passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
- passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
- passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
- passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
- passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
- passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
- passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
- sage/all__sagemath_graphs.py +39 -0
- sage/combinat/abstract_tree.py +2723 -0
- sage/combinat/all__sagemath_graphs.py +34 -0
- sage/combinat/binary_tree.py +5306 -0
- sage/combinat/cluster_algebra_quiver/all.py +22 -0
- sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
- sage/combinat/cluster_algebra_quiver/interact.py +124 -0
- sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
- sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
- sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
- sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
- sage/combinat/designs/MOLS_handbook_data.py +570 -0
- sage/combinat/designs/all.py +58 -0
- sage/combinat/designs/bibd.py +1655 -0
- sage/combinat/designs/block_design.py +1071 -0
- sage/combinat/designs/covering_array.py +269 -0
- sage/combinat/designs/covering_design.py +530 -0
- sage/combinat/designs/database.py +5615 -0
- sage/combinat/designs/design_catalog.py +122 -0
- sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/designs_pyx.pxd +21 -0
- sage/combinat/designs/designs_pyx.pyx +993 -0
- sage/combinat/designs/difference_family.py +3951 -0
- sage/combinat/designs/difference_matrices.py +279 -0
- sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
- sage/combinat/designs/ext_rep.py +1064 -0
- sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
- sage/combinat/designs/group_divisible_designs.py +361 -0
- sage/combinat/designs/incidence_structures.py +2357 -0
- sage/combinat/designs/latin_squares.py +581 -0
- sage/combinat/designs/orthogonal_arrays.py +2244 -0
- sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
- sage/combinat/designs/resolvable_bibd.py +815 -0
- sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
- sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/subhypergraph_search.pyx +530 -0
- sage/combinat/designs/twographs.py +306 -0
- sage/combinat/finite_state_machine.py +14874 -0
- sage/combinat/finite_state_machine_generators.py +2006 -0
- sage/combinat/graph_path.py +448 -0
- sage/combinat/interval_posets.py +3908 -0
- sage/combinat/nu_tamari_lattice.py +269 -0
- sage/combinat/ordered_tree.py +1446 -0
- sage/combinat/posets/all.py +46 -0
- sage/combinat/posets/bubble_shuffle.py +247 -0
- sage/combinat/posets/cartesian_product.py +493 -0
- sage/combinat/posets/d_complete.py +182 -0
- sage/combinat/posets/elements.py +273 -0
- sage/combinat/posets/forest.py +30 -0
- sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/hasse_cython.pyx +174 -0
- sage/combinat/posets/hasse_diagram.py +3672 -0
- sage/combinat/posets/hochschild_lattice.py +158 -0
- sage/combinat/posets/incidence_algebras.py +794 -0
- sage/combinat/posets/lattices.py +5117 -0
- sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/linear_extension_iterator.pyx +292 -0
- sage/combinat/posets/linear_extensions.py +1037 -0
- sage/combinat/posets/mobile.py +275 -0
- sage/combinat/posets/moebius_algebra.py +776 -0
- sage/combinat/posets/poset_examples.py +2178 -0
- sage/combinat/posets/posets.py +9360 -0
- sage/combinat/rooted_tree.py +1070 -0
- sage/combinat/shard_order.py +239 -0
- sage/combinat/tamari_lattices.py +384 -0
- sage/combinat/yang_baxter_graph.py +923 -0
- sage/databases/all__sagemath_graphs.py +1 -0
- sage/databases/knotinfo_db.py +1231 -0
- sage/ext_data/all__sagemath_graphs.py +1 -0
- sage/ext_data/graphs/graph_plot_js.html +330 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/graphs/all.py +42 -0
- sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/asteroidal_triples.pyx +320 -0
- sage/graphs/base/all.py +1 -0
- sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/boost_graph.pxd +106 -0
- sage/graphs/base/boost_graph.pyx +3045 -0
- sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/c_graph.pxd +106 -0
- sage/graphs/base/c_graph.pyx +5096 -0
- sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/dense_graph.pxd +28 -0
- sage/graphs/base/dense_graph.pyx +801 -0
- sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/graph_backends.pxd +5 -0
- sage/graphs/base/graph_backends.pyx +797 -0
- sage/graphs/base/overview.py +85 -0
- sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/sparse_graph.pxd +90 -0
- sage/graphs/base/sparse_graph.pyx +1653 -0
- sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_dense_graph.pxd +5 -0
- sage/graphs/base/static_dense_graph.pyx +1032 -0
- sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_backend.pxd +27 -0
- sage/graphs/base/static_sparse_backend.pyx +1583 -0
- sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_graph.pxd +37 -0
- sage/graphs/base/static_sparse_graph.pyx +1375 -0
- sage/graphs/bipartite_graph.py +2732 -0
- sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/centrality.pyx +1038 -0
- sage/graphs/cographs.py +519 -0
- sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/comparability.pyx +851 -0
- sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/connectivity.pxd +157 -0
- sage/graphs/connectivity.pyx +4813 -0
- sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/convexity_properties.pxd +16 -0
- sage/graphs/convexity_properties.pyx +870 -0
- sage/graphs/digraph.py +4754 -0
- sage/graphs/digraph_generators.py +1993 -0
- sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/distances_all_pairs.pxd +12 -0
- sage/graphs/distances_all_pairs.pyx +2938 -0
- sage/graphs/domination.py +1363 -0
- sage/graphs/dot2tex_utils.py +100 -0
- sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/edge_connectivity.pyx +1215 -0
- sage/graphs/generators/all.py +1 -0
- sage/graphs/generators/basic.py +1769 -0
- sage/graphs/generators/chessboard.py +538 -0
- sage/graphs/generators/classical_geometries.py +1611 -0
- sage/graphs/generators/degree_sequence.py +235 -0
- sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generators/distance_regular.pyx +2846 -0
- sage/graphs/generators/families.py +4759 -0
- sage/graphs/generators/intersection.py +565 -0
- sage/graphs/generators/platonic_solids.py +262 -0
- sage/graphs/generators/random.py +2623 -0
- sage/graphs/generators/smallgraphs.py +5741 -0
- sage/graphs/generators/world_map.py +724 -0
- sage/graphs/generic_graph.py +26867 -0
- sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generic_graph_pyx.pxd +34 -0
- sage/graphs/generic_graph_pyx.pyx +1673 -0
- sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/genus.pyx +622 -0
- sage/graphs/graph.py +9645 -0
- sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_coloring.pyx +2284 -0
- sage/graphs/graph_database.py +1177 -0
- sage/graphs/graph_decompositions/all.py +1 -0
- sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
- sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
- sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
- sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
- sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
- sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/graph_products.pyx +508 -0
- sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
- sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
- sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
- sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
- sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
- sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
- sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
- sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
- sage/graphs/graph_editor.py +82 -0
- sage/graphs/graph_generators.py +3314 -0
- sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_generators_pyx.pyx +95 -0
- sage/graphs/graph_input.py +812 -0
- sage/graphs/graph_latex.py +2064 -0
- sage/graphs/graph_list.py +410 -0
- sage/graphs/graph_plot.py +1756 -0
- sage/graphs/graph_plot_js.py +338 -0
- sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/hyperbolicity.pyx +1704 -0
- sage/graphs/hypergraph_generators.py +364 -0
- sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/independent_sets.pxd +13 -0
- sage/graphs/independent_sets.pyx +402 -0
- sage/graphs/isgci.py +1033 -0
- sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/isoperimetric_inequalities.pyx +489 -0
- sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/line_graph.pyx +743 -0
- sage/graphs/lovasz_theta.py +77 -0
- sage/graphs/matching.py +1633 -0
- sage/graphs/matching_covered_graph.py +3590 -0
- sage/graphs/orientations.py +1489 -0
- sage/graphs/partial_cube.py +459 -0
- sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/path_enumeration.pyx +2040 -0
- sage/graphs/pq_trees.py +1129 -0
- sage/graphs/print_graphs.py +201 -0
- sage/graphs/schnyder.py +865 -0
- sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/spanning_tree.pyx +1457 -0
- sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/strongly_regular_db.pyx +3340 -0
- sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/traversals.pxd +9 -0
- sage/graphs/traversals.pyx +1872 -0
- sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/trees.pxd +15 -0
- sage/graphs/trees.pyx +310 -0
- sage/graphs/tutte_polynomial.py +713 -0
- sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/views.pyx +794 -0
- sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/weakly_chordal.pyx +604 -0
- sage/groups/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
- sage/knots/all.py +6 -0
- sage/knots/free_knotinfo_monoid.py +507 -0
- sage/knots/gauss_code.py +291 -0
- sage/knots/knot.py +682 -0
- sage/knots/knot_table.py +284 -0
- sage/knots/knotinfo.py +2900 -0
- sage/knots/link.py +4715 -0
- sage/sandpiles/all.py +13 -0
- sage/sandpiles/examples.py +225 -0
- sage/sandpiles/sandpile.py +6365 -0
- sage/topology/all.py +22 -0
- sage/topology/cell_complex.py +1214 -0
- sage/topology/cubical_complex.py +1976 -0
- sage/topology/delta_complex.py +1806 -0
- sage/topology/filtered_simplicial_complex.py +744 -0
- sage/topology/moment_angle_complex.py +823 -0
- sage/topology/simplicial_complex.py +5160 -0
- sage/topology/simplicial_complex_catalog.py +92 -0
- sage/topology/simplicial_complex_examples.py +1680 -0
- sage/topology/simplicial_complex_homset.py +205 -0
- sage/topology/simplicial_complex_morphism.py +836 -0
- sage/topology/simplicial_set.py +4102 -0
- sage/topology/simplicial_set_catalog.py +55 -0
- sage/topology/simplicial_set_constructions.py +2954 -0
- sage/topology/simplicial_set_examples.py +865 -0
- sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,1680 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-graphs
|
2
|
+
# sage.doctest: needs sage.graphs
|
3
|
+
"""
|
4
|
+
Examples of simplicial complexes
|
5
|
+
|
6
|
+
There are two main types: manifolds and examples related to graph
|
7
|
+
theory.
|
8
|
+
|
9
|
+
For manifolds, there are functions defining the `n`-sphere for any
|
10
|
+
`n`, the torus, `n`-dimensional real projective space for any `n`, the
|
11
|
+
complex projective plane, surfaces of arbitrary genus, and some other
|
12
|
+
manifolds, all as simplicial complexes.
|
13
|
+
|
14
|
+
Aside from surfaces, this file also provides functions for
|
15
|
+
constructing some other simplicial complexes: the simplicial complex
|
16
|
+
of not-`i`-connected graphs on `n` vertices, the matching complex on n
|
17
|
+
vertices, the chessboard complex for an `n` by `i` chessboard, and
|
18
|
+
others. These provide examples of large simplicial complexes; for
|
19
|
+
example, ``simplicial_complexes.NotIConnectedGraphs(7, 2)`` has over a
|
20
|
+
million simplices.
|
21
|
+
|
22
|
+
All of these examples are accessible by typing
|
23
|
+
``simplicial_complexes.NAME``, where ``NAME`` is the name of the example.
|
24
|
+
|
25
|
+
- :func:`BarnetteSphere`
|
26
|
+
- :func:`BrucknerGrunbaumSphere`
|
27
|
+
- :func:`ChessboardComplex`
|
28
|
+
- :func:`ComplexProjectivePlane`
|
29
|
+
- :func:`DunceHat`
|
30
|
+
- :func:`FareyMap`
|
31
|
+
- :func:`GenusSix`
|
32
|
+
- :func:`K3Surface`
|
33
|
+
- :func:`KleinBottle`
|
34
|
+
- :func:`MatchingComplex`
|
35
|
+
- :func:`MooreSpace`
|
36
|
+
- :func:`NotIConnectedGraphs`
|
37
|
+
- :func:`PoincareHomologyThreeSphere`
|
38
|
+
- :func:`QuaternionicProjectivePlane`
|
39
|
+
- :func:`RandomComplex`
|
40
|
+
- :func:`RandomTwoSphere`
|
41
|
+
- :func:`RealProjectivePlane`
|
42
|
+
- :func:`RealProjectiveSpace`
|
43
|
+
- :func:`RudinBall`
|
44
|
+
- :func:`ShiftedComplex`
|
45
|
+
- :func:`Simplex`
|
46
|
+
- :func:`Sphere`
|
47
|
+
- :func:`SumComplex`
|
48
|
+
- :func:`SurfaceOfGenus`
|
49
|
+
- :func:`Torus`
|
50
|
+
- :func:`ZieglerBall`
|
51
|
+
|
52
|
+
You can also get a list by typing ``simplicial_complexes.`` and hitting the
|
53
|
+
:kbd:`Tab` key.
|
54
|
+
|
55
|
+
EXAMPLES::
|
56
|
+
|
57
|
+
sage: S = simplicial_complexes.Sphere(2) # the 2-sphere
|
58
|
+
sage: S.homology() # needs sage.modules
|
59
|
+
{0: 0, 1: 0, 2: Z}
|
60
|
+
sage: simplicial_complexes.SurfaceOfGenus(3)
|
61
|
+
Triangulation of an orientable surface of genus 3
|
62
|
+
sage: M4 = simplicial_complexes.MooreSpace(4)
|
63
|
+
sage: M4.homology() # needs sage.modules
|
64
|
+
{0: 0, 1: C4, 2: 0}
|
65
|
+
sage: simplicial_complexes.MatchingComplex(6).homology() # needs sage.modules
|
66
|
+
{0: 0, 1: Z^16, 2: 0}
|
67
|
+
"""
|
68
|
+
|
69
|
+
from .simplicial_complex import SimplicialComplex
|
70
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
71
|
+
# Below we define a function Simplex to construct a simplex as a
|
72
|
+
# simplicial complex. We also need to use actual simplices as
|
73
|
+
# simplices, hence:
|
74
|
+
from .simplicial_complex import Simplex as TrueSimplex
|
75
|
+
from sage.sets.set import Set
|
76
|
+
from sage.misc.functional import is_even
|
77
|
+
from sage.combinat.subset import Subsets
|
78
|
+
import sage.misc.prandom as random
|
79
|
+
from sage.misc.superseded import deprecated_function_alias
|
80
|
+
|
81
|
+
# Miscellaneous utility functions.
|
82
|
+
|
83
|
+
# The following two functions can be used to generate the facets for
|
84
|
+
# the corresponding examples in sage.homology.examples. These take a
|
85
|
+
# few seconds to run, so the actual examples have the facets
|
86
|
+
# hard-coded. Thus the following functions are not currently used in
|
87
|
+
# the Sage library.
|
88
|
+
|
89
|
+
|
90
|
+
def facets_for_RP4():
|
91
|
+
"""
|
92
|
+
Return the list of facets for a minimal triangulation of 4-dimensional
|
93
|
+
real projective space.
|
94
|
+
|
95
|
+
We use vertices numbered 1 through 16, define two facets, and define
|
96
|
+
a certain subgroup `G` of the symmetric group `S_{16}`. Then the set
|
97
|
+
of all facets is the `G`-orbit of the two given facets.
