numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (915) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  30. numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  31. numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  32. numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  33. numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
  34. numpy/_core/_simd.pyi +35 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  43. numpy/_core/_umath_tests.pyi +47 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +353 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1515 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +630 -0
  280. numpy/exceptions.py +246 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +5 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +244 -0
  294. numpy/f2py/_backends/_meson.pyi +62 -0
  295. numpy/f2py/_backends/meson.build.template +58 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +28 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +262 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +266 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +788 -0
  315. numpy/f2py/f2py2e.pyi +74 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +41 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1518 -0
  326. numpy/f2py/symbolic.pyi +219 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +66 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +983 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +52 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +500 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +213 -0
  460. numpy/fft/__init__.pyi +38 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +44 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +137 -0
  465. numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  466. numpy/fft/tests/__init__.py +0 -0
  467. numpy/fft/tests/test_helper.py +167 -0
  468. numpy/fft/tests/test_pocketfft.py +589 -0
  469. numpy/lib/__init__.py +97 -0
  470. numpy/lib/__init__.pyi +52 -0
  471. numpy/lib/_array_utils_impl.py +62 -0
  472. numpy/lib/_array_utils_impl.pyi +10 -0
  473. numpy/lib/_arraypad_impl.py +926 -0
  474. numpy/lib/_arraypad_impl.pyi +88 -0
  475. numpy/lib/_arraysetops_impl.py +1158 -0
  476. numpy/lib/_arraysetops_impl.pyi +462 -0
  477. numpy/lib/_arrayterator_impl.py +224 -0
  478. numpy/lib/_arrayterator_impl.pyi +45 -0
  479. numpy/lib/_datasource.py +700 -0
  480. numpy/lib/_datasource.pyi +30 -0
  481. numpy/lib/_format_impl.py +1036 -0
  482. numpy/lib/_format_impl.pyi +56 -0
  483. numpy/lib/_function_base_impl.py +5758 -0
  484. numpy/lib/_function_base_impl.pyi +2324 -0
  485. numpy/lib/_histograms_impl.py +1085 -0
  486. numpy/lib/_histograms_impl.pyi +40 -0
  487. numpy/lib/_index_tricks_impl.py +1048 -0
  488. numpy/lib/_index_tricks_impl.pyi +267 -0
  489. numpy/lib/_iotools.py +900 -0
  490. numpy/lib/_iotools.pyi +116 -0
  491. numpy/lib/_nanfunctions_impl.py +2001 -0
  492. numpy/lib/_nanfunctions_impl.pyi +48 -0
  493. numpy/lib/_npyio_impl.py +2583 -0
  494. numpy/lib/_npyio_impl.pyi +299 -0
  495. numpy/lib/_polynomial_impl.py +1465 -0
  496. numpy/lib/_polynomial_impl.pyi +338 -0
  497. numpy/lib/_scimath_impl.py +642 -0
  498. numpy/lib/_scimath_impl.pyi +93 -0
  499. numpy/lib/_shape_base_impl.py +1289 -0
  500. numpy/lib/_shape_base_impl.pyi +236 -0
  501. numpy/lib/_stride_tricks_impl.py +582 -0
  502. numpy/lib/_stride_tricks_impl.pyi +73 -0
  503. numpy/lib/_twodim_base_impl.py +1201 -0
  504. numpy/lib/_twodim_base_impl.pyi +408 -0
  505. numpy/lib/_type_check_impl.py +710 -0
  506. numpy/lib/_type_check_impl.pyi +348 -0
  507. numpy/lib/_ufunclike_impl.py +199 -0
  508. numpy/lib/_ufunclike_impl.pyi +60 -0
  509. numpy/lib/_user_array_impl.py +310 -0
  510. numpy/lib/_user_array_impl.pyi +226 -0
  511. numpy/lib/_utils_impl.py +784 -0
  512. numpy/lib/_utils_impl.pyi +22 -0
  513. numpy/lib/_version.py +153 -0
  514. numpy/lib/_version.pyi +17 -0
  515. numpy/lib/array_utils.py +7 -0
  516. numpy/lib/array_utils.pyi +6 -0
  517. numpy/lib/format.py +24 -0
  518. numpy/lib/format.pyi +24 -0
  519. numpy/lib/introspect.py +94 -0
  520. numpy/lib/introspect.pyi +3 -0
  521. numpy/lib/mixins.py +180 -0
  522. numpy/lib/mixins.pyi +78 -0
  523. numpy/lib/npyio.py +1 -0
  524. numpy/lib/npyio.pyi +5 -0
  525. numpy/lib/recfunctions.py +1681 -0
  526. numpy/lib/recfunctions.pyi +444 -0
  527. numpy/lib/scimath.py +13 -0
  528. numpy/lib/scimath.pyi +12 -0
  529. numpy/lib/stride_tricks.py +1 -0
  530. numpy/lib/stride_tricks.pyi +4 -0
  531. numpy/lib/tests/__init__.py +0 -0
  532. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  533. numpy/lib/tests/data/py2-objarr.npy +0 -0
  534. numpy/lib/tests/data/py2-objarr.npz +0 -0
  535. numpy/lib/tests/data/py3-objarr.npy +0 -0
  536. numpy/lib/tests/data/py3-objarr.npz +0 -0
  537. numpy/lib/tests/data/python3.npy +0 -0
  538. numpy/lib/tests/data/win64python2.npy +0 -0
  539. numpy/lib/tests/test__datasource.py +328 -0
  540. numpy/lib/tests/test__iotools.py +358 -0
  541. numpy/lib/tests/test__version.py +64 -0
  542. numpy/lib/tests/test_array_utils.py +32 -0
  543. numpy/lib/tests/test_arraypad.py +1427 -0
  544. numpy/lib/tests/test_arraysetops.py +1302 -0
  545. numpy/lib/tests/test_arrayterator.py +45 -0
  546. numpy/lib/tests/test_format.py +1054 -0
  547. numpy/lib/tests/test_function_base.py +4705 -0
  548. numpy/lib/tests/test_histograms.py +855 -0
  549. numpy/lib/tests/test_index_tricks.py +693 -0
  550. numpy/lib/tests/test_io.py +2857 -0
  551. numpy/lib/tests/test_loadtxt.py +1099 -0
  552. numpy/lib/tests/test_mixins.py +215 -0
  553. numpy/lib/tests/test_nanfunctions.py +1438 -0
  554. numpy/lib/tests/test_packbits.py +376 -0
  555. numpy/lib/tests/test_polynomial.py +325 -0
  556. numpy/lib/tests/test_recfunctions.py +1042 -0
  557. numpy/lib/tests/test_regression.py +231 -0
  558. numpy/lib/tests/test_shape_base.py +813 -0
  559. numpy/lib/tests/test_stride_tricks.py +655 -0
  560. numpy/lib/tests/test_twodim_base.py +559 -0
  561. numpy/lib/tests/test_type_check.py +473 -0
  562. numpy/lib/tests/test_ufunclike.py +97 -0
  563. numpy/lib/tests/test_utils.py +80 -0
  564. numpy/lib/user_array.py +1 -0
  565. numpy/lib/user_array.pyi +1 -0
  566. numpy/linalg/__init__.py +95 -0
  567. numpy/linalg/__init__.pyi +71 -0
  568. numpy/linalg/_linalg.py +3657 -0
  569. numpy/linalg/_linalg.pyi +548 -0
  570. numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
  571. numpy/linalg/_umath_linalg.pyi +60 -0
  572. numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
  573. numpy/linalg/lapack_lite.pyi +143 -0
  574. numpy/linalg/tests/__init__.py +0 -0
  575. numpy/linalg/tests/test_deprecations.py +21 -0
  576. numpy/linalg/tests/test_linalg.py +2442 -0
  577. numpy/linalg/tests/test_regression.py +182 -0
  578. numpy/ma/API_CHANGES.txt +135 -0
  579. numpy/ma/LICENSE +24 -0
  580. numpy/ma/README.rst +236 -0
  581. numpy/ma/__init__.py +53 -0
  582. numpy/ma/__init__.pyi +458 -0
  583. numpy/ma/core.py +8929 -0
  584. numpy/ma/core.pyi +3720 -0
  585. numpy/ma/extras.py +2266 -0
  586. numpy/ma/extras.pyi +297 -0
  587. numpy/ma/mrecords.py +762 -0
  588. numpy/ma/mrecords.pyi +96 -0
  589. numpy/ma/tests/__init__.py +0 -0
  590. numpy/ma/tests/test_arrayobject.py +40 -0
  591. numpy/ma/tests/test_core.py +6008 -0
  592. numpy/ma/tests/test_deprecations.py +65 -0
  593. numpy/ma/tests/test_extras.py +1945 -0
  594. numpy/ma/tests/test_mrecords.py +495 -0
  595. numpy/ma/tests/test_old_ma.py +939 -0
  596. numpy/ma/tests/test_regression.py +83 -0
  597. numpy/ma/tests/test_subclassing.py +469 -0
  598. numpy/ma/testutils.py +294 -0
  599. numpy/ma/testutils.pyi +69 -0
  600. numpy/matlib.py +380 -0
  601. numpy/matlib.pyi +580 -0
  602. numpy/matrixlib/__init__.py +12 -0
  603. numpy/matrixlib/__init__.pyi +3 -0
  604. numpy/matrixlib/defmatrix.py +1119 -0
  605. numpy/matrixlib/defmatrix.pyi +218 -0
  606. numpy/matrixlib/tests/__init__.py +0 -0
  607. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  608. numpy/matrixlib/tests/test_interaction.py +360 -0
  609. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  610. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  611. numpy/matrixlib/tests/test_multiarray.py +17 -0
  612. numpy/matrixlib/tests/test_numeric.py +18 -0
  613. numpy/matrixlib/tests/test_regression.py +31 -0
  614. numpy/polynomial/__init__.py +187 -0
  615. numpy/polynomial/__init__.pyi +31 -0
  616. numpy/polynomial/_polybase.py +1191 -0
  617. numpy/polynomial/_polybase.pyi +262 -0
  618. numpy/polynomial/_polytypes.pyi +501 -0
  619. numpy/polynomial/chebyshev.py +2001 -0
  620. numpy/polynomial/chebyshev.pyi +180 -0
  621. numpy/polynomial/hermite.py +1738 -0
  622. numpy/polynomial/hermite.pyi +106 -0
  623. numpy/polynomial/hermite_e.py +1640 -0
  624. numpy/polynomial/hermite_e.pyi +106 -0
  625. numpy/polynomial/laguerre.py +1673 -0
  626. numpy/polynomial/laguerre.pyi +100 -0
  627. numpy/polynomial/legendre.py +1603 -0
  628. numpy/polynomial/legendre.pyi +100 -0
  629. numpy/polynomial/polynomial.py +1625 -0
  630. numpy/polynomial/polynomial.pyi +109 -0
  631. numpy/polynomial/polyutils.py +759 -0
  632. numpy/polynomial/polyutils.pyi +307 -0
  633. numpy/polynomial/tests/__init__.py +0 -0
  634. numpy/polynomial/tests/test_chebyshev.py +618 -0
  635. numpy/polynomial/tests/test_classes.py +613 -0
  636. numpy/polynomial/tests/test_hermite.py +553 -0
  637. numpy/polynomial/tests/test_hermite_e.py +554 -0
  638. numpy/polynomial/tests/test_laguerre.py +535 -0
  639. numpy/polynomial/tests/test_legendre.py +566 -0
  640. numpy/polynomial/tests/test_polynomial.py +691 -0
  641. numpy/polynomial/tests/test_polyutils.py +123 -0
  642. numpy/polynomial/tests/test_printing.py +557 -0
  643. numpy/polynomial/tests/test_symbol.py +217 -0
  644. numpy/py.typed +0 -0
  645. numpy/random/LICENSE.md +71 -0
  646. numpy/random/__init__.pxd +14 -0
  647. numpy/random/__init__.py +213 -0
  648. numpy/random/__init__.pyi +124 -0
  649. numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
  650. numpy/random/_bounded_integers.pxd +29 -0
  651. numpy/random/_bounded_integers.pyi +1 -0
  652. numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
  653. numpy/random/_common.pxd +107 -0
  654. numpy/random/_common.pyi +16 -0
  655. numpy/random/_examples/cffi/extending.py +44 -0
  656. numpy/random/_examples/cffi/parse.py +53 -0
  657. numpy/random/_examples/cython/extending.pyx +77 -0
  658. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  659. numpy/random/_examples/cython/meson.build +53 -0
  660. numpy/random/_examples/numba/extending.py +86 -0
  661. numpy/random/_examples/numba/extending_distributions.py +67 -0
  662. numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  663. numpy/random/_generator.pyi +862 -0
  664. numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
  665. numpy/random/_mt19937.pyi +27 -0
  666. numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
  667. numpy/random/_pcg64.pyi +41 -0
  668. numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
  669. numpy/random/_philox.pyi +36 -0
  670. numpy/random/_pickle.py +88 -0
  671. numpy/random/_pickle.pyi +43 -0
  672. numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
  673. numpy/random/_sfc64.pyi +25 -0
  674. numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  675. numpy/random/bit_generator.pxd +35 -0
  676. numpy/random/bit_generator.pyi +123 -0
  677. numpy/random/c_distributions.pxd +119 -0
  678. numpy/random/lib/libnpyrandom.a +0 -0
  679. numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
  680. numpy/random/mtrand.pyi +759 -0
  681. numpy/random/tests/__init__.py +0 -0
  682. numpy/random/tests/data/__init__.py +0 -0
  683. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  684. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  685. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  686. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  687. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  688. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  689. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  690. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  691. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  692. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  693. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  694. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  695. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  696. numpy/random/tests/test_direct.py +595 -0
  697. numpy/random/tests/test_extending.py +131 -0
  698. numpy/random/tests/test_generator_mt19937.py +2825 -0
  699. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  700. numpy/random/tests/test_random.py +1724 -0
  701. numpy/random/tests/test_randomstate.py +2099 -0
  702. numpy/random/tests/test_randomstate_regression.py +213 -0
  703. numpy/random/tests/test_regression.py +175 -0
  704. numpy/random/tests/test_seed_sequence.py +79 -0
  705. numpy/random/tests/test_smoke.py +882 -0
  706. numpy/rec/__init__.py +2 -0
  707. numpy/rec/__init__.pyi +23 -0
  708. numpy/strings/__init__.py +2 -0
