passagemath-graphs 10.6.1rc1__cp310-cp310-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_graphs-10.6.1rc1.dist-info/METADATA +292 -0
- passagemath_graphs-10.6.1rc1.dist-info/RECORD +260 -0
- passagemath_graphs-10.6.1rc1.dist-info/WHEEL +5 -0
- passagemath_graphs-10.6.1rc1.dist-info/top_level.txt +2 -0
- passagemath_graphs.libs/libgcc_s-69c45f16.so.1 +0 -0
- passagemath_graphs.libs/libgmp-8e78bd9b.so.10.5.0 +0 -0
- passagemath_graphs.libs/libstdc++-1f1a71be.so.6.0.33 +0 -0
- sage/all__sagemath_graphs.py +39 -0
- sage/combinat/abstract_tree.py +2723 -0
- sage/combinat/all__sagemath_graphs.py +34 -0
- sage/combinat/binary_tree.py +5306 -0
- sage/combinat/cluster_algebra_quiver/all.py +22 -0
- sage/combinat/cluster_algebra_quiver/cluster_seed.py +5208 -0
- sage/combinat/cluster_algebra_quiver/interact.py +124 -0
- sage/combinat/cluster_algebra_quiver/mutation_class.py +625 -0
- sage/combinat/cluster_algebra_quiver/mutation_type.py +1555 -0
- sage/combinat/cluster_algebra_quiver/quiver.py +2290 -0
- sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +2468 -0
- sage/combinat/designs/MOLS_handbook_data.py +570 -0
- sage/combinat/designs/all.py +58 -0
- sage/combinat/designs/bibd.py +1655 -0
- sage/combinat/designs/block_design.py +1071 -0
- sage/combinat/designs/covering_array.py +269 -0
- sage/combinat/designs/covering_design.py +530 -0
- sage/combinat/designs/database.py +5615 -0
- sage/combinat/designs/design_catalog.py +122 -0
- sage/combinat/designs/designs_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/designs_pyx.pxd +21 -0
- sage/combinat/designs/designs_pyx.pyx +993 -0
- sage/combinat/designs/difference_family.py +3951 -0
- sage/combinat/designs/difference_matrices.py +279 -0
- sage/combinat/designs/evenly_distributed_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/evenly_distributed_sets.pyx +661 -0
- sage/combinat/designs/ext_rep.py +1064 -0
- sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/gen_quadrangles_with_spread.pyx +339 -0
- sage/combinat/designs/group_divisible_designs.py +361 -0
- sage/combinat/designs/incidence_structures.py +2357 -0
- sage/combinat/designs/latin_squares.py +581 -0
- sage/combinat/designs/orthogonal_arrays.py +2244 -0
- sage/combinat/designs/orthogonal_arrays_build_recursive.py +1780 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +967 -0
- sage/combinat/designs/resolvable_bibd.py +815 -0
- sage/combinat/designs/steiner_quadruple_systems.py +1306 -0
- sage/combinat/designs/subhypergraph_search.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/designs/subhypergraph_search.pyx +530 -0
- sage/combinat/designs/twographs.py +306 -0
- sage/combinat/finite_state_machine.py +14874 -0
- sage/combinat/finite_state_machine_generators.py +2006 -0
- sage/combinat/graph_path.py +448 -0
- sage/combinat/interval_posets.py +3908 -0
- sage/combinat/nu_tamari_lattice.py +269 -0
- sage/combinat/ordered_tree.py +1446 -0
- sage/combinat/posets/all.py +46 -0
- sage/combinat/posets/bubble_shuffle.py +247 -0
- sage/combinat/posets/cartesian_product.py +493 -0
- sage/combinat/posets/d_complete.py +182 -0
- sage/combinat/posets/elements.py +273 -0
- sage/combinat/posets/forest.py +30 -0
- sage/combinat/posets/hasse_cython.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/hasse_cython.pyx +174 -0
- sage/combinat/posets/hasse_diagram.py +3672 -0
- sage/combinat/posets/hochschild_lattice.py +158 -0
- sage/combinat/posets/incidence_algebras.py +794 -0
- sage/combinat/posets/lattices.py +5117 -0
- sage/combinat/posets/linear_extension_iterator.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/combinat/posets/linear_extension_iterator.pyx +292 -0
- sage/combinat/posets/linear_extensions.py +1037 -0
- sage/combinat/posets/mobile.py +275 -0
- sage/combinat/posets/moebius_algebra.py +776 -0
- sage/combinat/posets/poset_examples.py +2178 -0
- sage/combinat/posets/posets.py +9360 -0
- sage/combinat/rooted_tree.py +1070 -0
- sage/combinat/shard_order.py +239 -0
- sage/combinat/tamari_lattices.py +384 -0
- sage/combinat/yang_baxter_graph.py +923 -0
- sage/databases/all__sagemath_graphs.py +1 -0
- sage/databases/knotinfo_db.py +1231 -0
- sage/ext_data/all__sagemath_graphs.py +1 -0
- sage/ext_data/graphs/graph_plot_js.html +330 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/graphs/all.py +42 -0
- sage/graphs/asteroidal_triples.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/asteroidal_triples.pyx +320 -0
- sage/graphs/base/all.py +1 -0
- sage/graphs/base/boost_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/boost_graph.pxd +106 -0
- sage/graphs/base/boost_graph.pyx +3045 -0
- sage/graphs/base/c_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/c_graph.pxd +106 -0
- sage/graphs/base/c_graph.pyx +5096 -0
- sage/graphs/base/dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/dense_graph.pxd +28 -0
- sage/graphs/base/dense_graph.pyx +801 -0
- sage/graphs/base/graph_backends.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/graph_backends.pxd +5 -0
- sage/graphs/base/graph_backends.pyx +797 -0
- sage/graphs/base/overview.py +85 -0
- sage/graphs/base/sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/sparse_graph.pxd +90 -0
- sage/graphs/base/sparse_graph.pyx +1653 -0
- sage/graphs/base/static_dense_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_dense_graph.pxd +5 -0
- sage/graphs/base/static_dense_graph.pyx +1032 -0
- sage/graphs/base/static_sparse_backend.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_backend.pxd +27 -0
- sage/graphs/base/static_sparse_backend.pyx +1583 -0
- sage/graphs/base/static_sparse_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/base/static_sparse_graph.pxd +37 -0
- sage/graphs/base/static_sparse_graph.pyx +1375 -0
- sage/graphs/bipartite_graph.py +2732 -0
- sage/graphs/centrality.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/centrality.pyx +1038 -0
- sage/graphs/cographs.py +519 -0
- sage/graphs/comparability.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/comparability.pyx +851 -0
- sage/graphs/connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/connectivity.pxd +157 -0
- sage/graphs/connectivity.pyx +4813 -0
- sage/graphs/convexity_properties.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/convexity_properties.pxd +16 -0
- sage/graphs/convexity_properties.pyx +870 -0
- sage/graphs/digraph.py +4754 -0
- sage/graphs/digraph_generators.py +1993 -0
- sage/graphs/distances_all_pairs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/distances_all_pairs.pxd +12 -0
- sage/graphs/distances_all_pairs.pyx +2938 -0
- sage/graphs/domination.py +1363 -0
- sage/graphs/dot2tex_utils.py +100 -0
- sage/graphs/edge_connectivity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/edge_connectivity.pyx +1215 -0
- sage/graphs/generators/all.py +1 -0
- sage/graphs/generators/basic.py +1769 -0
- sage/graphs/generators/chessboard.py +538 -0
- sage/graphs/generators/classical_geometries.py +1611 -0
- sage/graphs/generators/degree_sequence.py +235 -0