|
98
|
+
|
99
|
+
See the description in Example 3.12 in Datta [Dat2007]_.
|
100
|
+
|
101
|
+
EXAMPLES::
|
102
|
+
|
103
|
+
sage: from sage.topology.simplicial_complex_examples import facets_for_RP4
|
104
|
+
sage: A = facets_for_RP4() # long time (1 or 2 seconds)
|
105
|
+
sage: SimplicialComplex(A) == simplicial_complexes.RealProjectiveSpace(4) # long time
|
106
|
+
True
|
107
|
+
"""
|
108
|
+
# Define the group:
|
109
|
+
from sage.groups.perm_gps.permgroup import PermutationGroup
|
110
|
+
g1 = '(2, 7)(4, 10)(5, 6)(11, 12)'
|
111
|
+
g2 = '(1, 2, 3, 4, 5, 10)(6, 8, 9)(11, 12, 13, 14, 15, 16)'
|
112
|
+
G = PermutationGroup([g1, g2])
|
113
|
+
# Define the two simplices:
|
114
|
+
t1 = (1, 2, 4, 5, 11)
|
115
|
+
t2 = (1, 2, 4, 11, 13)
|
116
|
+
# Apply the group elements to the simplices:
|
117
|
+
facets = []
|
118
|
+
for g in G:
|
119
|
+
d = g.dict()
|
120
|
+
for t in [t1, t2]:
|
121
|
+
new = tuple([d[j] for j in t])
|
122
|
+
if new not in facets:
|
123
|
+
facets.append(new)
|
124
|
+
return facets
|
125
|
+
|
126
|
+
|
127
|
+
def facets_for_K3():
|
128
|
+
"""
|
129
|
+
Return the facets for a minimal triangulation of the K3 surface.
|
130
|
+
|
131
|
+
This is a pure simplicial complex of dimension 4 with 16
|
132
|
+
vertices and 288 facets. The facets are obtained by constructing a
|
133
|
+
few facets and a permutation group `G`, and then computing the
|
134
|
+
`G`-orbit of those facets.
|
135
|
+
|
136
|
+
See Casella and Kühnel in [CK2001]_ and Spreer and Kühnel [SK2011]_;
|
137
|
+
the construction here uses the labeling from Spreer and Kühnel.
|
138
|
+
|
139
|
+
EXAMPLES::
|
140
|
+
|
141
|
+
sage: from sage.topology.simplicial_complex_examples import facets_for_K3
|
142
|
+
sage: A = facets_for_K3() # long time (a few seconds)
|
143
|
+
sage: SimplicialComplex(A) == simplicial_complexes.K3Surface() # long time
|
144
|
+
True
|
145
|
+
"""
|
146
|
+
from sage.groups.perm_gps.permgroup import PermutationGroup
|
147
|
+
G = PermutationGroup([[(1, 3, 8, 4, 9, 16, 15, 2, 14, 12, 6, 7, 13, 5, 10)],
|
148
|
+
[(1, 11, 16), (2, 10, 14), (3, 12, 13), (4, 9, 15), (5, 7, 8)]])
|
149
|
+
return ([tuple([g(i) for i in (1, 2, 3, 8, 12)]) for g in G] +
|
150
|
+
[tuple([g(i) for i in (1, 2, 5, 8, 14)]) for g in G])
|
151
|
+
|
152
|
+
|
153
|
+
def matching(A, B):
|
154
|
+
r"""
|
155
|
+
List of maximal matchings between the sets ``A`` and ``B``.
|
156
|
+
|
157
|
+
A matching is a set of pairs `(a, b) \in A \times B` where each `a` and
|
158
|
+
`b` appears in at most one pair. A maximal matching is one which is
|
159
|
+
maximal with respect to inclusion of subsets of `A \times B`.
|
160
|
+
|
161
|
+
INPUT:
|
162
|
+
|
163
|
+
- ``A``, ``B`` -- list, tuple, or indeed anything which can be
|
164
|
+
converted to a set
|
165
|
+
|
166
|
+
EXAMPLES::
|
167
|
+
|
168
|
+
sage: from sage.topology.simplicial_complex_examples import matching
|
169
|
+
sage: matching([1, 2], [3, 4])
|
170
|
+
[{(1, 3), (2, 4)}, {(1, 4), (2, 3)}]
|
171
|
+
sage: matching([0, 2], [0])
|
172
|
+
[{(0, 0)}, {(2, 0)}]
|
173
|
+
"""
|
174
|
+
answer = []
|
175
|
+
if len(A) == 0 or len(B) == 0:
|
176
|
+
return [set()]
|
177
|
+
for v in A:
|
178
|
+
for w in B:
|
179
|
+
for M in matching(set(A).difference([v]), set(B).difference([w])):
|
180
|
+
new = M.union([(v, w)])
|
181
|
+
if new not in answer:
|
182
|
+
answer.append(new)
|
183
|
+
return answer
|
184
|
+
|
185
|
+
|
186
|
+
class UniqueSimplicialComplex(SimplicialComplex, UniqueRepresentation):
|
187
|
+
"""
|
188
|
+
This combines :class:`SimplicialComplex` and
|
189
|
+
:class:`UniqueRepresentation`. It is intended to be used to make
|
190
|
+
standard examples of simplicial complexes unique. See :issue:`13566`.
|
191
|
+
|
192
|
+
INPUT:
|
193
|
+
|
194
|
+
- the inputs are the same as for a :class:`SimplicialComplex`,
|
195
|
+
with one addition and two exceptions. The exceptions are that
|
196
|
+
``is_mutable`` and ``is_immutable`` are ignored: all instances
|
197
|
+
of this class are immutable. The addition:
|
198
|
+
|
199
|
+
- ``name`` -- string (optional); the string representation for this complex
|
200
|
+
|
201
|
+
EXAMPLES::
|
202
|
+
|
203
|
+
sage: from sage.topology.simplicial_complex_examples import UniqueSimplicialComplex
|
204
|
+
sage: SimplicialComplex([[0, 1]]) is SimplicialComplex([[0, 1]])
|
205
|
+
False
|
206
|
+
sage: UniqueSimplicialComplex([[0, 1]]) is UniqueSimplicialComplex([[0, 1]])
|
207
|
+
True
|
208
|
+
sage: UniqueSimplicialComplex([[0, 1]])
|
209
|
+
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
|
210
|
+
sage: UniqueSimplicialComplex([[0, 1]], name='The 1-simplex')
|
211
|
+
The 1-simplex
|
212
|
+
"""
|
213
|
+
@staticmethod
|
214
|
+
def __classcall__(self, maximal_faces=None, name=None, **kwds):
|
215
|
+
"""
|
216
|
+
TESTS::
|
217
|
+
|
218
|
+
sage: from sage.topology.simplicial_complex_examples import UniqueSimplicialComplex
|
219
|
+
sage: UniqueSimplicialComplex([[1, 2, 3], [0, 1, 3]]) is UniqueSimplicialComplex([(1, 2, 3), (0, 1, 3)])
|
220
|
+
True
|
221
|
+
sage: X = UniqueSimplicialComplex([[1, 2, 3], [0, 1, 3]])
|
222
|
+
sage: X is UniqueSimplicialComplex(X)
|
223
|
+
True
|
224
|
+
|
225
|
+
Testing ``from_characteristic_function``::
|
226
|
+
|
227
|
+
sage: UniqueSimplicialComplex(from_characteristic_function=(lambda x: sum(x) <= 4, range(5)))
|
228
|
+
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 4), (0, 1, 2), (0, 1, 3)}
|
229
|
+
"""
|
230
|
+
char_fcn = kwds.get('from_characteristic_function', None)
|
231
|
+
if char_fcn:
|
232
|
+
kwds['from_characteristic_function'] = (char_fcn[0], tuple(char_fcn[1]))
|
233
|
+
if maximal_faces:
|
234
|
+
# Test to see if maximal_faces is a cell complex or another
|
235
|
+
# object which can be converted to a simplicial complex:
|
236
|
+
C = None
|
237
|
+
if isinstance(maximal_faces, SimplicialComplex):
|
238
|
+
C = maximal_faces
|
239
|
+
else:
|
240
|
+
try:
|
241
|
+
C = maximal_faces._simplicial_()
|
242
|
+
except AttributeError:
|
243
|
+
if not isinstance(maximal_faces, (list, tuple, Simplex)):
|
244
|
+
# Convert it into a list (in case it is an iterable)
|
245
|
+
maximal_faces = list(maximal_faces)
|
246
|
+
if C is not None:
|
247
|
+
maximal_faces = C.facets()
|
248
|
+
# Now convert maximal_faces to a tuple of tuples, so that it is hashable.
|
249
|
+
maximal_faces = tuple(tuple(mf) for mf in maximal_faces)
|
250
|
+
return super().__classcall__(self, maximal_faces, name=name, **kwds)
|
251
|
+
|
252
|
+
def __init__(self, maximal_faces=None, name=None, **kwds):
|
253
|
+
"""
|
254
|
+
TESTS::
|
255
|
+
|
256
|
+
sage: from sage.topology.simplicial_complex_examples import UniqueSimplicialComplex
|
257
|
+
sage: UniqueSimplicialComplex([[1, 2, 3], [0, 1, 3]], is_mutable=True).is_mutable()
|
258
|
+
False
|
259
|
+
"""
|
260
|
+
if 'is_mutable' in kwds:
|
261
|
+
del kwds['is_mutable']
|
262
|
+
if 'is_immutable' in kwds:
|
263
|
+
del kwds['is_immutable']
|
264
|
+
self._name = name
|
265
|
+
SimplicialComplex.__init__(self, maximal_faces=maximal_faces, is_mutable=False, **kwds)
|
266
|
+
|
267
|
+
def _repr_(self):
|
268
|
+
"""
|
269
|
+
Print representation.
|
270
|
+
|
271
|
+
If the argument ``name`` was specified when defining the
|
272
|
+
complex, use that. Otherwise, use the print representation
|
273
|
+
from the class :class:`SimplicialComplex`.
|
274
|
+
|
275
|
+
TESTS::
|
276
|
+
|
277
|
+
sage: from sage.topology.simplicial_complex_examples import UniqueSimplicialComplex
|
278
|
+
sage: UniqueSimplicialComplex([[0, 1]])
|
279
|
+
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
|
280
|
+
sage: UniqueSimplicialComplex([[0, 1]], name='Joe')
|
281
|
+
Joe
|
282
|
+
"""
|
283
|
+
if self._name:
|
284
|
+
return self._name
|
285
|
+
return SimplicialComplex._repr_(self)
|
286
|
+
|
287
|
+
# Now the functions that produce the actual examples...
|
288
|
+
|
289
|
+
|
290
|
+
def Sphere(n):
|
291
|
+
"""
|
292
|
+
A minimal triangulation of the `n`-dimensional sphere.
|
293
|
+
|
294
|
+
INPUT:
|
295
|
+
|
296
|
+
- ``n`` -- positive integer
|
297
|
+
|
298
|
+
EXAMPLES::
|
299
|
+
|
300
|
+
sage: simplicial_complexes.Sphere(2)
|
301
|
+
Minimal triangulation of the 2-sphere
|
302
|
+
sage: simplicial_complexes.Sphere(5).homology() # needs sage.modules
|
303
|
+
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}
|
304
|
+
sage: [simplicial_complexes.Sphere(n).euler_characteristic() for n in range(6)]
|
305
|
+
[2, 0, 2, 0, 2, 0]
|
306
|
+
sage: [simplicial_complexes.Sphere(n).f_vector() for n in range(6)]
|
307
|
+
[[1, 2],
|
308
|
+
[1, 3, 3],
|
309
|
+
[1, 4, 6, 4],
|
310
|
+
[1, 5, 10, 10, 5],
|
311
|
+
[1, 6, 15, 20, 15, 6],
|
312
|
+
[1, 7, 21, 35, 35, 21, 7]]
|
313
|
+
"""
|
314
|
+
S = TrueSimplex(n+1)
|
315
|
+
facets = tuple(S.faces())
|
316
|
+
return UniqueSimplicialComplex(facets,
|
317
|
+
name='Minimal triangulation of the {}-sphere'.format(n))
|
318
|
+
|
319
|
+
|
320
|
+
def Simplex(n):
|
321
|
+
"""
|
322
|
+
An `n`-dimensional simplex, as a simplicial complex.
|
323
|
+
|
324
|
+
INPUT:
|
325
|
+
|
326
|
+
- ``n`` -- nonnegative integer
|
327
|
+
|
328
|
+
OUTPUT: the simplicial complex consisting of the `n`-simplex
|
329
|
+
on vertices `(0, 1, ..., n)` and all of its faces.
|
330
|
+
|
331
|
+
EXAMPLES::
|
332
|
+
|
333
|
+
sage: simplicial_complexes.Simplex(3)
|
334
|
+
The 3-simplex
|
335
|
+
sage: simplicial_complexes.Simplex(5).euler_characteristic()
|
336
|
+
1
|
337
|
+
"""
|
338
|
+
return UniqueSimplicialComplex([TrueSimplex(n)],
|
339
|
+
name='The {}-simplex'.format(n))
|
340
|
+
|
341
|
+
|
342
|
+
def Torus():
|
343
|
+
r"""
|
344
|
+
A minimal triangulation of the torus.
|
345
|
+
|
346
|
+
This is a simplicial complex with 7 vertices, 21 edges and 14
|
347
|
+
faces. It is the unique triangulation of the torus with 7
|
348
|
+
vertices, and has been found by Möbius in 1861.
|
349
|
+
|
350
|
+
This is also the combinatorial structure of the Császár
|
351
|
+
polyhedron (see :wikipedia:`Császár_polyhedron`).
|
352
|
+
|
353
|
+
EXAMPLES::
|
354
|
+
|
355
|
+
sage: T = simplicial_complexes.Torus()
|
356
|
+
sage: T.homology(1) # needs sage.modules
|
357
|
+
Z x Z
|
358
|
+
sage: T.f_vector()
|
359
|
+
[1, 7, 21, 14]
|
360
|
+
|
361
|
+
TESTS::
|
362
|
+
|
363
|
+
sage: T.flip_graph().is_isomorphic(graphs.HeawoodGraph())
|
364
|
+
True
|
365
|
+
|
366
|
+
REFERENCES:
|
367
|
+
|
368
|
+
- [Lut2002]_
|
369
|
+
"""
|
370
|
+
return UniqueSimplicialComplex([[0, 1, 2], [1, 2, 4], [1, 3, 4], [1, 3, 6],
|
371
|
+
[0, 1, 5], [1, 5, 6], [2, 3, 5], [2, 4, 5],
|
372
|
+
[2, 3, 6], [0, 2, 6], [0, 3, 4], [0, 3, 5],
|
373
|
+
[4, 5, 6], [0, 4, 6]],
|
374
|
+
name='Minimal triangulation of the torus')
|
375
|
+
|
376
|
+
|
377
|
+
def RealProjectivePlane():
|
378
|
+
"""
|
379
|
+
A minimal triangulation of the real projective plane.