  709. numpy/strings/__init__.pyi +97 -0
  710. numpy/testing/__init__.py +22 -0
  711. numpy/testing/__init__.pyi +107 -0
  712. numpy/testing/_private/__init__.py +0 -0
  713. numpy/testing/_private/__init__.pyi +0 -0
  714. numpy/testing/_private/extbuild.py +250 -0
  715. numpy/testing/_private/extbuild.pyi +25 -0
  716. numpy/testing/_private/utils.py +2830 -0
  717. numpy/testing/_private/utils.pyi +505 -0
  718. numpy/testing/overrides.py +84 -0
  719. numpy/testing/overrides.pyi +10 -0
  720. numpy/testing/print_coercion_tables.py +207 -0
  721. numpy/testing/print_coercion_tables.pyi +26 -0
  722. numpy/testing/tests/__init__.py +0 -0
  723. numpy/testing/tests/test_utils.py +2123 -0
  724. numpy/tests/__init__.py +0 -0
  725. numpy/tests/test__all__.py +10 -0
  726. numpy/tests/test_configtool.py +51 -0
  727. numpy/tests/test_ctypeslib.py +383 -0
  728. numpy/tests/test_lazyloading.py +42 -0
  729. numpy/tests/test_matlib.py +59 -0
  730. numpy/tests/test_numpy_config.py +47 -0
  731. numpy/tests/test_numpy_version.py +54 -0
  732. numpy/tests/test_public_api.py +804 -0
  733. numpy/tests/test_reloading.py +76 -0
  734. numpy/tests/test_scripts.py +48 -0
  735. numpy/tests/test_warnings.py +79 -0
  736. numpy/typing/__init__.py +233 -0
  737. numpy/typing/__init__.pyi +3 -0
  738. numpy/typing/mypy_plugin.py +200 -0
  739. numpy/typing/tests/__init__.py +0 -0
  740. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  741. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  742. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  743. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  744. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  745. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  746. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  747. numpy/typing/tests/data/fail/char.pyi +63 -0
  748. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  749. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  750. numpy/typing/tests/data/fail/constants.pyi +3 -0
  751. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  752. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  753. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  754. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  755. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  756. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  757. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  758. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  759. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  760. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  761. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  762. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  763. numpy/typing/tests/data/fail/ma.pyi +155 -0
  764. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  765. numpy/typing/tests/data/fail/modules.pyi +17 -0
  766. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  767. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  768. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  769. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  770. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  771. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  772. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  773. numpy/typing/tests/data/fail/random.pyi +62 -0
  774. numpy/typing/tests/data/fail/rec.pyi +17 -0
  775. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  776. numpy/typing/tests/data/fail/shape.pyi +7 -0
  777. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  778. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  779. numpy/typing/tests/data/fail/strings.pyi +52 -0
  780. numpy/typing/tests/data/fail/testing.pyi +28 -0
  781. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  782. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  783. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  784. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  785. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  786. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  787. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  788. numpy/typing/tests/data/mypy.ini +8 -0
  789. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  790. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  791. numpy/typing/tests/data/pass/array_like.py +43 -0
  792. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  793. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  794. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  795. numpy/typing/tests/data/pass/comparisons.py +316 -0
  796. numpy/typing/tests/data/pass/dtype.py +57 -0
  797. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  798. numpy/typing/tests/data/pass/flatiter.py +26 -0
  799. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  800. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  801. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  802. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  803. numpy/typing/tests/data/pass/lib_version.py +18 -0
  804. numpy/typing/tests/data/pass/literal.py +52 -0
  805. numpy/typing/tests/data/pass/ma.py +199 -0
  806. numpy/typing/tests/data/pass/mod.py +149 -0
  807. numpy/typing/tests/data/pass/modules.py +45 -0
  808. numpy/typing/tests/data/pass/multiarray.py +77 -0
  809. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  810. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  811. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  812. numpy/typing/tests/data/pass/nditer.py +4 -0
  813. numpy/typing/tests/data/pass/numeric.py +90 -0
  814. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  815. numpy/typing/tests/data/pass/random.py +1498 -0
  816. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  817. numpy/typing/tests/data/pass/scalars.py +249 -0
  818. numpy/typing/tests/data/pass/shape.py +19 -0
  819. numpy/typing/tests/data/pass/simple.py +170 -0
  820. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  821. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  822. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  823. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  824. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  825. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  826. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  827. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  828. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  829. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  830. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  831. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  832. numpy/typing/tests/data/reveal/char.pyi +225 -0
  833. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  834. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  835. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  836. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  837. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  838. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  839. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  840. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  841. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  842. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  843. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  844. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  845. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  846. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  847. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  848. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  849. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  850. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  851. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  852. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  853. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  854. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  855. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  856. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  857. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  858. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  859. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  860. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  861. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  862. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  863. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  864. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  865. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  866. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  867. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  868. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  869. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  870. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  871. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  872. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  873. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  874. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  875. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  876. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  877. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  878. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  879. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  880. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  881. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  882. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  883. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  884. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  885. numpy/typing/tests/test_isfile.py +38 -0
  886. numpy/typing/tests/test_runtime.py +110 -0
  887. numpy/typing/tests/test_typing.py +205 -0
  888. numpy/version.py +11 -0
  889. numpy/version.pyi +9 -0
  890. numpy-2.4.0.dist-info/METADATA +139 -0
  891. numpy-2.4.0.dist-info/RECORD +915 -0
  892. numpy-2.4.0.dist-info/WHEEL +5 -0
  893. numpy-2.4.0.dist-info/entry_points.txt +13 -0
  894. numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
  895. numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  896. numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  897. numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  898. numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  899. numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  900. numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  901. numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  902. numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  903. numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
  904. numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  905. numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  906. numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  907. numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  908. numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  909. numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  910. numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  911. numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
  912. numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
  913. numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
  914. numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
  915. numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
numpy/ma/extras.py ADDED
@@ -0,0 +1,2266 @@
1
+ """
2
+ Masked arrays add-ons.
3
+
4
+ A collection of utilities for `numpy.ma`.
5
+
6
+ :author: Pierre Gerard-Marchant
7
+ :contact: pierregm_at_uga_dot_edu
8
+
9
+ """
10
+ __all__ = [
11
+ 'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d',
12
+ 'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack',
13
+ 'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows',
14
+ 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d',
15
+ 'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack',
16
+ 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows',
17
+ 'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate',
18
+ 'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack',
19
+ 'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack',
20
+ ]
21
+
22
+ import functools
23
+ import itertools
24
+ import warnings
25
+
26
+ import numpy as np
27
+ from numpy import array as nxarray, ndarray
28
+ from numpy.lib._function_base_impl import _ureduce
29
+ from numpy.lib._index_tricks_impl import AxisConcatenator
30
+ from numpy.lib.array_utils import normalize_axis_index, normalize_axis_tuple
31
+
32
+ from . import core as ma
33
+ from .core import ( # noqa: F401
34
+ MAError,
35
+ MaskedArray,
36
+ add,
37
+ array,
38
+ asarray,
39
+ concatenate,
40
+ count,
41
+ dot,
42
+ filled,
43
+ get_masked_subclass,
44
+ getdata,
45
+ getmask,
46
+ getmaskarray,
47
+ make_mask_descr,
48
+ mask_or,
49
+ masked,
50
+ masked_array,
51
+ nomask,
52
+ ones,
53
+ sort,
54
+ zeros,
55
+ )
56
+
57
+
58
+ def issequence(seq):
59
+ """
60
+ Is seq a sequence (ndarray, list or tuple)?