- sage/graphs/generators/distance_regular.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generators/distance_regular.pyx +2846 -0
- sage/graphs/generators/families.py +4759 -0
- sage/graphs/generators/intersection.py +565 -0
- sage/graphs/generators/platonic_solids.py +262 -0
- sage/graphs/generators/random.py +2623 -0
- sage/graphs/generators/smallgraphs.py +5741 -0
- sage/graphs/generators/world_map.py +724 -0
- sage/graphs/generic_graph.py +26867 -0
- sage/graphs/generic_graph_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/generic_graph_pyx.pxd +34 -0
- sage/graphs/generic_graph_pyx.pyx +1673 -0
- sage/graphs/genus.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/genus.pyx +622 -0
- sage/graphs/graph.py +9645 -0
- sage/graphs/graph_coloring.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_coloring.pyx +2284 -0
- sage/graphs/graph_database.py +1177 -0
- sage/graphs/graph_decompositions/all.py +1 -0
- sage/graphs/graph_decompositions/bandwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/bandwidth.pyx +428 -0
- sage/graphs/graph_decompositions/clique_separators.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.pyx +616 -0
- sage/graphs/graph_decompositions/cutwidth.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/cutwidth.pyx +753 -0
- sage/graphs/graph_decompositions/fast_digraph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.pxd +13 -0
- sage/graphs/graph_decompositions/fast_digraph.pyx +212 -0
- sage/graphs/graph_decompositions/graph_products.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/graph_products.pyx +508 -0
- sage/graphs/graph_decompositions/modular_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/modular_decomposition.pxd +27 -0
- sage/graphs/graph_decompositions/modular_decomposition.pyx +1536 -0
- sage/graphs/graph_decompositions/slice_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.pxd +18 -0
- sage/graphs/graph_decompositions/slice_decomposition.pyx +1106 -0
- sage/graphs/graph_decompositions/tree_decomposition.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/tree_decomposition.pxd +17 -0
- sage/graphs/graph_decompositions/tree_decomposition.pyx +1996 -0
- sage/graphs/graph_decompositions/vertex_separation.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_decompositions/vertex_separation.pxd +5 -0
- sage/graphs/graph_decompositions/vertex_separation.pyx +1963 -0
- sage/graphs/graph_editor.py +82 -0
- sage/graphs/graph_generators.py +3314 -0
- sage/graphs/graph_generators_pyx.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/graph_generators_pyx.pyx +95 -0
- sage/graphs/graph_input.py +812 -0
- sage/graphs/graph_latex.py +2064 -0
- sage/graphs/graph_list.py +410 -0
- sage/graphs/graph_plot.py +1756 -0
- sage/graphs/graph_plot_js.py +338 -0
- sage/graphs/hyperbolicity.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/hyperbolicity.pyx +1704 -0
- sage/graphs/hypergraph_generators.py +364 -0
- sage/graphs/independent_sets.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/independent_sets.pxd +13 -0
- sage/graphs/independent_sets.pyx +402 -0
- sage/graphs/isgci.py +1033 -0
- sage/graphs/isoperimetric_inequalities.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/isoperimetric_inequalities.pyx +489 -0
- sage/graphs/line_graph.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/line_graph.pyx +743 -0
- sage/graphs/lovasz_theta.py +77 -0
- sage/graphs/matching.py +1633 -0
- sage/graphs/matching_covered_graph.py +3590 -0
- sage/graphs/orientations.py +1489 -0
- sage/graphs/partial_cube.py +459 -0
- sage/graphs/path_enumeration.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/path_enumeration.pyx +2040 -0
- sage/graphs/pq_trees.py +1129 -0
- sage/graphs/print_graphs.py +201 -0
- sage/graphs/schnyder.py +865 -0
- sage/graphs/spanning_tree.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/spanning_tree.pyx +1457 -0
- sage/graphs/strongly_regular_db.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/strongly_regular_db.pyx +3340 -0
- sage/graphs/traversals.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/traversals.pxd +9 -0
- sage/graphs/traversals.pyx +1872 -0
- sage/graphs/trees.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/trees.pxd +15 -0
- sage/graphs/trees.pyx +310 -0
- sage/graphs/tutte_polynomial.py +713 -0
- sage/graphs/views.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/views.pyx +794 -0
- sage/graphs/weakly_chordal.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/graphs/weakly_chordal.pyx +604 -0
- sage/groups/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_graphs.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pxd +38 -0
- sage/groups/perm_gps/partn_ref/refinement_graphs.pyx +1666 -0
- sage/knots/all.py +6 -0
- sage/knots/free_knotinfo_monoid.py +507 -0
- sage/knots/gauss_code.py +291 -0
- sage/knots/knot.py +682 -0
- sage/knots/knot_table.py +284 -0
- sage/knots/knotinfo.py +2900 -0
- sage/knots/link.py +4715 -0
- sage/sandpiles/all.py +13 -0
- sage/sandpiles/examples.py +225 -0
- sage/sandpiles/sandpile.py +6365 -0
- sage/topology/all.py +22 -0
- sage/topology/cell_complex.py +1214 -0
- sage/topology/cubical_complex.py +1976 -0
- sage/topology/delta_complex.py +1806 -0
- sage/topology/filtered_simplicial_complex.py +744 -0
- sage/topology/moment_angle_complex.py +823 -0
- sage/topology/simplicial_complex.py +5160 -0
- sage/topology/simplicial_complex_catalog.py +92 -0
- sage/topology/simplicial_complex_examples.py +1680 -0
- sage/topology/simplicial_complex_homset.py +205 -0
- sage/topology/simplicial_complex_morphism.py +836 -0
- sage/topology/simplicial_set.py +4102 -0
- sage/topology/simplicial_set_catalog.py +55 -0
- sage/topology/simplicial_set_constructions.py +2954 -0
- sage/topology/simplicial_set_examples.py +865 -0
- sage/topology/simplicial_set_morphism.py +1464 -0
@@ -0,0 +1,851 @@
|
|
1
|
+
# sage_setup: distribution = sagemath-graphs
|
2
|
+
# cython: binding=True
|
3
|
+
r"""
|
4
|
+
Comparability and permutation graphs
|
5
|
+
|
6
|
+
This module implements method related to :wikipedia:`Comparability_graph` and
|
7
|
+
:wikipedia:`Permutation_graph`, that is, for the moment, only recognition
|
8
|
+
algorithms.
|
9
|
+
|
10
|
+
Most of the information found here can also be found in [ST1994]_ or [Sha1997]_.
|
11
|
+
|
12
|
+
The following methods are implemented in this module
|
13
|
+
|
14
|
+
.. csv-table::
|
15
|
+
:class: contentstable
|
16
|
+
:widths: 30, 70
|
17
|
+
:delim: |
|
18
|
+
|
19
|
+
:meth:`~is_comparability_MILP` | Check whether the graph is a comparability graph (MILP)
|
20
|
+
:meth:`~greedy_is_comparability` | Check whether the graph is a comparability graph (greedy algorithm)
|
21
|
+
:meth:`~greedy_is_comparability_with_certificate` | Check whether the graph is a comparability graph and returns certificates (greedy algorithm)
|
22
|
+
:meth:`~is_comparability` | Check whether the graph is a comparability graph
|
23
|
+
:meth:`~is_permutation` | Check whether the graph is a permutation graph.