|
380
|
+
|
381
|
+
EXAMPLES::
|
382
|
+
|
383
|
+
sage: P = simplicial_complexes.RealProjectivePlane()
|
384
|
+
sage: Q = simplicial_complexes.ProjectivePlane()
|
385
|
+
sage: P == Q
|
386
|
+
True
|
387
|
+
|
388
|
+
sage: # needs sage.modules
|
389
|
+
sage: P.cohomology(1)
|
390
|
+
0
|
391
|
+
sage: P.cohomology(2)
|
392
|
+
C2
|
393
|
+
sage: P.cohomology(1, base_ring=GF(2))
|
394
|
+
Vector space of dimension 1 over Finite Field of size 2
|
395
|
+
sage: P.cohomology(2, base_ring=GF(2))
|
396
|
+
Vector space of dimension 1 over Finite Field of size 2
|
397
|
+
"""
|
398
|
+
return UniqueSimplicialComplex([[0, 1, 2], [0, 2, 3], [0, 1, 5], [0, 4, 5],
|
399
|
+
[0, 3, 4], [1, 2, 4], [1, 3, 4], [1, 3, 5],
|
400
|
+
[2, 3, 5], [2, 4, 5]],
|
401
|
+
name='Minimal triangulation of the real projective plane')
|
402
|
+
|
403
|
+
|
404
|
+
ProjectivePlane = RealProjectivePlane
|
405
|
+
|
406
|
+
|
407
|
+
def KleinBottle():
|
408
|
+
"""
|
409
|
+
A minimal triangulation of the Klein bottle, as presented for example
|
410
|
+
in Davide Cervone's thesis [Cer1994]_.
|
411
|
+
|
412
|
+
EXAMPLES::
|
413
|
+
|
414
|
+
sage: simplicial_complexes.KleinBottle()
|
415
|
+
Minimal triangulation of the Klein bottle
|
416
|
+
"""
|
417
|
+
return UniqueSimplicialComplex([[2, 3, 7], [1, 2, 3], [1, 3, 5], [1, 5, 7],
|
418
|
+
[1, 4, 7], [2, 4, 6], [1, 2, 6], [1, 6, 0],
|
419
|
+
[1, 4, 0], [2, 4, 0], [3, 4, 7], [3, 4, 6],
|
420
|
+
[3, 5, 6], [5, 6, 0], [2, 5, 0], [2, 5, 7]],
|
421
|
+
name='Minimal triangulation of the Klein bottle')
|
422
|
+
|
423
|
+
|
424
|
+
def SurfaceOfGenus(g, orientable=True):
|
425
|
+
"""
|
426
|
+
A surface of genus `g`.
|
427
|
+
|
428
|
+
INPUT:
|
429
|
+
|
430
|
+
- ``g`` -- nonnegative integer; the desired genus
|
431
|
+
|
432
|
+
- ``orientable`` -- boolean (default: ``True``); if
|
433
|
+
``True``, return an orientable surface, and if ``False``,
|
434
|
+
return a non-orientable surface.
|
435
|
+
|
436
|
+
In the orientable case, return a sphere if `g` is zero, and
|
437
|
+
otherwise return a `g`-fold connected sum of a torus with itself.
|
438
|
+
|
439
|
+
In the non-orientable case, raise an error if `g` is zero. If
|
440
|
+
`g` is positive, return a `g`-fold connected sum of a
|
441
|
+
real projective plane with itself.
|
442
|
+
|
443
|
+
EXAMPLES::
|
444
|
+
|
445
|
+
sage: simplicial_complexes.SurfaceOfGenus(2)
|
446
|
+
Triangulation of an orientable surface of genus 2
|
447
|
+
sage: simplicial_complexes.SurfaceOfGenus(1, orientable=False)
|
448
|
+
Triangulation of a non-orientable surface of genus 1
|
449
|
+
"""
|
450
|
+
if g == 0:
|
451
|
+
if not orientable:
|
452
|
+
raise ValueError("no non-orientable surface of genus zero")
|
453
|
+
else:
|
454
|
+
return Sphere(2)
|
455
|
+
if orientable:
|
456
|
+
T = Torus()
|
457
|
+
else:
|
458
|
+
T = RealProjectivePlane()
|
459
|
+
S = T
|
460
|
+
for i in range(g-1):
|
461
|
+
S = S.connected_sum(T)
|
462
|
+
if orientable:
|
463
|
+
name_str = 'Triangulation of an orientable surface of genus {}'
|
464
|
+
else:
|
465
|
+
name_str = 'Triangulation of a non-orientable surface of genus {}'
|
466
|
+
|
467
|
+
return UniqueSimplicialComplex(S, name=name_str.format(g))
|
468
|
+
|
469
|
+
|
470
|
+
def MooreSpace(q):
|
471
|
+
r"""
|
472
|
+
Triangulation of the mod `q` Moore space.
|
473
|
+
|
474
|
+
INPUT:
|
475
|
+
|
476
|
+
- ``q`` -- integer; at least 2
|
477
|
+
|
478
|
+
This is a simplicial complex with simplices of dimension 0, 1,
|
479
|
+
and 2, such that its reduced homology is isomorphic to
|
480
|
+
`\\ZZ/q\\ZZ` in dimension 1, zero otherwise.
|
481
|
+
|
482
|
+
If `q=2`, this is the real projective plane. If `q>2`, then
|
483
|
+
construct it as follows: start with a triangle with vertices
|
484
|
+
1, 2, 3. We take a `3q`-gon forming a `q`-fold cover of the
|
485
|
+
triangle, and we form the resulting complex as an
|
486
|
+
identification space of the `3q`-gon. To triangulate this
|
487
|
+
identification space, put `q` vertices `A_0`, ..., `A_{q-1}`,
|
488
|
+
in the interior, each of which is connected to 1, 2, 3 (two
|
489
|
+
facets each: `[1, 2, A_i]`, `[2, 3, A_i]`). Put `q` more
|
490
|
+
vertices in the interior: `B_0`, ..., `B_{q-1}`, with facets
|
491
|
+
`[3, 1, B_i]`, `[3, B_i, A_i]`, `[1, B_i, A_{i+1}]`, `[B_i,
|
492
|
+
A_i, A_{i+1}]`. Then triangulate the interior polygon with
|
493
|
+
vertices `A_0`, `A_1`, ..., `A_{q-1}`.
|
494
|
+
|
495
|
+
EXAMPLES::
|
496
|
+
|
497
|
+
sage: simplicial_complexes.MooreSpace(2)
|
498
|
+
Minimal triangulation of the real projective plane
|
499
|
+
sage: simplicial_complexes.MooreSpace(3).homology()[1] # needs sage.modules
|
500
|
+
C3
|
501
|
+
sage: simplicial_complexes.MooreSpace(4).suspension().homology()[2] # needs sage.modules
|
502
|
+
C4
|
503
|
+
sage: simplicial_complexes.MooreSpace(8)
|
504
|
+
Triangulation of the mod 8 Moore space
|
505
|
+
"""
|
506
|
+
if q <= 1:
|
507
|
+
raise ValueError("the mod q Moore space is only defined if q is at least 2")
|
508
|
+
if q == 2:
|
509
|
+
return RealProjectivePlane()
|
510
|
+
facets = []
|
511
|
+
for i in range(q):
|
512
|
+
Ai = "A" + str(i)
|
513
|
+
Aiplus = "A" + str((i+1) % q)
|
514
|
+
Bi = "B" + str(i)
|
515
|
+
facets.append([1, 2, Ai])
|
516
|
+
facets.append([2, 3, Ai])
|
517
|
+
facets.append([3, 1, Bi])
|
518
|
+
facets.append([3, Bi, Ai])
|
519
|
+
facets.append([1, Bi, Aiplus])
|
520
|
+
facets.append([Bi, Ai, Aiplus])
|
521
|
+
for i in range(1, q-1):
|
522
|
+
Ai = "A" + str(i)
|
523
|
+
Aiplus = "A" + str((i+1) % q)
|
524
|
+
facets.append(["A0", Ai, Aiplus])
|
525
|
+
return UniqueSimplicialComplex(facets,
|
526
|
+
name='Triangulation of the mod {} Moore space'.format(q))
|
527
|
+
|
528
|
+
|
529
|
+
def ComplexProjectivePlane():
|
530
|
+
"""
|
531
|
+
A minimal triangulation of the complex projective plane.
|
532
|
+
|
533
|
+
This was constructed by Kühnel and Banchoff [KB1983]_.
|
534
|
+
|
535
|
+
EXAMPLES::
|
536
|
+
|
537
|
+
sage: C = simplicial_complexes.ComplexProjectivePlane()
|
538
|
+
sage: C.f_vector()
|
539
|
+
[1, 9, 36, 84, 90, 36]
|
540
|
+
sage: C.homology(2) # needs sage.modules
|
541
|
+
Z
|
542
|
+
sage: C.homology(4) # needs sage.modules
|
543
|
+
Z
|
544
|
+
"""
|
545
|
+
return UniqueSimplicialComplex(
|
546
|
+
[[1, 2, 4, 5, 6], [2, 3, 5, 6, 4], [3, 1, 6, 4, 5],
|
547
|
+
[1, 2, 4, 5, 9], [2, 3, 5, 6, 7], [3, 1, 6, 4, 8],
|
548
|
+
[2, 3, 6, 4, 9], [3, 1, 4, 5, 7], [1, 2, 5, 6, 8],
|
549
|
+
[3, 1, 5, 6, 9], [1, 2, 6, 4, 7], [2, 3, 4, 5, 8],
|
550
|
+
[4, 5, 7, 8, 9], [5, 6, 8, 9, 7], [6, 4, 9, 7, 8],
|
551
|
+
[4, 5, 7, 8, 3], [5, 6, 8, 9, 1], [6, 4, 9, 7, 2],
|
552
|
+
[5, 6, 9, 7, 3], [6, 4, 7, 8, 1], [4, 5, 8, 9, 2],
|
553
|
+
[6, 4, 8, 9, 3], [4, 5, 9, 7, 1], [5, 6, 7, 8, 2],
|
554
|
+
[7, 8, 1, 2, 3], [8, 9, 2, 3, 1], [9, 7, 3, 1, 2],
|
555
|
+
[7, 8, 1, 2, 6], [8, 9, 2, 3, 4], [9, 7, 3, 1, 5],
|
556
|
+
[8, 9, 3, 1, 6], [9, 7, 1, 2, 4], [7, 8, 2, 3, 5],
|
557
|
+
[9, 7, 2, 3, 6], [7, 8, 3, 1, 4], [8, 9, 1, 2, 5]],
|
558
|
+
name='Minimal triangulation of the complex projective plane')
|
559
|
+
|
560
|
+
|
561
|
+
def QuaternionicProjectivePlane():
|
562
|
+
r"""
|
563
|
+
Return a pure simplicial complex of dimension 8 with 490 facets.
|
564
|
+
|
565
|
+
.. WARNING::
|
566
|
+
|
567
|
+
This was proven to be a triangulation of the projective plane
|
568
|
+
`HP^2` over the ring of quaternions by Gorodkov in 2016 [Gor2016]_.
|
569
|
+
|
570
|
+
This simplicial complex has the same homology as `HP^2`. Its
|
571
|
+
automorphism group is isomorphic to the alternating group `A_5`
|
572
|
+
and acts transitively on vertices.
|
573
|
+
|
574
|
+
This is defined here using the description in [BK1992]_. This
|
575
|
+
article deals with three different triangulations. This procedure
|
576
|
+
returns the only one which has a transitive group of automorphisms.
|
577
|
+
|
578
|
+
EXAMPLES::
|
579
|
+
|
580
|
+
sage: HP2 = simplicial_complexes.QuaternionicProjectivePlane(); HP2 # needs sage.groups
|
581
|
+
Simplicial complex with 15 vertices and 490 facets
|
582
|
+
sage: HP2.f_vector() # needs sage.groups
|
583
|
+
[1, 15, 105, 455, 1365, 3003, 4515, 4230, 2205, 490]
|
584
|
+
|
585
|
+
Checking its automorphism group::
|
586
|
+
|
587
|
+
sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups
|
588
|
+
True
|
589
|
+
"""
|
590
|
+
from sage.groups.perm_gps.permgroup import PermutationGroup
|
591
|
+
P = [(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15)]
|
592
|
+
S = [(1, 6, 11), (2, 15, 14), (3, 13, 8), (4, 7, 5), (9, 12, 10)]
|
593
|
+
start_list = [
|
594
|
+
(1, 2, 3, 6, 8, 11, 13, 14, 15), # A
|
595
|
+
(1, 3, 6, 8, 9, 10, 11, 12, 13), # B
|
596
|
+
(1, 2, 6, 9, 10, 11, 12, 14, 15), # C
|
597
|
+
(1, 2, 3, 4, 7, 9, 12, 14, 15), # D
|
598
|
+
(1, 2, 4, 7, 9, 10, 12, 13, 14), # E
|
599
|
+
(1, 2, 6, 8, 9, 10, 11, 14, 15), # F
|
600
|
+
(1, 2, 3, 4, 5, 6, 9, 11, 13), # G
|
601
|
+
(1, 3, 5, 6, 8, 9, 10, 11, 12), # H
|
602
|
+
(1, 3, 5, 6, 7, 8, 9, 10, 11), # I
|
603
|
+
(1, 2, 3, 4, 5, 7, 10, 12, 15), # J
|
604
|
+
(1, 2, 3, 7, 8, 10, 12, 13, 14), # K
|
605
|
+
(2, 5, 6, 7, 8, 9, 10, 13, 14), # M
|
606
|
+
|
607
|
+
(3, 4, 6, 7, 11, 12, 13, 14, 15), # L
|
608
|
+
(3, 4, 6, 7, 10, 12, 13, 14, 15)] # N
|
609
|
+
return UniqueSimplicialComplex([[g(index) for index in tup]
|
610
|
+
for tup in start_list
|
611
|
+
for g in PermutationGroup([P, S])])
|
612
|
+
|
613
|
+
|
614
|
+
def PoincareHomologyThreeSphere():
|
615
|
+
"""
|
616
|
+
A triangulation of the Poincaré homology 3-sphere.
|
617
|
+
|
618
|
+
This is a manifold whose integral homology is identical to the
|
619
|
+
ordinary 3-sphere, but it is not simply connected. In particular,
|
620
|
+
its fundamental group is the binary icosahedral group, which has
|
621
|
+
order 120. The triangulation given here has 16 vertices and is
|
622
|
+
due to Björner and Lutz [BL2000]_.