61
+
62
+ """
63
+ return isinstance(seq, (ndarray, tuple, list))
64
+
65
+
66
+ def count_masked(arr, axis=None):
67
+ """
68
+ Count the number of masked elements along the given axis.
69
+
70
+ Parameters
71
+ ----------
72
+ arr : array_like
73
+ An array with (possibly) masked elements.
74
+ axis : int, optional
75
+ Axis along which to count. If None (default), a flattened
76
+ version of the array is used.
77
+
78
+ Returns
79
+ -------
80
+ count : int, ndarray
81
+ The total number of masked elements (axis=None) or the number
82
+ of masked elements along each slice of the given axis.
83
+
84
+ See Also
85
+ --------
86
+ MaskedArray.count : Count non-masked elements.
87
+
88
+ Examples
89
+ --------
90
+ >>> import numpy as np
91
+ >>> a = np.arange(9).reshape((3,3))
92
+ >>> a = np.ma.array(a)
93
+ >>> a[1, 0] = np.ma.masked
94
+ >>> a[1, 2] = np.ma.masked
95
+ >>> a[2, 1] = np.ma.masked
96
+ >>> a
97
+ masked_array(
98
+ data=[[0, 1, 2],
99
+ [--, 4, --],
100
+ [6, --, 8]],
101
+ mask=[[False, False, False],
102
+ [ True, False, True],
103
+ [False, True, False]],
104
+ fill_value=999999)
105
+ >>> np.ma.count_masked(a)
106
+ 3
107
+
108
+ When the `axis` keyword is used an array is returned.
109
+
110
+ >>> np.ma.count_masked(a, axis=0)
111
+ array([1, 1, 1])
112
+ >>> np.ma.count_masked(a, axis=1)
113
+ array([0, 2, 1])
114
+
115
+ """
116
+ m = getmaskarray(arr)
117
+ return m.sum(axis)
118
+
119
+
120
+ def masked_all(shape, dtype=float):
121
+ """
122
+ Empty masked array with all elements masked.
123
+
124
+ Return an empty masked array of the given shape and dtype, where all the
125
+ data are masked.
126
+
127
+ Parameters
128
+ ----------
129
+ shape : int or tuple of ints
130
+ Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``.
131
+ dtype : dtype, optional
132
+ Data type of the output.
133
+
134
+ Returns
135
+ -------
136
+ a : MaskedArray
137
+ A masked array with all data masked.
138
+
139
+ See Also
140
+ --------
141
+ masked_all_like : Empty masked array modelled on an existing array.
142
+
143
+ Notes
144
+ -----
145
+ Unlike other masked array creation functions (e.g. `numpy.ma.zeros`,
146
+ `numpy.ma.ones`, `numpy.ma.full`), `masked_all` does not initialize the
147
+ values of the array, and may therefore be marginally faster. However,
148
+ the values stored in the newly allocated array are arbitrary. For
149
+ reproducible behavior, be sure to set each element of the array before
150
+ reading.
151
+
152
+ Examples
153
+ --------
154
+ >>> import numpy as np
155
+ >>> np.ma.masked_all((3, 3))
156
+ masked_array(
157
+ data=[[--, --, --],
158
+ [--, --, --],
159
+ [--, --, --]],
160
+ mask=[[ True, True, True],
161
+ [ True, True, True],
162
+ [ True, True, True]],
163
+ fill_value=1e+20,
164
+ dtype=float64)
165
+
166
+ The `dtype` parameter defines the underlying data type.
167
+
168
+ >>> a = np.ma.masked_all((3, 3))
169
+ >>> a.dtype
170
+ dtype('float64')
171
+ >>> a = np.ma.masked_all((3, 3), dtype=np.int32)
172
+ >>> a.dtype
173
+ dtype('int32')
174
+
175
+ """
176
+ a = masked_array(np.empty(shape, dtype),
177
+ mask=np.ones(shape, make_mask_descr(dtype)))
178
+ return a
179
+
180
+
181
+ def masked_all_like(arr):
182
+ """
183
+ Empty masked array with the properties of an existing array.
184
+
185
+ Return an empty masked array of the same shape and dtype as
186
+ the array `arr`, where all the data are masked.
187
+
188
+ Parameters
189
+ ----------
190
+ arr : ndarray
191
+ An array describing the shape and dtype of the required MaskedArray.
192
+
193
+ Returns
194
+ -------
195
+ a : MaskedArray
196
+ A masked array with all data masked.
197
+
198
+ Raises
199
+ ------
200
+ AttributeError
201
+ If `arr` doesn't have a shape attribute (i.e. not an ndarray)
202
+
203
+ See Also
204
+ --------
205
+ masked_all : Empty masked array with all elements masked.
206
+
207
+ Notes
208
+ -----
209
+ Unlike other masked array creation functions (e.g. `numpy.ma.zeros_like`,
210
+ `numpy.ma.ones_like`, `numpy.ma.full_like`), `masked_all_like` does not
211
+ initialize the values of the array, and may therefore be marginally
212
+ faster. However, the values stored in the newly allocated array are
213
+ arbitrary. For reproducible behavior, be sure to set each element of the
214
+ array before reading.
215
+
216
+ Examples
217
+ --------
218
+ >>> import numpy as np
219
+ >>> arr = np.zeros((2, 3), dtype=np.float32)
220
+ >>> arr
221
+ array([[0., 0., 0.],
222
+ [0., 0., 0.]], dtype=float32)
223
+ >>> np.ma.masked_all_like(arr)
224
+ masked_array(
225
+ data=[[--, --, --],
226
+ [--, --, --]],
227
+ mask=[[ True, True, True],
228
+ [ True, True, True]],
229
+ fill_value=np.float64(1e+20),
230
+ dtype=float32)
231
+
232
+ The dtype of the masked array matches the dtype of `arr`.
233
+
234
+ >>> arr.dtype
235
+ dtype('float32')
236
+ >>> np.ma.masked_all_like(arr).dtype
237
+ dtype('float32')
238
+
239
+ """
240
+ a = np.empty_like(arr).view(MaskedArray)
241
+ a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype))
242
+ return a
243
+
244
+
245
+ #####--------------------------------------------------------------------------
246
+ #---- --- Standard functions ---
247
+ #####--------------------------------------------------------------------------
248
+
249
+ def _fromnxfunction_function(_fromnxfunction):
250
+ """
251
+ Decorator to wrap a "_fromnxfunction" function, wrapping a numpy function as a
252
+ masked array function, with proper docstring and name.
253
+
254
+ Parameters
255
+ ----------
256
+ _fromnxfunction : ({params}) -> ndarray, {params}) -> masked_array
257
+ Wrapper function that calls the wrapped numpy function
258
+
259
+ Returns
260
+ -------
261
+ decorator : (f: ({params}) -> ndarray) -> ({params}) -> masked_array
262
+ Function that accepts a numpy function and returns a masked array function
263
+
264
+ """
265
+ def decorator(npfunc, /):
266
+ def wrapper(*args, **kwargs):
267
+ return _fromnxfunction(npfunc, *args, **kwargs)
268
+
269
+ functools.update_wrapper(wrapper, npfunc, assigned=("__name__", "__qualname__"))
270
+ wrapper.__doc__ = ma.doc_note(
271
+ npfunc.__doc__,
272
+ "The function is applied to both the ``_data`` and the ``_mask``, if any.",
273
+ )
274
+ return wrapper
275
+
276
+ return decorator
277
+
278
+
279
+ @_fromnxfunction_function
280
+ def _fromnxfunction_single(npfunc, a, /, *args, **kwargs):
281
+ """
282
+ Wraps a NumPy function that can be called with a single array argument followed by
283
+ auxiliary args that are passed verbatim for both the data and mask calls.
284
+ """
285
+ return masked_array(
286
+ data=npfunc(np.asarray(a), *args, **kwargs),
287
+ mask=npfunc(getmaskarray(a), *args, **kwargs),
288
+ )
289
+
290
+
291
+ @_fromnxfunction_function
292
+ def _fromnxfunction_seq(npfunc, arys, /, *args, **kwargs):
293
+ """
294
+ Wraps a NumPy function that can be called with a single sequence of arrays followed
295
+ by auxiliary args that are passed verbatim for both the data and mask calls.
296
+ """
297
+ return masked_array(
298
+ data=npfunc(tuple(np.asarray(a) for a in arys), *args, **kwargs),
299
+ mask=npfunc(tuple(getmaskarray(a) for a in arys), *args, **kwargs),
300
+ )
301
+
302
+ @_fromnxfunction_function
303
+ def _fromnxfunction_allargs(npfunc, /, *arys, **kwargs):
304
+ """
305
+ Wraps a NumPy function that can be called with multiple array arguments.
306
+ All args are converted to arrays even if they are not so already.
307
+ This makes it possible to process scalars as 1-D arrays.
308
+ Only keyword arguments are passed through verbatim for the data and mask calls.
309
+ Arrays arguments are processed independently and the results are returned in a list.
310
+ If only one arg is present, the return value is just the processed array instead of
311
+ a list.
312
+ """
313
+ out = tuple(
314
+ masked_array(
315
+ data=npfunc(np.asarray(a), **kwargs),
316
+ mask=npfunc(getmaskarray(a), **kwargs),
317
+ )
318
+ for a in arys
319
+ )
320
+ return out[0] if len(out) == 1 else out
321
+
322
+
323
+ atleast_1d = _fromnxfunction_allargs(np.atleast_1d)
324
+ atleast_2d = _fromnxfunction_allargs(np.atleast_2d)
325
+ atleast_3d = _fromnxfunction_allargs(np.atleast_3d)
326
+
327
+ vstack = row_stack = _fromnxfunction_seq(np.vstack)
328
+ hstack = _fromnxfunction_seq(np.hstack)
329
+ column_stack = _fromnxfunction_seq(np.column_stack)
330
+ dstack = _fromnxfunction_seq(np.dstack)
331
+ stack = _fromnxfunction_seq(np.stack)
332
+
333
+ hsplit = _fromnxfunction_single(np.hsplit)
334
+ diagflat = _fromnxfunction_single(np.diagflat)
335
+
336
+
337
+ #####--------------------------------------------------------------------------
338
+ #----
339
+ #####--------------------------------------------------------------------------
340
+ def flatten_inplace(seq):
341
+ """Flatten a sequence in place."""