|
24
|
+
:meth:`~is_transitive` | Check whether the digraph is transitive.
|
25
|
+
|
26
|
+
Author:
|
27
|
+
|
28
|
+
- Nathann Cohen 2012-04
|
29
|
+
|
30
|
+
Graph classes
|
31
|
+
-------------
|
32
|
+
|
33
|
+
**Comparability graphs**
|
34
|
+
|
35
|
+
A graph is a comparability graph if it can be obtained from a poset by adding an
|
36
|
+
edge between any two elements that are comparable. Co-comparability graph are
|
37
|
+
complements of such graphs, i.e. graphs built from a poset by adding an edge
|
38
|
+
between any two incomparable elements.
|
39
|
+
|
40
|
+
For more information on comparability graphs, see the
|
41
|
+
:wikipedia:`Comparability_graph`.
|
42
|
+
|
43
|
+
**Permutation graphs**
|
44
|
+
|
45
|
+
Definitions:
|
46
|
+
|
47
|
+
- A permutation `\pi = \pi_1\pi_2\dots\pi_n` defines a graph on `n` vertices
|
48
|
+
such that `i\sim j` when `\pi` reverses `i` and `j` (i.e. when `i<j` and
|
49
|
+
`\pi_j < \pi_i`. A graph is a permutation graph whenever it can be built
|
50
|
+
through this construction.
|
51
|
+
|
52
|
+
- A graph is a permutation graph if it can be build from two parallel lines are
|
53
|
+
the intersection graph of segments intersecting both lines.
|
54
|
+
|
55
|
+
- A graph is a permutation graph if it is both a comparability graph and a
|
56
|
+
co-comparability graph.
|
57
|
+
|
58
|
+
For more information on permutation graphs, see the
|
59
|
+
:wikipedia:`Permutation_graph`.
|
60
|
+
|
61
|
+
|
62
|
+
Recognition algorithm for comparability graphs
|
63
|
+
----------------------------------------------
|
64
|
+
|
65
|
+
**Greedy algorithm**
|
66
|
+
|
67
|
+
This algorithm attempts to build a transitive orientation of a given graph `G`,
|
68
|
+
that is an orientation `D` such that for any directed `uv`-path of `D` there
|
69
|
+
exists in `D` an edge `uv`. This already determines a notion of equivalence
|
70
|
+
between some edges of `G` :
|
71
|
+
|
72
|
+
In `G`, two edges `uv` and `uv'` (incident to a common vertex `u`) such that
|
73
|
+
`vv'\not\in G` need necessarily be oriented *the same way* (that is that they
|
74
|
+
should either both *leave* or both *enter* `u`). Indeed, if one enters `G`
|
75
|
+
while the other leaves it, these two edges form a path of length two, which is
|
76
|
+
not possible in any transitive orientation of `G` as `vv'\not\in G`.
|
77
|
+
|
78
|
+
Hence, we can say that in this case a *directed edge* `uv` is equivalent to a
|
79
|
+
*directed edge* `uv'` (to mean that if one belongs to the transitive
|
80
|
+
orientation, the other one must be present too) in the same way that `vu` is
|
81
|
+
equivalent to `v'u`. We can thus define equivalence classes on oriented edges,
|
82
|
+
to represent set of edges that imply each other. We can thus define `C^G_{uv}`
|
83
|
+
to be the equivalence class in `G` of the oriented edge `uv`.
|
84
|
+
|
85
|
+
Of course, if there exists a transitive orientation of a graph `G`, then no edge
|
86
|
+
`uv` implies its contrary `vu`, i.e. it is necessary to ensure that `\forall
|
87
|
+
uv\in G, vu\not\in C^G_{uv}`. The key result on which the greedy algorithm is
|
88
|
+
built is the following (see [ST1994]_):
|
89
|
+
|
90
|
+
**Theorem** -- The following statements are equivalent :
|
91
|
+
|
92
|
+
- `G` is a comparability graph
|
93
|
+
- `\forall uv\in G, vu\not\in C^G_{uv}`
|
94
|
+
- The edges of `G` can be partitioned into `B_1,...,B_k` where `B_i` is the
|
95
|
+
equivalence class of some oriented edge in `G-B_1-\dots-B_{i-1}`
|
96
|
+
|
97
|
+
Hence, ensuring that a graph is a comparability graph can be done by checking
|
98
|
+
that no equivalence class is contradictory. Building the orientation, however,
|
99
|
+
requires to build equivalence classes step by step until an orientation has been
|
100
|
+
found for all of them.
|
101
|
+
|
102
|
+
**Mixed Integer Linear Program**
|
103
|
+
|
104
|
+
A MILP formulation is available to check the other methods for correction. It is
|
105
|
+
easily built :
|
106
|
+
|
107
|
+
To each edge are associated two binary variables (one for each possible
|
108
|
+
direction). We then ensure that each triangle is transitively oriented, and
|
109
|
+
that each pair of incident edges `uv, uv'` such that `vv'\not\in G` do not
|
110
|
+
create a 2-path.
|
111
|
+
|
112
|
+
Here is the formulation:
|
113
|
+
|
114
|
+
.. MATH::
|
115
|
+
|
116
|
+
\mbox{Maximize : }&\mbox{Nothing}\\
|
117
|
+
\mbox{Such that : }&\\
|
118
|
+
&\forall uv\in G\\
|
119
|
+
&\cdot o_{uv}+o_{vu} = 1\\
|
120
|
+
&\forall u\in G, \forall v,v'\in N(v)\text{ such that }vv'\not\in G\\
|
121
|
+
&\cdot o_{uv} + o_{v'u} - o_{v'v} \leq 1\\
|
122
|
+
&\cdot o_{uv'} + o_{vu} - o_{vv'} \leq 1\\
|
123
|
+
&\forall u\in G, \forall v,v'\in N(v)\text{ such that }vv'\in G\\
|
124
|
+
&\cdot o_{uv} + o_{v'u} \leq 1\\
|
125
|
+
&\cdot o_{uv'} + o_{vu} \leq 1\\
|
126
|
+
&o_{uv}\text{ is a binary variable}\\
|
127
|
+
|
128
|
+
.. NOTE::
|
129
|
+
|
130
|
+
The MILP formulation is usually much slower than the greedy algorithm. This
|
131
|
+
MILP has been implemented to check the results of the greedy algorithm that
|
132
|
+
has been implemented to check the results of a faster algorithm which has not
|
133
|
+
been implemented yet.
|
134
|
+
|
135
|
+
Certificates
|
136
|
+
------------
|
137
|
+
|
138
|
+
**Comparability graphs**
|
139
|
+
|
140
|
+
The *yes*-certificates that a graph is a comparability graphs are transitive
|
141
|
+
orientations of it. The *no*-certificates, on the other hand, are odd cycles of
|
142
|
+
such graph. These odd cycles have the property that around each vertex `v` of
|
143
|
+
the cycle its two incident edges must have the same orientation (toward `v`, or
|
144
|
+
outward `v`) in any transitive orientation of the graph. This is impossible
|
145
|
+
whenever the cycle has odd length. Explanations are given in the "Greedy
|
146
|
+
algorithm" part of the previous section.