|
623
|
+
|
624
|
+
EXAMPLES::
|
625
|
+
|
626
|
+
sage: S3 = simplicial_complexes.Sphere(3)
|
627
|
+
sage: Sigma3 = simplicial_complexes.PoincareHomologyThreeSphere()
|
628
|
+
sage: S3.homology() == Sigma3.homology() # needs sage.modules
|
629
|
+
True
|
630
|
+
sage: Sigma3.fundamental_group().cardinality() # long time # needs sage.groups
|
631
|
+
120
|
632
|
+
"""
|
633
|
+
return UniqueSimplicialComplex(
|
634
|
+
[[1, 2, 4, 9], [1, 2, 4, 15], [1, 2, 6, 14], [1, 2, 6, 15],
|
635
|
+
[1, 2, 9, 14], [1, 3, 4, 12], [1, 3, 4, 15], [1, 3, 7, 10],
|
636
|
+
[1, 3, 7, 12], [1, 3, 10, 15], [1, 4, 9, 12], [1, 5, 6, 13],
|
637
|
+
[1, 5, 6, 14], [1, 5, 8, 11], [1, 5, 8, 13], [1, 5, 11, 14],
|
638
|
+
[1, 6, 13, 15], [1, 7, 8, 10], [1, 7, 8, 11], [1, 7, 11, 12],
|
639
|
+
[1, 8, 10, 13], [1, 9, 11, 12], [1, 9, 11, 14], [1, 10, 13, 15],
|
640
|
+
[2, 3, 5, 10], [2, 3, 5, 11], [2, 3, 7, 10], [2, 3, 7, 13],
|
641
|
+
[2, 3, 11, 13], [2, 4, 9, 13], [2, 4, 11, 13], [2, 4, 11, 15],
|
642
|
+
[2, 5, 8, 11], [2, 5, 8, 12], [2, 5, 10, 12], [2, 6, 10, 12],
|
643
|
+
[2, 6, 10, 14], [2, 6, 12, 15], [2, 7, 9, 13], [2, 7, 9, 14],
|
644
|
+
[2, 7, 10, 14], [2, 8, 11, 15], [2, 8, 12, 15], [3, 4, 5, 14],
|
645
|
+
[3, 4, 5, 15], [3, 4, 12, 14], [3, 5, 10, 15], [3, 5, 11, 14],
|
646
|
+
[3, 7, 12, 13], [3, 11, 13, 14], [3, 12, 13, 14], [4, 5, 6, 7],
|
647
|
+
[4, 5, 6, 14], [4, 5, 7, 15], [4, 6, 7, 11], [4, 6, 10, 11],
|
648
|
+
[4, 6, 10, 14], [4, 7, 11, 15], [4, 8, 9, 12], [4, 8, 9, 13],
|
649
|
+
[4, 8, 10, 13], [4, 8, 10, 14], [4, 8, 12, 14], [4, 10, 11, 13],
|
650
|
+
[5, 6, 7, 13], [5, 7, 9, 13], [5, 7, 9, 15], [5, 8, 9, 12],
|
651
|
+
[5, 8, 9, 13], [5, 9, 10, 12], [5, 9, 10, 15], [6, 7, 11, 12],
|
652
|
+
[6, 7, 12, 13], [6, 10, 11, 12], [6, 12, 13, 15], [7, 8, 10, 14],
|
653
|
+
[7, 8, 11, 15], [7, 8, 14, 15], [7, 9, 14, 15], [8, 12, 14, 15],
|
654
|
+
[9, 10, 11, 12], [9, 10, 11, 16], [9, 10, 15, 16], [9, 11, 14, 16],
|
655
|
+
[9, 14, 15, 16], [10, 11, 13, 16], [10, 13, 15, 16],
|
656
|
+
[11, 13, 14, 16], [12, 13, 14, 15], [13, 14, 15, 16]],
|
657
|
+
name='Triangulation of the Poincare homology 3-sphere')
|
658
|
+
|
659
|
+
|
660
|
+
def RealProjectiveSpace(n):
|
661
|
+
r"""
|
662
|
+
A triangulation of `\Bold{R}P^n` for any `n \geq 0`.
|
663
|
+
|
664
|
+
INPUT:
|
665
|
+
|
666
|
+
- ``n`` -- integer; the dimension of the real projective space
|
667
|
+
to construct
|
668
|
+
|
669
|
+
The first few cases are pretty trivial:
|
670
|
+
|
671
|
+
- `\Bold{R}P^0` is a point.
|
672
|
+
|
673
|
+
- `\Bold{R}P^1` is a circle, triangulated as the boundary of a
|
674
|
+
single 2-simplex.
|
675
|
+
|
676
|
+
- `\Bold{R}P^2` is the real projective plane, here given its
|
677
|
+
minimal triangulation with 6 vertices, 15 edges, and 10
|
678
|
+
triangles.
|
679
|
+
|
680
|
+
- `\Bold{R}P^3`: any triangulation has at least 11 vertices by
|
681
|
+
a result of Walkup [Wal1970]_; this function returns a
|
682
|
+
triangulation with 11 vertices, as given by Lutz [Lut2005]_.
|
683
|
+
|
684
|
+
- `\Bold{R}P^4`: any triangulation has at least 16 vertices by
|
685
|
+
a result of Walkup; this function returns a triangulation
|
686
|
+
with 16 vertices as given by Lutz; see also Datta [Dat2007]_,
|
687
|
+
Example 3.12.
|
688
|
+
|
689
|
+
- `\Bold{R}P^n`: Lutz has found a triangulation of
|
690
|
+
`\Bold{R}P^5` with 24 vertices, but it does not seem to have
|
691
|
+
been published. Kühnel [Kuh1987]_ has described a triangulation of
|
692
|
+
`\Bold{R}P^n`, in general, with `2^{n+1}-1` vertices; see
|
693
|
+
also Datta, Example 3.21. This triangulation is presumably
|
694
|
+
not minimal, but it seems to be the best in the published
|
695
|
+
literature as of this writing. So this function returns it
|
696
|
+
when `n > 4`.
|
697
|
+
|
698
|
+
ALGORITHM: For `n < 4`, these are constructed explicitly by
|
699
|
+
listing the facets. For `n = 4`, this is constructed by
|
700
|
+
specifying 16 vertices, two facets, and a certain subgroup `G`
|
701
|
+
of the symmetric group `S_{16}`. Then the set of all facets
|
702
|
+
is the `G`-orbit of the two given facets. This is implemented
|
703
|
+
here by explicitly listing all of the facets; the facets
|
704
|
+
can be computed by the function :func:`~sage.homology.simplicial_complex.facets_for_RP4`, but
|
705
|
+
running the function takes a few seconds.
|
706
|
+
|
707
|
+
For `n > 4`, the construction is as follows: let `S` denote
|
708
|
+
the simplicial complex structure on the `n`-sphere given by
|
709
|
+
the first barycentric subdivision of the boundary of an
|
710
|
+
`(n+1)`-simplex. This has a simplicial antipodal action: if
|
711
|
+
`V` denotes the vertices in the boundary of the simplex, then
|
712
|
+
the vertices in its barycentric subdivision `S` correspond to
|
713
|
+
nonempty proper subsets `U` of `V`, and the antipodal action
|
714
|
+
sends any subset `U` to its complement. One can show that
|
715
|
+
modding out by this action results in a triangulation for
|
716
|
+
`\Bold{R}P^n`. To find the facets in this triangulation, find
|
717
|
+
the facets in `S`. These are identified in pairs to form
|
718
|
+
`\Bold{R}P^n`, so choose a representative from each pair: for
|
719
|
+
each facet in `S`, replace any vertex in `S` containing 0 with
|
720
|
+
its complement.
|
721
|
+
|
722
|
+
Of course these complexes increase in size pretty quickly as
|
723
|
+
`n` increases.
|
724
|
+
|
725
|
+
EXAMPLES::
|
726
|
+
|
727
|
+
sage: P3 = simplicial_complexes.RealProjectiveSpace(3)
|
728
|
+
sage: P3.f_vector()
|
729
|
+
[1, 11, 51, 80, 40]
|
730
|
+
sage: P3.homology() # needs sage.modules
|
731
|
+
{0: 0, 1: C2, 2: 0, 3: Z}
|
732
|
+
sage: P4 = simplicial_complexes.RealProjectiveSpace(4)
|
733
|
+
sage: P4.f_vector()
|
734
|
+
[1, 16, 120, 330, 375, 150]
|
735
|
+
sage: P4.homology() # long time
|
736
|
+
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0}
|
737
|
+
sage: P5 = simplicial_complexes.RealProjectiveSpace(5) # long time (44s on sage.math, 2012)
|
738
|
+
sage: P5.f_vector() # long time
|
739
|
+
[1, 63, 903, 4200, 8400, 7560, 2520]
|
740
|
+
|
741
|
+
The following computation can take a long time -- over half an
|
742
|
+
hour. ::
|
743
|
+
|
744
|
+
sage: P5.homology() # not tested
|
745
|
+
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z}
|
746
|
+
sage: simplicial_complexes.RealProjectiveSpace(2).dimension()
|
747
|
+
2
|
748
|
+
sage: P3.dimension()
|
749
|
+
3
|
750
|
+
sage: P4.dimension() # long time
|
751
|
+
4
|
752
|
+
sage: P5.dimension() # long time
|
753
|
+
5
|
754
|
+
"""
|
755
|
+
if n == 0:
|
756
|
+
return Simplex(0)
|
757
|
+
if n == 1:
|
758
|
+
return Sphere(1)
|
759
|
+
if n == 2:
|
760
|
+
return RealProjectivePlane()
|
761
|
+
if n == 3:
|
762
|
+
# Minimal triangulation found by Walkup and given
|
763
|
+
# explicitly by Lutz
|
764
|
+
return UniqueSimplicialComplex(
|
765
|
+
[[1, 2, 3, 7], [1, 4, 7, 9], [2, 3, 4, 8], [2, 5, 8, 10],
|
766
|
+
[3, 6, 7, 10], [1, 2, 3, 11], [1, 4, 7, 10], [2, 3, 4, 11],
|
767
|
+
[2, 5, 9, 10], [3, 6, 8, 9], [1, 2, 6, 9], [1, 4, 8, 9],
|
768
|
+
[2, 3, 7, 8], [2, 6, 9, 10], [3, 6, 9, 10], [1, 2, 6, 11],
|
769
|
+
[1, 4, 8, 10], [2, 4, 6, 10], [3, 4, 5, 9], [4, 5, 6, 7],
|
770
|
+
[1, 2, 7, 9], [1, 5, 6, 8], [2, 4, 6, 11], [3, 4, 5, 11],
|
771
|
+
[4, 5, 6, 11], [1, 3, 5, 10], [1, 5, 6, 11], [2, 4, 8, 10],
|
772
|
+
[3, 4, 8, 9], [4, 5, 7, 9], [1, 3, 5, 11], [1, 5, 8, 10],
|
773
|
+
[2, 5, 7, 8], [3, 5, 9, 10], [4, 6, 7, 10], [1, 3, 7, 10],
|
774
|
+
[1, 6, 8, 9], [2, 5, 7, 9], [3, 6, 7, 8], [5, 6, 7, 8]],
|
775
|
+
name='Minimal triangulation of RP^3')
|
776
|
+
if n == 4:
|
777
|
+
return UniqueSimplicialComplex(
|
778
|
+
[(1, 3, 8, 12, 13), (2, 7, 8, 13, 16), (4, 8, 9, 12, 14),
|
779
|
+
(2, 6, 10, 12, 16), (5, 7, 9, 10, 13), (1, 2, 7, 8, 15),
|
780
|
+
(1, 3, 9, 11, 16), (5, 6, 8, 13, 16), (1, 3, 8, 11, 13),
|
781
|
+
(3, 4, 10, 13, 15), (4, 6, 9, 12, 15), (2, 4, 6, 11, 13),
|
782
|
+
(2, 3, 9, 12, 16), (1, 6, 9, 12, 15), (2, 5, 10, 11, 12),
|
783
|
+
(1, 7, 8, 12, 15), (2, 6, 9, 13, 16), (1, 5, 9, 11, 15),
|
784
|
+
(4, 9, 10, 13, 14), (2, 7, 8, 15, 16), (2, 3, 9, 12, 14),
|
785
|
+
(1, 6, 7, 10, 14), (2, 5, 10, 11, 15), (1, 2, 4, 13, 14),
|
786
|
+
(1, 6, 10, 14, 16), (2, 6, 9, 12, 16), (1, 3, 9, 12, 16),
|
787
|
+
(4, 5, 7, 11, 16), (5, 9, 10, 11, 15), (3, 5, 8, 12, 14),
|
788
|
+
(5, 6, 9, 13, 16), (5, 6, 9, 13, 15), (1, 3, 4, 10, 16),
|
789
|
+
(1, 6, 10, 12, 16), (2, 4, 6, 9, 13), (2, 4, 6, 9, 12),
|
790
|
+
(1, 2, 4, 11, 13), (7, 9, 10, 13, 14), (1, 7, 8, 12, 13),
|
791
|
+
(4, 6, 7, 11, 12), (3, 4, 6, 11, 13), (1, 5, 6, 9, 15),
|
792
|
+
(1, 6, 7, 14, 15), (2, 3, 7, 14, 15), (2, 6, 10, 11, 12),
|
793
|
+
(5, 7, 9, 10, 11), (1, 2, 4, 5, 14), (3, 5, 10, 13, 15),
|
794
|
+
(3, 8, 9, 12, 14), (5, 9, 10, 13, 15), (2, 6, 8, 13, 16),
|
795
|
+
(1, 2, 7, 13, 14), (1, 7, 10, 12, 13), (3, 4, 6, 13, 15),
|
796
|
+
(4, 9, 10, 13, 15), (2, 3, 10, 12, 16), (1, 2, 5, 14, 15),
|
797
|
+
(2, 6, 8, 10, 11), (1, 3, 10, 12, 13), (4, 8, 9, 12, 15),
|
798
|
+
(1, 3, 8, 9, 11), (4, 6, 7, 12, 15), (1, 8, 9, 11, 15),
|
799
|
+
(4, 5, 8, 14, 16), (1, 2, 8, 11, 13), (3, 6, 8, 11, 13),
|
800
|
+
(3, 6, 8, 11, 14), (3, 5, 8, 12, 13), (3, 7, 9, 11, 14),
|
801
|
+
(4, 6, 9, 13, 15), (2, 3, 5, 10, 12), (4, 7, 8, 15, 16),
|
802
|
+
(1, 2, 7, 14, 15), (3, 7, 9, 11, 16), (3, 6, 7, 14, 15),
|
803
|
+
(2, 6, 8, 11, 13), (4, 8, 9, 10, 14), (1, 4, 10, 13, 14),
|
804
|
+
(4, 8, 9, 10, 15), (2, 7, 9, 13, 16), (1, 6, 9, 12, 16),
|
805
|
+
(2, 3, 7, 9, 14), (4, 8, 10, 15, 16), (1, 5, 9, 11, 16),
|
806
|
+
(1, 5, 6, 14, 15), (5, 7, 9, 11, 16), (4, 5, 7, 11, 12),
|
807
|
+
(5, 7, 10, 11, 12), (2, 3, 10, 15, 16), (1, 2, 7, 8, 13),
|
808
|
+
(1, 6, 7, 10, 12), (1, 3, 10, 12, 16), (7, 9, 10, 11, 14),
|
809
|
+
(1, 7, 10, 13, 14), (1, 2, 4, 5, 11), (3, 4, 6, 7, 11),
|
810
|
+
(1, 6, 7, 12, 15), (1, 3, 4, 10, 13), (1, 4, 10, 14, 16),
|
811
|
+
(2, 4, 6, 11, 12), (5, 6, 8, 14, 16), (3, 5, 6, 8, 13),
|
812
|
+
(3, 5, 6, 8, 14), (1, 2, 8, 11, 15), (1, 4, 5, 14, 16),
|
813
|
+
(2, 3, 7, 15, 16), (8, 9, 10, 11, 14), (1, 3, 4, 11, 16),
|
814
|
+
(6, 8, 10, 14, 16), (8, 9, 10, 11, 15), (1, 3, 4, 11, 13),
|
815
|
+
(2, 4, 5, 12, 14), (2, 4, 9, 13, 14), (3, 4, 7, 11, 16),
|
816
|
+
(3, 6, 7, 11, 14), (3, 8, 9, 11, 14), (2, 8, 10, 11, 15),
|
817
|
+
(1, 3, 8, 9, 12), (4, 5, 7, 8, 16), (4, 5, 8, 12, 14),
|
818
|
+
(2, 4, 9, 12, 14), (6, 8, 10, 11, 14), (3, 5, 6, 13, 15),
|
819
|
+
(1, 4, 5, 11, 16), (3, 5, 6, 14, 15), (2, 4, 5, 11, 12),
|
820
|
+
(4, 5, 7, 8, 12), (1, 8, 9, 12, 15), (5, 7, 8, 13, 16),
|
821
|
+
(2, 3, 5, 12, 14), (3, 5, 10, 12, 13), (6, 7, 10, 11, 12),
|
822
|
+
(5, 7, 9, 13, 16), (6, 7, 10, 11, 14), (5, 7, 10, 12, 13),
|
823
|
+
(1, 2, 5, 11, 15), (1, 5, 6, 9, 16), (5, 7, 8, 12, 13),
|
824
|
+
(4, 7, 8, 12, 15), (2, 3, 5, 10, 15), (2, 6, 8, 10, 16),
|
825
|
+
(3, 4, 10, 15, 16), (1, 5, 6, 14, 16), (2, 3, 5, 14, 15),
|
826
|
+
(2, 3, 7, 9, 16), (2, 7, 9, 13, 14), (3, 4, 6, 7, 15),
|
827
|
+
(4, 8, 10, 14, 16), (3, 4, 7, 15, 16), (2, 8, 10, 15, 16)],
|
828
|
+
name='Minimal triangulation of RP^4')
|
829
|
+
if n >= 5:
|
830
|
+
# Use the construction given by Datta in Example 3.21.
|
831
|
+
V = set(range(0, n+2))
|
832
|
+
S = Sphere(n).barycentric_subdivision()
|
833
|
+
X = S.facets()
|
834
|
+
facets = set()
|
835
|
+
for f in X:
|
836
|
+
new = []
|
837
|
+
for v in f:
|
838
|
+
if 0 in v:
|
839
|
+
new.append(tuple(V.difference(v)))
|
840
|
+
else:
|
841
|
+
new.append(v)
|
842
|
+
facets.add(tuple(new))
|
843
|
+
return UniqueSimplicialComplex(list(facets),
|
844
|
+
name='Triangulation of RP^{}'.format(n))
|
845
|
+
|
846
|
+
|
847
|
+
def K3Surface():
|
848
|
+
"""
|
849
|
+
Return a minimal triangulation of the K3 surface.
|
850
|
+
|
851
|
+
This is a pure simplicial complex of dimension 4 with 16 vertices
|
852
|
+
and 288 facets. It was constructed by Casella and Kühnel
|
853
|
+
in [CK2001]_. The construction here uses the labeling from
|
854
|
+
Spreer and Kühnel [SK2011]_.
|
855
|
+
|
856
|
+
EXAMPLES::
|
857
|
+
|
858
|
+
sage: K3 = simplicial_complexes.K3Surface(); K3
|
859
|
+
Minimal triangulation of the K3 surface
|
860
|
+
sage: K3.f_vector()
|
861
|
+
[1, 16, 120, 560, 720, 288]
|
862
|
+
|
863
|
+
This simplicial complex is implemented just by listing all 288
|
864
|
+
facets. The list of facets can be computed by the function
|
865
|
+
:func:`~sage.homology.simplicial_complex.facets_for_K3`, but running the function takes a few
|
866
|
+
seconds.
|
867
|
+
"""
|
868
|
+
return UniqueSimplicialComplex(
|
869
|
+
[(2, 10, 13, 15, 16), (2, 8, 11, 15, 16), (2, 5, 7, 8, 10),
|
870
|
+
(1, 9, 11, 13, 14), (1, 2, 8, 10, 12), (1, 3, 5, 6, 11),
|
871
|
+
(1, 5, 6, 9, 12), (1, 2, 6, 13, 16), (1, 4, 10, 13, 14),
|
872
|
+
(1, 9, 10, 14, 15), (2, 4, 7, 8, 12), (3, 4, 6, 10, 12),
|
873
|
+
(1, 6, 7, 8, 9), (3, 4, 5, 7, 15), (1, 7, 12, 15, 16),
|
874
|
+
(4, 5, 7, 13, 16), (5, 8, 11, 12, 15), (2, 4, 7, 12, 14),
|
875
|
+
(1, 4, 5, 14, 16), (2, 5, 6, 10, 11), (1, 6, 8, 12, 14),
|
876
|
+
(5, 8, 9, 14, 16), (5, 10, 11, 12, 13), (2, 4, 8, 9, 12),
|
877
|
+
(7, 9, 12, 15, 16), (1, 2, 6, 9, 15), (1, 5, 14, 15, 16),
|
878
|
+
(2, 3, 4, 5, 9), (6, 8, 10, 11, 15), (1, 5, 8, 10, 12),
|
879
|
+
(1, 3, 7, 9, 10), (6, 7, 8, 9, 13), (1, 2, 9, 11, 15),
|
880
|
+
(2, 8, 11, 14, 16), (2, 4, 5, 13, 16), (1, 4, 8, 13, 15),
|
881
|
+
(4, 7, 8, 10, 11), (2, 3, 9, 11, 14), (2, 3, 4, 9, 13),
|
882
|
+
(2, 8, 10, 12, 13), (1, 2, 4, 11, 15), (2, 3, 9, 11, 15),
|
883
|
+
(3, 5, 10, 13, 15), (3, 4, 5, 9, 11), (6, 10, 13, 15, 16),
|
884
|
+
(8, 10, 11, 15, 16), (6, 7, 11, 13, 15), (1, 5, 7, 15, 16),
|
885
|
+
(4, 5, 7, 9, 15), (3, 4, 6, 7, 16), (2, 3, 11, 14, 16),
|
886
|
+
(3, 4, 9, 11, 13), (1, 2, 5, 14, 15), (2, 3, 9, 13, 14),
|
887
|
+
(1, 2, 5, 13, 16), (2, 3, 7, 8, 12), (2, 9, 11, 12, 14),
|
888
|
+
(1, 9, 11, 15, 16), (4, 6, 9, 14, 16), (1, 4, 9, 13, 14),
|
889
|
+
(1, 2, 3, 12, 16), (8, 11, 12, 14, 15), (2, 4, 11, 12, 14),
|
890
|
+
(1, 4, 10, 12, 13), (1, 2, 6, 7, 13), (1, 3, 6, 10, 11),
|
891
|
+
(1, 6, 8, 9, 12), (1, 4, 5, 6, 14), (3, 9, 10, 12, 15),
|
892
|
+
(5, 8, 11, 12, 16), (5, 9, 10, 14, 15), (3, 9, 12, 15, 16),
|
893
|
+
(3, 6, 8, 14, 15), (2, 4, 9, 10, 16), (5, 8, 9, 13, 15),
|
894
|
+
(2, 3, 6, 9, 15), (6, 11, 12, 14, 16), (2, 3, 10, 13, 15),
|
895
|
+
(2, 8, 9, 10, 13), (3, 4, 8, 11, 13), (3, 4, 5, 7, 13),
|
896
|
+
(5, 7, 8, 10, 14), (4, 12, 13, 14, 15), (6, 7, 10, 14, 16),
|
897
|
+
(5, 10, 11, 13, 14), (3, 4, 7, 13, 16), (6, 8, 9, 12, 13),
|
898
|
+
(1, 3, 4, 10, 14), (2, 4, 6, 11, 12), (1, 7, 9, 10, 14),
|
899
|
+
(4, 6, 8, 13, 14), (4, 9, 10, 11, 16), (3, 7, 8, 10, 16),
|
900
|
+
(5, 7, 9, 15, 16), (1, 7, 9, 11, 14), (6, 8, 10, 15, 16),
|
901
|
+
(5, 8, 9, 10, 14), (7, 8, 10, 14, 16), (2, 6, 7, 9, 11),
|
902
|
+
(7, 9, 10, 13, 15), (3, 6, 7, 10, 12), (2, 4, 6, 10, 11),
|
903
|
+
(4, 5, 8, 9, 11), (1, 2, 3, 8, 16), (3, 7, 9, 10, 12),
|
904
|
+
(1, 2, 6, 8, 14), (3, 5, 6, 13, 15), (1, 5, 6, 12, 14),
|
905
|
+
(2, 5, 7, 14, 15), (1, 5, 10, 11, 12), (3, 7, 8, 10, 11),
|
906
|
+
(1, 2, 6, 14, 15), (1, 2, 6, 8, 16), (7, 9, 10, 12, 15),
|
907
|
+
(3, 4, 6, 8, 14), (3, 7, 13, 14, 16), (2, 5, 7, 8, 14),
|
908
|
+
(6, 7, 9, 10, 14), (2, 3, 7, 12, 14), (4, 10, 12, 13, 14),
|
909
|
+
(2, 5, 6, 11, 13), (4, 5, 6, 7, 16), (1, 3, 12, 13, 16),
|
910
|
+
(1, 4, 11, 15, 16), (1, 3, 4, 6, 10), (1, 10, 11, 12, 13),
|
911
|
+
(6, 9, 11, 12, 14), (1, 4, 7, 8, 15), (5, 8, 9, 10, 13),
|
912
|
+
(1, 2, 5, 7, 15), (1, 7, 12, 13, 16), (3, 11, 13, 14, 16),
|
913
|
+
(1, 2, 5, 7, 13), (4, 7, 8, 9, 15), (1, 5, 6, 10, 11),
|
914
|
+
(6, 7, 10, 13, 15), (3, 4, 7, 14, 15), (7, 11, 13, 14, 16),
|
915
|
+
(3, 4, 10, 12, 14), (3, 6, 8, 10, 16), (2, 7, 8, 14, 16),
|
916
|
+
(2, 3, 4, 5, 13), (5, 8, 12, 13, 15), (4, 6, 9, 13, 14),
|
917
|
+
(2, 4, 5, 6, 12), (1, 3, 7, 8, 9), (8, 11, 12, 14, 16),
|
918
|
+
(1, 7, 12, 13, 15), (8, 12, 13, 14, 15), (2, 8, 9, 12, 13),
|
919
|
+
(4, 6, 10, 12, 15), (2, 8, 11, 14, 15), (2, 6, 9, 11, 12),
|
920
|
+
(8, 9, 10, 11, 16), (2, 3, 6, 13, 15), (2, 3, 12, 15, 16),
|
921
|
+
(1, 3, 5, 9, 12), (2, 5, 6, 9, 12), (2, 10, 12, 13, 14),
|
922
|
+
(2, 6, 13, 15, 16), (2, 3, 11, 15, 16), (3, 5, 6, 8, 15),
|
923
|
+
(2, 4, 5, 9, 12), (5, 6, 8, 11, 15), (6, 8, 12, 13, 14),
|
924
|
+
(1, 2, 3, 8, 12), (1, 4, 7, 8, 11), (3, 5, 7, 14, 15),
|
925
|
+
(3, 5, 7, 13, 14), (1, 7, 10, 11, 14), (6, 7, 11, 12, 15),
|
926
|
+
(3, 4, 6, 7, 12), (1, 2, 4, 7, 11), (6, 9, 10, 14, 16),
|
927
|
+
(4, 10, 12, 15, 16), (5, 6, 7, 12, 16), (3, 9, 11, 13, 14),
|
928
|
+
(5, 9, 14, 15, 16), (4, 5, 6, 7, 12), (1, 3, 9, 10, 15),
|
929
|
+
(4, 7, 8, 9, 12), (5, 9, 10, 13, 15), (1, 3, 8, 13, 16),
|
930
|
+
(2, 9, 12, 13, 14), (6, 7, 10, 12, 15), (2, 6, 8, 14, 15),
|
931
|
+
(3, 5, 6, 8, 11), (3, 4, 7, 12, 14), (1, 3, 10, 14, 15),
|
932
|
+
(7, 11, 12, 13, 16), (3, 11, 12, 13, 16), (3, 4, 5, 8, 15),
|
933
|
+
(2, 4, 7, 8, 10), (2, 4, 7, 14, 15), (1, 2, 10, 12, 16),
|
934
|
+
(1, 6, 8, 13, 16), (1, 7, 8, 13, 15), (3, 9, 11, 15, 16),
|
935
|
+
(4, 6, 10, 11, 15), (2, 4, 11, 14, 15), (1, 3, 8, 9, 12),
|
936
|
+
(1, 3, 6, 14, 15), (2, 4, 5, 6, 10), (1, 4, 9, 14, 16),
|
937
|
+
(5, 7, 9, 12, 16), (1, 3, 7, 10, 11), (7, 8, 9, 13, 15),
|
938
|
+
(3, 5, 10, 14, 15), (1, 4, 10, 12, 16), (3, 4, 5, 8, 11),
|
939
|
+
(1, 2, 6, 7, 9), (1, 3, 11, 12, 13), (1, 5, 7, 13, 16),
|
940
|
+
(5, 7, 10, 11, 14), (2, 10, 12, 15, 16), (3, 6, 7, 10, 16),
|
941
|
+
(1, 2, 5, 8, 10), (4, 10, 11, 15, 16), (5, 8, 10, 12, 13),
|
942
|
+
(3, 6, 8, 10, 11), (4, 5, 7, 9, 12), (6, 7, 11, 12, 16),
|
943
|
+
(3, 5, 9, 11, 16), (8, 9, 10, 14, 16), (3, 4, 6, 8, 16),
|
944
|
+
(1, 10, 11, 13, 14), (2, 9, 10, 13, 16), (1, 2, 5, 8, 14),
|
945
|
+
(2, 4, 5, 10, 16), (1, 2, 7, 9, 11), (1, 3, 5, 6, 9),
|
946
|
+
(5, 7, 11, 13, 14), (3, 5, 10, 13, 14), (2, 4, 8, 9, 10),
|
947
|
+
(4, 11, 12, 14, 15), (2, 3, 7, 14, 16), (3, 4, 8, 13, 16),
|
948
|
+
(6, 7, 9, 11, 14), (5, 6, 11, 13, 15), (4, 5, 6, 14, 16),
|
949
|
+
(3, 4, 8, 14, 15), (4, 5, 8, 9, 15), (1, 4, 8, 11, 13),
|
950
|
+
(5, 6, 12, 14, 16), (2, 3, 10, 12, 14), (1, 2, 5, 10, 16),
|
951
|
+
(2, 5, 7, 10, 11), (2, 6, 7, 11, 13), (1, 4, 5, 10, 16),
|
952
|
+
(2, 6, 8, 15, 16), (2, 3, 10, 12, 15), (7, 11, 12, 13, 15),
|
953
|
+
(1, 3, 8, 11, 13), (4, 8, 9, 10, 11), (1, 9, 14, 15, 16),
|
954
|
+
(1, 3, 6, 9, 15), (6, 9, 12, 13, 14), (2, 3, 10, 13, 14),
|
955
|
+
(2, 5, 7, 11, 13), (2, 3, 5, 6, 13), (4, 6, 8, 13, 16),
|
956
|
+
(6, 7, 9, 10, 13), (5, 8, 12, 14, 16), (4, 6, 9, 13, 16),
|
957
|
+
(5, 8, 9, 11, 16), (2, 3, 5, 6, 9), (1, 3, 5, 11, 12),
|
958
|
+
(3, 7, 8, 9, 12), (4, 6, 11, 12, 15), (3, 5, 9, 12, 16),
|
959
|
+
(5, 11, 12, 13, 15), (1, 3, 4, 6, 14), (3, 5, 11, 12, 16),
|
960
|
+
(1, 5, 8, 12, 14), (4, 8, 13, 14, 15), (1, 3, 7, 8, 11),
|
961
|
+
(6, 9, 10, 13, 16), (2, 4, 9, 13, 16), (1, 6, 7, 8, 13),
|
962
|
+
(1, 4, 12, 13, 15), (2, 4, 7, 10, 11), (1, 4, 9, 11, 13),
|
963
|
+
(6, 7, 11, 14, 16), (1, 4, 9, 11, 16), (1, 4, 12, 15, 16),
|
964
|
+
(1, 2, 4, 7, 15), (2, 3, 7, 8, 16), (1, 4, 5, 6, 10)],
|
965
|
+
name='Minimal triangulation of the K3 surface')
|
966
|
+
|
967
|
+
|
968
|
+
def BarnetteSphere():
|
969
|
+
r"""
|
970
|
+
Return Barnette's triangulation of the 3-sphere.
