passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
- passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
- passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
- passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
- passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
- passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
- passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
- sage/all__sagemath_graphs.py +39 -0
- sage/combinat/abstract_tree.py +2723 -0
- sage/combinat/all__sagemath_graphs.py +34 -0
- sage/combinat/binary_tree.py +5306 -0
- sage/combinat/cluster_algebra_quiver/all.py +22 -0
- sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
- sage/combinat/cluster_algebra_quiver/interact.py +124 -0
- sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
- sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
- sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
- sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
- sage/combinat/designs/MOLS_handbook_data.py +570 -0
- sage/combinat/designs/all.py +58 -0
- sage/combinat/designs/bibd.py +1655 -0
- sage/combinat/designs/block_design.py +1071 -0
- sage/combinat/designs/covering_array.py +269 -0
- sage/combinat/designs/covering_design.py +530 -0
- sage/combinat/designs/database.py +5615 -0
- sage/combinat/designs/design_catalog.py +122 -0
- sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/designs_pyx.pxd +21 -0
- sage/combinat/designs/designs_pyx.pyx +993 -0
- sage/combinat/designs/difference_family.py +3951 -0
- sage/combinat/designs/difference_matrices.py +279 -0
- sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
- sage/combinat/designs/ext_rep.py +1064 -0
- sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
- sage/combinat/designs/group_divisible_designs.py +361 -0
- sage/combinat/designs/incidence_structures.py +2357 -0
- sage/combinat/designs/latin_squares.py +581 -0
- sage/combinat/designs/orthogonal_arrays.py +2244 -0
- sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
- sage/combinat/designs/resolvable_bibd.py +815 -0
- sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
- sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/subhypergraph_search.pyx +530 -0
- sage/combinat/designs/twographs.py +306 -0
- sage/combinat/finite_state_machine.py +14874 -0
- sage/combinat/finite_state_machine_generators.py +2006 -0
- sage/combinat/graph_path.py +448 -0
- sage/combinat/interval_posets.py +3908 -0
- sage/combinat/nu_tamari_lattice.py +269 -0
- sage/combinat/ordered_tree.py +1446 -0
- sage/combinat/posets/all.py +46 -0
- sage/combinat/posets/bubble_shuffle.py +247 -0
- sage/combinat/posets/cartesian_product.py +493 -0
- sage/combinat/posets/d_complete.py +182 -0
- sage/combinat/posets/elements.py +273 -0
- sage/combinat/posets/forest.py +30 -0
- sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/hasse_cython.pyx +174 -0
- sage/combinat/posets/hasse_diagram.py +3672 -0
- sage/combinat/posets/hochschild_lattice.py +158 -0
- sage/combinat/posets/incidence_algebras.py +794 -0
- sage/combinat/posets/lattices.py +5117 -0
- sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/linear_extension_iterator.pyx +292 -0
- sage/combinat/posets/linear_extensions.py +1037 -0
- sage/combinat/posets/mobile.py +275 -0
- sage/combinat/posets/moebius_algebra.py +776 -0
- sage/combinat/posets/poset_examples.py +2178 -0
- sage/combinat/posets/posets.py +9360 -0
- sage/combinat/rooted_tree.py +1070 -0
- sage/combinat/shard_order.py +239 -0
- sage/combinat/tamari_lattices.py +384 -0
- sage/combinat/yang_baxter_graph.py +923 -0
- sage/databases/all__sagemath_graphs.py +1 -0
- sage/databases/knotinfo_db.py +1231 -0
- sage/ext_data/all__sagemath_graphs.py +1 -0
- sage/ext_data/graphs/graph_plot_js.html +330 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/graphs/all.py +42 -0
- sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/asteroidal_triples.pyx +320 -0
- sage/graphs/base/all.py +1 -0
- sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/boost_graph.pxd +106 -0
- sage/graphs/base/boost_graph.pyx +3045 -0
- sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/c_graph.pxd +106 -0
- sage/graphs/base/c_graph.pyx +5096 -0
- sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/dense_graph.pxd +28 -0
- sage/graphs/base/dense_graph.pyx +801 -0
- sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/graph_backends.pxd +5 -0
- sage/graphs/base/graph_backends.pyx +797 -0
- sage/graphs/base/overview.py +85 -0
- sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/sparse_graph.pxd +90 -0
- sage/graphs/base/sparse_graph.pyx +1653 -0
- sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_dense_graph.pxd +5 -0
- sage/graphs/base/static_dense_graph.pyx +1032 -0
- sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_backend.pxd +27 -0
- sage/graphs/base/static_sparse_backend.pyx +1583 -0
- sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_graph.pxd +37 -0
- sage/graphs/base/static_sparse_graph.pyx +1375 -0
- sage/graphs/bipartite_graph.py +2732 -0
- sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/centrality.pyx +1038 -0
- sage/graphs/cographs.py +519 -0
- sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/comparability.pyx +851 -0
- sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/connectivity.pxd +157 -0
- sage/graphs/connectivity.pyx +4813 -0
- sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/convexity_properties.pxd +16 -0
- sage/graphs/convexity_properties.pyx +870 -0
- sage/graphs/digraph.py +4754 -0
- sage/graphs/digraph_generators.py +1993 -0
- sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/distances_all_pairs.pxd +12 -0
- sage/graphs/distances_all_pairs.pyx +2938 -0
- sage/graphs/domination.py +1363 -0
- sage/graphs/dot2tex_utils.py +100 -0
- sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/edge_connectivity.pyx +1215 -0
- sage/graphs/generators/all.py +1 -0
- sage/graphs/generators/basic.py +1769 -0
- sage/graphs/generators/chessboard.py +538 -0
- sage/graphs/generators/classical_geometries.py +1611 -0
- sage/graphs/generators/degree_sequence.py +235 -0
- sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generators/distance_regular.pyx +2846 -0
- sage/graphs/generators/families.py +4759 -0
- sage/graphs/generators/intersection.py +565 -0
- sage/graphs/generators/platonic_solids.py +262 -0
- sage/graphs/generators/random.py +2623 -0
- sage/graphs/generators/smallgraphs.py +5741 -0
- sage/graphs/generators/world_map.py +724 -0
- sage/graphs/generic_graph.py +26867 -0
- sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generic_graph_pyx.pxd +34 -0
- sage/graphs/generic_graph_pyx.pyx +1673 -0
- sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/genus.pyx +622 -0
- sage/graphs/graph.py +9645 -0
- sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_coloring.pyx +2284 -0
- sage/graphs/graph_database.py +1177 -0
- sage/graphs/graph_decompositions/all.py +1 -0
- sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
- sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
- sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
- sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
- sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
- sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/graph_products.pyx +508 -0
- sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
- sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
- sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
- sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
- sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
- sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
- sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
- sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
- sage/graphs/graph_editor.py +82 -0
- sage/graphs/graph_generators.py +3314 -0
- sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_generators_pyx.pyx +95 -0
- sage/graphs/graph_input.py +812 -0
- sage/graphs/graph_latex.py +2064 -0
- sage/graphs/graph_list.py +410 -0
- sage/graphs/graph_plot.py +1756 -0
- sage/graphs/graph_plot_js.py +338 -0
- sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/hyperbolicity.pyx +1704 -0
- sage/graphs/hypergraph_generators.py +364 -0
- sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/independent_sets.pxd +13 -0
- sage/graphs/independent_sets.pyx +402 -0
- sage/graphs/isgci.py +1033 -0
- sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/isoperimetric_inequalities.pyx +489 -0
- sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/line_graph.pyx +743 -0
- sage/graphs/lovasz_theta.py +77 -0
- sage/graphs/matching.py +1633 -0
- sage/graphs/matching_covered_graph.py +3590 -0
- sage/graphs/orientations.py +1489 -0
- sage/graphs/partial_cube.py +459 -0
- sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/path_enumeration.pyx +2040 -0
- sage/graphs/pq_trees.py +1129 -0
- sage/graphs/print_graphs.py +201 -0
- sage/graphs/schnyder.py +865 -0
- sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/spanning_tree.pyx +1457 -0
- sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/strongly_regular_db.pyx +3340 -0
- sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/traversals.pxd +9 -0
- sage/graphs/traversals.pyx +1872 -0
- sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/trees.pxd +15 -0
- sage/graphs/trees.pyx +310 -0
- sage/graphs/tutte_polynomial.py +713 -0
- sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/views.pyx +794 -0
- sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/weakly_chordal.pyx +604 -0
- sage/groups/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
- sage/knots/all.py +6 -0
- sage/knots/free_knotinfo_monoid.py +507 -0
- sage/knots/gauss_code.py +291 -0
- sage/knots/knot.py +682 -0
- sage/knots/knot_table.py +284 -0
- sage/knots/knotinfo.py +2900 -0
- sage/knots/link.py +4715 -0
- sage/sandpiles/all.py +13 -0
- sage/sandpiles/examples.py +225 -0
- sage/sandpiles/sandpile.py +6365 -0
- sage/topology/all.py +22 -0
- sage/topology/cell_complex.py +1214 -0
- sage/topology/cubical_complex.py +1976 -0
- sage/topology/delta_complex.py +1806 -0
- sage/topology/filtered_simplicial_complex.py +744 -0
- sage/topology/moment_angle_complex.py +823 -0
- sage/topology/simplicial_complex.py +5160 -0
- sage/topology/simplicial_complex_catalog.py +92 -0
- sage/topology/simplicial_complex_examples.py +1680 -0
- sage/topology/simplicial_complex_homset.py +205 -0
- sage/topology/simplicial_complex_morphism.py +836 -0
- sage/topology/simplicial_set.py +4102 -0
- sage/topology/simplicial_set_catalog.py +55 -0
- sage/topology/simplicial_set_constructions.py +2954 -0
- sage/topology/simplicial_set_examples.py +865 -0
- sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,570 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-graphs
|
2
|
+
r"""
|
3
|
+
Bounds on the number of mutually orthogonal Latin squares
|
4
|
+
|
5
|
+
This module contains known lower bounds on the number of mutually orthogonal
|
6
|
+
Latin squares (MOLS) of a given size, and consists (almost) entirely of an
|
7
|
+
internal, constant tuple of Python integers corresponding to Table 3.87 in the
|
8
|
+
Handbook of Combinatorial Designs, 2nd edition, by Colbourn and Dinitz. One public
|
9
|
+
function, :func:`lower_bound`, is provided to access it.