|
147
|
+
|
148
|
+
**Permutation graphs**
|
149
|
+
|
150
|
+
Permutation graphs are precisely the intersection of comparability graphs and
|
151
|
+
co-comparability graphs. Hence, negative certificates are precisely negative
|
152
|
+
certificates of comparability or co-comparability. Positive certificates are a
|
153
|
+
pair of permutations that can be used through
|
154
|
+
:meth:`~sage.graphs.graph_generators.GraphGenerators.PermutationGraph` (whose
|
155
|
+
documentation says more about what these permutations represent).
|
156
|
+
|
157
|
+
Implementation details
|
158
|
+
----------------------
|
159
|
+
|
160
|
+
**Test that the equivalence classes are not self-contradictory**
|
161
|
+
|
162
|
+
This is done by a call to :meth:`Graph.is_bipartite`, and here is how :
|
163
|
+
|
164
|
+
Around a vertex `u`, any two edges `uv, uv'` such that `vv'\not\in G` are
|
165
|
+
equivalent. Hence, the equivalence class of edges around a vertex are
|
166
|
+
precisely the connected components of the complement of the graph induced by
|
167
|
+
the neighbors of `u`.
|
168
|
+
|
169
|
+
In each equivalence class (around a given vertex `u`), the edges should all
|
170
|
+
have the same orientation, i.e. all should go toward `u` at the same time, or
|
171
|
+
leave it at the same time. To represent this, we create a graph with vertices
|
172
|
+
for all equivalent classes around all vertices of `G`, and link `(v, C)` to
|
173
|
+
`(u, C')` if `u\in C` and `v\in C'`.
|
174
|
+
|
175
|
+
A bipartite coloring of this graph with colors 0 and 1 tells us that the
|
176
|
+
edges of an equivalence class `C` around `u` should be directed toward `u` if
|
177
|
+
`(u, C)` is colored with `0`, and outward if `(u, C)` is colored with `1`.
|
178
|
+
|
179
|
+
If the graph is not bipartite, this is the proof that some equivalence class
|
180
|
+
is self-contradictory !
|
181
|
+
|
182
|
+
|
183
|
+
.. NOTE::
|
184
|
+
|
185
|
+
The greedy algorithm implemented here is just there to check the correction
|
186
|
+
of more complicated ones, and it is reaaaaaaaaaaaalllly bad whenever you
|
187
|
+
look at it with performance in mind.
|
188
|
+
|
189
|
+
Methods
|
190
|
+
-------
|
191
|
+
"""
|
192
|
+
|
193
|
+
# ****************************************************************************
|
194
|
+
# Copyright (C) 2012 Nathann Cohen <nathann.cohen@gmail.com>
|
195
|
+
#
|
196
|
+
# This program is free software: you can redistribute it and/or modify
|
197
|
+
# it under the terms of the GNU General Public License as published by
|
198
|
+
# the Free Software Foundation, either version 2 of the License, or
|
199
|
+
# (at your option) any later version.
|
200
|
+
# https://www.gnu.org/licenses/
|
201
|
+
# ****************************************************************************
|
202
|
+
|
203
|
+
from libc.stdint cimport uint32_t
|
204
|
+
from memory_allocator cimport MemoryAllocator
|
205
|
+
|
206
|
+
from sage.data_structures.bitset_base cimport *
|
207
|
+
from sage.graphs.base.static_sparse_backend cimport StaticSparseCGraph
|
208
|
+
from sage.graphs.base.static_sparse_backend cimport StaticSparseBackend
|
209
|
+
from sage.graphs.base.static_sparse_graph cimport (short_digraph,
|
210
|
+
init_short_digraph,
|
211
|
+
free_short_digraph,
|
212
|
+
simple_BFS,
|
213
|
+
out_degree)
|
214
|
+
|
215
|
+
from copy import copy
|
216
|
+
|
217
|
+
|
218
|
+
#####################
|
219
|
+
# Greedy Algorithms #
|
220
|
+
#####################
|
221
|
+
|
222
|
+
def greedy_is_comparability(g, no_certificate=False, equivalence_class=False):
|
223
|
+
r"""
|
224
|
+
Check whether the graph is a comparability graph (greedy algorithm).
|
225
|
+
|
226
|
+
This method only returns no-certificates.
|
227
|
+
|
228
|
+
To understand how this method works, please consult the documentation of the
|
229
|
+
:mod:`comparability module <sage.graphs.comparability>`.
|
230
|
+
|
231
|
+
INPUT:
|
232
|
+
|
233
|
+
- ``g`` -- a graph
|
234
|
+
|
235
|
+
- ``no_certificate`` -- whether to return a *no*-certificate when the graph
|
236
|
+
is not a comparability graph. This certificate is an odd cycle of edges,
|
237
|
+
each of which implies the next. It is set to ``False`` by default.
|
238
|
+
|
239
|
+
- ``equivalence_class`` -- whether to return an equivalence class
|
240
|
+
if the graph is a comparability graph
|
241
|
+
|
242
|
+
OUTPUT:
|
243
|
+
|
244
|
+
- If the graph is a comparability graph and ``no_certificate = False``, this
|
245
|
+
method returns ``True`` or ``(True, an_equivalence_class)`` according to
|
246
|
+
the value of ``equivalence_class``.
|
247
|
+
|
248
|
+
- If the graph is *not* a comparability graph, this method returns ``False``
|
249
|
+
or ``(False, odd_cycle)`` according to the value of ``no_certificate``.
|
250
|
+
|
251
|
+
EXAMPLES:
|
252
|
+
|
253
|
+
The Petersen Graph is not transitively orientable::
|
254
|
+
|
255
|
+
sage: from sage.graphs.comparability import greedy_is_comparability as is_comparability
|
256
|
+
sage: g = graphs.PetersenGraph()
|
257
|
+
sage: is_comparability(g)
|
258
|
+
False
|
259
|
+
sage: is_comparability(g, no_certificate=True)
|
260
|
+
(False, [2, 1, 0, 4, 3, 2])
|
261
|
+
|
262
|
+
But the Bull graph is::
|
263
|
+
|
264
|
+
sage: g = graphs.BullGraph()
|
265
|
+
sage: is_comparability(g)
|
266
|
+
True
|
267
|
+
|
268
|
+
TESTS:
|
269
|
+
|
270
|
+
Check that the method is working even when vertices are of incomparable
|
271
|
+
types::
|
272
|
+
|
273
|
+
sage: from sage.graphs.comparability import greedy_is_comparability
|
274
|
+
sage: G = Graph([('a', 1), (1, 2), (2, 3)])
|
275
|
+
sage: greedy_is_comparability(G, equivalence_class=True)
|
276
|
+
(True, [('a', 1), (2, 1), (2, 3)])
|
277
|
+
"""
|
278
|
+
cdef int i, j
|
279
|
+
|
280
|
+
# Each vertex can partition its neighbors into equivalence classes
|
281
|
+
cdef dict equivalence_classes = {}
|
282
|
+
for v in g:
|
283
|
+
equivalence_classes[v] = g.subgraph(vertices=g.neighbors(v)).complement().connected_components(sort=False)
|
284
|
+
|
285
|
+
# We build a graph h with one vertex per (vertex of g + equivalence class)
|
286
|
+
from sage.graphs.graph import Graph
|
287
|
+
h = Graph()
|
288
|
+
h.add_vertices([(v, i) for v in g for i in range(len(equivalence_classes[v]))])
|
289
|
+
|
290
|
+
# We add an edge between two vertices of h if they represent
|
291
|
+
# opposed equivalence classes
|
292
|
+
|
293
|
+
for u, v in g.edge_iterator(labels=False):
|
294
|
+
|
295
|
+
for i, s in enumerate(equivalence_classes[v]):
|
296
|
+
if u in s:
|
297
|
+
break
|
298
|
+
|
299
|
+
for j, s in enumerate(equivalence_classes[u]):
|
300
|
+
if v in s:
|
301
|
+
break
|
302
|
+
|
303
|
+
h.add_edge((v, i), (u, j))