|
971
|
+
|
972
|
+
This is a pure simplicial complex of dimension 3 with 8
|
973
|
+
vertices and 19 facets, which is a non-polytopal triangulation
|
974
|
+
of the 3-sphere. It was constructed by Barnette in
|
975
|
+
[Bar1970]_. The construction here uses the labeling from De
|
976
|
+
Loera, Rambau and Santos [DLRS2010]_. Another reference is chapter
|
977
|
+
III.4 of Ewald [Ewa1996]_.
|
978
|
+
|
979
|
+
EXAMPLES::
|
980
|
+
|
981
|
+
sage: BS = simplicial_complexes.BarnetteSphere(); BS
|
982
|
+
Barnette's triangulation of the 3-sphere
|
983
|
+
sage: BS.f_vector()
|
984
|
+
[1, 8, 27, 38, 19]
|
985
|
+
|
986
|
+
TESTS:
|
987
|
+
|
988
|
+
Checks that this is indeed the same Barnette Sphere as the one
|
989
|
+
given on page 87 of [Ewa1996]_.::
|
990
|
+
|
991
|
+
sage: BS2 = SimplicialComplex([[1, 2, 3, 4], [3, 4, 5, 6], [1, 2, 5, 6],
|
992
|
+
....: [1, 2, 4, 7], [1, 3, 4, 7], [3, 4, 6, 7],
|
993
|
+
....: [3, 5, 6, 7], [1, 2, 5, 7], [2, 5, 6, 7],
|
994
|
+
....: [2, 4, 6, 7], [1, 2, 3, 8], [2, 3, 4, 8],
|
995
|
+
....: [3, 4, 5, 8], [4, 5, 6, 8], [1, 2, 6, 8],
|
996
|
+
....: [1, 5, 6, 8], [1, 3, 5, 8], [2, 4, 6, 8],
|
997
|
+
....: [1, 3, 5, 7]])
|
998
|
+
sage: BS.is_isomorphic(BS2)
|
999
|
+
True
|
1000
|
+
"""
|
1001
|
+
return UniqueSimplicialComplex([(1, 2, 4, 5), (2, 3, 5, 6), (1, 3, 4, 6),
|
1002
|
+
(1, 2, 3, 7), (4, 5, 6, 7), (1, 2, 4, 7),
|
1003
|
+
(2, 4, 5, 7), (2, 3, 5, 7), (3, 5, 6, 7),
|
1004
|
+
(3, 1, 6, 7), (1, 6, 4, 7), (1, 2, 3, 8),
|
1005
|
+
(4, 5, 6, 8), (1, 2, 5, 8), (1, 4, 5, 8),
|
1006
|
+
(2, 3, 6, 8), (2, 5, 6, 8), (3, 1, 4, 8),
|
1007
|
+
(3, 6, 4, 8)],
|
1008
|
+
name="Barnette's triangulation of the 3-sphere")
|
1009
|
+
|
1010
|
+
|
1011
|
+
def BrucknerGrunbaumSphere():
|
1012
|
+
r"""
|
1013
|
+
Return Bruckner and Grunbaum's triangulation of the 3-sphere.
|
1014
|
+
|
1015
|
+
This is a pure simplicial complex of dimension 3 with 8
|
1016
|
+
vertices and 20 facets, which is a non-polytopal triangulation
|
1017
|
+
of the 3-sphere. It appeared first in [Br1910]_ and was studied in
|
1018
|
+
[GrS1967]_.
|
1019
|
+
|
1020
|
+
It is defined here as the link of any vertex in the unique minimal
|
1021
|
+
triangulation of the complex projective plane, see chapter 4 of
|
1022
|
+
[Kuh1995]_.
|
1023
|
+
|
1024
|
+
EXAMPLES::
|
1025
|
+
|
1026
|
+
sage: BGS = simplicial_complexes.BrucknerGrunbaumSphere(); BGS
|
1027
|
+
Bruckner and Grunbaum's triangulation of the 3-sphere
|
1028
|
+
sage: BGS.f_vector()
|
1029
|
+
[1, 8, 28, 40, 20]
|
1030
|
+
"""
|
1031
|
+
# X = ComplexProjectivePlane().link([9])
|
1032
|
+
# return UniqueSimplicialComplex(X.facets(),
|
1033
|
+
# name="Bruckner and Grunbaum's triangulation of the 3-sphere")
|
1034
|
+
return UniqueSimplicialComplex(ComplexProjectivePlane().link([9]),
|
1035
|
+
name="Bruckner and Grunbaum's triangulation of the 3-sphere")
|
1036
|
+
|
1037
|
+
###############################################################
|
1038
|
+
# examples from graph theory:
|
1039
|
+
|
1040
|
+
|
1041
|
+
def NotIConnectedGraphs(n, i):
|
1042
|
+
"""
|
1043
|
+
The simplicial complex of all graphs on `n` vertices which are
|
1044
|
+
not `i`-connected.
|
1045
|
+
|
1046
|
+
Fix an integer `n>0` and consider the set of graphs on `n`
|
1047
|
+
vertices. View each graph as its set of edges, so it is a
|
1048
|
+
subset of a set of size `n` choose 2. A graph is
|
1049
|
+
`i`-connected if, for any `j<i`, if any `j` vertices are
|
1050
|
+
removed along with the edges emanating from them, then the
|
1051
|
+
graph remains connected. Now fix `i`: it is clear that if `G`
|
1052
|
+
is not `i`-connected, then the same is true for any graph
|
1053
|
+
obtained from `G` by deleting edges. Thus the set of all
|
1054
|
+
graphs which are not `i`-connected, viewed as a set of subsets
|
1055
|
+
of the `n` choose 2 possible edges, is closed under taking
|
1056
|
+
subsets, and thus forms a simplicial complex. This function
|
1057
|
+
produces that simplicial complex.
|
1058
|
+
|
1059
|
+
INPUT:
|
1060
|
+
|
1061
|
+
- ``n``, ``i`` -- nonnegative integers with `i` at most `n`
|
1062
|
+
|
1063
|
+
See Dumas et al. [DHSW2003]_ for information on computing its homology
|
1064
|
+
by computer, and see Babson et al. [BBLSW1999]_ for theory. For
|
1065
|
+
example, Babson et al. show that when `i=2`, the reduced homology of
|
1066
|
+
this complex is nonzero only in dimension `2n-5`, where it is
|
1067
|
+
free abelian of rank `(n-2)!`.
|
1068
|
+
|
1069
|
+
EXAMPLES::
|
1070
|
+
|
1071
|
+
sage: NICG52 = simplicial_complexes.NotIConnectedGraphs(5, 2)
|
1072
|
+
sage: NICG52.f_vector()
|
1073
|
+
[1, 10, 45, 120, 210, 240, 140, 20]
|
1074
|
+
sage: NICG52.homology(5).ngens() # needs sage.modules
|
1075
|
+
6
|
1076
|
+
"""
|
1077
|
+
G_list = range(1, n+1)
|
1078
|
+
G_vertices = Set(G_list)
|
1079
|
+
E_list = []
|
1080
|
+
for w in G_list:
|
1081
|
+
for v in range(1, w):
|
1082
|
+
E_list.append((v, w))
|
1083
|
+
E = Set(E_list)
|
1084
|
+
facets = []
|
1085
|
+
i_minus_one_sets = list(G_vertices.subsets(size=i-1))
|
1086
|
+
for A in i_minus_one_sets:
|
1087
|
+
G_minus_A = G_vertices.difference(A)
|
1088
|
+
for B in G_minus_A.subsets():
|
1089
|
+
if len(B) > 0 and len(B) < len(G_minus_A):
|
1090
|
+
C = G_minus_A.difference(B)
|
1091
|
+
facet = E
|
1092
|
+
for v in B:
|
1093
|
+
for w in C:
|
1094
|
+
bad_edge = (min(v, w), max(v, w))
|
1095
|
+
facet = facet.difference(Set([bad_edge]))
|
1096
|
+
facets.append(facet)
|
1097
|
+
return UniqueSimplicialComplex(facets, name='Simplicial complex of not {}-connected graphs on {} vertices'.format(i, n))
|
1098
|
+
|
1099
|
+
|
1100
|
+
def MatchingComplex(n):
|
1101
|
+
"""
|
1102
|
+
The matching complex of graphs on `n` vertices.
|
1103
|
+
|
1104
|
+
Fix an integer `n>0` and consider a set `V` of `n` vertices.
|
1105
|
+
A 'partial matching' on `V` is a graph formed by edges so that
|
1106
|
+
each vertex is in at most one edge. If `G` is a partial
|
1107
|
+
matching, then so is any graph obtained by deleting edges from
|
1108
|
+
`G`. Thus the set of all partial matchings on `n` vertices,
|
1109
|
+
viewed as a set of subsets of the `n` choose 2 possible edges,
|
1110
|
+
is closed under taking subsets, and thus forms a simplicial
|
1111
|
+
complex called the 'matching complex'. This function produces
|
1112
|
+
that simplicial complex.
|
1113
|
+
|
1114
|
+
INPUT:
|
1115
|
+
|
1116
|
+
- ``n`` -- positive integer
|
1117
|
+
|
1118
|
+
See Dumas et al. [DHSW2003]_ for information on computing its homology
|
1119
|
+
by computer, and see Wachs [Wac2003]_ for an expository article about
|
1120
|
+
the theory. For example, the homology of these complexes seems to
|
1121
|
+
have only mod 3 torsion, and this has been proved for the
|
1122
|
+
bottom non-vanishing homology group for the matching complex `M_n`.
|
1123
|
+
|
1124
|
+
EXAMPLES::
|
1125
|
+
|
1126
|
+
sage: M = simplicial_complexes.MatchingComplex(7)
|
1127
|
+
sage: H = M.homology(); H # needs sage.modules
|
1128
|
+
{0: 0, 1: C3, 2: Z^20}
|
1129
|
+
sage: H[2].ngens() # needs sage.modules
|
1130
|
+
20
|
1131
|
+
sage: M8 = simplicial_complexes.MatchingComplex(8)
|
1132
|
+
sage: M8.homology(2) # long time (6s on sage.math, 2012), needs sage.modules
|
1133
|
+
Z^132
|
1134
|
+
"""
|
1135
|
+
G_vertices = Set(range(1, n+1))
|
1136
|
+
facets = []
|
1137
|
+
if is_even(n):
|
1138
|
+
half = int(n/2)
|
1139
|
+
half_n_sets = list(G_vertices.subsets(size=half))
|
1140
|
+
else:
|
1141
|
+
half = int((n-1)/2)
|
1142
|
+
half_n_sets = list(G_vertices.subsets(size=half))
|
1143
|
+
for X in half_n_sets:
|
1144
|
+
Xcomp = G_vertices.difference(X)
|
1145
|
+
if is_even(n):
|
1146
|
+
if 1 in X:
|
1147
|
+
A = X
|
1148
|
+
B = Xcomp
|
1149
|
+
else:
|
1150
|
+
A = Xcomp
|
1151
|
+
B = X
|
1152
|
+
for M in matching(A, B):
|
1153
|
+
facet = []
|
1154
|
+
for pair in M:
|
1155
|
+
facet.append(tuple(sorted(pair)))
|
1156
|
+
facets.append(facet)
|
1157
|
+
else:
|
1158
|
+
for w in Xcomp:
|
1159
|
+
if 1 in X or (w == 1 and 2 in X):
|
1160
|
+
A = X
|
1161
|
+
B = Xcomp.difference([w])
|
1162
|
+
else:
|
1163
|
+
B = X
|
1164
|
+
A = Xcomp.difference([w])
|
1165
|
+
for M in matching(A, B):
|
1166
|
+
facet = []
|
1167
|
+
for pair in M:
|
1168
|
+
facet.append(tuple(sorted(pair)))
|
1169
|
+
facets.append(facet)
|
1170
|
+
return UniqueSimplicialComplex(facets, name='Matching complex on {} vertices'.format(n))
|
1171
|
+
|
1172
|
+
|
1173
|
+
def ChessboardComplex(n, i):
|
1174
|
+
r"""
|
1175
|
+
The chessboard complex for an `n \times i` chessboard.
|
1176
|
+
|
1177
|
+
Fix integers `n, i > 0` and consider sets `V` of `n` vertices
|
1178
|
+
and `W` of `i` vertices. A 'partial matching' between `V` and
|
1179
|
+
`W` is a graph formed by edges `(v, w)` with `v \in V` and `w
|
1180
|
+
\in W` so that each vertex is in at most one edge. If `G` is
|
1181
|
+
a partial matching, then so is any graph obtained by deleting
|
1182
|
+
edges from `G`. Thus the set of all partial matchings on `V`
|
1183
|
+
and `W`, viewed as a set of subsets of the `n+i` choose 2
|
1184
|
+
possible edges, is closed under taking subsets, and thus forms
|
1185
|
+
a simplicial complex called the 'chessboard complex'. This
|
1186
|
+
function produces that simplicial complex. (It is called the
|
1187
|
+
chessboard complex because such graphs also correspond to ways
|
1188
|
+
of placing rooks on an `n` by `i` chessboard so that none of
|
1189
|
+
them are attacking each other.)