342
+ k = 0
343
+ while (k != len(seq)):
344
+ while hasattr(seq[k], '__iter__'):
345
+ seq[k:(k + 1)] = seq[k]
346
+ k += 1
347
+ return seq
348
+
349
+
350
+ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
351
+ """
352
+ (This docstring should be overwritten)
353
+ """
354
+ arr = array(arr, copy=False, subok=True)
355
+ nd = arr.ndim
356
+ axis = normalize_axis_index(axis, nd)
357
+ ind = [0] * (nd - 1)
358
+ i = np.zeros(nd, 'O')
359
+ indlist = list(range(nd))
360
+ indlist.remove(axis)
361
+ i[axis] = slice(None, None)
362
+ outshape = np.asarray(arr.shape).take(indlist)
363
+ i.put(indlist, ind)
364
+ res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
365
+ # if res is a number, then we have a smaller output array
366
+ asscalar = np.isscalar(res)
367
+ if not asscalar:
368
+ try:
369
+ len(res)
370
+ except TypeError:
371
+ asscalar = True
372
+ # Note: we shouldn't set the dtype of the output from the first result
373
+ # so we force the type to object, and build a list of dtypes. We'll
374
+ # just take the largest, to avoid some downcasting
375
+ dtypes = []
376
+ if asscalar:
377
+ dtypes.append(np.asarray(res).dtype)
378
+ outarr = zeros(outshape, object)
379
+ outarr[tuple(ind)] = res
380
+ Ntot = np.prod(outshape)
381
+ k = 1
382
+ while k < Ntot:
383
+ # increment the index
384
+ ind[-1] += 1
385
+ n = -1
386
+ while (ind[n] >= outshape[n]) and (n > (1 - nd)):
387
+ ind[n - 1] += 1
388
+ ind[n] = 0
389
+ n -= 1
390
+ i.put(indlist, ind)
391
+ res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
392
+ outarr[tuple(ind)] = res
393
+ dtypes.append(asarray(res).dtype)
394
+ k += 1
395
+ else:
396
+ res = array(res, copy=False, subok=True)
397
+ j = i.copy()
398
+ j[axis] = ([slice(None, None)] * res.ndim)
399
+ j.put(indlist, ind)
400
+ Ntot = np.prod(outshape)
401
+ holdshape = outshape
402
+ outshape = list(arr.shape)
403
+ outshape[axis] = res.shape
404
+ dtypes.append(asarray(res).dtype)
405
+ outshape = flatten_inplace(outshape)
406
+ outarr = zeros(outshape, object)
407
+ outarr[tuple(flatten_inplace(j.tolist()))] = res
408
+ k = 1
409
+ while k < Ntot:
410
+ # increment the index
411
+ ind[-1] += 1
412
+ n = -1
413
+ while (ind[n] >= holdshape[n]) and (n > (1 - nd)):
414
+ ind[n - 1] += 1
415
+ ind[n] = 0
416
+ n -= 1
417
+ i.put(indlist, ind)
418
+ j.put(indlist, ind)
419
+ res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
420
+ outarr[tuple(flatten_inplace(j.tolist()))] = res
421
+ dtypes.append(asarray(res).dtype)
422
+ k += 1
423
+ max_dtypes = np.dtype(np.asarray(dtypes).max())
424
+ if not hasattr(arr, '_mask'):
425
+ result = np.asarray(outarr, dtype=max_dtypes)
426
+ else:
427
+ result = asarray(outarr, dtype=max_dtypes)
428
+ result.fill_value = ma.default_fill_value(result)
429
+ return result
430
+
431
+
432
+ apply_along_axis.__doc__ = np.apply_along_axis.__doc__
433
+
434
+
435
+ def apply_over_axes(func, a, axes):
436
+ """
437
+ (This docstring will be overwritten)
438
+ """
439
+ val = asarray(a)
440
+ N = a.ndim
441
+ if array(axes).ndim == 0:
442
+ axes = (axes,)
443
+ for axis in axes:
444
+ if axis < 0:
445
+ axis = N + axis
446
+ args = (val, axis)
447
+ res = func(*args)
448
+ if res.ndim == val.ndim:
449
+ val = res
450
+ else:
451
+ res = ma.expand_dims(res, axis)
452
+ if res.ndim == val.ndim:
453
+ val = res
454
+ else:
455
+ raise ValueError("function is not returning "
456
+ "an array of the correct shape")
457
+ return val
458
+
459
+
460
+ if apply_over_axes.__doc__ is not None:
461
+ apply_over_axes.__doc__ = np.apply_over_axes.__doc__[
462
+ :np.apply_over_axes.__doc__.find('Notes')].rstrip() + \
463
+ """
464
+
465
+ Examples
466
+ --------
467
+ >>> import numpy as np
468
+ >>> a = np.ma.arange(24).reshape(2,3,4)
469
+ >>> a[:,0,1] = np.ma.masked
470
+ >>> a[:,1,:] = np.ma.masked
471
+ >>> a
472
+ masked_array(
473
+ data=[[[0, --, 2, 3],
474
+ [--, --, --, --],
475
+ [8, 9, 10, 11]],
476
+ [[12, --, 14, 15],
477
+ [--, --, --, --],
478
+ [20, 21, 22, 23]]],
479
+ mask=[[[False, True, False, False],
480
+ [ True, True, True, True],
481
+ [False, False, False, False]],
482
+ [[False, True, False, False],
483
+ [ True, True, True, True],
484
+ [False, False, False, False]]],
485
+ fill_value=999999)
486
+ >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
487
+ masked_array(
488
+ data=[[[46],
489
+ [--],
490
+ [124]]],
491
+ mask=[[[False],
492
+ [ True],
493
+ [False]]],
494
+ fill_value=999999)
495
+
496
+ Tuple axis arguments to ufuncs are equivalent:
497
+
498
+ >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
499
+ masked_array(
500
+ data=[[[46],
501
+ [--],
502
+ [124]]],
503
+ mask=[[[False],
504
+ [ True],
505
+ [False]]],
506
+ fill_value=999999)
507
+ """
508
+
509
+
510
+ def average(a, axis=None, weights=None, returned=False, *,
511
+ keepdims=np._NoValue):
512
+ """
513
+ Return the weighted average of array over the given axis.
514
+
515
+ Parameters
516
+ ----------
517
+ a : array_like
518
+ Data to be averaged.
519
+ Masked entries are not taken into account in the computation.
520
+ axis : None or int or tuple of ints, optional
521
+ Axis or axes along which to average `a`. The default,
522
+ `axis=None`, will average over all of the elements of the input array.
523
+ If axis is a tuple of ints, averaging is performed on all of the axes
524
+ specified in the tuple instead of a single axis or all the axes as
525
+ before.
526
+ weights : array_like, optional
527
+ An array of weights associated with the values in `a`. Each value in
528
+ `a` contributes to the average according to its associated weight.
529
+ The array of weights must be the same shape as `a` if no axis is
530
+ specified, otherwise the weights must have dimensions and shape
531
+ consistent with `a` along the specified axis.
532
+ If `weights=None`, then all data in `a` are assumed to have a
533
+ weight equal to one.
534
+ The calculation is::
535
+
536
+ avg = sum(a * weights) / sum(weights)
537
+
538
+ where the sum is over all included elements.
539
+ The only constraint on the values of `weights` is that `sum(weights)`
540
+ must not be 0.
541
+ returned : bool, optional
542
+ Flag indicating whether a tuple ``(result, sum of weights)``
543
+ should be returned as output (True), or just the result (False).
544
+ Default is False.
545
+ keepdims : bool, optional
546
+ If this is set to True, the axes which are reduced are left
547
+ in the result as dimensions with size one. With this option,
548
+ the result will broadcast correctly against the original `a`.
549
+ *Note:* `keepdims` will not work with instances of `numpy.matrix`
550
+ or other classes whose methods do not support `keepdims`.
551
+
552
+ .. versionadded:: 1.23.0
553
+
554
+ Returns
555
+ -------
556
+ average, [sum_of_weights] : (tuple of) scalar or MaskedArray
557
+ The average along the specified axis. When returned is `True`,
558
+ return a tuple with the average as the first element and the sum
559
+ of the weights as the second element. The return type is `np.float64`
560
+ if `a` is of integer type and floats smaller than `float64`, or the
561
+ input data-type, otherwise. If returned, `sum_of_weights` is always
562
+ `float64`.
563
+
564
+ Raises
565
+ ------
566
+ ZeroDivisionError
567
+ When all weights along axis are zero. See `numpy.ma.average` for a
568
+ version robust to this type of error.
569
+ TypeError
570
+ When `weights` does not have the same shape as `a`, and `axis=None`.
571
+ ValueError
572
+ When `weights` does not have dimensions and shape consistent with `a`
573
+ along specified `axis`.
574
+
575
+ Examples
576
+ --------
577
+ >>> import numpy as np
578
+ >>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
579
+ >>> np.ma.average(a, weights=[3, 1, 0, 0])
580
+ 1.25
581
+
582
+ >>> x = np.ma.arange(6.).reshape(3, 2)
583
+ >>> x
584
+ masked_array(
585
+ data=[[0., 1.],
586
+ [2., 3.],
587
+ [4., 5.]],
588
+ mask=False,
589
+ fill_value=1e+20)
590
+ >>> data = np.arange(8).reshape((2, 2, 2))
591
+ >>> data
592
+ array([[[0, 1],
593
+ [2, 3]],
594
+ [[4, 5],
595
+ [6, 7]]])
596
+ >>> np.ma.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]])
597
+ masked_array(data=[3.4, 4.4],
598
+ mask=[False, False],
599
+ fill_value=1e+20)
600
+ >>> np.ma.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]])
601
+ Traceback (most recent call last):
602
+ ...
603
+ ValueError: Shape of weights must be consistent
604
+ with shape of a along specified axis.
605
+
606
+ >>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
607
+ ... returned=True)
608
+ >>> avg
609
+ masked_array(data=[2.6666666666666665, 3.6666666666666665],
610
+ mask=[False, False],
611
+ fill_value=1e+20)
612
+
613
+ With ``keepdims=True``, the following result has shape (3, 1).
614
+
615
+ >>> np.ma.average(x, axis=1, keepdims=True)
616
+ masked_array(
617
+ data=[[0.5],
618
+ [2.5],
619
+ [4.5]],
620
+ mask=False,
621
+ fill_value=1e+20)
622
+ """
623
+ a = asarray(a)
624
+ m = getmask(a)
625
+
626
+ if axis is not None:
627
+ axis = normalize_axis_tuple(axis, a.ndim, argname="axis")
628
+
629
+ if keepdims is np._NoValue:
630
+ # Don't pass on the keepdims argument if one wasn't given.