|
304
|
+
|
305
|
+
# Is it a comparability graph ?
|
306
|
+
|
307
|
+
cdef int isit
|
308
|
+
isit, certif = h.is_bipartite(certificate=True)
|
309
|
+
|
310
|
+
if isit:
|
311
|
+
if equivalence_class:
|
312
|
+
# We use a mapping between vertices and integers to deal with
|
313
|
+
# vertices of different types
|
314
|
+
int_to_vertex = list(g)
|
315
|
+
vertex_to_int = {u: i for i, u in enumerate(int_to_vertex)}
|
316
|
+
|
317
|
+
# Returning the largest equivalence class
|
318
|
+
cc = max(h.connected_components(sort=False), key=len)
|
319
|
+
|
320
|
+
edges = []
|
321
|
+
for v, sid in cc:
|
322
|
+
s = equivalence_classes[v][sid]
|
323
|
+
|
324
|
+
# For each edge we pick the good orientations
|
325
|
+
vi = vertex_to_int[v]
|
326
|
+
if certif[v, sid] == 1:
|
327
|
+
edges.extend((vi, vertex_to_int[vv]) for vv in s)
|
328
|
+
else:
|
329
|
+
edges.extend((vertex_to_int[vv], vi) for vv in s)
|
330
|
+
|
331
|
+
# We return the value but take care of removing edges that were
|
332
|
+
# added twice.
|
333
|
+
edges = [(int_to_vertex[u], int_to_vertex[v]) for u, v in sorted(set(edges))]
|
334
|
+
return True, edges
|
335
|
+
|
336
|
+
return True
|
337
|
+
|
338
|
+
if no_certificate:
|
339
|
+
cycle = [v for v, _ in certif]
|
340
|
+
cycle.append(cycle[0])
|
341
|
+
return False, cycle
|
342
|
+
return False
|
343
|
+
|
344
|
+
|
345
|
+
def greedy_is_comparability_with_certificate(g, certificate=False):
|
346
|
+
r"""
|
347
|
+
Check whether the graph is a comparability graph and returns
|
348
|
+
certificates (greedy algorithm).
|
349
|
+
|
350
|
+
This method can return certificates of both *yes* and *no* answers.
|
351
|
+
|
352
|
+
To understand how this method works, please consult the documentation of the
|
353
|
+
:mod:`comparability module <sage.graphs.comparability>`.
|
354
|
+
|
355
|
+
INPUT:
|
356
|
+
|
357
|
+
- ``g`` -- a graph
|
358
|
+
|
359
|
+
- ``certificate`` -- boolean; whether to return a
|
360
|
+
certificate. *Yes*-answers the certificate is a transitive orientation of
|
361
|
+
`G`, and a *no* certificates is an odd cycle of sequentially forcing
|
362
|
+
edges.
|
363
|
+
|
364
|
+
EXAMPLES:
|
365
|
+
|
366
|
+
The 5-cycle or the Petersen Graph are not transitively orientable::
|
367
|
+
|
368
|
+
sage: from sage.graphs.comparability import greedy_is_comparability_with_certificate as is_comparability
|
369
|
+
sage: is_comparability(graphs.CycleGraph(5), certificate=True)
|
370
|
+
(False, [2, 1, 0, 4, 3, 2])
|
371
|
+
sage: g = graphs.PetersenGraph()
|
372
|
+
sage: is_comparability(g)
|
373
|
+
False
|
374
|
+
sage: is_comparability(g, certificate=True)
|
375
|
+
(False, [2, 1, 0, 4, 3, 2])
|
376
|
+
|
377
|
+
But the Bull graph is::
|
378
|
+
|
379
|
+
sage: g = graphs.BullGraph()
|
380
|
+
sage: is_comparability(g)
|
381
|
+
True
|
382
|
+
sage: is_comparability(g, certificate = True)
|
383
|
+
(True, Digraph on 5 vertices)
|
384
|
+
sage: is_comparability(g, certificate = True)[1].is_transitive()
|
385
|
+
True
|
386
|
+
|
387
|
+
TESTS:
|
388
|
+
|
389
|
+
Check that the method is working even when vertices are of incomparable
|
390
|
+
types::
|
391
|
+
|
392
|
+
sage: from sage.graphs.comparability import greedy_is_comparability_with_certificate
|
393
|
+
sage: G = Graph([('a', 1), (1, 2), (2, 3)])
|
394
|
+
sage: greedy_is_comparability_with_certificate(G, certificate=True)
|
395
|
+
(True, Digraph on 4 vertices)
|
396
|
+
"""
|
397
|
+
isit, certif = greedy_is_comparability(g, no_certificate=True, equivalence_class=True)
|
398
|
+
if not isit:
|
399
|
+
if certificate:
|
400
|
+
return False, certif
|
401
|
+
return False
|
402
|
+
|
403
|
+
elif not certificate:
|
404
|
+
return True
|
405
|
+
|
406
|
+
gg = copy(g)
|
407
|
+
from sage.graphs.digraph import DiGraph
|
408
|
+
h = DiGraph()
|
409
|
+
h.add_vertices(gg)
|
410
|
+
|
411
|
+
for u, v in certif:
|
412
|
+
gg.delete_edge(u, v)
|
413
|
+
h.add_edge(u, v)
|
414
|
+
|
415
|
+
# While there are some edges left to be oriented
|
416
|
+
while gg.size():
|
417
|
+
|
418
|
+
# We take an equivalence class and orient it
|
419
|
+
isit, certif = greedy_is_comparability(gg, no_certificate=True, equivalence_class=True)
|
420
|
+
|
421
|
+
# Then remove it from the former graph
|
422
|
+
for u, v in certif:
|
423
|
+
gg.delete_edge(u, v)
|
424
|
+
h.add_edge(u, v)
|
425
|
+
|
426
|
+
return True, h
|
427
|
+
|
428
|
+
|
429
|
+
###################
|
430
|
+
# Integer Program #
|
431
|
+
###################
|
432
|
+
|
433
|
+
def is_comparability_MILP(g, certificate=False, solver=None, verbose=0):
|
434
|
+
r"""
|
435
|
+
Check whether the graph is a comparability graph (MILP).
|
436
|
+
|
437
|
+
INPUT:
|
438
|
+
|
439
|
+
- ``g`` -- a graph
|
440
|
+
|
441
|
+
- ``certificate`` -- boolean (default: ``False``); whether to return a
|
442
|
+
certificate for yes instances. This method cannot return negative
|
443
|
+
certificates.
