from sage.graphs.digraph import DiGraph
|
1286
|
+
if not DiGraph(G).is_aperiodic():
|
1287
|
+
raise ValueError("the graph must be aperiodic")
|
1288
|
+
|
1289
|
+
# make a copy of G if needed to obtain a static sparse graph
|
1290
|
+
# NOTE: the following potentially copies the labels of the graph which is
|
1291
|
+
# completely useless for the computation!
|
1292
|
+
cdef short_digraph g
|
1293
|
+
G = G.copy(immutable=True)
|
1294
|
+
g[0] = (<StaticSparseCGraph> (<StaticSparseBackend> G._backend)._cg).g[0]
|
1295
|
+
|
1296
|
+
cdef size_t n = <size_t>g.n
|
1297
|
+
cdef size_t m = <size_t>g.m
|
1298
|
+
cdef uint32_t ** neighbors = g.neighbors
|
1299
|
+
|
1300
|
+
# v1 and v2 are two arrays of length n, allocated as one array
|
1301
|
+
# of length 2n for efficiency.
|
1302
|
+
cdef double * vmem = <double *>check_allocarray(2*n, sizeof(double))
|
1303
|
+
cdef double * v1 = vmem
|
1304
|
+
cdef double * v2 = vmem + n
|
1305
|
+
cdef double * v3
|
1306
|
+
|
1307
|
+
cdef size_t i
|
1308
|
+
cdef uint32_t *p
|
1309
|
+
cdef double s
|
1310
|
+
|
1311
|
+
for i in range(n):
|
1312
|
+
v1[i] = 1
|
1313
|
+
s = n
|
1314
|
+
|
1315
|
+
cdef int old_rounding = fegetround()
|
1316
|
+
e_max = m
|
1317
|
+
e_min = 0
|
1318
|
+
try:
|
1319
|
+
sig_on()
|
1320
|
+
while (e_max - e_min) > e_max * c_prec:
|
1321
|
+
# renormalize
|
1322
|
+
s = n/s
|
1323
|
+
for i in range(n):
|
1324
|
+
v1[i] *= s
|
1325
|
+
|
1326
|
+
# computing e_max (with upward rounding)
|
1327
|
+
e_max = 0
|
1328
|
+
fesetround(FE_UPWARD)
|
1329
|
+
p = neighbors[0]
|
1330
|
+
for i in range(n):
|
1331
|
+
v2[i] = 0
|
1332
|
+
while p < neighbors[i + 1]:
|
1333
|
+
v2[i] += v1[p[0]]
|
1334
|
+
p += 1
|
1335
|
+
e = v2[i] / v1[i]
|
1336
|
+
if e > e_max:
|
1337
|
+
e_max = e
|
1338
|
+
|
1339
|
+
# computing e_min (with downward rounding)
|
1340
|
+
e_min = m
|
1341
|
+
fesetround(FE_DOWNWARD)
|
1342
|
+
p = neighbors[0]
|
1343
|
+
for i in range(n):
|
1344
|
+
v2[i] = 0
|
1345
|
+
while p < neighbors[i + 1]:
|
1346
|
+
v2[i] += v1[p[0]]
|
1347
|
+
p += 1
|
1348
|
+
s += v2[i]
|
1349
|
+
e = v2[i] / v1[i]
|
1350
|
+
if e < e_min:
|
1351
|
+
e_min = e
|
1352
|
+
|
1353
|
+
# computing the next vector (with nearest rounding)
|
1354
|
+
fesetround(FE_TONEAREST)
|
1355
|
+
s = 0
|
1356
|
+
p = neighbors[0]
|
1357
|
+
for i in range(n):
|
1358
|
+
v2[i] = 0
|
1359
|
+
while p < neighbors[i + 1]:
|
1360
|
+
v2[i] += v1[p[0]]
|
1361
|
+
p += 1
|
1362
|
+
s += v2[i]
|
1363
|
+
v3 = v1
|
1364
|
+
v1 = v2
|
1365
|
+
v2 = v3
|
1366
|
+
|
1367
|
+
sig_off()
|
1368
|
+
finally:
|
1369
|
+
# be sure that the rounding is back to default
|
1370
|
+
fesetround(old_rounding)
|
1371
|
+
|
1372
|
+
# and that the memory is freed
|
1373
|
+
sig_free(vmem)
|
1374
|
+
|
1375
|
+
return (e_min, e_max)
|