631
+ keepdims_kw = {}
632
+ else:
633
+ keepdims_kw = {'keepdims': keepdims}
634
+
635
+ if weights is None:
636
+ avg = a.mean(axis, **keepdims_kw)
637
+ scl = avg.dtype.type(a.count(axis))
638
+ else:
639
+ wgt = asarray(weights)
640
+
641
+ if issubclass(a.dtype.type, (np.integer, np.bool)):
642
+ result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
643
+ else:
644
+ result_dtype = np.result_type(a.dtype, wgt.dtype)
645
+
646
+ # Sanity checks
647
+ if a.shape != wgt.shape:
648
+ if axis is None:
649
+ raise TypeError(
650
+ "Axis must be specified when shapes of a and weights "
651
+ "differ.")
652
+ if wgt.shape != tuple(a.shape[ax] for ax in axis):
653
+ raise ValueError(
654
+ "Shape of weights must be consistent with "
655
+ "shape of a along specified axis.")
656
+
657
+ # setup wgt to broadcast along axis
658
+ wgt = wgt.transpose(np.argsort(axis))
659
+ wgt = wgt.reshape(tuple((s if ax in axis else 1)
660
+ for ax, s in enumerate(a.shape)))
661
+
662
+ if m is not nomask:
663
+ wgt = wgt * (~a.mask)
664
+ wgt.mask |= a.mask
665
+
666
+ scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw)
667
+ avg = np.multiply(a, wgt,
668
+ dtype=result_dtype).sum(axis, **keepdims_kw) / scl
669
+
670
+ if returned:
671
+ if scl.shape != avg.shape:
672
+ scl = np.broadcast_to(scl, avg.shape).copy()
673
+ return avg, scl
674
+ else:
675
+ return avg
676
+
677
+
678
+ def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
679
+ """
680
+ Compute the median along the specified axis.
681
+
682
+ Returns the median of the array elements.
683
+
684
+ Parameters
685
+ ----------
686
+ a : array_like
687
+ Input array or object that can be converted to an array.
688
+ axis : int, optional
689
+ Axis along which the medians are computed. The default (None) is
690
+ to compute the median along a flattened version of the array.
691
+ out : ndarray, optional
692
+ Alternative output array in which to place the result. It must
693
+ have the same shape and buffer length as the expected output
694
+ but the type will be cast if necessary.
695
+ overwrite_input : bool, optional
696
+ If True, then allow use of memory of input array (a) for
697
+ calculations. The input array will be modified by the call to
698
+ median. This will save memory when you do not need to preserve
699
+ the contents of the input array. Treat the input as undefined,
700
+ but it will probably be fully or partially sorted. Default is
701
+ False. Note that, if `overwrite_input` is True, and the input
702
+ is not already an `ndarray`, an error will be raised.
703
+ keepdims : bool, optional
704
+ If this is set to True, the axes which are reduced are left
705
+ in the result as dimensions with size one. With this option,
706
+ the result will broadcast correctly against the input array.
707
+
708
+ Returns
709
+ -------
710
+ median : ndarray
711
+ A new array holding the result is returned unless out is
712
+ specified, in which case a reference to out is returned.
713
+ Return data-type is `float64` for integers and floats smaller than
714
+ `float64`, or the input data-type, otherwise.
715
+
716
+ See Also
717
+ --------
718
+ mean
719
+
720
+ Notes
721
+ -----
722
+ Given a vector ``V`` with ``N`` non masked values, the median of ``V``
723
+ is the middle value of a sorted copy of ``V`` (``Vs``) - i.e.
724
+ ``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2``
725
+ when ``N`` is even.
726
+
727
+ Examples
728
+ --------
729
+ >>> import numpy as np
730
+ >>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
731
+ >>> np.ma.median(x)
732
+ 1.5
733
+
734
+ >>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
735
+ >>> np.ma.median(x)
736
+ 2.5
737
+ >>> np.ma.median(x, axis=-1, overwrite_input=True)
738
+ masked_array(data=[2.0, 5.0],
739
+ mask=[False, False],
740
+ fill_value=1e+20)
741
+
742
+ """
743
+ if not hasattr(a, 'mask'):
744
+ m = np.median(getdata(a, subok=True), axis=axis,
745
+ out=out, overwrite_input=overwrite_input,
746
+ keepdims=keepdims)
747
+ if isinstance(m, np.ndarray) and 1 <= m.ndim:
748
+ return masked_array(m, copy=False)
749
+ else:
750
+ return m
751
+
752
+ return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out,
753
+ overwrite_input=overwrite_input)
754
+
755
+
756
+ def _median(a, axis=None, out=None, overwrite_input=False):
757
+ # when an unmasked NaN is present return it, so we need to sort the NaN
758
+ # values behind the mask
759
+ if np.issubdtype(a.dtype, np.inexact):
760
+ fill_value = np.inf
761
+ else:
762
+ fill_value = None
763
+ if overwrite_input:
764
+ if axis is None:
765
+ asorted = a.ravel()
766
+ asorted.sort(fill_value=fill_value)
767
+ else:
768
+ a.sort(axis=axis, fill_value=fill_value)
769
+ asorted = a
770
+ else:
771
+ asorted = sort(a, axis=axis, fill_value=fill_value)
772
+
773
+ if axis is None:
774
+ axis = 0
775
+ else:
776
+ axis = normalize_axis_index(axis, asorted.ndim)
777
+
778
+ if asorted.shape[axis] == 0:
779
+ # for empty axis integer indices fail so use slicing to get same result
780
+ # as median (which is mean of empty slice = nan)
781
+ indexer = [slice(None)] * asorted.ndim
782
+ indexer[axis] = slice(0, 0)
783
+ indexer = tuple(indexer)
784
+ return np.ma.mean(asorted[indexer], axis=axis, out=out)
785
+
786
+ if asorted.ndim == 1:
787
+ idx, odd = divmod(count(asorted), 2)
788
+ mid = asorted[idx + odd - 1:idx + 1]
789
+ if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0:
790
+ # avoid inf / x = masked
791
+ s = mid.sum(out=out)
792
+ if not odd:
793
+ s = np.true_divide(s, 2., casting='safe', out=out)
794
+ s = np.lib._utils_impl._median_nancheck(asorted, s, axis)
795
+ else:
796
+ s = mid.mean(out=out)
797
+
798
+ # if result is masked either the input contained enough
799
+ # minimum_fill_value so that it would be the median or all values
800
+ # masked
801
+ if np.ma.is_masked(s) and not np.all(asorted.mask):
802
+ return np.ma.minimum_fill_value(asorted)
803
+ return s
804
+
805
+ counts = count(asorted, axis=axis, keepdims=True)
806
+ h = counts // 2
807
+
808
+ # duplicate high if odd number of elements so mean does nothing
809
+ odd = counts % 2 == 1
810
+ l = np.where(odd, h, h - 1)
811
+
812
+ lh = np.concatenate([l, h], axis=axis)
813
+
814
+ # get low and high median
815
+ low_high = np.take_along_axis(asorted, lh, axis=axis)
816
+
817
+ def replace_masked(s):
818
+ # Replace masked entries with minimum_full_value unless it all values
819
+ # are masked. This is required as the sort order of values equal or
820
+ # larger than the fill value is undefined and a valid value placed
821
+ # elsewhere, e.g. [4, --, inf].
822
+ if np.ma.is_masked(s):
823
+ rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask
824
+ s.data[rep] = np.ma.minimum_fill_value(asorted)
825
+ s.mask[rep] = False
826
+
827
+ replace_masked(low_high)
828
+
829
+ if np.issubdtype(asorted.dtype, np.inexact):
830
+ # avoid inf / x = masked
831
+ s = np.ma.sum(low_high, axis=axis, out=out)
832
+ np.true_divide(s.data, 2., casting='unsafe', out=s.data)
833
+
834
+ s = np.lib._utils_impl._median_nancheck(asorted, s, axis)
835
+ else:
836
+ s = np.ma.mean(low_high, axis=axis, out=out)
837
+
838
+ return s
839
+
840
+
841
+ def compress_nd(x, axis=None):
842
+ """Suppress slices from multiple dimensions which contain masked values.
843
+
844
+ Parameters
845
+ ----------
846
+ x : array_like, MaskedArray
847
+ The array to operate on. If not a MaskedArray instance (or if no array
848
+ elements are masked), `x` is interpreted as a MaskedArray with `mask`
849
+ set to `nomask`.
850
+ axis : tuple of ints or int, optional
851
+ Which dimensions to suppress slices from can be configured with this
852
+ parameter.
853
+ - If axis is a tuple of ints, those are the axes to suppress slices from.
854
+ - If axis is an int, then that is the only axis to suppress slices from.
855
+ - If axis is None, all axis are selected.
856
+
857
+ Returns
858
+ -------
859
+ compress_array : ndarray
860
+ The compressed array.
861
+
862
+ Examples
863
+ --------
864
+ >>> import numpy as np
865
+ >>> arr = [[1, 2], [3, 4]]
866
+ >>> mask = [[0, 1], [0, 0]]
867
+ >>> x = np.ma.array(arr, mask=mask)
868
+ >>> np.ma.compress_nd(x, axis=0)
869
+ array([[3, 4]])
870
+ >>> np.ma.compress_nd(x, axis=1)
871
+ array([[1],
872
+ [3]])
873
+ >>> np.ma.compress_nd(x)
874
+ array([[3]])
875
+
876
+ """
877
+ x = asarray(x)
878
+ m = getmask(x)
879
+ # Set axis to tuple of ints
880
+ if axis is None:
881
+ axis = tuple(range(x.ndim))
882
+ else:
883
+ axis = normalize_axis_tuple(axis, x.ndim)
884
+
885
+ # Nothing is masked: return x
886
+ if m is nomask or not m.any():
887
+ return x._data
888
+ # All is masked: return empty
889
+ if m.all():
890
+ return nxarray([])
891
+ # Filter elements through boolean indexing
892
+ data = x._data
893
+ for ax in axis:
894
+ axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim)))
895
+ data = data[(slice(None),) * ax + (~m.any(axis=axes),)]
896
+ return data
897
+
898
+
899
+ def compress_rowcols(x, axis=None):
900
+ """
901
+ Suppress the rows and/or columns of a 2-D array that contain
902
+ masked values.
903
+
904
+ The suppression behavior is selected with the `axis` parameter.
905
+
906
+ - If axis is None, both rows and columns are suppressed.
907
+ - If axis is 0, only rows are suppressed.
908
+ - If axis is 1 or -1, only columns are suppressed.
909
+
910
+ Parameters
911
+ ----------
912
+ x : array_like, MaskedArray
913
+ The array to operate on. If not a MaskedArray instance (or if no array
914
+ elements are masked), `x` is interpreted as a MaskedArray with
915
+ `mask` set to `nomask`. Must be a 2D array.
916
+ axis : int, optional
917
+ Axis along which to perform the operation. Default is None.
918
+
919
+ Returns
920
+ -------
921
+ compressed_array : ndarray
922
+ The compressed array.