|
444
|
+
|
445
|
+
- ``solver`` -- string (default: ``None``); specifies a Mixed Integer Linear
|
446
|
+
Programming (MILP) solver to be used. If set to ``None``, the default one
|
447
|
+
is used. For more information on MILP solvers and which default solver is
|
448
|
+
used, see the method :meth:`solve
|
449
|
+
<sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class
|
450
|
+
:class:`MixedIntegerLinearProgram
|
451
|
+
<sage.numerical.mip.MixedIntegerLinearProgram>`.
|
452
|
+
|
453
|
+
- ``verbose`` -- integer (default: 0); sets the level of verbosity. Set
|
454
|
+
to 0 by default, which means quiet.
|
455
|
+
|
456
|
+
EXAMPLES:
|
457
|
+
|
458
|
+
The 5-cycle or the Petersen Graph are not transitively orientable::
|
459
|
+
|
460
|
+
sage: from sage.graphs.comparability import is_comparability_MILP as is_comparability
|
461
|
+
sage: is_comparability(graphs.CycleGraph(5), certificate=True) # needs sage.numerical.mip
|
462
|
+
(False, None)
|
463
|
+
sage: g = graphs.PetersenGraph()
|
464
|
+
sage: is_comparability(g, certificate=True) # needs sage.numerical.mip
|
465
|
+
(False, None)
|
466
|
+
|
467
|
+
But the Bull graph is::
|
468
|
+
|
469
|
+
sage: g = graphs.BullGraph()
|
470
|
+
sage: is_comparability(g) # needs sage.numerical.mip
|
471
|
+
True
|
472
|
+
sage: is_comparability(g, certificate=True) # needs sage.numerical.mip
|
473
|
+
(True, Digraph on 5 vertices)
|
474
|
+
sage: is_comparability(g, certificate=True)[1].is_transitive() # needs sage.numerical.mip
|
475
|
+
True
|
476
|
+
"""
|
477
|
+
from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException
|
478
|
+
p = MixedIntegerLinearProgram(solver=solver)
|
479
|
+
o = p.new_variable(binary=True)
|
480
|
+
|
481
|
+
for u, v in g.edge_iterator(labels=False):
|
482
|
+
p.add_constraint(o[u, v] + o[v, u] == 1)
|
483
|
+
|
484
|
+
from itertools import combinations
|
485
|
+
for u in g:
|
486
|
+
for v, vv in combinations(g.neighbors(u), 2):
|
487
|
+
|
488
|
+
# If there is an edge between v and vv, we must be sure it is in the
|
489
|
+
# good direction when v-u-vv is a directed path
|
490
|
+
if g.has_edge(v, vv):
|
491
|
+
p.add_constraint(o[u, v] + o[vv, u] - o[vv, v] <= 1)
|
492
|
+
p.add_constraint(o[u, vv] + o[v, u] - o[v, vv] <= 1)
|
493
|
+
|
494
|
+
# If there is no edge, there are only two orientations possible (see
|
495
|
+
# the module's documentation about edges which imply each other)
|
496
|
+
else:
|
497
|
+
p.add_constraint(o[u, v] + o[vv, u] <= 1)
|
498
|
+
p.add_constraint(o[u, vv] + o[v, u] <= 1)
|
499
|
+
|
500
|
+
try:
|
501
|
+
p.solve(log=verbose)
|
502
|
+
if not certificate:
|
503
|
+
return True
|
504
|
+
|
505
|
+
# Building the transitive orientation
|
506
|
+
from sage.graphs.digraph import DiGraph
|
507
|
+
d = DiGraph()
|
508
|
+
d.add_vertices(g)
|
509
|
+
|
510
|
+
tol = 0 if p.base_ring().is_exact() else 1e-6
|
511
|
+
o = p.get_values(o, convert=True, tolerance=tol)
|
512
|
+
for u, v in g.edge_iterator(labels=False):
|
513
|
+
if o[u, v]:
|
514
|
+
d.add_edge(u, v)
|
515
|
+
else:
|
516
|
+
d.add_edge(v, u)
|
517
|
+
|
518
|
+
return True, d
|
519
|
+
|
520
|
+
except MIPSolverException:
|
521
|
+
if certificate:
|
522
|
+
return False, None
|
523
|
+
return False
|
524
|
+
|
525
|
+
|
526
|
+
###############
|
527
|
+
# Empty shell #
|
528
|
+
###############
|
529
|
+
|
530
|
+
def is_comparability(g, algorithm='greedy', certificate=False, check=True,
|
531
|
+
solver=None, verbose=0):
|
532
|
+
r"""
|
533
|
+
Check whether the graph is a comparability graph.
|
534
|
+
|
535
|
+
INPUT:
|
536
|
+
|
537
|
+
- ``g`` -- a graph
|
538
|
+
|
539
|
+
- ``algorithm`` -- string (default: ``'greedy'``); choose the implementation
|
540
|
+
used to do the test
|
541
|
+
|
542
|
+
- ``'greedy'`` -- a greedy algorithm (see the documentation of the
|
543
|
+
:mod:`comparability module <sage.graphs.comparability>`)
|
544
|
+
|
545
|
+
- ``'MILP'`` -- a Mixed Integer Linear Program formulation of the
|
546
|
+
problem. Beware, for this implementation is unable to return negative
|
547
|
+
certificates ! When ``certificate = True``, negative certificates are
|
548
|
+
always equal to ``None``. ``True`` certificates are valid, though.
|
549
|
+
|
550
|
+
- ``certificate`` -- boolean (default: ``False``); whether to return a
|
551
|
+
certificate. *Yes*-answers the certificate is a transitive orientation of
|
552
|
+
`G`, and a *no* certificates is an odd cycle of sequentially forcing
|
553
|
+
edges.
|
554
|
+
|
555
|
+
- ``check`` -- boolean (default: ``True``); whether to check that the
|
556
|
+
yes-certificates are indeed transitive. As it is very quick
|
557
|
+
compared to the rest of the operation, it is enabled by default.
|
558
|
+
|
559
|
+
- ``solver`` -- string (default: ``None``); specifies a Mixed Integer Linear
|
560
|
+
Programming (MILP) solver to be used. If set to ``None``, the default one
|
561
|
+
is used. For more information on MILP solvers and which default solver is
|
562
|
+
used, see the method :meth:`solve
|
563
|
+
<sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class
|
564
|
+
:class:`MixedIntegerLinearProgram
|
565
|
+
<sage.numerical.mip.MixedIntegerLinearProgram>`.
|
566
|
+
|
567
|
+
- ``verbose`` -- integer (default: 0); sets the level of verbosity. Set
|
568
|
+
to 0 by default, which means quiet.