|
1190
|
+
|
1191
|
+
INPUT:
|
1192
|
+
|
1193
|
+
- ``n``, ``i`` -- positive integers
|
1194
|
+
|
1195
|
+
See Dumas et al. [DHSW2003]_ for information on computing its homology
|
1196
|
+
by computer, and see Wachs [Wac2003]_ for an expository article about
|
1197
|
+
the theory.
|
1198
|
+
|
1199
|
+
EXAMPLES::
|
1200
|
+
|
1201
|
+
sage: C = simplicial_complexes.ChessboardComplex(5, 5)
|
1202
|
+
sage: C.f_vector()
|
1203
|
+
[1, 25, 200, 600, 600, 120]
|
1204
|
+
sage: simplicial_complexes.ChessboardComplex(3, 3).homology() # needs sage.modules
|
1205
|
+
{0: 0, 1: Z x Z x Z x Z, 2: 0}
|
1206
|
+
"""
|
1207
|
+
A = range(n)
|
1208
|
+
B = range(i)
|
1209
|
+
E_dict = {}
|
1210
|
+
index = 0
|
1211
|
+
for v in A:
|
1212
|
+
for w in B:
|
1213
|
+
E_dict[(v, w)] = index
|
1214
|
+
index += 1
|
1215
|
+
facets = []
|
1216
|
+
for M in matching(A, B):
|
1217
|
+
facet = []
|
1218
|
+
for pair in M:
|
1219
|
+
facet.append(E_dict[pair])
|
1220
|
+
facets.append(facet)
|
1221
|
+
return UniqueSimplicialComplex(facets, name='Chessboard complex for an {}x{} chessboard'.format(n, i))
|
1222
|
+
|
1223
|
+
|
1224
|
+
def RandomComplex(n, d, p=0.5):
|
1225
|
+
"""
|
1226
|
+
A random `d`-dimensional simplicial complex on `n` vertices.
|
1227
|
+
|
1228
|
+
INPUT:
|
1229
|
+
|
1230
|
+
- ``n`` -- number of vertices
|
1231
|
+
|
1232
|
+
- ``d`` -- dimension of the complex
|
1233
|
+
|
1234
|
+
- ``p`` -- floating point number between 0 and 1 (default: 0.5)
|
1235
|
+
|
1236
|
+
A random `d`-dimensional simplicial complex on `n` vertices,
|
1237
|
+
as defined for example by Meshulam and Wallach [MW2009]_, is
|
1238
|
+
constructed as follows: take `n` vertices and include all of
|
1239
|
+
the simplices of dimension strictly less than `d`, and then for each
|
1240
|
+
possible simplex of dimension `d`, include it with probability `p`.
|
1241
|
+
|
1242
|
+
EXAMPLES::
|
1243
|
+
|
1244
|
+
sage: X = simplicial_complexes.RandomComplex(6, 2); X
|
1245
|
+
Random 2-dimensional simplicial complex on 6 vertices
|
1246
|
+
sage: len(list(X.vertices()))
|
1247
|
+
6
|
1248
|
+
|
1249
|
+
If `d` is too large (if `d+1 > n`, so that there are no
|
1250
|
+
`d`-dimensional simplices), then return the simplicial complex
|
1251
|
+
with a single `(n+1)`-dimensional simplex::
|
1252
|
+
|
1253
|
+
sage: simplicial_complexes.RandomComplex(6, 12)
|
1254
|
+
The 5-simplex
|
1255
|
+
"""
|
1256
|
+
if d+1 > n:
|
1257
|
+
return Simplex(n-1)
|
1258
|
+
else:
|
1259
|
+
vertices = range(n)
|
1260
|
+
facets = Subsets(vertices, d).list()
|
1261
|
+
maybe = Subsets(vertices, d+1)
|
1262
|
+
facets.extend([f for f in maybe if random.random() <= p])
|
1263
|
+
return UniqueSimplicialComplex(facets,
|
1264
|
+
name='Random {}-dimensional simplicial complex on {} vertices'.format(d, n))
|
1265
|
+
|
1266
|
+
|
1267
|
+
def SumComplex(n, A):
|
1268
|
+
r"""
|
1269
|
+
The sum complexes of Linial, Meshulam, and Rosenthal [LMR2010]_.
|
1270
|
+
|
1271
|
+
If `k+1` is the cardinality of `A`, then this returns a
|
1272
|
+
`k`-dimensional simplicial complex `X_A` with vertices
|
1273
|
+
`\ZZ/(n)`, and facets given by all `k+1`-tuples `(x_0, x_1,
|
1274
|
+
..., x_k)` such that the sum `\sum x_i` is in `A`. See the
|
1275
|
+
paper by Linial, Meshulam, and Rosenthal [LMR2010]_, in which
|
1276
|
+
they prove various results about these complexes; for example,
|
1277
|
+
if `n` is prime, then `X_A` is rationally acyclic, and if in
|
1278
|
+
addition `A` forms an arithmetic progression in `\ZZ/(n)`,
|
1279
|
+
then `X_A` is `\ZZ`-acyclic. Throughout their paper, they
|
1280
|
+
assume that `n` and `k` are relatively prime, but the
|
1281
|
+
construction makes sense in general.
|
1282
|
+
|
1283
|
+
In addition to the results from the cited paper, these
|
1284
|
+
complexes can have large torsion, given the number of
|
1285
|
+
vertices; for example, if `n=10`, and `A=\{0, 1, 2, 3, 6\}`, then
|
1286
|
+
`H_3(X_A)` is cyclic of order 2728, and there is a
|
1287
|
+
4-dimensional complex on 13 vertices with `H_3` having a
|
1288
|
+
cyclic summand of order
|
1289
|
+
|
1290
|
+
.. MATH::
|
1291
|
+
|
1292
|
+
706565607945 = 3 \cdot 5 \cdot 53 \cdot 79 \cdot 131
|
1293
|
+
\cdot 157 \cdot 547.
|
1294
|
+
|
1295
|
+
See the examples.
|
1296
|
+
|
1297
|
+
INPUT:
|
1298
|
+
|
1299
|
+
- ``n`` -- positive integer
|
1300
|
+
|
1301
|
+
- ``A`` -- a subset of `\ZZ/(n)`
|
1302
|
+
|
1303
|
+
EXAMPLES::
|
1304
|
+
|
1305
|
+
sage: S = simplicial_complexes.SumComplex(10, [0, 1, 2, 3, 6]); S
|
1306
|
+
Sum complex on vertices Z/10Z associated to {0, 1, 2, 3, 6}
|
1307
|
+
sage: S.homology() # needs sage.modules
|
1308
|
+
{0: 0, 1: 0, 2: 0, 3: C2728, 4: 0}
|
1309
|
+
sage: factor(2728)
|
1310
|
+
2^3 * 11 * 31
|
1311
|
+
|
1312
|
+
sage: S = simplicial_complexes.SumComplex(11, [0, 1, 3]); S
|
1313
|
+
Sum complex on vertices Z/11Z associated to {0, 1, 3}
|
1314
|
+
sage: S.homology(1) # needs sage.modules
|
1315
|
+
C23
|
1316
|
+
sage: S = simplicial_complexes.SumComplex(11, [0, 1, 2, 3, 4, 7]); S
|
1317
|
+
Sum complex on vertices Z/11Z associated to {0, 1, 2, 3, 4, 7}
|
1318
|
+
sage: S.homology() # long time # needs sage.modules
|
1319
|
+
{0: 0, 1: 0, 2: 0, 3: 0, 4: C645679, 5: 0}
|
1320
|
+
sage: factor(645679)
|
1321
|
+
23 * 67 * 419
|
1322
|
+
|
1323
|
+
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 3]); S
|
1324
|
+
Sum complex on vertices Z/13Z associated to {0, 1, 3}
|
1325
|
+
sage: S.homology(1) # needs sage.modules
|
1326
|
+
C159
|
1327
|
+
sage: factor(159)
|
1328
|
+
3 * 53
|
1329
|
+
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 5]); S
|
1330
|
+
Sum complex on vertices Z/13Z associated to {0, 1, 2, 5}
|
1331
|
+
sage: S.homology() # long time # needs sage.modules
|
1332
|
+
{0: 0, 1: 0, 2: C146989209, 3: 0}
|
1333
|
+
sage: factor(1648910295)
|
1334
|
+
3^2 * 5 * 53 * 521 * 1327
|
1335
|
+
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 3, 5]); S
|
1336
|
+
Sum complex on vertices Z/13Z associated to {0, 1, 2, 3, 5}
|
1337
|
+
sage: S.homology() # long time # needs sage.modules
|
1338
|
+
{0: 0, 1: 0, 2: 0, 3: C3 x C237 x C706565607945, 4: 0}
|
1339
|
+
sage: factor(706565607945) # needs sage.libs.pari
|
1340
|
+
3 * 5 * 53 * 79 * 131 * 157 * 547
|
1341
|
+
|
1342
|
+
sage: S = simplicial_complexes.SumComplex(17, [0, 1, 4]); S
|
1343
|
+
Sum complex on vertices Z/17Z associated to {0, 1, 4}
|
1344
|
+
sage: S.homology(1) # needs sage.modules
|
1345
|
+
C140183
|
1346
|
+
sage: factor(140183)
|
1347
|
+
103 * 1361
|
1348
|
+
sage: S = simplicial_complexes.SumComplex(19, [0, 1, 4]); S
|
1349
|
+
Sum complex on vertices Z/19Z associated to {0, 1, 4}
|
1350
|
+
sage: S.homology(1) # needs sage.modules
|
1351
|
+
C5670599
|
1352
|
+
sage: factor(5670599)
|
1353
|
+
11 * 191 * 2699
|
1354
|
+
sage: S = simplicial_complexes.SumComplex(31, [0, 1, 4]); S
|
1355
|
+
Sum complex on vertices Z/31Z associated to {0, 1, 4}
|
1356
|
+
sage: S.homology(1) # long time # needs sage.modules
|
1357
|
+
C5 x C5 x C5 x C5 x C26951480558170926865
|
1358
|
+
sage: factor(26951480558170926865) # needs sage.libs.pari
|
1359
|
+
5 * 311 * 683 * 1117 * 11657 * 1948909
|
1360
|
+
"""
|
1361
|
+
from sage.rings.finite_rings.integer_mod_ring import Integers
|
1362
|
+
Zn = Integers(n)
|
1363
|
+
A = frozenset([Zn(x) for x in A])
|
1364
|
+
facets = []
|
1365
|
+
for f in Set(Zn).subsets(len(A)):
|
1366
|
+
if sum(f) in A:
|
1367
|
+
facets.append(tuple(f))
|
1368
|
+
return UniqueSimplicialComplex(facets, name='Sum complex on vertices Z/{}Z associated to {}'.format(n, Set(A)))
|
1369
|
+
|
1370
|
+
|
1371
|
+
def RandomTwoSphere(n):
|
1372
|
+
r"""
|
1373
|
+
Return a random triangulation of the 2-dimensional sphere with `n`
|
1374
|
+
vertices.
|
1375
|
+
|
1376
|
+
INPUT:
|
1377
|
+
|
1378
|
+
- ``n`` -- integer
|
1379
|
+
|
1380
|
+
OUTPUT:
|
1381
|
+
|
1382
|
+
A random triangulation of the sphere chosen uniformly among
|
1383
|
+
the *rooted* triangulations on `n` vertices. Because some
|
1384
|
+
triangulations have nontrivial automorphism groups, this may
|
1385
|
+
not be equal to the uniform distribution among unrooted
|
1386
|
+
triangulations.
|
1387
|
+
|
1388
|
+
ALGORITHM:
|
1389
|
+
|
1390
|
+
The algorithm is taken from [PS2006]_, section 2.1.
|
1391
|
+
|
1392
|
+
Starting from a planar tree (represented by its contour as a
|
1393
|
+
sequence of vertices), one first performs local closures, until no
|
1394
|
+
one is possible. A local closure amounts to replace in the cyclic
|
1395
|
+
contour word a sequence ``in1, in2, in3, lf, in3`` by
|
1396
|
+
``in1, in3``. After all local closures are done, one has reached
|
1397
|
+
the partial closure, as in [PS2006]_, figure 5 (a).
|
1398
|
+
|
1399
|
+
Then one has to perform complete closure by adding two more
|
1400
|
+
vertices, in order to reach the situation of [PS2006]_, figure 5
|
1401
|
+
(b). For this, it is necessary to find inside the final contour
|
1402
|
+
one of the two subsequences ``lf, in, lf``.
|
1403
|
+
|
1404
|
+
At every step of the algorithm, newly created triangles are added
|
1405
|
+
in a simplicial complex.
|
1406
|
+
|
1407
|
+
This algorithm is implemented in
|
1408
|
+
:meth:`~sage.graphs.generators.random.RandomTriangulation`, which
|
1409
|
+
creates an embedded graph. The triangles of the simplicial
|
1410
|
+
complex are recovered from this embedded graph.
|
1411
|
+
|
1412
|
+
EXAMPLES::
|
1413
|
+
|
1414
|
+
sage: G = simplicial_complexes.RandomTwoSphere(6); G
|
1415
|
+
Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and 8 facets
|
1416
|
+
sage: G.homology() # needs sage.modules
|
1417
|
+
{0: 0, 1: 0, 2: Z}
|
1418
|
+
sage: G.is_pure()
|
1419
|
+
True
|
1420
|
+
sage: fg = G.flip_graph(); fg
|
1421
|
+
Graph on 8 vertices
|
1422
|
+
sage: fg.is_planar() and fg.is_regular(3) # needs planarity
|
1423
|
+
True
|
1424
|
+
"""
|
1425
|
+
from sage.graphs.generators.random import RandomTriangulation
|
1426
|
+
|
1427
|
+
graph = RandomTriangulation(n)
|
1428
|
+
|
1429
|
+
graph = graph.relabel(inplace=False)
|
1430
|
+
triangles = [(u, v, w) for u, L in graph.get_embedding().items()
|
1431
|
+
for v, w in zip(L, L[1:] + [L[0]]) if u < v and u < w]
|
1432
|
+
|
1433
|
+
return SimplicialComplex(triangles, maximality_check=False)
|
1434
|
+
|
1435
|
+
|
1436
|
+
def ShiftedComplex(generators):
|
1437
|
+
r"""
|
1438
|
+
Return the smallest shifted simplicial complex containing ``generators``
|
1439
|
+
as faces.