923
+
924
+ Examples
925
+ --------
926
+ >>> import numpy as np
927
+ >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
928
+ ... [1, 0, 0],
929
+ ... [0, 0, 0]])
930
+ >>> x
931
+ masked_array(
932
+ data=[[--, 1, 2],
933
+ [--, 4, 5],
934
+ [6, 7, 8]],
935
+ mask=[[ True, False, False],
936
+ [ True, False, False],
937
+ [False, False, False]],
938
+ fill_value=999999)
939
+
940
+ >>> np.ma.compress_rowcols(x)
941
+ array([[7, 8]])
942
+ >>> np.ma.compress_rowcols(x, 0)
943
+ array([[6, 7, 8]])
944
+ >>> np.ma.compress_rowcols(x, 1)
945
+ array([[1, 2],
946
+ [4, 5],
947
+ [7, 8]])
948
+
949
+ """
950
+ if asarray(x).ndim != 2:
951
+ raise NotImplementedError("compress_rowcols works for 2D arrays only.")
952
+ return compress_nd(x, axis=axis)
953
+
954
+
955
+ def compress_rows(a):
956
+ """
957
+ Suppress whole rows of a 2-D array that contain masked values.
958
+
959
+ This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see
960
+ `compress_rowcols` for details.
961
+
962
+ Parameters
963
+ ----------
964
+ x : array_like, MaskedArray
965
+ The array to operate on. If not a MaskedArray instance (or if no array
966
+ elements are masked), `x` is interpreted as a MaskedArray with
967
+ `mask` set to `nomask`. Must be a 2D array.
968
+
969
+ Returns
970
+ -------
971
+ compressed_array : ndarray
972
+ The compressed array.
973
+
974
+ See Also
975
+ --------
976
+ compress_rowcols
977
+
978
+ Examples
979
+ --------
980
+ >>> import numpy as np
981
+ >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
982
+ ... [1, 0, 0],
983
+ ... [0, 0, 0]])
984
+ >>> np.ma.compress_rows(a)
985
+ array([[6, 7, 8]])
986
+
987
+ """
988
+ a = asarray(a)
989
+ if a.ndim != 2:
990
+ raise NotImplementedError("compress_rows works for 2D arrays only.")
991
+ return compress_rowcols(a, 0)
992
+
993
+
994
+ def compress_cols(a):
995
+ """
996
+ Suppress whole columns of a 2-D array that contain masked values.
997
+
998
+ This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see
999
+ `compress_rowcols` for details.
1000
+
1001
+ Parameters
1002
+ ----------
1003
+ x : array_like, MaskedArray
1004
+ The array to operate on. If not a MaskedArray instance (or if no array
1005
+ elements are masked), `x` is interpreted as a MaskedArray with
1006
+ `mask` set to `nomask`. Must be a 2D array.
1007
+
1008
+ Returns
1009
+ -------
1010
+ compressed_array : ndarray
1011
+ The compressed array.
1012
+
1013
+ See Also
1014
+ --------
1015
+ compress_rowcols
1016
+
1017
+ Examples
1018
+ --------
1019
+ >>> import numpy as np
1020
+ >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
1021
+ ... [1, 0, 0],
1022
+ ... [0, 0, 0]])
1023
+ >>> np.ma.compress_cols(a)
1024
+ array([[1, 2],
1025
+ [4, 5],
1026
+ [7, 8]])
1027
+
1028
+ """
1029
+ a = asarray(a)
1030
+ if a.ndim != 2:
1031
+ raise NotImplementedError("compress_cols works for 2D arrays only.")
1032
+ return compress_rowcols(a, 1)
1033
+
1034
+
1035
+ def mask_rowcols(a, axis=None):
1036
+ """
1037
+ Mask rows and/or columns of a 2D array that contain masked values.
1038
+
1039
+ Mask whole rows and/or columns of a 2D array that contain
1040
+ masked values. The masking behavior is selected using the
1041
+ `axis` parameter.
1042
+
1043
+ - If `axis` is None, rows *and* columns are masked.
1044
+ - If `axis` is 0, only rows are masked.
1045
+ - If `axis` is 1 or -1, only columns are masked.
1046
+
1047
+ Parameters
1048
+ ----------
1049
+ a : array_like, MaskedArray
1050
+ The array to mask. If not a MaskedArray instance (or if no array
1051
+ elements are masked), the result is a MaskedArray with `mask` set
1052
+ to `nomask` (False). Must be a 2D array.
1053
+ axis : int, optional
1054
+ Axis along which to perform the operation. If None, applies to a
1055
+ flattened version of the array.
1056
+
1057
+ Returns
1058
+ -------
1059
+ a : MaskedArray
1060
+ A modified version of the input array, masked depending on the value
1061
+ of the `axis` parameter.
1062
+
1063
+ Raises
1064
+ ------
1065
+ NotImplementedError
1066
+ If input array `a` is not 2D.
1067
+
1068
+ See Also
1069
+ --------
1070
+ mask_rows : Mask rows of a 2D array that contain masked values.
1071
+ mask_cols : Mask cols of a 2D array that contain masked values.
1072
+ masked_where : Mask where a condition is met.
1073
+
1074
+ Notes
1075
+ -----
1076
+ The input array's mask is modified by this function.
1077
+
1078
+ Examples
1079
+ --------
1080
+ >>> import numpy as np
1081
+ >>> a = np.zeros((3, 3), dtype=int)
1082
+ >>> a[1, 1] = 1
1083
+ >>> a
1084
+ array([[0, 0, 0],
1085
+ [0, 1, 0],
1086
+ [0, 0, 0]])
1087
+ >>> a = np.ma.masked_equal(a, 1)
1088
+ >>> a
1089
+ masked_array(
1090
+ data=[[0, 0, 0],
1091
+ [0, --, 0],
1092
+ [0, 0, 0]],
1093
+ mask=[[False, False, False],
1094
+ [False, True, False],
1095
+ [False, False, False]],
1096
+ fill_value=1)
1097
+ >>> np.ma.mask_rowcols(a)
1098
+ masked_array(
1099
+ data=[[0, --, 0],
1100
+ [--, --, --],
1101
+ [0, --, 0]],
1102
+ mask=[[False, True, False],
1103
+ [ True, True, True],
1104
+ [False, True, False]],
1105
+ fill_value=1)
1106
+
1107
+ """
1108
+ a = array(a, subok=False)
1109
+ if a.ndim != 2:
1110
+ raise NotImplementedError("mask_rowcols works for 2D arrays only.")
1111
+ m = getmask(a)
1112
+ # Nothing is masked: return a
1113
+ if m is nomask or not m.any():
1114
+ return a
1115
+ maskedval = m.nonzero()
1116
+ a._mask = a._mask.copy()
1117
+ if not axis:
1118
+ a[np.unique(maskedval[0])] = masked
1119
+ if axis in [None, 1, -1]:
1120
+ a[:, np.unique(maskedval[1])] = masked
1121
+ return a
1122
+
1123
+
1124
+ def mask_rows(a, axis=np._NoValue):
1125
+ """
1126
+ Mask rows of a 2D array that contain masked values.
1127
+
1128
+ This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0.
1129
+
1130
+ See Also
1131
+ --------
1132
+ mask_rowcols : Mask rows and/or columns of a 2D array.
1133
+ masked_where : Mask where a condition is met.
1134
+
1135
+ Examples
1136
+ --------
1137
+ >>> import numpy as np
1138
+ >>> a = np.zeros((3, 3), dtype=int)
1139
+ >>> a[1, 1] = 1
1140
+ >>> a
1141
+ array([[0, 0, 0],
1142
+ [0, 1, 0],
1143
+ [0, 0, 0]])
1144
+ >>> a = np.ma.masked_equal(a, 1)
1145
+ >>> a
1146
+ masked_array(
1147
+ data=[[0, 0, 0],
1148
+ [0, --, 0],
1149
+ [0, 0, 0]],
1150
+ mask=[[False, False, False],
1151
+ [False, True, False],
1152
+ [False, False, False]],
1153
+ fill_value=1)
1154
+
1155
+ >>> np.ma.mask_rows(a)
1156
+ masked_array(
1157
+ data=[[0, 0, 0],
1158
+ [--, --, --],
1159
+ [0, 0, 0]],
1160
+ mask=[[False, False, False],
1161
+ [ True, True, True],
1162
+ [False, False, False]],
1163
+ fill_value=1)
1164
+
1165
+ """
1166
+ if axis is not np._NoValue:
1167
+ # remove the axis argument when this deprecation expires
1168
+ # NumPy 1.18.0, 2019-11-28
1169
+ warnings.warn(
1170
+ "The axis argument has always been ignored, in future passing it "
1171
+ "will raise TypeError", DeprecationWarning, stacklevel=2)
1172
+ return mask_rowcols(a, 0)
1173
+
1174
+
1175
+ def mask_cols(a, axis=np._NoValue):
1176
+ """
1177
+ Mask columns of a 2D array that contain masked values.
1178
+
1179
+ This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1.
1180
+
1181
+ See Also
1182
+ --------
1183
+ mask_rowcols : Mask rows and/or columns of a 2D array.
1184
+ masked_where : Mask where a condition is met.
1185
+
1186
+ Examples
1187
+ --------
1188
+ >>> import numpy as np
1189
+ >>> a = np.zeros((3, 3), dtype=int)
1190
+ >>> a[1, 1] = 1
1191
+ >>> a
1192
+ array([[0, 0, 0],
1193
+ [0, 1, 0],
1194
+ [0, 0, 0]])
1195
+ >>> a = np.ma.masked_equal(a, 1)
1196
+ >>> a
1197
+ masked_array(
1198
+ data=[[0, 0, 0],
1199
+ [0, --, 0],
1200
+ [0, 0, 0]],
1201
+ mask=[[False, False, False],
1202
+ [False, True, False],
1203
+ [False, False, False]],
1204
+ fill_value=1)
1205
+ >>> np.ma.mask_cols(a)
1206
+ masked_array(
1207
+ data=[[0, --, 0],
1208
+ [0, --, 0],
1209
+ [0, --, 0]],
1210
+ mask=[[False, True, False],
1211
+ [False, True, False],
1212
+ [False, True, False]],
1213
+ fill_value=1)
1214
+
1215
+ """
1216
+ if axis is not np._NoValue:
1217
+ # remove the axis argument when this deprecation expires
1218
+ # NumPy 1.18.0, 2019-11-28
1219
+ warnings.warn(
1220
+ "The axis argument has always been ignored, in future passing it "
1221
+ "will raise TypeError", DeprecationWarning, stacklevel=2)
1222
+ return mask_rowcols(a, 1)
1223
+
1224
+
1225
+ #####--------------------------------------------------------------------------
1226
+ #---- --- arraysetops ---
1227
+ #####--------------------------------------------------------------------------
1228
+
1229
+ def ediff1d(arr, to_end=None, to_begin=None):
1230
+ """
1231
+ Compute the differences between consecutive elements of an array.