|
10
|
+
|
11
|
+
Make sure we have all of the entries::
|
12
|
+
|
13
|
+
sage: from sage.combinat.designs import MOLS_handbook_data
|
14
|
+
sage: len(MOLS_handbook_data._LOWER_BOUNDS)
|
15
|
+
10000
|
16
|
+
|
17
|
+
Jeff Dinitz's website (at UVM) provides the following two updates to
|
18
|
+
the table as printed in the second edition::
|
19
|
+
|
20
|
+
sage: from sage.combinat.designs import MOLS_handbook_data
|
21
|
+
sage: MOLS_handbook_data.lower_bound(60)
|
22
|
+
5
|
23
|
+
sage: MOLS_handbook_data.lower_bound(7968)
|
24
|
+
31
|
25
|
+
"""
|
26
|
+
|
27
|
+
_LOWER_BOUNDS: tuple[int, ...]
|
28
|
+
_LOWER_BOUNDS = (
|
29
|
+
0,0,1,2,3,4,1,6,7,8,2,10,5,12,3,4,15,16,3,18, # 0
|
30
|
+
4,5,3,22,7,24,4,26,5,28,4,30,31,5,4,5,8,36,4,5, # 20
|
31
|
+
7,40,5,42,5,6,4,46,8,48,6,5,5,52,5,6,7,7,5,58, # 40
|
32
|
+
5,60,5,6,63,7,5,66,5,6,6,70,7,72,5,7,6,6,6,78, # 60
|
33
|
+
9,80,8,82,6,6,6,6,7,88,6,7,6,6,6,6,7,96,6,8, # 80
|
34
|
+
8,100,6,102,7,7,6,106,6,108,6,6,13,112,6,7,6,8,6,6, # 100
|
35
|
+
7,120,6,6,6,124,6,126,127,7,6,130,6,7,6,7,7,136,6,138, # 120
|
36
|
+
6,7,6,10,10,7,6,7,6,148,6,150,7,8,8,7,6,156,7,6, # 140
|
37
|
+
9,7,6,162,6,7,6,166,7,168,6,8,6,172,6,6,14,9,6,178, # 160
|
38
|
+
6,180,6,6,7,9,6,10,6,8,6,190,7,192,6,7,6,196,6,198, # 180
|
39
|
+
7,8,6,7,6,8,6,8,14,11,10,210,6,7,6,7,7,8,6,10, # 200
|
40
|
+
6,12,6,222,13,8,6,226,6,228,6,7,7,232,6,7,6,7,6,238, # 220
|
41
|
+
7,240,6,242,6,7,6,12,7,7,6,250,6,12,9,7,255,256,6,12, # 240
|
42
|
+
6,8,8,262,7,8,7,10,7,268,7,270,15,16,6,13,10,276,6,9, # 260
|
43
|
+
7,280,6,282,6,12,6,7,15,288,6,6,6,292,6,6,7,10,10,12, # 280
|
44
|
+
7,7,7,7,15,15,6,306,7,7,7,310,7,312,7,10,7,316,7,10, # 300
|
45
|
+
15,15,6,16,8,12,6,7,7,9,6,330,7,8,7,6,8,336,6,7, # 320
|
46
|
+
6,10,10,342,7,7,6,346,6,348,8,12,18,352,6,9,7,9,6,358, # 340
|
47
|
+
8,360,6,7,7,10,6,366,15,15,7,15,7,372,7,15,7,13,7,378, # 360
|
48
|
+
7,12,7,382,15,15,7,15,7,388,7,16,7,8,7,7,8,396,7,7, # 380
|
49
|
+
15,400,7,15,11,8,7,15,8,408,7,13,8,12,10,9,18,15,7,418, # 400
|
50
|
+
7,420,7,15,7,16,6,7,7,10,6,430,15,432,6,15,6,18,7,438, # 420
|
51
|
+
7,15,7,442,7,13,7,11,15,448,7,15,7,7,7,15,7,456,7,16, # 440
|
52
|
+
7,460,7,462,15,15,7,466,8,8,7,15,7,15,10,18,7,15,6,478, # 460
|
53
|
+
15,15,6,15,8,7,6,486,7,15,6,490,6,16,6,7,15,15,6,498, # 480
|
54
|
+
7,12,9,502,7,15,6,15,7,508,6,15,511,18,7,15,8,12,8,15, # 500
|
55
|
+
8,520,10,522,12,15,8,16,15,528,7,15,8,12,7,15,8,15,10,15, # 520
|
56
|
+
12,540,7,15,18,7,7,546,7,8,7,18,7,7,7,7,7,556,7,12, # 540
|
57
|
+
15,7,7,562,7,7,6,7,7,568,6,570,7,7,15,22,8,576,7,7, # 560
|
58
|
+
7,8,7,10,7,8,7,586,7,18,17,7,15,592,8,15,7,7,8,598, # 580
|
59
|
+
14,600,12,15,7,15,16,606,18,15,7,15,8,612,8,15,7,616,7,618, # 600
|
60
|
+
8,22,8,15,15,624,7,8,8,16,7,630,7,8,7,8,7,12,7,8, # 620
|
61
|
+
9,640,7,642,7,7,7,646,8,10,7,7,7,652,7,7,15,15,7,658, # 640
|
62
|
+
7,660,7,15,7,15,7,22,7,15,7,15,15,672,7,24,8,676,7,15, # 660
|
63
|
+
7,15,7,682,8,15,7,15,15,15,7,690,8,15,7,15,7,16,7,15, # 680
|
64
|
+
8,700,7,18,15,15,7,15,8,708,7,15,7,22,21,15,7,15,8,718, # 700
|
65
|
+
15,9,8,12,10,24,12,726,7,728,16,16,18,732,7,7,22,10,8,738, # 720
|
66
|
+
7,7,7,742,7,15,7,8,7,10,7,750,15,15,8,15,8,756,8,15, # 740
|
67
|
+
7,760,8,15,8,15,8,15,15,768,8,15,8,772,8,24,23,15,8,18, # 760
|
68
|
+
8,18,7,26,15,15,10,786,12,15,7,15,20,15,18,15,8,796,22,16, # 780
|
69
|
+
24,15,8,15,8,15,8,15,8,808,8,810,8,15,8,15,15,18,8,8, # 800
|
70
|
+
8,820,8,822,8,15,8,826,8,828,8,15,12,16,7,8,7,26,25,838, # 820
|
71
|
+
8,840,8,20,8,10,8,16,15,15,12,22,7,852,16,15,22,856,7,858, # 840
|
72
|
+
22,15,24,862,26,15,7,15,8,15,9,15,7,15,7,15,7,876,8,15, # 860
|
73
|
+
15,880,8,882,8,15,7,886,7,15,8,15,10,18,8,15,13,15,8,28, # 880
|
74
|
+
27,16,8,8,8,22,8,906,8,18,10,910,15,14,8,15,16,10,18,918, # 900
|
75
|
+
24,8,22,12,24,24,26,8,28,928,7,18,7,7,7,14,7,936,7,15, # 920
|
76
|
+
7,940,7,22,15,15,7,946,7,12,12,15,7,952,7,15,7,15,8,15, # 940
|
77
|
+
15,960,29,15,8,15,8,966,8,15,8,970,10,18,12,15,15,976,16,18, # 960
|
78
|
+
18,15,7,982,27,15,24,15,26,22,28,990,31,31,7,15,8,996,25,26, # 980
|
79
|
+
7,15,21,16,19,15,7,18,15,1008,13,18,8,1012,9,22,7,28,7,1018, # 1000
|
80
|
+
7,1020,7,30,1023,24,7,15,9,15,9,1030,7,1032,7,15,8,16,9,1038, # 1020
|
81
|
+
15,15,8,15,8,15,8,15,8,1048,8,1050,8,15,8,15,15,16,8,8, # 1040
|
82
|
+
8,1060,8,1062,8,15,8,15,10,1068,7,15,15,28,7,24,7,15,8,15, # 1060
|
83
|
+
12,22,8,15,8,15,8,1086,16,15,8,1090,8,1092,8,15,8,1096,8,15, # 1080
|
84
|
+
8,15,8,1102,15,15,8,26,8,1108,8,18,8,15,8,15,8,1116,7,15, # 1100
|
85
|
+
16,18,7,1122,7,15,7,22,8,1128,7,15,8,15,10,9,15,15,7,16, # 1120
|
86
|
+
7,8,7,15,7,15,7,30,30,15,7,1150,15,1152,7,15,8,26,12,24, # 1140
|
87
|
+
12,26,7,1162,16,18,18,15,15,15,22,1170,24,15,26,24,28,15,30,30, # 1160
|
88
|
+
8,1180,8,15,31,15,8,1186,8,28,8,15,8,1192,8,15,8,15,8,15, # 1180
|
89
|
+
15,1200,8,15,8,15,8,16,8,15,8,15,8,1212,8,15,18,1216,7,22, # 1200
|
90
|
+
7,15,8,1222,7,24,7,15,7,1228,7,1230,15,9,8,15,7,1236,7,15, # 1220
|
91
|
+
7,16,8,10,8,7,8,28,8,1248,8,8,7,7,7,8,8,8,7,1258, # 1240
|
92
|
+
7,12,23,7,15,15,9,15,9,26,9,30,30,23,8,15,9,1276,9,1278, # 1260
|
93
|
+
15,30,10,1282,12,15,9,24,16,1288,18,1290,8,18,22,15,24,1296,26,15, # 1280
|
94
|
+
28,1300,30,1302,8,15,8,1306,30,15,8,15,31,15,12,15,8,15,8,1318, # 1300
|
95
|
+
8,1320,8,26,8,24,7,1326,15,15,8,1330,8,30,30,15,8,15,9,30, # 1320
|
96
|
+
12,15,8,30,15,30,12,15,9,26,16,24,18,15,9,20,22,22,24,15, # 1340
|
97
|
+
26,1360,28,28,30,30,9,1366,28,1368,30,15,9,1372,30,15,31,16,8,15, # 1360
|
98
|
+
8,1380,8,15,8,15,8,18,8,15,8,15,15,15,8,15,8,10,9,1398, # 1380
|
99
|
+
10,15,8,22,8,8,8,15,10,1408,8,16,7,9,9,22,9,12,7,8, # 1400
|
100
|
+
9,28,7,1422,15,24,9,1426,9,1428,7,26,7,1432,9,15,7,15,7,1438, # 1420
|
101
|
+
15,15,7,15,9,15,9,1446,7,15,7,1450,7,1452,9,15,15,30,30,1458, # 1440
|
102
|
+
8,15,8,30,8,15,8,30,10,30,12,1470,22,30,16,28,18,15,8,24, # 1460
|
103
|
+
22,1480,24,1482,26,18,28,1486,30,1488,13,15,8,1492,30,15,8,15,30,1498, # 1480
|
104
|
+
30,18,9,15,31,15,9,15,9,14,9,1510,9,24,9,9,9,36,9,30, # 1500
|
105
|
+
30,9,9,1522,9,30,9,9,9,30,10,1530,12,9,9,30,16,30,18,18, # 1520
|
106
|
+
8,26,22,1542,24,8,26,20,28,1548,30,30,15,1552,8,15,30,8,8,1558, # 1540
|
107
|
+
30,15,30,15,8,15,30,1566,31,15,8,1570,8,15,12,15,8,18,8,1578, # 1560
|
108
|
+
8,15,8,1582,15,24,8,8,8,15,8,36,7,26,8,15,8,1596,8,15, # 1580