|
569
|
+
|
570
|
+
EXAMPLES::
|
571
|
+
|
572
|
+
sage: from sage.graphs.comparability import is_comparability
|
573
|
+
sage: g = graphs.PetersenGraph()
|
574
|
+
sage: is_comparability(g)
|
575
|
+
False
|
576
|
+
sage: is_comparability(graphs.CompleteGraph(5), certificate=True)
|
577
|
+
(True, Digraph on 5 vertices)
|
578
|
+
|
579
|
+
TESTS:
|
580
|
+
|
581
|
+
Let us ensure that no exception is raised when we go over all small graphs::
|
582
|
+
|
583
|
+
sage: from sage.graphs.comparability import is_comparability
|
584
|
+
sage: [len([g for g in graphs(i) if is_comparability(g, certificate=True)[0]]) for i in range(7)] # needs nauty
|
585
|
+
[1, 1, 2, 4, 11, 33, 144]
|
586
|
+
"""
|
587
|
+
g._scream_if_not_simple()
|
588
|
+
if not g.size():
|
589
|
+
if certificate:
|
590
|
+
from sage.graphs.digraph import DiGraph
|
591
|
+
return True, DiGraph(g)
|
592
|
+
return True
|
593
|
+
|
594
|
+
if algorithm == "greedy":
|
595
|
+
comparability_test = greedy_is_comparability_with_certificate(g, certificate=certificate)
|
596
|
+
elif algorithm == "MILP":
|
597
|
+
comparability_test = is_comparability_MILP(g, certificate=certificate,
|
598
|
+
solver=solver, verbose=verbose)
|
599
|
+
|
600
|
+
if not certificate:
|
601
|
+
return comparability_test
|
602
|
+
|
603
|
+
# Checking that the orientation found is indeed transitive. No
|
604
|
+
# reason why it should not, but no reason why we should not check
|
605
|
+
# anyway :-p
|
606
|
+
isit, certif = comparability_test
|
607
|
+
|
608
|
+
if check and isit and (not certif.is_transitive()):
|
609
|
+
raise ValueError("Looks like there is a bug somewhere. The "
|
610
|
+
"algorithm thinks that the orientation is "
|
611
|
+
"transitive, but we just checked and it is not. "
|
612
|
+
"Please report the bug on sage-devel, and give "
|
613
|
+
"us the graph that made this method fail !")
|
614
|
+
|
615
|
+
return isit, certif
|
616
|
+
|
617
|
+
|
618
|
+
def is_permutation(g, algorithm='greedy', certificate=False, check=True,
|
619
|
+
solver=None, verbose=0):
|
620
|
+
r"""
|
621
|
+
Check whether the graph is a permutation graph.
|
622
|
+
|
623
|
+
For more information on permutation graphs, refer to the documentation of
|
624
|
+
the :mod:`comparability module <sage.graphs.comparability>`.
|
625
|
+
|
626
|
+
INPUT:
|
627
|
+
|
628
|
+
- ``g`` -- a graph
|
629
|
+
|
630
|
+
- ``algorithm`` -- string (default: ``'greedy'``); choose the implementation
|
631
|
+
used for the subcalls to :meth:`is_comparability`
|
632
|
+
|
633
|
+
- ``'greedy'`` -- a greedy algorithm (see the documentation of the
|
634
|
+
:mod:`comparability module <sage.graphs.comparability>`)
|
635
|
+
|
636
|
+
- ``'MILP'`` -- a Mixed Integer Linear Program formulation of the
|
637
|
+
problem. Beware, for this implementation is unable to return negative
|
638
|
+
certificates ! When ``certificate = True``, negative certificates are
|
639
|
+
always equal to ``None``. ``True`` certificates are valid, though.
|
640
|
+
|
641
|
+
- ``certificate`` -- boolean (default: ``False``); whether to return a
|
642
|
+
certificate for the answer given. For ``True`` answers the certificate is
|
643
|
+
a permutation, for ``False`` answers it is a no-certificate for the test
|
644
|
+
of comparability or co-comparability.
|
645
|
+
|
646
|
+
- ``check`` -- boolean (default: ``True``); whether to check that the
|
647
|
+
permutations returned indeed create the expected Permutation graph. Pretty
|
648
|
+
cheap compared to the rest, hence a good investment. It is enabled by
|
649
|
+
default.
|
650
|
+
|
651
|
+
- ``solver`` -- string (default: ``None``); specifies a Mixed Integer Linear
|
652
|
+
Programming (MILP) solver to be used. If set to ``None``, the default one
|
653
|
+
is used. For more information on MILP solvers and which default solver is
|
654
|
+
used, see the method :meth:`solve
|
655
|
+
<sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class
|
656
|
+
:class:`MixedIntegerLinearProgram
|
657
|
+
<sage.numerical.mip.MixedIntegerLinearProgram>`.
|
658
|
+
|
659
|
+
- ``verbose`` -- integer (default: 0); sets the level of verbosity. Set
|
660
|
+
to 0 by default, which means quiet.
|
661
|
+
|
662
|
+
.. NOTE::
|
663
|
+
|
664
|
+
As the ``True`` certificate is a :class:`Permutation` object, the
|
665
|
+
segment intersection model of the permutation graph can be visualized
|
666
|
+
through a call to :meth:`Permutation.show
|
667
|
+
<sage.combinat.permutation.Permutation.show>`.
|
668
|
+
|
669
|
+
EXAMPLES:
|
670
|
+
|
671
|
+
A permutation realizing the bull graph::
|
672
|
+
|
673
|
+
sage: from sage.graphs.comparability import is_permutation
|
674
|
+
sage: g = graphs.BullGraph()
|
675
|
+
sage: _ , certif = is_permutation(g, certificate=True)
|
676
|
+
sage: h = graphs.PermutationGraph(*certif)
|
677
|
+
sage: h.is_isomorphic(g)
|
678
|
+
True
|
679
|
+
|
680
|
+
Plotting the realization as an intersection graph of segments::
|
681
|
+
|
682
|
+
sage: true, perm = is_permutation(g, certificate=True)
|
683
|
+
sage: p1 = Permutation([nn+1 for nn in perm[0]])
|
684
|
+
sage: p2 = Permutation([nn+1 for nn in perm[1]])
|
685
|
+
sage: p = p2 * p1.inverse()
|
686
|
+
sage: p.show(representation='braid') # needs sage.plot
|
687
|
+
|
688
|
+
TESTS:
|
689
|
+
|
690
|
+
Trying random permutations, first with the greedy algorithm::
|
691
|
+
|
692
|
+
sage: from sage.graphs.comparability import is_permutation
|
693
|
+
sage: for i in range(20):
|
694
|
+
....: p = Permutations(10).random_element()
|
695
|
+
....: g1 = graphs.PermutationGraph(p)
|
696
|
+
....: isit, certif = is_permutation(g1, certificate=True)
|
697
|
+
....: if not isit:
|
698
|
+
....: print("Something is wrong here !!")
|
699
|
+
....: break
|
700
|
+
....: g2 = graphs.PermutationGraph(*certif)
|
701
|
+
....: if not g1.is_isomorphic(g2):
|
702
|
+
....: print("Something is wrong here !!")
|
703
|
+
....: break
|
704
|
+
|
705
|
+
Then with MILP::
|
706
|
+
|
707
|
+
sage: from sage.graphs.comparability import is_permutation
|
708
|
+
sage: for i in range(20): # needs sage.numerical.mip
|
709
|
+
....: p = Permutations(10).random_element()
|
710
|
+
....: g1 = graphs.PermutationGraph(p)
|
711
|
+
....: isit, certif = is_permutation(g1, algorithm='MILP', certificate=True)
|
712
|
+
....: if not isit:
|
713
|
+
....: print("Something is wrong here !!")