1232
+
1233
+ This function is the equivalent of `numpy.ediff1d` that takes masked
1234
+ values into account, see `numpy.ediff1d` for details.
1235
+
1236
+ See Also
1237
+ --------
1238
+ numpy.ediff1d : Equivalent function for ndarrays.
1239
+
1240
+ Examples
1241
+ --------
1242
+ >>> import numpy as np
1243
+ >>> arr = np.ma.array([1, 2, 4, 7, 0])
1244
+ >>> np.ma.ediff1d(arr)
1245
+ masked_array(data=[ 1, 2, 3, -7],
1246
+ mask=False,
1247
+ fill_value=999999)
1248
+
1249
+ """
1250
+ arr = ma.asanyarray(arr).flat
1251
+ ed = arr[1:] - arr[:-1]
1252
+ arrays = [ed]
1253
+ #
1254
+ if to_begin is not None:
1255
+ arrays.insert(0, to_begin)
1256
+ if to_end is not None:
1257
+ arrays.append(to_end)
1258
+ #
1259
+ if len(arrays) != 1:
1260
+ # We'll save ourselves a copy of a potentially large array in the common
1261
+ # case where neither to_begin or to_end was given.
1262
+ ed = hstack(arrays)
1263
+ #
1264
+ return ed
1265
+
1266
+
1267
+ def unique(ar1, return_index=False, return_inverse=False):
1268
+ """
1269
+ Finds the unique elements of an array.
1270
+
1271
+ Masked values are considered the same element (masked). The output array
1272
+ is always a masked array. See `numpy.unique` for more details.
1273
+
1274
+ See Also
1275
+ --------
1276
+ numpy.unique : Equivalent function for ndarrays.
1277
+
1278
+ Examples
1279
+ --------
1280
+ >>> import numpy as np
1281
+ >>> a = [1, 2, 1000, 2, 3]
1282
+ >>> mask = [0, 0, 1, 0, 0]
1283
+ >>> masked_a = np.ma.masked_array(a, mask)
1284
+ >>> masked_a
1285
+ masked_array(data=[1, 2, --, 2, 3],
1286
+ mask=[False, False, True, False, False],
1287
+ fill_value=999999)
1288
+ >>> np.ma.unique(masked_a)
1289
+ masked_array(data=[1, 2, 3, --],
1290
+ mask=[False, False, False, True],
1291
+ fill_value=999999)
1292
+ >>> np.ma.unique(masked_a, return_index=True)
1293
+ (masked_array(data=[1, 2, 3, --],
1294
+ mask=[False, False, False, True],
1295
+ fill_value=999999), array([0, 1, 4, 2]))
1296
+ >>> np.ma.unique(masked_a, return_inverse=True)
1297
+ (masked_array(data=[1, 2, 3, --],
1298
+ mask=[False, False, False, True],
1299
+ fill_value=999999), array([0, 1, 3, 1, 2]))
1300
+ >>> np.ma.unique(masked_a, return_index=True, return_inverse=True)
1301
+ (masked_array(data=[1, 2, 3, --],
1302
+ mask=[False, False, False, True],
1303
+ fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2]))
1304
+ """
1305
+ output = np.unique(ar1,
1306
+ return_index=return_index,
1307
+ return_inverse=return_inverse)
1308
+ if isinstance(output, tuple):
1309
+ output = list(output)
1310
+ output[0] = output[0].view(MaskedArray)
1311
+ output = tuple(output)
1312
+ else:
1313
+ output = output.view(MaskedArray)
1314
+ return output
1315
+
1316
+
1317
+ def intersect1d(ar1, ar2, assume_unique=False):
1318
+ """
1319
+ Returns the unique elements common to both arrays.
1320
+
1321
+ Masked values are considered equal one to the other.
1322
+ The output is always a masked array.
1323
+
1324
+ See `numpy.intersect1d` for more details.
1325
+
1326
+ See Also
1327
+ --------
1328
+ numpy.intersect1d : Equivalent function for ndarrays.
1329
+
1330
+ Examples
1331
+ --------
1332
+ >>> import numpy as np
1333
+ >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
1334
+ >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
1335
+ >>> np.ma.intersect1d(x, y)
1336
+ masked_array(data=[1, 3, --],
1337
+ mask=[False, False, True],
1338
+ fill_value=999999)
1339
+
1340
+ """
1341
+ if assume_unique:
1342
+ aux = ma.concatenate((ar1, ar2))
1343
+ else:
1344
+ # Might be faster than unique( intersect1d( ar1, ar2 ) )?
1345
+ aux = ma.concatenate((unique(ar1), unique(ar2)))
1346
+ aux.sort()
1347
+ return aux[:-1][aux[1:] == aux[:-1]]
1348
+
1349
+
1350
+ def setxor1d(ar1, ar2, assume_unique=False):
1351
+ """
1352
+ Set exclusive-or of 1-D arrays with unique elements.
1353
+
1354
+ The output is always a masked array. See `numpy.setxor1d` for more details.
1355
+
1356
+ See Also
1357
+ --------
1358
+ numpy.setxor1d : Equivalent function for ndarrays.
1359
+
1360
+ Examples
1361
+ --------
1362
+ >>> import numpy as np
1363
+ >>> ar1 = np.ma.array([1, 2, 3, 2, 4])
1364
+ >>> ar2 = np.ma.array([2, 3, 5, 7, 5])
1365
+ >>> np.ma.setxor1d(ar1, ar2)
1366
+ masked_array(data=[1, 4, 5, 7],
1367
+ mask=False,
1368
+ fill_value=999999)
1369
+
1370
+ """
1371
+ if not assume_unique:
1372
+ ar1 = unique(ar1)
1373
+ ar2 = unique(ar2)
1374
+
1375
+ aux = ma.concatenate((ar1, ar2), axis=None)
1376
+ if aux.size == 0:
1377
+ return aux
1378
+ aux.sort()
1379
+ auxf = aux.filled()
1380
+ # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
1381
+ flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
1382
+ # flag2 = ediff1d( flag ) == 0
1383
+ flag2 = (flag[1:] == flag[:-1])
1384
+ return aux[flag2]
1385
+
1386
+
1387
+ def in1d(ar1, ar2, assume_unique=False, invert=False):
1388
+ """
1389
+ Test whether each element of an array is also present in a second
1390
+ array.
1391
+
1392
+ The output is always a masked array.
1393
+
1394
+ We recommend using :func:`isin` instead of `in1d` for new code.
1395
+
1396
+ See Also
1397
+ --------
1398
+ isin : Version of this function that preserves the shape of ar1.
1399
+
1400
+ Examples
1401
+ --------
1402
+ >>> import numpy as np
1403
+ >>> ar1 = np.ma.array([0, 1, 2, 5, 0])
1404
+ >>> ar2 = [0, 2]
1405
+ >>> np.ma.in1d(ar1, ar2)
1406
+ masked_array(data=[ True, False, True, False, True],
1407
+ mask=False,
1408
+ fill_value=True)
1409
+
1410
+ """
1411
+ if not assume_unique:
1412
+ ar1, rev_idx = unique(ar1, return_inverse=True)
1413
+ ar2 = unique(ar2)
1414
+
1415
+ ar = ma.concatenate((ar1, ar2))
1416
+ # We need this to be a stable sort, so always use 'mergesort'
1417
+ # here. The values from the first array should always come before
1418
+ # the values from the second array.
1419
+ order = ar.argsort(kind='mergesort')
1420
+ sar = ar[order]
1421
+ if invert:
1422
+ bool_ar = (sar[1:] != sar[:-1])
1423
+ else:
1424
+ bool_ar = (sar[1:] == sar[:-1])
1425
+ flag = ma.concatenate((bool_ar, [invert]))
1426
+ indx = order.argsort(kind='mergesort')[:len(ar1)]
1427
+
1428
+ if assume_unique:
1429
+ return flag[indx]
1430
+ else:
1431
+ return flag[indx][rev_idx]
1432
+
1433
+
1434
+ def isin(element, test_elements, assume_unique=False, invert=False):
1435
+ """
1436
+ Calculates `element in test_elements`, broadcasting over
1437
+ `element` only.
1438
+
1439
+ The output is always a masked array of the same shape as `element`.
1440
+ See `numpy.isin` for more details.
1441
+
1442
+ See Also
1443
+ --------
1444
+ in1d : Flattened version of this function.
1445
+ numpy.isin : Equivalent function for ndarrays.
1446
+
1447
+ Examples
1448
+ --------
1449
+ >>> import numpy as np
1450
+ >>> element = np.ma.array([1, 2, 3, 4, 5, 6])
1451
+ >>> test_elements = [0, 2]
1452
+ >>> np.ma.isin(element, test_elements)
1453
+ masked_array(data=[False, True, False, False, False, False],
1454
+ mask=False,
1455
+ fill_value=True)
1456
+
1457
+ """
1458
+ element = ma.asarray(element)
1459
+ return in1d(element, test_elements, assume_unique=assume_unique,
1460
+ invert=invert).reshape(element.shape)
1461
+
1462
+
1463
+ def union1d(ar1, ar2):
1464
+ """
1465
+ Union of two arrays.
1466
+
1467
+ The output is always a masked array. See `numpy.union1d` for more details.
1468
+
1469
+ See Also
1470
+ --------
1471
+ numpy.union1d : Equivalent function for ndarrays.
1472
+
1473
+ Examples
1474
+ --------
1475
+ >>> import numpy as np
1476
+ >>> ar1 = np.ma.array([1, 2, 3, 4])
1477
+ >>> ar2 = np.ma.array([3, 4, 5, 6])
1478
+ >>> np.ma.union1d(ar1, ar2)
1479
+ masked_array(data=[1, 2, 3, 4, 5, 6],
1480
+ mask=False,
1481
+ fill_value=999999)
1482
+
1483
+ """
1484
+ return unique(ma.concatenate((ar1, ar2), axis=None))
1485
+
1486
+
1487
+ def setdiff1d(ar1, ar2, assume_unique=False):
1488
+ """
1489
+ Set difference of 1D arrays with unique elements.
1490
+
1491
+ The output is always a masked array. See `numpy.setdiff1d` for more
1492
+ details.
1493
+
1494
+ See Also
1495
+ --------
1496
+ numpy.setdiff1d : Equivalent function for ndarrays.
1497
+
1498
+ Examples
1499
+ --------
1500
+ >>> import numpy as np
1501
+ >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
1502
+ >>> np.ma.setdiff1d(x, [1, 2])
1503
+ masked_array(data=[3, --],
1504
+ mask=[False, True],
1505
+ fill_value=999999)
1506
+
1507
+ """
1508
+ if assume_unique:
1509
+ ar1 = ma.asarray(ar1).ravel()
1510
+ else:
1511
+ ar1 = unique(ar1)
1512
+ ar2 = unique(ar2)
1513
+ return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
1514
+
1515
+
1516
+ ###############################################################################
1517
+ # Covariance #
1518
+ ###############################################################################
1519
+
1520
+
1521
+ def _covhelper(x, y=None, rowvar=True, allow_masked=True):
1522
+ """
1523
+ Private function for the computation of covariance and correlation
1524
+ coefficients.