|
109
|
+
24,1600,8,15,8,15,8,1606,8,1608,8,15,8,1612,7,15,15,15,8,1618, # 1600
|
110
|
+
8,1620,7,15,7,15,7,1626,7,15,7,15,24,22,8,15,8,1636,7,15, # 1620
|
111
|
+
7,15,7,30,30,15,7,26,15,30,7,15,11,30,10,30,12,1656,7,30, # 1640
|
112
|
+
16,30,18,1662,15,30,22,1666,24,1668,26,24,28,22,30,30,19,15,7,22, # 1660
|
113
|
+
30,1680,9,15,30,15,30,15,9,15,30,18,30,1692,9,15,31,1696,9,1698, # 1680
|
114
|
+
9,15,8,15,8,15,8,15,8,1708,21,28,15,15,8,15,10,16,7,15, # 1700
|
115
|
+
8,1720,9,1722,9,15,7,15,26,21,8,15,8,1732,7,15,7,15,7,36, # 1720
|
116
|
+
9,1740,8,15,15,15,8,1746,8,15,8,16,9,1752,9,15,9,15,8,1758, # 1740
|
117
|
+
26,15,8,40,9,15,8,15,8,28,8,27,8,15,8,24,15,1776,9,15, # 1760
|
118
|
+
8,15,8,1782,8,15,8,1786,8,1788,8,15,15,15,9,15,8,15,8,15, # 1780
|
119
|
+
8,1800,8,15,9,15,8,30,15,26,8,1810,8,36,7,15,9,22,9,16, # 1800
|
120
|
+
9,15,9,1822,26,24,9,15,9,30,30,1830,9,15,9,30,9,15,9,30, # 1820
|
121
|
+
15,30,12,18,9,30,16,1846,18,1848,9,30,22,16,24,15,28,30,28,28, # 1840
|
122
|
+
30,1860,25,22,8,22,30,1866,8,18,30,1870,30,1872,8,15,30,1876,30,1878, # 1860
|
123
|
+
8,15,30,8,8,8,8,15,31,1888,8,30,30,15,8,15,8,30,8,15, # 1880
|
124
|
+
8,1900,10,30,15,15,8,1906,16,30,18,15,8,1912,22,15,24,26,26,30, # 1900
|
125
|
+
28,30,30,30,27,9,7,40,30,9,8,1930,30,1932,30,8,15,15,30,15, # 1920
|
126
|
+
30,10,8,28,30,15,8,15,8,1948,30,1950,31,15,8,15,8,18,8,15, # 1940
|
127
|
+
8,36,8,15,8,15,8,15,15,15,8,26,8,1972,8,24,9,15,9,1978, # 1960
|
128
|
+
9,15,9,15,30,30,9,1986,9,15,30,15,10,1992,30,15,30,1996,9,1998, # 1980
|
129
|
+
30,16,30,2002,9,9,30,22,9,40,9,2010,30,28,30,30,31,2016,8,15, # 2000
|
130
|
+
27,42,8,15,23,30,21,2026,8,2028,8,30,15,30,13,15,11,30,8,2038, # 2020
|
131
|
+
8,15,8,30,8,30,8,22,2047,15,8,15,8,2052,8,15,8,16,10,28, # 2040
|
132
|
+
8,15,9,2062,15,15,8,15,8,2068,8,18,8,15,9,24,8,30,30,15, # 2060
|
133
|
+
30,2080,8,2082,8,15,8,2086,10,2088,12,15,8,30,16,30,18,15,8,2098, # 2080
|
134
|
+
22,36,24,15,26,30,28,42,30,30,30,2110,15,2112,30,15,9,28,30,24, # 2100
|
135
|
+
30,15,10,15,30,18,30,16,15,2128,30,2130,8,26,9,15,30,2136,30,15, # 2120
|
136
|
+
9,2140,9,2142,31,15,9,18,9,15,9,15,9,2152,10,15,12,15,9,16, # 2140
|
137
|
+
15,2160,9,15,9,14,9,15,9,15,10,14,12,40,9,15,16,15,9,2178, # 2160
|
138
|
+
8,15,9,36,9,15,9,2186,9,15,9,23,15,15,8,15,9,2196,12,15, # 2180
|
139
|
+
9,30,30,2202,8,15,9,2206,15,2208,8,30,10,2212,12,15,8,30,16,30, # 2200
|
140
|
+
18,2220,8,30,22,24,24,16,26,30,28,30,30,30,30,15,10,2236,30,2238, # 2220
|
141
|
+
16,30,30,2242,30,15,8,15,30,22,30,2250,8,18,30,15,15,36,8,15, # 2240
|
142
|
+
30,15,30,30,30,30,9,2266,30,2268,8,15,31,2272,10,30,12,15,8,42, # 2260
|
143
|
+
16,2280,18,15,8,30,22,2286,24,15,26,30,28,2292,30,30,30,2296,9,30, # 2280
|
144
|
+
30,15,9,46,30,30,30,15,9,2308,30,2310,30,22,9,20,30,15,9,15, # 2300
|
145
|
+
15,15,30,22,30,15,9,30,28,16,30,15,9,2332,30,15,31,15,9,2338, # 2320
|
146
|
+
8,2340,8,10,9,15,8,2346,8,28,8,2350,15,12,8,15,9,2356,9,10, # 2340
|
147
|
+
8,15,8,16,8,9,8,10,36,22,10,2370,8,10,8,18,26,2376,8,10, # 2360
|
148
|
+
8,2380,8,2382,15,15,8,15,8,2388,8,15,8,2392,8,42,10,15,13,2398, # 2380
|
149
|
+
15,2400,8,26,8,15,9,28,7,15,7,2410,8,18,17,15,15,2416,7,40, # 2400
|
150
|
+
8,15,8,2422,14,24,12,15,8,15,16,15,18,15,8,15,9,2436,9,15, # 2420
|
151
|
+
9,2440,10,15,10,15,10,2446,15,30,30,15,9,27,9,30,9,15,9,2458, # 2440
|
152
|
+
10,30,12,15,15,30,16,2466,18,15,9,30,22,2472,24,15,26,2476,28,36, # 2460
|
153
|
+
30,30,30,15,12,30,30,15,9,30,30,46,30,15,9,15,30,30,30,28, # 2480
|
154
|
+
8,40,30,2502,8,15,9,22,30,15,30,30,30,30,9,15,30,30,8,15, # 2500
|
155
|
+
30,2520,30,30,12,24,9,30,31,30,18,2530,9,30,22,15,24,42,26,2538, # 2520
|
156
|
+
28,30,30,2542,30,15,9,30,30,2548,9,2550,30,30,30,15,9,2556,30,30, # 2540
|
157
|
+
30,30,9,28,30,15,10,16,9,23,30,15,30,30,30,30,15,15,30,2578, # 2560
|
158
|
+
9,28,30,30,30,30,12,12,12,30,30,2590,31,2592,8,30,22,48,24,22, # 2580
|
159
|
+
26,30,28,30,30,30,30,9,15,2608,30,15,9,30,30,30,30,2616,8,26, # 2600
|
160
|
+
30,2620,30,42,40,30,30,36,8,15,8,24,30,2632,30,15,8,30,8,16, # 2620
|
161
|
+
30,18,8,15,30,15,30,2646,28,15,8,15,30,15,30,15,31,2656,10,2658, # 2640
|
162
|
+
8,15,9,2662,9,15,9,15,7,16,9,2670,15,15,8,24,8,2676,8,15, # 2660
|
163
|
+
9,15,8,2682,9,15,8,2686,15,2688,8,15,10,2692,8,15,8,15,9,2698, # 2680
|
164
|
+
9,36,8,15,15,15,10,2706,8,15,10,2710,9,2712,8,15,10,15,10,2718, # 2700
|
165
|
+
31,15,9,15,9,24,10,26,10,2728,10,2730,9,15,10,15,15,15,8,15, # 2720
|
166
|
+
8,2740,8,15,9,15,8,40,9,2748,8,15,42,2752,9,15,8,15,9,30, # 2740
|
167
|
+
30,15,8,15,9,30,7,2766,15,30,10,30,12,46,8,30,16,2776,18,15, # 2760
|
168
|
+
9,30,22,22,24,15,26,30,28,2788,30,2790,30,15,9,30,30,2796,9,30, # 2780
|
169
|
+
30,2800,30,2802,9,15,30,30,30,2808,8,30,30,28,9,15,15,30,30,2818, # 2800
|
170
|
+
30,15,8,30,9,24,30,15,8,18,30,18,30,2832,9,15,9,2836,30,23, # 2820
|
171
|
+
30,15,30,2842,8,15,8,15,31,15,10,2850,8,15,9,15,8,2856,8,15, # 2840
|
172
|
+
8,2860,29,13,29,15,9,46,29,18,29,15,8,16,29,22,8,15,8,2878, # 2860
|
173
|
+
29,42,29,15,9,29,9,2886,29,26,8,48,29,15,29,15,15,2896,9,15, # 2880
|
174
|
+
29,15,30,2902,8,15,8,15,8,2908,10,40,31,15,9,15,8,2916,9,15, # 2900
|
175
|
+
8,22,21,36,9,18,9,2926,15,28,9,15,10,15,12,15,9,15,16,2938, # 2920
|
176
|
+
18,16,9,26,22,15,9,15,9,15,9,15,9,2952,9,15,9,2956,9,15, # 2940
|
177
|
+
15,15,9,2962,9,15,9,15,9,2968,9,2970,9,15,10,15,15,15,12,15, # 2960
|
178
|
+
9,15,10,18,9,15,9,28,9,48,8,15,15,40,9,15,9,36,9,2998, # 2980
|
179
|
+
9,3000,9,15,10,15,9,30,46,15,9,3010,9,30,8,15,10,30,10,3018, # 3000
|
180
|
+
12,15,9,3022,16,30,18,15,9,30,22,15,24,15,26,30,28,3036,30,30, # 3020
|
181
|
+
31,3040,9,30,30,15,9,30,30,3048,30,26,9,42,30,30,30,30,9,30, # 3040
|
182
|
+
30,3060,9,15,9,30,30,3066,30,15,9,36,15,30,30,15,8,26,30,3078, # 3060
|
183
|
+
30,15,9,3082,9,18,30,15,30,3088,30,15,9,15,10,15,30,18,9,15, # 3080
|
184
|
+
9,15,9,28,31,15,9,25,9,3108,8,15,9,15,8,15,8,15,9,3118, # 3100
|
185
|
+
15,3120,8,15,9,3124,8,52,8,15,9,30,30,15,8,15,48,3136,9,42, # 3120
|
186
|
+
8,30,10,30,12,15,9,30,16,46,18,22,15,30,22,15,24,15,26,30, # 3140
|
187
|
+
28,30,30,3162,30,15,9,3166,30,3168,9,30,30,30,30,24,23,15,30,30, # 3160
|
188
|
+
30,3180,10,30,30,15,10,3186,12,30,30,3190,30,30,30,30,8,30,30,30, # 3180
|
189
|
+
24,30,30,3202,30,30,12,24,9,3208,30,30,30,18,30,30,22,3216,24,15, # 3200
|