|
1440
|
+
|
1441
|
+
Let `V` be a set of vertices equipped with a total order. The
|
1442
|
+
'componentwise partial ordering' on k-subsets of `V` is defined as
|
1443
|
+
follows: if `A = \{a_1 < \cdots < a_k\}` and `B = \{b_1 < \cdots < b_k\}`,
|
1444
|
+
then `A \leq_C B` iff `a_i \leq b_i` for all `i`. A simplicial complex
|
1445
|
+
`X` on vertex set `[n]` is *shifted* if its faces form an order ideal
|
1446
|
+
under the componentwise partial ordering, i.e., if `B \in X` and
|
1447
|
+
`A \leq_C B` then `A \in X`. Shifted complexes of dimension 1 are also
|
1448
|
+
known as threshold graphs.
|
1449
|
+
|
1450
|
+
.. NOTE::
|
1451
|
+
|
1452
|
+
This method assumes that `V` consists of positive integers
|
1453
|
+
with the natural ordering.
|
1454
|
+
|
1455
|
+
INPUT:
|
1456
|
+
|
1457
|
+
- ``generators`` -- list of generators of the order ideal, which may
|
1458
|
+
be lists, tuples or simplices
|
1459
|
+
|
1460
|
+
EXAMPLES::
|
1461
|
+
|
1462
|
+
sage: # needs sage.combinat
|
1463
|
+
sage: X = simplicial_complexes.ShiftedComplex([Simplex([1, 6]), (2, 4), [8]])
|
1464
|
+
sage: sorted(X.facets())
|
1465
|
+
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (7,), (8,)]
|
1466
|
+
sage: X = simplicial_complexes.ShiftedComplex([[2, 3, 5]])
|
1467
|
+
sage: sorted(X.facets())
|
1468
|
+
[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)]
|
1469
|
+
sage: X = simplicial_complexes.ShiftedComplex([[1, 3, 5], [2, 6]])
|
1470
|
+
sage: sorted(X.facets())
|
1471
|
+
[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 6), (2, 6)]
|
1472
|
+
"""
|
1473
|
+
from sage.combinat.partition import Partitions
|
1474
|
+
Facets = []
|
1475
|
+
for _G in generators:
|
1476
|
+
G = sorted(_G, reverse=True)
|
1477
|
+
L = len(G)
|
1478
|
+
for k in range(L * (L + 1) // 2, sum(G) + 1):
|
1479
|
+
for P in Partitions(k, length=L, max_slope=-1, outer=G):
|
1480
|
+
Facets.append(list(reversed(P)))
|
1481
|
+
return SimplicialComplex(Facets)
|
1482
|
+
|
1483
|
+
|
1484
|
+
def RudinBall():
|
1485
|
+
r"""
|
1486
|
+
Return the non-shellable ball constructed by Rudin.
|
1487
|
+
|
1488
|
+
This complex is a non-shellable triangulation of the 3-ball
|
1489
|
+
with 14 vertices and 41 facets, constructed by Rudin in
|
1490
|
+
[Rud1958]_.
|
1491
|
+
|
1492
|
+
EXAMPLES::
|
1493
|
+
|
1494
|
+
sage: R = simplicial_complexes.RudinBall(); R
|
1495
|
+
Rudin ball
|
1496
|
+
sage: R.f_vector()
|
1497
|
+
[1, 14, 66, 94, 41]
|
1498
|
+
sage: R.homology() # needs sage.modules
|
1499
|
+
{0: 0, 1: 0, 2: 0, 3: 0}
|
1500
|
+
sage: R.is_cohen_macaulay() # needs sage.modules
|
1501
|
+
True
|
1502
|
+
"""
|
1503
|
+
return UniqueSimplicialComplex(
|
1504
|
+
[[1, 9, 2, 5], [1, 10, 2, 5], [1, 10, 5, 11], [1, 10, 7, 11], [1, 13, 5, 11],
|
1505
|
+
[1, 13, 7, 11], [2, 10, 3, 6], [2, 11, 3, 6], [2, 11, 6, 12], [2, 11, 8, 12],
|
1506
|
+
[2, 14, 6, 12], [2, 14, 8, 12], [3, 11, 4, 7], [3, 12, 4, 7], [3, 12, 5, 9],
|
1507
|
+
[3, 12, 7, 9], [3, 13, 5, 9], [3, 13, 7, 9], [4, 9, 1, 8], [4, 9, 6, 10],
|
1508
|
+
[4, 9, 8, 10], [4, 12, 1, 8], [4, 14, 6, 10], [4, 14, 8, 10], [9, 10, 2, 5],
|
1509
|
+
[9, 10, 2, 6], [9, 10, 5, 11], [9, 10, 11, 12], [9, 13, 5, 11], [10, 11, 3, 6],
|
1510
|
+
[10, 11, 3, 7], [10, 11, 6, 12], [10, 14, 6, 12], [11, 12, 4, 7], [11, 12, 4, 8],
|
1511
|
+
[11, 12, 7, 9], [11, 13, 7, 9], [12, 9, 1, 5], [12, 9, 1, 8], [12, 9, 8, 10],
|
1512
|
+
[12, 14, 8, 10]],
|
1513
|
+
name="Rudin ball"
|
1514
|
+
)
|
1515
|
+
|
1516
|
+
|
1517
|
+
def ZieglerBall():
|
1518
|
+
r"""
|
1519
|
+
Return the non-shellable ball constructed by Ziegler.
|
1520
|
+
|
1521
|
+
This complex is a non-shellable triangulation of the 3-ball
|
1522
|
+
with 10 vertices and 21 facets, constructed by Ziegler in
|
1523
|
+
[Zie1998]_ and the smallest such complex known.
|
1524
|
+
|
1525
|
+
EXAMPLES::
|
1526
|
+
|
1527
|
+
sage: Z = simplicial_complexes.ZieglerBall(); Z
|
1528
|
+
Ziegler ball
|
1529
|
+
sage: Z.f_vector()
|
1530
|
+
[1, 10, 38, 50, 21]
|
1531
|
+
sage: Z.homology() # needs sage.modules
|
1532
|
+
{0: 0, 1: 0, 2: 0, 3: 0}
|
1533
|
+
sage: Z.is_cohen_macaulay() # needs sage.modules
|
1534
|
+
True
|
1535
|
+
"""
|
1536
|
+
|
1537
|
+
return UniqueSimplicialComplex(
|
1538
|
+
[[1, 2, 3, 4], [1, 2, 5, 6], [1, 5, 6, 9], [2, 5, 6, 0], [3, 6, 7, 8], [4, 5, 7, 8],
|
1539
|
+
[2, 3, 6, 7], [1, 6, 2, 9], [2, 6, 7, 0], [3, 2, 4, 8], [4, 1, 3, 7], [3, 4, 7, 8],
|
1540
|
+
[1, 2, 4, 9], [2, 7, 3, 0], [3, 2, 6, 8], [4, 1, 5, 7], [4, 1, 8, 5], [1, 4, 8, 9],
|
1541
|
+
[2, 3, 1, 0], [1, 8, 5, 9], [2, 1, 5, 0]],
|
1542
|
+
name="Ziegler ball")
|
1543
|
+
|
1544
|
+
|
1545
|
+
def DunceHat():
|
1546
|
+
r"""
|
1547
|
+
Return the minimal triangulation of the dunce hat given by Hachimori
|
1548
|
+
[Hac2016]_.
|
1549
|
+
|
1550
|
+
This is a standard example of a space that is contractible
|
1551
|
+
but not collapsible.
|
1552
|
+
|
1553
|
+
EXAMPLES::
|
1554
|
+
|
1555
|
+
sage: D = simplicial_complexes.DunceHat(); D
|
1556
|
+
Minimal triangulation of the dunce hat
|
1557
|
+
sage: D.f_vector()
|
1558
|
+
[1, 8, 24, 17]
|
1559
|
+
sage: D.homology() # needs sage.modules
|
1560
|
+
{0: 0, 1: 0, 2: 0}
|
1561
|
+
sage: D.is_cohen_macaulay() # needs sage.modules
|
1562
|
+
True
|
1563
|
+
"""
|
1564
|
+
return UniqueSimplicialComplex(
|
1565
|
+
[[1, 3, 5], [2, 3, 5], [2, 4, 5], [1, 2, 4], [1, 3, 4], [3, 4, 8],
|
1566
|
+
[1, 2, 8], [1, 7, 8], [1, 2, 7], [2, 3, 7], [3, 6, 7], [1, 3, 6],
|
1567
|
+
[1, 5, 6], [4, 5, 6], [4, 6, 8], [6, 7, 8], [2, 3, 8]],
|
1568
|
+
name="Minimal triangulation of the dunce hat")
|
1569
|
+
|
1570
|
+
|
1571
|
+
def FareyMap(p):
|
1572
|
+
r"""
|
1573
|
+
Return a discrete surface associated with `PSL(2, \GF(p))`.
|
1574
|
+
|
1575
|
+
INPUT:
|
1576
|
+
|
1577
|
+
- ``p`` -- a prime number
|
1578
|
+
|
1579
|
+
The vertices are the nonzero pairs `(x,y)` in `\GF(p)^2` modulo
|
1580
|
+
the identification of `(-x, -y)` with `(x,y)`.
|
1581
|
+
|
1582
|
+
The triangles are the images of the base triangle ((1,0),(0,1),(1,1))
|
1583
|
+
under the action of `PSL(2, \GF(p))`.
|
1584
|
+
|
1585
|
+
For `p = 3`, the result is a tetrahedron, for `p = 5` an icosahedron,
|
1586
|
+
and for `p = 7` a triangulation of the Klein quartic of genus `3`.
|
1587
|
+
|
1588
|
+
As a Riemann surface, this is the quotient of the upper half plane
|
1589
|
+
by the principal congruence subgroup `\Gamma(p)`.
|
1590
|
+
|
1591
|
+
EXAMPLES::
|
1592
|
+
|
1593
|
+
sage: S5 = simplicial_complexes.FareyMap(5); S5 # needs sage.groups
|
1594
|
+
Simplicial complex with 12 vertices and 20 facets
|
1595
|
+
sage: S5.automorphism_group().cardinality() # needs sage.groups
|
1596
|
+
120
|
1597
|
+
|
1598
|
+
sage: S7 = simplicial_complexes.FareyMap(7); S7 # needs sage.groups
|
1599
|
+
Simplicial complex with 24 vertices and 56 facets
|
1600
|
+
sage: S7.f_vector() # needs sage.groups
|
1601
|
+
[1, 24, 84, 56]
|
1602
|
+
|
1603
|
+
REFERENCES:
|
1604
|
+
|
1605
|
+
- [ISS2019] Ioannis Ivrissimtzis, David Singerman and James Strudwick,
|
1606
|
+
*From Farey Fractions to the Klein Quartic and Beyond*.
|
1607
|
+
:arxiv:`1909.08568`
|
1608
|
+
"""
|
1609
|
+
from sage.combinat.permutation import Permutation
|
1610
|
+
from sage.groups.perm_gps.permgroup import PermutationGroup
|
1611
|
+
from sage.matrix.constructor import matrix
|
1612
|
+
from sage.modules.free_module_element import vector
|
1613
|
+
from sage.rings.finite_rings.finite_field_constructor import GF
|
1614
|
+
from sage.libs.gap.libgap import libgap
|
1615
|
+
|
1616
|
+
def normalise(pair):
|
1617
|
+
x, y = pair
|
1618
|
+
if x != 0 and p - x < x:
|
1619
|
+
return ((-x) % p, (-y) % p)
|
1620
|
+
elif x == 0 and p - y < y:
|
1621
|
+
return (0, (-y) % p)
|
1622
|
+
return (x, y)
|
1623
|
+
|
1624
|
+
points = [(x, y) for x in range(p) for y in range(p)
|
1625
|
+
if (x, y) != (0, 0) and
|
1626
|
+
(x != 0 and p - x >= x or (x == 0 and p - y >= y))]
|
1627
|
+
convert = {pt: i + 1 for i, pt in enumerate(points)}
|
1628
|
+
|
1629
|
+
F = GF(p)
|
1630
|
+
S = matrix(F, 2, 2, [0, -1, 1, 0])
|
1631
|
+
T = matrix(F, 2, 2, [1, 1, 0, 1])
|
1632
|
+
perm_S = Permutation([convert[normalise(S * vector(pt))]
|
1633
|
+
for pt in points])
|
1634
|
+
perm_T = Permutation([convert[normalise(T * vector(pt))]
|
1635
|
+
for pt in points])
|
1636
|
+
group = PermutationGroup([perm_S, perm_T])
|
1637
|
+
triangle = [convert[normalise(pt)] for pt in [(1, 0), (0, 1), (1, 1)]]
|
1638
|
+
triangle = libgap.Set(triangle)
|
1639
|
+
triangles = libgap.Orbit(group, triangle, libgap.OnSets).sage()
|
1640
|
+
return SimplicialComplex(triangles)
|
1641
|
+
|
1642
|
+
|
1643
|
+
def GenusSix():
|
1644
|
+
"""
|
1645
|
+
Return a triangulated surface of genus 6.
|
1646
|
+
|
1647
|
+
This is triangulated with 12 vertices, 66 edges and 44 faces. Each
|
1648
|
+
vertex is neighbour to all other vertices.
|
1649
|
+
|
1650
|
+
It appears as number `58` in the classification of Altshuler,
|
1651
|
+
Bokowski and Schuchert in [ABS96]_, where it is the unique surface
|
1652
|
+
with the largest symmetry group, of order 12. This article refers
|
1653
|
+
for this surface to Ringel.
|
1654
|
+
|
1655
|
+
EXAMPLES::
|
1656
|
+
|
1657
|
+
sage: S = simplicial_complexes.GenusSix()
|
1658
|
+
sage: S.automorphism_group().cardinality() # needs sage.groups
|
1659
|
+
12
|
1660
|
+
sage: S.betti() # needs sage.modules
|
1661
|
+
{0: 1, 1: 12, 2: 1}
|
1662
|
+
sage: S.f_vector()
|
1663
|
+
[1, 12, 66, 44]
|
1664
|
+
|
1665
|
+
REFERENCES:
|
1666
|
+
|
1667
|
+
.. [ABS96] Amos Altshule, Jürgen Bokowski and Peter Schuchert,
|
1668
|
+
*Neighborly 2-Manifolds with 12 Vertices*,
|
1669
|
+
Journal of Combinatorial Theory, Series A, 75, 148-162 (1996),
|
1670
|
+
:doi:`10.1006/jcta.1996.0069`
|
1671
|
+
"""
|
1672
|
+
L = ["014", "018", "023", "027", "036", "049",
|
1673
|
+
"056", "05b", "07a", "08a", "09b",
|
1674
|
+
"125", "126", "137", "139", "147", "15a",
|
1675
|
+
"16b", "18b", "19a", "23b", "248",
|
1676
|
+
"24a", "258", "269", "279", "2ab", "345",
|
1677
|
+
"34b", "35a", "367", "389", "38a",
|
1678
|
+
"459", "46a", "46b", "478", "568", "579",
|
1679
|
+
"57b", "67a", "689", "78b", "9ab"]
|
1680
|
+
return SimplicialComplex([list(w) for w in L])
|