|
714
|
+
....: break
|
715
|
+
....: g2 = graphs.PermutationGraph(*certif)
|
716
|
+
....: if not g1.is_isomorphic(g2):
|
717
|
+
....: print("Something is wrong here !!")
|
718
|
+
....: break
|
719
|
+
"""
|
720
|
+
if not certificate:
|
721
|
+
# No certificate... A piece of cake
|
722
|
+
return (is_comparability(g, algorithm=algorithm, solver=solver, verbose=verbose) and
|
723
|
+
is_comparability(g.complement(), algorithm=algorithm, solver=solver, verbose=verbose))
|
724
|
+
|
725
|
+
# First poset, we stop if it fails
|
726
|
+
isit, certif = is_comparability(g, algorithm=algorithm, certificate=True,
|
727
|
+
solver=solver, verbose=verbose)
|
728
|
+
if not isit:
|
729
|
+
return False, certif
|
730
|
+
|
731
|
+
# Second poset
|
732
|
+
isit, co_certif = is_comparability(g.complement(), algorithm=algorithm, certificate=True,
|
733
|
+
solver=solver, verbose=verbose)
|
734
|
+
if not isit:
|
735
|
+
return False, co_certif
|
736
|
+
|
737
|
+
# Building the two orderings
|
738
|
+
tmp = list(co_certif.edges(labels=False, sort=False))
|
739
|
+
for u, v in certif.edge_iterator(labels=False):
|
740
|
+
co_certif.add_edge(v, u)
|
741
|
+
certif.add_edges(tmp)
|
742
|
+
|
743
|
+
ordering = certif.topological_sort()
|
744
|
+
co_ordering = co_certif.topological_sort()
|
745
|
+
|
746
|
+
# Try to build the Permutation graph from the permutations, just to make
|
747
|
+
# sure nothing weird happened !
|
748
|
+
if check:
|
749
|
+
from sage.graphs.graph_generators import GraphGenerators
|
750
|
+
pg = GraphGenerators().PermutationGraph(ordering, co_ordering)
|
751
|
+
if not pg.is_isomorphic(g):
|
752
|
+
raise ValueError("There is a mistake somewhere ! It looks like "
|
753
|
+
"the Permutation Graph model computed does "
|
754
|
+
"not match the input graph !")
|
755
|
+
|
756
|
+
return True, (ordering, co_ordering)
|
757
|
+
|
758
|
+
|
759
|
+
def is_transitive(g, certificate=False):
|
760
|
+
r"""
|
761
|
+
Check whether the digraph is transitive.
|
762
|
+
|
763
|
+
A digraph is transitive if for any pair of vertices `u,v\in G` linked by a
|
764
|
+
`uv`-path the edge `uv` belongs to `G`.
|
765
|
+
|
766
|
+
INPUT:
|
767
|
+
|
768
|
+
- ``g`` -- a digraph
|
769
|
+
|
770
|
+
- ``certificate`` -- boolean (default: ``False``); whether to return a
|
771
|
+
certificate for negative answers
|
772
|
+
|
773
|
+
- If ``certificate = False`` (default), this method returns ``True`` or
|
774
|
+
``False`` according to the graph.
|
775
|
+
|
776
|
+
- If ``certificate = True``, this method either returns ``True`` answers
|
777
|
+
or yield a pair of vertices `uv` such that there exists a `uv`-path in
|
778
|
+
`G` but `uv\not\in G`.
|
779
|
+
|
780
|
+
EXAMPLES::
|
781
|
+
|
782
|
+
sage: digraphs.Circuit(4).is_transitive()
|
783
|
+
False
|
784
|
+
sage: digraphs.Circuit(4).is_transitive(certificate=True)
|
785
|
+
(0, 2)
|
786
|
+
sage: digraphs.RandomDirectedGNP(30,.2).is_transitive()
|
787
|
+
False
|
788
|
+
sage: D = digraphs.DeBruijn(5, 2) # needs sage.combinat
|
789
|
+
sage: D.is_transitive() # needs sage.combinat
|
790
|
+
False
|
791
|
+
sage: cert = D.is_transitive(certificate=True) # needs sage.combinat
|
792
|
+
sage: D.has_edge(*cert) # needs sage.combinat
|
793
|
+
False
|
794
|
+
sage: bool(D.shortest_path(*cert)) # needs sage.combinat
|
795
|
+
True
|
796
|
+
sage: digraphs.RandomDirectedGNP(20,.2).transitive_closure().is_transitive() # needs networkx
|
797
|
+
True
|
798
|
+
"""
|
799
|
+
cdef int n = g.order()
|
800
|
+
if n <= 2:
|
801
|
+
return True
|
802
|
+
|
803
|
+
# Copying the whole graph to obtain the list of neighbors quicker than by
|
804
|
+
# calling out_neighbors. This data structure is well documented in the
|
805
|
+
# module sage.graphs.base.static_sparse_graph
|
806
|
+
cdef list int_to_vertex
|
807
|
+
cdef StaticSparseCGraph cg
|
808
|
+
cdef short_digraph sd
|
809
|
+
if isinstance(g, StaticSparseBackend):
|
810
|
+
cg = <StaticSparseCGraph> g._cg
|
811
|
+
sd = <short_digraph> cg.g
|
812
|
+
int_to_vertex = cg._vertex_to_labels
|
813
|
+
else:
|
814
|
+
int_to_vertex = list(g)
|
815
|
+
init_short_digraph(sd, g, edge_labelled=False, vertex_list=int_to_vertex)
|
816
|
+
|
817
|
+
cdef MemoryAllocator mem = MemoryAllocator()
|
818
|
+
cdef uint32_t * distances = <uint32_t *> mem.malloc(n * sizeof(uint32_t))
|
819
|
+
cdef uint32_t * waiting_list = <uint32_t *> mem.malloc(n * sizeof(uint32_t))
|
820
|
+
cdef bitset_t seen
|
821
|
+
bitset_init(seen, n)
|
822
|
+
|
823
|
+
cdef uint32_t u, v
|
824
|
+
cdef int i
|
825
|
+
|
826
|
+
for u in range(n):
|
827
|
+
|
828
|
+
# 1. perform a breadth first search from u
|
829
|
+
_ = simple_BFS(sd, u, distances, NULL, waiting_list, seen)
|
830
|
+
|
831
|
+
# 2. Check whether the BFS reaches vertices that are not in the closed
|
832
|
+
# neighborhood of u.
|
833
|
+
if bitset_len(seen) != out_degree(sd, u) + 1:
|
834
|
+
if certificate:
|
835
|
+
bitset_discard(seen, u)
|
836
|
+
for i in range(out_degree(sd, u)):
|
837
|
+
bitset_discard(seen, sd.neighbors[u][i])
|
838
|
+
v = bitset_first(seen)
|
839
|
+
|
840
|
+
bitset_free(seen)
|
841
|
+
if not isinstance(g, StaticSparseBackend):
|
842
|
+
free_short_digraph(sd)
|
843
|
+
if certificate:
|
844
|
+
return (int_to_vertex[u], int_to_vertex[v])
|
845
|
+
return False
|
846
|
+
|
847
|
+
bitset_free(seen)
|
848
|
+
if not isinstance(g, StaticSparseBackend):
|
849
|
+
free_short_digraph(sd)
|
850
|
+
|
851
|
+
return True
|