190
|
+
30,3220,28,30,30,30,30,15,30,3228,30,15,31,52,30,30,30,15,9,40, # 3220
|
191
|
+
30,30,30,30,9,30,30,16,15,15,10,3250,30,3252,30,15,9,3256,9,3258, # 3240
|
192
|
+
30,15,10,30,30,30,30,26,10,26,9,3270,30,15,30,24,30,28,10,15, # 3260
|
193
|
+
15,16,30,48,9,15,10,18,28,15,30,15,9,36,30,15,31,15,9,3298, # 3280
|
194
|
+
10,3300,10,15,10,15,10,3306,10,15,9,15,15,3312,9,15,9,30,30,3318, # 3300
|
195
|
+
9,40,9,3322,9,23,9,30,14,3328,12,3330,10,30,16,30,18,46,9,30, # 3320
|
196
|
+
22,15,24,3342,26,30,28,3346,30,30,30,15,10,30,30,13,10,30,30,3358, # 3340
|
197
|
+
30,3360,10,15,30,30,30,30,12,30,30,3370,10,3372,10,30,30,15,30,30, # 3360
|
198
|
+
30,30,9,30,30,30,9,30,30,3388,30,3390,52,30,10,30,30,42,30,24, # 3380
|
199
|
+
30,39,22,40,24,23,30,3406,28,30,30,30,30,3412,30,30,30,15,30,30, # 3400
|
200
|
+
30,30,30,15,31,24,30,30,30,30,25,46,30,3432,9,15,10,30,30,18, # 3420
|
201
|
+
30,15,13,30,10,30,30,15,22,3448,30,30,30,13,24,30,26,3456,30,15, # 3440
|
202
|
+
30,3460,30,3462,9,15,9,3466,30,3468,9,10,15,22,10,24,30,18,9,48, # 3460
|
203
|
+
30,3480,30,42,10,15,30,39,31,15,9,3490,9,11,10,13,10,15,12,3498, # 3480
|
204
|
+
9,15,10,30,30,11,10,15,9,30,10,3510,9,30,10,30,12,3516,9,30, # 3500
|
205
|
+
26,30,18,15,12,30,22,3526,24,3528,26,30,28,3532,30,30,30,26,10,3538, # 3520
|
206
|
+
30,3540,11,30,30,30,30,3546,11,15,30,52,30,30,10,30,30,3556,10,3558, # 3540
|
207
|
+
11,30,30,12,30,12,11,30,15,42,30,3570,11,30,30,30,30,48,10,30, # 3560
|
208
|
+
10,3580,30,3582,30,30,30,16,10,36,10,15,30,3592,11,15,11,18,10,58, # 3580
|
209
|
+
30,15,10,13,30,15,30,3606,9,15,30,22,30,3612,9,15,31,3616,9,15, # 3600
|
210
|
+
10,15,9,3622,10,28,11,15,9,25,11,3630,15,15,10,15,10,3636,9,15, # 3620
|
211
|
+
9,15,8,3642,11,15,9,15,26,40,10,15,9,15,12,15,9,25,9,3658, # 3640
|
212
|
+
11,15,11,15,15,15,10,18,9,15,9,3670,10,3672,10,15,9,3676,8,21, # 3660
|
213
|
+
15,15,10,28,27,15,10,24,9,15,10,3690,10,18,10,16,15,3696,10,26, # 3680
|
214
|
+
16,3700,18,15,24,15,22,15,24,3708,26,15,28,46,10,15,10,15,9,3718, # 3700
|
215
|
+
10,3720,10,15,11,24,9,3726,15,15,9,15,10,3732,10,15,9,36,9,3738, # 3720
|
216
|
+
9,15,10,18,15,39,10,15,9,22,10,30,30,26,9,15,10,30,12,15, # 3740
|
217
|
+
15,3760,10,52,12,15,10,3766,16,3768,18,15,9,30,22,24,58,15,26,3778, # 3760
|
218
|
+
28,30,30,30,30,15,10,30,30,15,10,30,30,3792,30,15,10,3796,30,30, # 3780
|
219
|
+
30,30,10,3802,30,15,9,46,31,30,30,36,30,15,9,30,9,30,30,15, # 3800
|
220
|
+
10,3820,30,3822,30,15,10,42,10,30,30,15,30,3832,30,15,10,15,10,15, # 3820
|
221
|
+
30,30,10,15,10,26,10,3846,30,15,9,3850,30,3852,30,15,15,15,30,16, # 3840
|
222
|
+
30,15,10,3862,30,15,9,15,9,52,9,48,31,15,10,30,30,3876,10,15, # 3860
|
223
|
+
10,3880,9,15,10,30,10,30,15,3888,10,30,16,30,18,15,9,30,22,15, # 3880
|
224
|
+
24,48,26,30,60,30,30,3906,30,15,9,3910,30,15,11,30,30,3916,30,3918, # 3900
|
225
|
+
15,15,30,3922,30,30,9,30,30,3928,9,3930,9,30,30,15,30,30,30,30, # 3920
|
226
|
+
9,30,30,3942,9,30,30,3946,30,30,12,30,15,58,30,30,30,30,30,36, # 3940
|
227
|
+
26,40,24,15,30,30,28,3966,30,48,30,28,30,36,30,24,30,40,30,30, # 3960
|
228
|
+
30,18,30,16,30,30,30,30,30,3988,30,22,10,24,10,30,30,28,30,30, # 3980
|
229
|
+
31,4000,10,4002,30,30,10,4006,30,30,30,30,9,4012,9,30,30,30,30,4018, # 4000
|
230
|
+
30,4020,9,26,9,24,30,4026,9,30,9,30,30,36,30,30,9,26,30,30, # 4020
|
231
|
+
30,30,10,20,30,18,30,30,15,4048,30,4050,18,15,9,15,28,4056,30,15, # 4040
|
232
|
+
26,30,30,16,31,30,10,48,27,30,9,30,10,4072,21,30,19,30,16,4078, # 4060
|
233
|
+
18,30,10,30,22,15,24,60,26,30,28,4090,30,4092,30,30,4095,30,30,4098, # 4080
|
234
|
+
9,30,30,30,30,15,9,15,30,30,30,4110,15,30,30,15,10,22,10,30, # 4100
|
235
|
+
30,15,30,15,11,30,9,4126,30,4128,10,30,30,4132,30,15,11,30,10,4138, # 4120
|
236
|
+
30,40,30,30,30,15,10,15,10,15,30,30,9,4152,11,30,9,4156,30,4158, # 4140
|
237
|
+
15,30,30,22,30,15,29,24,30,22,30,42,29,15,30,24,29,4176,10,15, # 4160
|
238
|
+
10,36,30,46,29,15,30,52,30,58,29,15,31,15,29,15,29,15,10,15, # 4180
|
239
|
+
12,4200,29,15,29,15,29,15,15,15,10,4210,29,15,9,15,9,4216,10,4218, # 4200
|
240
|
+
29,15,9,40,29,24,29,15,10,4228,29,4230,29,15,10,15,29,18,13,26, # 4220
|
241
|
+
15,4240,10,4242,30,15,9,30,30,15,12,15,9,4252,13,15,31,30,10,4258, # 4240
|
242
|
+
12,4260,10,30,16,30,18,42,9,30,22,4270,24,4272,26,30,28,30,30,30, # 4260
|
243
|
+
30,15,10,4282,30,15,9,30,63,4288,30,15,10,52,30,30,30,4296,9,30, # 4280
|
244
|
+
30,15,10,15,15,30,30,58,30,30,30,30,9,30,30,30,9,30,30,30, # 4300
|
245
|
+
30,30,12,30,10,30,30,4326,30,30,30,60,22,15,24,15,30,4336,28,4338, # 4320
|
246
|
+
30,30,30,42,30,30,30,30,30,4348,30,30,30,30,30,28,30,4356,30,30, # 4340
|
247
|
+
30,48,30,4362,13,18,13,30,30,16,30,15,30,4372,30,30,30,15,30,30, # 4360
|
248
|
+
30,30,30,15,31,30,12,40,30,15,30,4390,30,22,13,15,13,4396,30,52, # 4380
|
249
|
+
15,26,12,30,13,30,30,15,13,4408,30,15,30,15,10,30,30,30,30,15, # 4400
|
250
|
+
12,4420,30,4422,13,15,13,20,12,42,30,15,15,15,30,15,30,30,12,22, # 4420
|
251
|
+
30,4440,11,15,13,15,30,4446,31,15,10,4450,12,60,13,15,12,4456,13,15, # 4440
|
252
|
+
13,15,13,4462,15,15,11,15,10,40,12,16,13,15,13,24,13,36,13,15, # 4460
|
253
|
+
16,4480,10,4482,10,15,12,15,13,4488,13,15,10,4492,13,15,15,15,10,25, # 4480
|
254
|
+
10,15,10,15,10,15,12,4506,13,26,13,15,15,4512,10,15,10,4516,10,4518, # 4500
|
255
|
+
10,15,12,4522,13,24,10,15,15,15,11,22,10,15,10,15,10,15,10,15, # 4520
|
256
|
+
12,18,13,15,63,15,10,4546,10,4548,10,15,10,28,10,15,12,15,12,46, # 4540
|
257
|
+
15,4560,11,26,11,15,10,4566,10,15,12,15,12,16,13,15,31,22,11,18, # 4560
|
258
|
+
10,15,10,4582,10,15,10,15,12,15,13,4590,15,15,10,15,10,4596,12,15, # 4580
|
259
|
+
10,42,10,4602,12,15,9,16,15,15,13,15,11,15,9,15,9,18,10,30, # 4600
|
260
|
+
30,4620,12,15,16,36,15,15,13,30,15,30,15,40,15,30,16,4636,18,4638, # 4620
|
261
|
+
31,30,22,4642,24,15,26,30,28,4648,30,4650,30,15,15,30,30,4656,12,30, # 4640
|
262
|
+
30,58,30,4662,14,15,30,30,30,30,14,30,63,4672,12,15,14,30,30,4678, # 4660
|
263
|
+
30,30,30,30,14,30,30,42,15,30,30,4690,30,30,14,30,15,30,30,36, # 4680
|
264
|
+
35,30,30,4702,22,15,24,15,30,30,28,30,30,30,30,30,30,52,30,30, # 4700
|
265
|
+
30,4720,30,4722,30,30,30,30,30,4728,30,31,30,4732,30,15,36,30,12,30, # 4720
|
266
|
+
30,15,30,15,30,30,30,46,30,15,30,4750,30,48,30,15,30,66,30,4758, # 4740
|
267
|
+
30,15,30,30,30,15,13,15,31,18,30,30,11,15,10,30,10,39,30,58, # 4760
|
268
|
+
15,30,30,4782,30,15,12,4786,30,4788,30,15,10,4792,30,15,14,15,15,4798, # 4780
|
269
|
+
15,4800,30,15,10,15,30,24,30,30,10,16,30,4812,14,15,15,4816,30,60, # 4800
|
270
|
+
30,15,10,22,28,24,12,15,12,15,30,4830,31,26,12,15,10,23,10,15, # 4820
|
271
|
+
10,46,11,28,12,15,15,36,15,15,11,15,10,22,10,15,11,15,10,42, # 4840
|
272
|
+
11,4860,14,15,18,17,12,30,30,15,10,4870,11,30,11,15,12,4876,11,30, # 4860
|
273
|
+
15,16,10,30,16,30,18,26,10,4888,22,66,24,15,26,30,28,58,30,30, # 4880
|
274
|
+
30,28,12,4902,30,15,10,30,30,4908,30,15,15,4912,30,30,30,30,10,4918, # 4900
|
275
|
+
30,15,11,15,10,30,30,15,30,15,12,4930,11,4932,30,15,11,4936,30,30, # 4920
|
276
|
+
30,60,10,4942,15,30,30,15,30,48,30,4950,10,15,10,15,30,4956,10,15, # 4940
|
277
|
+
15,40,11,30,30,15,12,4966,30,4968,30,15,10,4972,30,30,30,15,12,15, # 4960
|
278
|
+
30,16,10,15,11,30,10,4986,30,15,10,15,30,4992,30,30,10,18,30,4998, # 4980
|
279
|
+
11,15,10,5002,30,18,30,15,15,5008,10,5010,11,15,10,15,30,28,30,15, # 5000
|
280
|
+
10,5020,10,5022,31,15,10,15,10,46,10,15,9,15,10,15,10,15,10,5038, # 5020
|
281
|
+
15,5040,10,15,11,15,10,48,9,15,10,5050,10,30,30,15,63,15,10,5058, # 5040
|
282
|
+
11,15,10,60,10,30,12,15,10,36,16,30,18,15,10,30,22,5076,24,15, # 5060
|
283
|
+
26,5080,28,30,30,30,30,5086,31,30,30,15,12,30,30,30,30,15,10,5098, # 5080
|
284
|
+
30,5100,30,30,15,30,30,5106,11,15,10,30,30,5112,30,15,10,30,10,5118, # 5100
|
285
|
+
30,39,10,46,30,40,30,15,10,30,13,30,30,15,30,30,30,15,10,15, # 5120
|
286
|
+
11,52,30,36,11,15,13,5146,13,45,30,15,31,5152,30,15,30,26,10,30, # 5140
|
287
|
+
30,30,30,15,12,15,30,5166,15,15,15,5170,15,30,30,15,15,30,30,5178, # 5160
|
288
|
+
30,30,15,70,63,30,15,30,15,5188,30,28,30,30,16,30,18,5196,15,30, # 5180
|
289
|
+
22,15,30,42,30,30,28,40,39,5208,30,36,15,30,30,15,31,30,30,30, # 5200
|
290
|
+
30,22,15,15,30,30,30,5226,15,30,30,5230,24,5232,26,30,30,5236,30,31, # 5220
|
291
|
+
30,30,13,48,36,30,15,30,40,30,30,58,15,30,15,30,30,30,30,30, # 5240
|
292
|
+
30,5260,22,18,24,15,30,30,28,30,30,30,30,5272,30,30,30,30,30,5278, # 5260
|
293
|
+
31,5280,30,30,30,30,30,30,30,30,30,30,30,66,15,30,15,5296,30,16, # 5280
|
294
|
+
30,15,30,5302,30,30,30,15,30,5308,30,46,63,30,30,30,30,30,30,26, # 5300
|
295
|
+
30,30,30,5322,15,18,30,16,30,5328,12,16,10,5332,30,30,30,15,15,30, # 5320
|
296
|
+
30,48,30,15,31,30,30,5346,30,15,10,5350,30,52,11,15,15,30,15,30, # 5340
|
297
|
+
30,15,12,30,30,30,30,30,10,30,30,40,15,30,15,42,30,30,30,30, # 5360
|
298
|
+
16,5380,18,15,14,30,22,5386,30,18,30,30,28,5392,30,30,30,15,12,5398, # 5380
|
299
|
+
30,15,30,30,30,30,30,5406,31,15,30,30,30,5412,9,30,30,5416,12,5418, # 5400
|
300
|
+
11,30,30,15,30,15,13,66,12,60,30,5430,11,30,30,30,30,5436,15,30, # 5420
|
301
|
+
40,5440,30,5442,30,30,30,15,11,5448,11,15,30,30,15,15,15,30,10,52, # 5440
|
302
|
+
30,42,41,30,30,38,30,15,11,30,30,5470,30,30,12,16,30,5476,16,5478, # 5460
|
303
|
+
18,30,10,5482,30,18,24,15,30,30,30,30,30,31,30,30,38,22,36,30, # 5480
|
304
|
+
30,5500,40,5502,42,30,10,5506,14,15,12,24,30,36,30,15,10,15,10,5518, # 5500
|
305
|
+
30,5520,10,15,10,15,30,5526,10,15,30,5530,30,15,10,15,31,48,10,28, # 5520
|
306
|
+
10,15,9,25,9,15,10,15,12,30,30,15,15,15,11,30,10,5556,10,30, # 5540
|
307
|
+
10,66,12,5562,9,30,16,30,18,5568,10,30,22,5572,24,24,26,30,28,30, # 5560
|
308
|
+
30,5580,30,15,15,30,30,36,12,30,30,5590,30,15,13,15,30,30,30,30, # 5580
|
309
|
+
15,30,30,15,11,15,10,30,30,70,30,30,30,30,10,30,30,40,12,30, # 5600
|
310
|
+
30,30,30,5622,12,30,11,30,30,30,30,30,30,42,22,15,24,15,30,5638, # 5620
|
311
|
+
28,5640,30,30,30,30,30,5646,30,30,30,5650,30,5652,30,30,30,5656,30,5658, # 5640
|
312
|
+
30,30,30,30,30,15,10,30,10,5668,30,52,30,15,30,30,30,30,30,15, # 5660
|
313
|
+
30,30,30,5682,30,30,30,46,30,5688,30,30,30,5692,30,15,63,30,30,40, # 5680
|
314
|
+
30,5700,10,15,11,30,30,30,30,18,11,5710,30,28,30,15,30,5716,30,30, # 5700
|
315
|
+
30,15,30,58,30,24,10,15,31,30,10,30,30,15,11,15,30,5736,30,30, # 5720
|
316
|
+
11,5740,30,5742,15,15,10,30,30,5748,30,70,11,30,11,15,14,15,11,30, # 5740
|
317
|
+
30,30,30,15,11,15,11,72,30,15,11,28,11,22,30,15,16,52,30,5778, # 5760
|
318
|
+
30,15,11,5782,30,15,10,15,10,15,30,5790,31,15,10,15,11,15,10,15, # 5780
|
319
|
+
11,5800,11,15,9,15,11,5806,15,39,10,15,11,5812,12,15,10,15,10,15, # 5800
|
320
|
+
10,5820,13,15,63,24,10,5826,11,15,10,16,10,18,10,15,10,15,13,5838, # 5820
|
321
|
+
15,15,10,5842,10,15,10,15,11,5848,10,5850,10,15,12,15,15,5856,10,15, # 5840
|
322
|
+
10,5860,10,27,11,15,10,5866,10,5868,11,15,15,15,13,46,11,15,10,5878, # 5860
|
323
|
+
10,5880,10,15,10,15,12,15,22,21,13,42,13,70,11,15,13,5896,13,16, # 5880
|
324
|
+
13,15,13,5902,15,16,13,18,12,18,13,22,13,72,13,15,13,60,13,15, # 5900
|
325
|
+
15,30,30,5922,13,15,13,5926,13,48,13,30,13,30,13,15,15,30,16,5938, # 5920
|
326
|
+
18,15,10,30,22,16,24,18,26,30,28,30,30,5952,30,15,12,30,30,58, # 5940
|
327
|
+
13,30,30,66,30,15,13,15,30,46,45,30,11,42,30,24,13,42,11,36, # 5960
|
328
|
+
30,5980,30,30,30,30,16,5986,30,52,13,30,30,30,30,30,26,30,28,30, # 5980
|
329
|
+
30,31,30,30,30,30,36,6006,24,15,40,6010,42,30,30,30,46,30,30,30, # 6000
|
330
|
+
30,30,30,30,30,30,30,30,30,6028,30,45,30,30,30,30,30,6036,13,30, # 6020
|
331
|
+
13,30,30,6042,30,15,30,6046,30,30,30,15,30,6052,30,30,30,30,30,72, # 6040
|
332
|
+
30,30,30,30,30,30,30,6066,12,30,30,30,30,6072,12,24,12,58,30,6078, # 6060
|
333
|
+
46,30,10,30,30,15,30,24,30,6088,30,6090,30,15,30,15,30,15,13,15, # 6080
|
334
|
+
30,6100,30,30,30,15,12,30,30,40,30,30,31,6112,30,30,11,30,10,30, # 6100
|
335
|
+
30,6120,30,30,16,48,18,15,15,45,22,6130,30,6132,30,30,28,30,30,30, # 6120
|
336
|
+
30,15,12,6142,30,30,30,30,30,30,30,6150,30,15,30,30,30,46,11,30, # 6140
|
337
|
+
30,60,30,6162,30,30,30,15,30,30,30,30,11,6172,30,30,31,45,30,36, # 6160
|
338
|
+
30,30,12,30,11,30,30,30,30,30,30,40,22,15,24,15,30,6196,28,6198, # 6180
|
339
|
+
30,30,30,6202,30,30,30,30,63,30,30,6210,30,30,30,30,30,6216,30,30, # 6200
|
340
|
+
30,6220,30,48,47,30,11,44,30,6228,30,15,30,38,30,36,30,15,30,30, # 6220
|
341
|
+
30,6240,30,30,30,30,30,6246,30,30,30,30,30,36,30,31,30,6256,30,30, # 6240
|
342
|
+
36,15,15,6262,44,30,42,30,15,6268,46,6270,48,30,30,30,30,6276,30,16, # 6260
|
343
|
+
30,15,30,60,15,15,30,6286,30,30,30,26,15,15,30,30,30,30,30,6298, # 6280
|
344
|
+
30,6300,15,15,31,30,30,30,30,15,15,6310,15,58,15,15,15,6316,30,70, # 6300
|
345
|
+
30,15,15,6322,15,39,30,16,15,6328,15,30,30,15,15,30,30,6336,30,15, # 6320
|
346
|
+
15,16,30,6342,15,15,15,15,30,18,30,15,15,6352,15,18,15,15,15,6358, # 6340
|
347
|
+
30,6360,30,15,15,15,30,6366,31,15,15,22,15,6372,15,15,15,15,15,6378, # 6360
|
348
|
+
15,15,15,15,15,15,15,15,15,6388,15,70,15,15,15,15,15,6396,15,78, # 6380
|
349
|
+
24,36,15,18,11,15,15,42,15,48,15,15,15,52,15,15,15,16,15,48, # 6400
|
350
|
+
15,6420,15,22,15,24,15,6426,15,15,15,58,15,15,13,15,15,40,10,46, # 6420
|
351
|
+
15,15,15,16,15,15,15,15,15,6448,15,6450,11,26,13,16,15,15,15,15, # 6440
|
352
|
+
15,15,15,22,63,15,15,28,15,6468,12,15,15,6472,15,15,15,15,15,15, # 6460
|
353
|
+
15,6480,15,15,13,15,13,15,15,15,15,6490,15,42,15,15,31,72,13,66, # 6480
|
354
|
+
15,15,12,15,11,15,15,26,15,22,15,16,15,15,13,15,15,18,12,16, # 6500
|
355
|
+
11,6520,15,15,15,15,15,60,24,6528,13,15,15,46,11,17,12,15,15,15, # 6520
|
356
|
+
15,30,30,15,15,15,15,6546,11,15,14,6550,11,6552,12,15,15,78,16,30, # 6540
|
357
|
+
31,6560,15,6562,22,15,24,16,26,6568,28,6570,30,30,30,24,15,6576,30,15, # 6560
|
358
|
+
11,6580,30,30,30,15,11,15,30,30,30,30,63,30,30,15,11,15,11,6598, # 6580
|
359
|
+
30,15,30,15,11,30,10,6606,30,15,10,30,30,30,30,16,11,30,11,6618, # 6600
|
360
|
+
30,15,30,36,30,52,11,15,11,15,30,30,11,15,11,30,11,6636,30,15, # 6620
|
361
|
+
15,30,30,15,30,15,11,30,30,60,30,15,11,6652,30,15,15,15,11,6658, # 6640
|
362
|
+
11,6660,30,15,11,15,30,58,30,30,12,15,30,6672,12,15,11,30,30,6678, # 6660
|
363
|
+
30,15,12,40,12,15,14,15,18,6688,30,6690,30,15,11,15,12,36,30,15, # 6680
|
364
|
+
14,6700,12,6702,30,16,11,30,30,6708,30,15,11,48,30,15,11,15,14,6718, # 6700
|
365
|
+
30,30,30,80,11,24,12,23,11,15,11,52,51,6732,30,48,15,6736,30,22, # 6720
|
366
|
+
30,42,11,40,12,15,11,15,16,16,18,42,31,30,22,28,24,28,26,15, # 6740
|
367
|
+
28,6760,30,6762,12,15,10,66,36,17,11,15,40,15,42,24,15,26,46,6778, # 6760
|
368
|
+
48,6780,15,15,52,15,15,17,12,15,13,6790,15,6792,15,15,15,15,15,15, # 6780
|
369
|
+
15,15,15,6802,15,17,15,15,15,23,15,48,15,15,15,15,15,16,15,15, # 6800
|
370
|
+
15,18,15,6822,15,24,15,6826,15,6828,15,15,15,6832,15,15,15,15,15,15, # 6820
|
371
|
+
15,6840,15,15,15,15,15,40,63,21,15,15,15,15,15,15,15,6856,15,6858, # 6840
|
372
|
+
15,15,15,6862,15,15,15,15,15,6868,15,6870,15,16,15,15,15,15,15,15, # 6860
|
373
|
+
31,15,15,6882,15,15,15,70,15,6888,15,15,15,60,15,15,15,15,15,6898, # 6880
|
374
|
+
15,66,15,15,15,15,15,6906,15,15,15,6910,26,30,30,15,15,6916,15,30, # 6900
|
375
|
+
15,16,15,30,15,30,15,15,15,40,16,30,18,15,15,30,22,24,24,26, # 6920
|
376
|
+
26,30,28,52,31,30,30,6946,15,6948,30,15,15,30,30,30,30,15,15,6958, # 6940
|
377
|
+
30,6960,30,30,15,30,30,6966,15,16,15,6970,30,18,30,15,63,6976,15,30, # 6960
|
378
|
+
30,15,15,6982,30,30,30,15,15,30,15,6990,30,15,30,30,30,6996,15,15, # 6980
|
379
|
+
15,7000,30,46,15,15,15,30,15,42,30,15,15,7012,30,15,30,15,15,7018, # 7000
|
380
|
+
30,30,30,15,15,24,30,7026,15,15,15,78,15,30,30,15,15,30,30,7038, # 7020
|
381
|
+
30,30,15,7042,30,30,15,30,15,52,30,30,30,30,16,30,18,7056,15,30, # 7040
|
382
|
+
22,30,30,30,30,30,28,36,30,7068,30,15,16,30,30,30,30,30,30,7078, # 7060
|
383
|
+
30,72,30,15,30,30,30,30,15,30,30,15,30,40,30,30,30,46,30,39, # 7080
|
384
|
+
30,30,15,7102,30,30,30,30,30,7108,30,30,30,30,15,30,30,30,30,30, # 7100
|
385
|
+
30,7120,22,16,30,15,30,7126,28,7128,30,30,30,30,30,30,31,30,30,58, # 7120
|
386
|
+
30,36,30,30,30,30,30,30,30,30,30,7150,30,22,13,30,15,30,30,7158, # 7140
|
387
|
+
30,16,30,30,30,30,30,15,30,66,30,70,30,30,30,30,30,7176,30,30, # 7160
|
388
|
+
30,42,30,15,15,30,30,7186,30,30,13,15,13,7192,30,30,30,30,15,30, # 7180
|
389
|
+
30,18,30,30,30,30,30,7206,30,80,30,7210,30,7212,15,15,30,30,30,7218, # 7200
|
390
|
+
30,15,10,30,30,30,30,30,30,7228,30,30,63,30,30,30,30,7236,30,30, # 7220
|
391
|
+
16,30,18,7242,14,30,22,7246,30,30,30,30,28,7252,30,30,30,15,13,30, # 7240
|
392
|
+
30,52,30,30,31,30,30,42,30,15,30,30,30,30,13,30,30,18,30,30, # 7260
|
393
|
+
30,30,30,7282,30,15,11,30,12,36,30,30,30,30,30,30,30,7296,30,30, # 7280
|
394
|
+
15,48,30,66,30,30,30,7306,15,7308,30,16,30,70,13,15,13,30,15,30, # 7300
|
395
|
+
30,7320,30,30,30,24,30,16,31,30,30,7330,30,7332,15,15,30,15,15,40, # 7320
|
396
|
+
15,30,15,30,30,15,15,15,30,7348,30,7350,15,15,30,30,15,15,15,30, # 7340
|
397
|
+
30,30,30,36,15,30,15,52,15,7368,15,30,30,72,30,58,15,15,15,46, # 7360
|
398
|
+
30,60,15,30,15,30,30,82,15,30,30,30,30,7392,15,15,30,16,15,48, # 7380
|
399
|
+
24,15,30,30,30,15,15,15,15,30,30,7410,15,15,30,30,30,7416,15,30, # 7400
|
400
|
+
30,40,30,15,28,30,16,30,18,16,15,30,22,7432,30,20,26,30,28,42, # 7420
|
401
|
+
30,30,30,18,15,30,30,22,15,30,30,7450,30,28,15,15,31,7456,30,7458, # 7440
|
402
|
+
15,30,30,16,15,15,15,30,30,15,30,30,30,30,15,30,30,7476,15,30, # 7460
|
403
|
+
30,7480,30,30,15,30,15,7486,30,7488,30,30,30,58,57,15,24,54,30,7498, # 7480
|
404
|
+
28,30,30,48,30,46,30,7506,30,30,30,30,30,30,30,36,30,7516,30,72, # 7500
|
405
|
+
30,30,30,7522,30,31,15,30,15,7528,36,16,30,30,40,30,42,7536,30,30, # 7520
|
406
|
+
46,7540,48,30,30,30,52,7546,30,7548,30,30,58,30,30,30,22,30,30,7558, # 7540
|
407
|
+
30,7560,28,30,30,30,30,30,30,30,30,66,30,7572,30,30,30,7576,30,30, # 7560
|
408
|
+
30,30,30,7582,30,30,30,26,30,7588,30,7590,30,15,30,16,30,70,30,30, # 7580
|
409
|
+
30,30,30,7602,30,30,30,7606,30,30,30,30,30,30,30,39,58,30,13,30, # 7600
|
410
|
+
30,7620,30,30,15,60,15,30,30,30,30,30,30,30,30,15,30,30,30,7638, # 7620
|
411
|
+
30,30,30,7642,30,15,30,15,31,7648,30,30,30,30,30,15,15,15,30,30, # 7640
|
412
|
+
30,46,30,78,30,30,15,30,30,7668,30,30,30,7672,14,30,15,15,15,30, # 7660
|
413
|
+
15,7680,30,30,30,15,15,7686,15,15,30,7690,15,48,30,30,30,42,30,7698, # 7680
|
414
|
+
30,30,30,7702,30,15,30,15,15,15,30,17,31,30,30,15,15,7716,15,15, # 7700
|
415
|
+
14,15,14,7722,30,30,30,7726,15,58,30,30,30,15,15,30,15,15,14,70, # 7720
|
416
|
+
13,7740,15,30,63,30,15,60,59,15,15,56,15,7752,14,15,30,7756,17,7758, # 7740
|
417
|
+
30,15,30,16,16,17,30,15,28,38,22,36,30,15,30,24,31,30,30,31, # 7760
|
418
|
+
14,30,30,42,36,15,14,30,40,7788,42,30,15,7792,46,15,48,30,16,30, # 7780
|
419
|
+
56,28,15,30,22,15,58,36,60,30,28,72,30,30,30,15,15,7816,30,16, # 7800
|
420
|
+
15,30,30,7822,30,24,14,15,30,7828,30,40,15,30,30,16,15,16,13,30, # 7820
|
421
|
+
30,7840,30,15,14,30,15,30,30,46,15,30,30,7852,30,15,15,80,13,30, # 7840
|
422
|
+
30,23,30,30,30,15,15,7866,15,15,30,30,15,7872,13,30,15,7876,30,7878, # 7860
|
423
|
+
15,30,30,7882,30,15,15,30,30,30,30,15,15,15,30,15,15,52,15,30, # 7880
|
424
|
+
15,7900,30,15,18,15,30,7906,30,30,15,26,30,40,15,16,15,30,30,7918, # 7900
|
425
|
+
30,7920,15,30,15,24,15,7926,15,30,30,30,30,7932,15,15,30,7936,30,16, # 7920
|
426
|
+
15,30,30,46,30,15,30,30,30,7948,30,7950,30,16,30,18,15,72,30,22, # 7940
|
427
|
+
30,30,30,7962,30,28,30,30,31,30,15,15,30,30,30,15,30,30,30,78, # 7960
|
428
|
+
30,22,15,30,30,30,30,48,30,30,22,60,30,7992,30,30,28,30,30,30, # 7980
|
429
|
+
63,30,30,52,30,15,30,30,30,8008,30,8010,30,18,30,30,30,8016,30,30, # 8000
|
430
|
+
30,15,30,70,30,30,30,22,30,15,30,30,31,30,30,15,30,30,30,8038, # 8020
|
431
|
+
30,15,30,30,30,30,30,15,30,30,30,82,15,8052,30,15,30,30,15,8058, # 8040
|
432
|
+
15,30,30,30,30,15,15,30,30,8068,30,15,30,30,30,30,30,40,30,15, # 8060
|
433
|
+
30,8080,15,58,30,30,30,8086,30,8088,15,15,30,8092,30,30,31,18,30,30, # 8080
|
434
|
+
15,8100,30,30,30,30,30,66,15,30,15,8110,15,25,15,30,30,8116,30,22, # 8100
|
435
|
+
15,15,15,8122,30,15,15,30,63,62,30,46,59,30,30,30,30,78,53,15, # 8120
|
436
|
+
51,17,15,16,30,27,30,8146,30,28,41,22,39,30,30,26,30,28,33,40, # 8140
|
437
|
+
31,8160,29,30,30,36,30,8166,23,40,21,8170,18,15,17,46,22,48,30,8178, # 8160
|
438
|
+
26,80,28,48,30,30,30,58,26,60,30,8190,8191,30,30,30,30,15,15,24, # 8180
|
439
|
+
30,58,30,30,15,30,30,28,30,8208,30,30,30,42,30,22,15,30,30,8218, # 8200
|
440
|
+
30,8220,15,30,31,30,30,18,15,30,15,8230,30,8232,30,30,30,8236,15,57, # 8220
|
441
|
+
15,15,30,8242,15,15,15,30,15,72,30,36,15,30,30,15,62,22,15,30, # 8240
|
442
|
+
30,30,30,8262,15,15,30,18,15,8268,15,30,15,8272,30,24,15,15,30,30, # 8260
|
443
|
+
30,48,14,15,30,30,15,8286,15,30,30,8290,30,8292,15,30,15,8296,15,42, # 8280
|
444
|
+
15,30,30,30,30,16,15,15,15,15,30,8310,15,30,15,30,30,8316,15,30, # 8300
|
445
|
+
30,52,30,15,15,17,30,25,15,8328,15,15,30,30,30,15,15,15,14,30, # 8320
|
446
|
+
30,18,15,80,30,30,30,16,15,30,30,30,30,8352,14,30,16,60,18,15, # 8340
|
447
|
+
14,57,22,8362,30,30,26,30,28,8368,30,30,30,30,15,66,30,8376,30,30, # 8360
|
448
|
+
30,30,30,82,63,30,30,8386,30,8388,15,30,30,22,30,16,30,30,30,36, # 8380
|
449
|
+
30,30,30,30,30,30,30,30,15,30,30,30,30,46,15,30,31,30,30,8418, # 8400
|
450
|
+
30,30,30,8422,22,24,24,15,30,8428,28,8430,30,30,30,30,30,30,30,30, # 8420
|
451
|
+
30,30,30,8442,30,30,30,8446,30,30,30,30,30,78,30,15,15,30,15,30, # 8440
|
452
|
+
30,8460,30,30,30,30,30,8466,30,16,30,42,30,36,30,30,30,48,30,60, # 8460
|
453
|
+
30,30,30,30,30,15,22,30,30,30,30,30,28,15,29,30,30,30,30,30, # 8480
|
454
|
+
29,8500,30,15,30,30,30,46,30,66,65,16,30,8512,30,15,29,15,30,56, # 8500
|
455
|
+
30,8520,30,15,29,15,30,8526,30,30,30,44,30,42,29,30,30,8536,30,8538, # 8520
|
456
|
+
30,31,29,8542,29,30,36,30,15,82,40,30,42,15,15,20,46,42,48,30, # 8540
|
457
|
+
29,30,52,8562,30,30,30,30,58,30,60,30,30,8572,30,24,66,30,30,28, # 8560
|
458
|
+
30,8580,30,15,29,22,15,30,30,18,30,70,30,30,30,30,30,8596,30,8598, # 8580
|
459
|
+
30,15,30,30,16,30,18,15,31,8608,22,78,30,30,29,30,28,30,30,30, # 8600
|
460
|
+
30,36,15,8622,30,16,30,8626,30,8628,30,15,29,88,30,30,30,30,15,52, # 8620
|
461
|
+
30,8640,30,16,30,30,30,8646,30,15,15,40,30,30,30,16,29,30,30,30, # 8640
|
462
|
+
30,15,29,8662,30,30,30,80,30,8668,30,30,31,15,15,24,30,8676,15,15, # 8660
|
463
|
+
15,8680,15,30,30,15,15,30,30,8688,30,15,15,8692,30,30,30,15,15,8698, # 8680
|
464
|
+
30,18,15,16,16,30,15,8706,30,15,15,30,30,8712,30,30,15,30,30,8718, # 8700
|
465
|
+
15,30,15,30,30,30,30,30,16,30,18,8730,15,30,22,30,30,8736,30,30, # 8720
|
466
|
+
28,8740,30,30,30,15,15,8746,30,30,30,30,30,8752,30,30,30,15,30,30, # 8740
|
467
|
+
30,8760,15,30,30,15,30,30,63,30,30,48,30,30,30,30,15,66,30,8778, # 8760
|
468
|
+
30,30,30,8782,30,30,30,30,15,30,30,58,30,30,30,30,22,30,30,30, # 8780
|
469
|
+
31,30,28,8802,30,30,30,8806,30,30,30,30,30,30,30,30,30,30,30,8818, # 8800
|
470
|
+
30,8820,30,30,30,30,30,30,30,80,30,8830,30,72,30,15,30,8836,30,8838, # 8820
|
471
|
+
30,15,30,36,30,30,30,30,30,8848,30,52,30,30,30,30,30,16,30,30, # 8840
|
472
|
+
30,8860,30,8862,31,15,15,8866,30,48,30,30,15,30,30,70,30,30,30,30, # 8860
|
473
|
+
30,82,30,15,30,28,30,8886,15,15,30,30,30,8892,30,16,63,15,30,30, # 8880
|
474
|
+
30,30,30,30,30,30,15,30,30,58,30,30,30,30,15,30,15,36,15,30, # 8900
|
475
|
+
15,30,30,8922,30,15,15,78,15,8928,30,30,15,8932,30,30,30,30,30,30, # 8920
|
476
|
+
30,8940,30,30,30,40,30,22,15,30,30,8950,30,30,30,15,15,52,15,30, # 8940
|
477
|
+
30,30,30,8962,30,30,30,30,30,8968,30,8970,30,18,30,30,16,46,18,15, # 8960
|
478
|
+
30,30,30,30,30,30,26,30,30,88,30,36,31,30,15,30,30,15,30,8998, # 8980
|
479
|
+
30,9000,30,15,15,30,30,9006,30,30,15,9010,30,9012,30,16,30,70,69,30, # 9000
|
480
|
+
30,66,15,30,30,30,30,60,15,9028,30,30,30,15,16,30,30,30,30,48, # 9020
|
481
|
+
30,9040,30,9042,30,15,28,82,30,9048,30,15,15,34,36,30,31,30,40,9058, # 9040
|
482
|
+
42,16,30,24,46,30,48,9066,30,18,52,46,30,42,15,15,58,30,60,30, # 9060
|
483
|
+
30,63,15,30,66,30,30,30,70,60,30,9090,15,30,15,30,30,30,30,30, # 9080
|
484
|
+
16,30,18,9102,15,30,22,30,30,9108,30,30,28,30,30,30,30,15,15,30, # 9100
|
485
|
+
30,30,30,30,30,72,30,9126,30,16,30,30,30,9132,15,30,30,9136,30,30, # 9120
|
486
|
+
30,30,30,40,30,15,15,30,15,30,30,9150,63,80,30,30,30,9156,30,30, # 9140
|
487
|
+
15,9160,30,16,30,30,30,88,15,52,30,30,30,9172,15,24,15,30,15,66, # 9160
|
488
|
+
30,9180,30,30,30,30,30,9186,30,30,30,30,30,28,15,15,30,30,30,9198, # 9180
|
489
|
+
30,30,30,9202,30,30,15,15,30,9208,30,60,15,15,30,30,30,30,15,30, # 9200
|
490
|
+
30,9220,30,22,15,30,15,9226,30,18,30,30,30,30,30,15,30,15,15,9238, # 9220
|
491
|
+
30,9240,30,30,15,30,30,16,31,30,30,30,30,18,15,15,30,9256,15,46, # 9240
|
492
|
+
15,26,30,58,30,16,15,15,15,15,15,72,71,15,30,68,30,9276,15,30, # 9260
|
493
|
+
63,9280,30,9282,15,30,15,36,16,15,18,30,15,9292,30,48,24,15,26,16, # 9280
|
494
|
+
28,70,30,31,15,17,30,40,36,30,30,9310,40,66,42,30,30,26,46,9318, # 9300
|
495
|
+
48,30,30,9322,52,24,30,15,15,30,58,17,60,30,30,63,68,9336,66,30, # 9320
|
496
|
+
30,9340,70,9342,72,30,30,15,15,9348,15,40,30,46,30,15,16,15,15,48, # 9340
|
497
|
+
30,15,15,15,30,15,30,16,15,26,15,9370,30,15,15,15,31,9376,15,82, # 9360
|
498
|
+
15,15,15,17,15,15,15,15,15,40,15,9390,15,15,15,15,15,9396,15,15, # 9380
|
499
|
+
15,15,15,9402,15,15,15,22,15,9408,15,15,15,9412,15,15,15,15,15,9418, # 9400
|
500
|
+
15,9420,15,26,15,15,15,15,15,15,15,9430,15,9432,15,15,15,9436,15,9438, # 9420
|
501
|
+
15,15,15,15,15,15,15,15,15,15,15,15,15,29,15,16,15,48,15,15, # 9440
|
502
|
+
15,9460,15,9462,15,15,15,9466,15,16,15,15,36,9472,15,24,15,18,15,9478, # 9460
|
503
|
+
15,18,15,15,15,23,15,52,15,16,15,9490,15,15,15,22,15,9496,15,26, # 9480
|
504
|
+
15,28,15,30,31,18,15,15,15,36,15,9510,15,17,15,15,15,30,30,15, # 9500
|
505
|
+
15,9520,15,88,15,15,15,30,15,30,15,26,15,9532,16,30,63,15,15,9538, # 9520
|
506
|
+
22,15,24,15,26,30,28,9546,30,30,30,9550,15,40,30,15,15,30,30,78, # 9540
|
507
|
+
30,15,15,72,30,30,30,30,31,30,30,17,15,15,15,30,30,60,30,15, # 9560
|
508
|
+
15,30,15,30,30,15,15,9586,30,42,30,15,15,52,15,30,30,15,30,30, # 9580
|
509
|
+
30,9600,15,15,15,15,30,30,15,15,15,30,15,9612,30,15,15,58,30,9618, # 9600
|
510
|
+
30,15,15,9622,30,30,30,15,15,9628,30,9630,31,15,15,30,15,30,30,15, # 9620
|
511
|
+
15,30,30,9642,30,30,15,30,30,9648,15,30,15,48,30,30,30,30,16,30, # 9640
|
512
|
+
18,9660,15,30,63,30,30,30,30,30,28,30,30,30,30,15,15,9676,30,9678, # 9660
|
513
|
+
30,30,30,30,30,30,30,15,30,9688,30,30,15,30,30,17,30,9696,30,30, # 9680
|
514
|
+
30,88,30,30,30,30,15,30,30,30,30,30,30,30,30,30,30,30,15,9718, # 9700
|
515
|
+
30,9720,30,30,30,30,22,70,30,30,30,36,28,9732,30,30,30,30,30,9738, # 9720
|
516
|
+
30,30,30,9742,30,30,30,30,30,9748,30,48,30,30,30,30,30,30,30,30, # 9740
|
517
|
+
30,42,30,30,30,16,30,9766,30,9768,30,16,30,30,30,30,30,30,30,30, # 9760
|
518
|
+
30,9780,30,30,30,30,30,9786,30,30,30,9790,30,30,30,16,15,96,30,40, # 9780
|
519
|
+
30,80,15,9802,30,15,30,30,30,30,30,9810,30,15,30,15,30,9816,15,15, # 9800
|
520
|
+
30,30,30,30,31,16,15,30,30,9828,30,30,30,9832,30,30,15,30,30,9838, # 9820
|
521
|
+
30,30,30,30,16,30,18,42,15,30,22,9850,30,58,30,30,28,9856,30,9858, # 9840
|
522
|
+
30,30,15,30,30,30,30,30,30,70,30,9870,30,30,30,78,30,30,17,30, # 9860
|
523
|
+
30,40,30,9882,30,30,30,9886,30,15,15,30,30,30,30,30,30,30,30,30, # 9880
|
524
|
+
30,9900,30,30,30,30,30,9906,30,30,30,30,30,30,30,30,30,46,30,15, # 9900
|
525
|
+
16,30,30,9922,30,24,30,30,30,9928,30,9930,30,30,30,30,30,39,15,15, # 9920
|
526
|
+
30,9940,30,60,30,30,30,30,30,9948,17,15,31,36,30,30,15,16,30,46, # 9940
|
527
|
+
30,30,15,40,30,30,30,9966,15,30,15,58,30,9972,30,30,30,30,30,30, # 9960
|
528
|
+
30,15,15,66,30,30,30,30,15,30,30,96,30,30,30,30,30,18,15,15 # 9980
|
529
|
+
)
|
530
|
+
|
531
|
+
|
532
|
+
def lower_bound(order: int) -> int:
|
533
|
+
r"""
|
534
|
+
Return the best known lower bound on the number of MOLS of
|
535
|
+
the given ``order``.
|
536
|
+
|
537
|
+
The source of this information is Table 3.87 in the Handbook of
|
538
|
+
Combinatorial Designs, 2nd edition, by Colbourn and Dinitz. A few
|
539
|
+
updates have subsequently been provided on Jeff Dinitz's website.
|
540
|
+
|
541
|
+
Parameters
|
542
|
+
----------
|
543
|
+
|
544
|
+
order : int
|
545
|
+
The order (also known as the side) for which you'd like a lower
|
546
|
+
bound on the number of MOLS instances. In the language of the
|
547
|
+
Handbook, this is ``n``, and it should be between 0 and 9999.
|
548
|
+
|
549
|
+
Returns
|
550
|
+
-------
|
551
|
+
|
552
|
+
int
|
553
|
+
A lower bound on the number of MOLS.
|
554
|
+
|
555
|
+
Raises
|
556
|
+
------
|
557
|
+
|
558
|
+
IndexError
|
559
|
+
If you ask for an order that isn't contained in the table.
|
560
|
+
|
561
|
+
Examples
|
562
|
+
--------
|
563
|
+
|
564
|
+
There are no MOLS of order zero::
|
565
|
+
|
566
|
+
sage: from sage.combinat.designs import MOLS_handbook_data
|
567
|
+
sage: MOLS_handbook_data.lower_bound(0)
|
568
|
+
0
|
569
|
+
"""
|
570
|
+
return _LOWER_BOUNDS[order]
|
@@ -0,0 +1,58 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-graphs
|
2
|
+
r"""
|
3
|
+
Combinatorial designs and incidence structures
|
4
|
+
|
5
|
+
All designs can be accessed by ``designs.<tab>`` and are listed in the
|
6
|
+
design catalog:
|
7
|
+
|
8
|
+
- :ref:`sage.combinat.designs.design_catalog`
|
9
|
+
|
10
|
+
**Design-related classes**
|
11
|
+
|
12
|
+
- :ref:`sage.combinat.designs.incidence_structures`
|
13
|
+
- :ref:`sage.combinat.designs.covering_design`
|
14
|
+
|
15
|
+
**Constructions**
|
16
|
+
|
17
|
+
- :ref:`sage.combinat.designs.block_design`
|
18
|
+
- :ref:`sage.combinat.designs.bibd`
|
19
|
+
- :ref:`sage.combinat.designs.resolvable_bibd`
|
20
|
+
- :ref:`sage.combinat.designs.group_divisible_designs`
|
21
|
+
- :ref:`sage.combinat.designs.latin_squares`
|
22
|
+
- :ref:`sage.combinat.designs.orthogonal_arrays`
|
23
|
+
- :ref:`sage.combinat.designs.orthogonal_arrays_build_recursive`
|
24
|
+
- :ref:`sage.combinat.designs.orthogonal_arrays_find_recursive`
|
25
|
+
- :ref:`sage.combinat.designs.difference_family`
|
26
|
+
- :ref:`sage.combinat.designs.difference_matrices`
|
27
|
+
- :ref:`sage.combinat.designs.steiner_quadruple_systems`
|
28
|
+
- :ref:`sage.combinat.designs.twographs`
|
29
|
+
- :ref:`sage.combinat.designs.database`
|
30
|
+
- :ref:`sage.combinat.designs.gen_quadrangles_with_spread`
|
31
|
+
|
32
|
+
**Technical things**
|
33
|
+
|
34
|
+
- :ref:`sage.combinat.designs.ext_rep`
|
35
|
+
- :ref:`sage.combinat.designs.designs_pyx`
|
36
|
+
- :ref:`sage.combinat.designs.subhypergraph_search`
|
37
|
+
- :ref:`sage.combinat.designs.evenly_distributed_sets`
|
38
|
+
"""
|
39
|
+
# install the docstring of this module to the containing package
|
40
|
+
from sage.misc.namespace_package import install_doc
|
41
|
+
install_doc(__package__, __doc__)
|
42
|
+
|
43
|
+
from sage.misc.lazy_import import lazy_import
|
44
|
+
|
45
|
+
|
46
|
+
lazy_import('sage.combinat.designs.incidence_structures', 'IncidenceStructure')
|
47
|
+
lazy_import('sage.combinat.designs.incidence_structures',
|
48
|
+
'IncidenceStructure', 'BlockDesign')
|
49
|
+
|
50
|
+
lazy_import('sage.combinat.designs.incidence_structures',
|
51
|
+
'IncidenceStructure', as_='Hypergraph')
|
52
|
+
|
53
|
+
lazy_import('sage.combinat.designs.covering_design',
|
54
|
+
['CoveringDesign', 'schonheim', 'trivial_covering_design'])
|
55
|
+
|
56
|
+
from sage.combinat.designs import design_catalog as designs
|
57
|
+
del lazy_import
|
58
|
+
del install_doc
|