1525
+
1526
+ """
1527
+ x = ma.array(x, ndmin=2, copy=True, dtype=float)
1528
+ xmask = ma.getmaskarray(x)
1529
+ # Quick exit if we can't process masked data
1530
+ if not allow_masked and xmask.any():
1531
+ raise ValueError("Cannot process masked data.")
1532
+ #
1533
+ if x.shape[0] == 1:
1534
+ rowvar = True
1535
+ # Make sure that rowvar is either 0 or 1
1536
+ rowvar = int(bool(rowvar))
1537
+ axis = 1 - rowvar
1538
+ if rowvar:
1539
+ tup = (slice(None), None)
1540
+ else:
1541
+ tup = (None, slice(None))
1542
+ #
1543
+ if y is None:
1544
+ # Check if we can guarantee that the integers in the (N - ddof)
1545
+ # normalisation can be accurately represented with single-precision
1546
+ # before computing the dot product.
1547
+ if x.shape[0] > 2 ** 24 or x.shape[1] > 2 ** 24:
1548
+ xnm_dtype = np.float64
1549
+ else:
1550
+ xnm_dtype = np.float32
1551
+ xnotmask = np.logical_not(xmask).astype(xnm_dtype)
1552
+ else:
1553
+ y = array(y, copy=False, ndmin=2, dtype=float)
1554
+ ymask = ma.getmaskarray(y)
1555
+ if not allow_masked and ymask.any():
1556
+ raise ValueError("Cannot process masked data.")
1557
+ if xmask.any() or ymask.any():
1558
+ if y.shape == x.shape:
1559
+ # Define some common mask
1560
+ common_mask = np.logical_or(xmask, ymask)
1561
+ if common_mask is not nomask:
1562
+ xmask = x._mask = y._mask = ymask = common_mask
1563
+ x._sharedmask = False
1564
+ y._sharedmask = False
1565
+ x = ma.concatenate((x, y), axis)
1566
+ # Check if we can guarantee that the integers in the (N - ddof)
1567
+ # normalisation can be accurately represented with single-precision
1568
+ # before computing the dot product.
1569
+ if x.shape[0] > 2 ** 24 or x.shape[1] > 2 ** 24:
1570
+ xnm_dtype = np.float64
1571
+ else:
1572
+ xnm_dtype = np.float32
1573
+ xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(
1574
+ xnm_dtype
1575
+ )
1576
+ x -= x.mean(axis=rowvar)[tup]
1577
+ return (x, xnotmask, rowvar)
1578
+
1579
+
1580
+ def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None):
1581
+ """
1582
+ Estimate the covariance matrix.
1583
+
1584
+ Except for the handling of missing data this function does the same as
1585
+ `numpy.cov`. For more details and examples, see `numpy.cov`.
1586
+
1587
+ By default, masked values are recognized as such. If `x` and `y` have the
1588
+ same shape, a common mask is allocated: if ``x[i,j]`` is masked, then
1589
+ ``y[i,j]`` will also be masked.
1590
+ Setting `allow_masked` to False will raise an exception if values are
1591
+ missing in either of the input arrays.
1592
+
1593
+ Parameters
1594
+ ----------
1595
+ x : array_like
1596
+ A 1-D or 2-D array containing multiple variables and observations.
1597
+ Each row of `x` represents a variable, and each column a single
1598
+ observation of all those variables. Also see `rowvar` below.
1599
+ y : array_like, optional
1600
+ An additional set of variables and observations. `y` has the same
1601
+ shape as `x`.
1602
+ rowvar : bool, optional
1603
+ If `rowvar` is True (default), then each row represents a
1604
+ variable, with observations in the columns. Otherwise, the relationship
1605
+ is transposed: each column represents a variable, while the rows
1606
+ contain observations.
1607
+ bias : bool, optional
1608
+ Default normalization (False) is by ``(N-1)``, where ``N`` is the
1609
+ number of observations given (unbiased estimate). If `bias` is True,
1610
+ then normalization is by ``N``. This keyword can be overridden by
1611
+ the keyword ``ddof`` in numpy versions >= 1.5.
1612
+ allow_masked : bool, optional
1613
+ If True, masked values are propagated pair-wise: if a value is masked
1614
+ in `x`, the corresponding value is masked in `y`.
1615
+ If False, raises a `ValueError` exception when some values are missing.
1616
+ ddof : {None, int}, optional
1617
+ If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
1618
+ the number of observations; this overrides the value implied by
1619
+ ``bias``. The default value is ``None``.
1620
+
1621
+ Raises
1622
+ ------
1623
+ ValueError
1624
+ Raised if some values are missing and `allow_masked` is False.
1625
+
1626
+ See Also
1627
+ --------
1628
+ numpy.cov
1629
+
1630
+ Examples
1631
+ --------
1632
+ >>> import numpy as np
1633
+ >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
1634
+ >>> y = np.ma.array([[1, 0], [0, 1]], mask=[0, 0, 1, 1])
1635
+ >>> np.ma.cov(x, y)
1636
+ masked_array(
1637
+ data=[[--, --, --, --],
1638
+ [--, --, --, --],
1639
+ [--, --, --, --],
1640
+ [--, --, --, --]],
1641
+ mask=[[ True, True, True, True],
1642
+ [ True, True, True, True],
1643
+ [ True, True, True, True],
1644
+ [ True, True, True, True]],
1645
+ fill_value=1e+20,
1646
+ dtype=float64)
1647
+
1648
+ """
1649
+ # Check inputs
1650
+ if ddof is not None and ddof != int(ddof):
1651
+ raise ValueError("ddof must be an integer")
1652
+ # Set up ddof
1653
+ if ddof is None:
1654
+ if bias:
1655
+ ddof = 0
1656
+ else:
1657
+ ddof = 1
1658
+
1659
+ (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
1660
+ if not rowvar:
1661
+ fact = np.dot(xnotmask.T, xnotmask) - ddof
1662
+ mask = np.less_equal(fact, 0, dtype=bool)
1663
+ with np.errstate(divide="ignore", invalid="ignore"):
1664
+ data = np.dot(filled(x.T, 0), filled(x.conj(), 0)) / fact
1665
+ result = ma.array(data, mask=mask).squeeze()
1666
+ else:
1667
+ fact = np.dot(xnotmask, xnotmask.T) - ddof
1668
+ mask = np.less_equal(fact, 0, dtype=bool)
1669
+ with np.errstate(divide="ignore", invalid="ignore"):
1670
+ data = np.dot(filled(x, 0), filled(x.T.conj(), 0)) / fact
1671
+ result = ma.array(data, mask=mask).squeeze()
1672
+ return result
1673
+
1674
+
1675
+ def corrcoef(x, y=None, rowvar=True, allow_masked=True,
1676
+ ):
1677
+ """
1678
+ Return Pearson product-moment correlation coefficients.
1679
+
1680
+ Except for the handling of missing data this function does the same as
1681
+ `numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`.
1682
+
1683
+ Parameters
1684
+ ----------
1685
+ x : array_like
1686
+ A 1-D or 2-D array containing multiple variables and observations.
1687
+ Each row of `x` represents a variable, and each column a single
1688
+ observation of all those variables. Also see `rowvar` below.
1689
+ y : array_like, optional
1690
+ An additional set of variables and observations. `y` has the same
1691
+ shape as `x`.
1692
+ rowvar : bool, optional
1693
+ If `rowvar` is True (default), then each row represents a
1694
+ variable, with observations in the columns. Otherwise, the relationship
1695
+ is transposed: each column represents a variable, while the rows
1696
+ contain observations.
1697
+ allow_masked : bool, optional
1698
+ If True, masked values are propagated pair-wise: if a value is masked
1699
+ in `x`, the corresponding value is masked in `y`.
1700
+ If False, raises an exception. Because `bias` is deprecated, this
1701
+ argument needs to be treated as keyword only to avoid a warning.
1702
+
1703
+ See Also
1704
+ --------
1705
+ numpy.corrcoef : Equivalent function in top-level NumPy module.
1706
+ cov : Estimate the covariance matrix.
1707
+
1708
+ Examples
1709
+ --------
1710
+ >>> import numpy as np
1711
+ >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
1712
+ >>> np.ma.corrcoef(x)
1713
+ masked_array(
1714
+ data=[[--, --],
1715
+ [--, --]],
1716
+ mask=[[ True, True],
1717
+ [ True, True]],
1718
+ fill_value=1e+20,
1719
+ dtype=float64)
1720
+
1721
+ """
1722
+ # Estimate the covariance matrix.
1723
+ corr = cov(x, y, rowvar, allow_masked=allow_masked)
1724
+ # The non-masked version returns a masked value for a scalar.
1725
+ try:
1726
+ std = ma.sqrt(ma.diagonal(corr))
1727
+ except ValueError:
1728
+ return ma.MaskedConstant()
1729
+ corr /= ma.multiply.outer(std, std)
1730
+ return corr
1731
+
1732
+ #####--------------------------------------------------------------------------
1733
+ #---- --- Concatenation helpers ---
1734
+ #####--------------------------------------------------------------------------
1735
+
1736
+ class MAxisConcatenator(AxisConcatenator):
1737
+ """
1738
+ Translate slice objects to concatenation along an axis.
1739
+
1740
+ For documentation on usage, see `mr_class`.
1741
+
1742
+ See Also
1743
+ --------
1744
+ mr_class
1745
+
1746
+ """
1747
+ __slots__ = ()
1748
+
1749
+ concatenate = staticmethod(concatenate)
1750
+
1751
+ @classmethod
1752
+ def makemat(cls, arr):
1753
+ # There used to be a view as np.matrix here, but we may eventually
1754
+ # deprecate that class. In preparation, we use the unmasked version
1755
+ # to construct the matrix (with copy=False for backwards compatibility
1756
+ # with the .view)
1757
+ data = super().makemat(arr.data, copy=False)
1758
+ return array(data, mask=arr.mask)
1759
+
1760
+ def __getitem__(self, key):
1761
+ # matrix builder syntax, like 'a, b; c, d'
1762
+ if isinstance(key, str):
1763
+ raise MAError("Unavailable for masked array.")
1764
+
1765
+ return super().__getitem__(key)
1766
+
1767
+
1768
+ class mr_class(MAxisConcatenator):
1769
+ """
1770
+ Translate slice objects to concatenation along the first axis.
1771
+
1772
+ This is the masked array version of `r_`.
1773
+
1774
+ See Also
1775
+ --------
1776
+ r_
1777
+
1778
+ Examples
1779
+ --------
1780
+ >>> import numpy as np
1781
+ >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
1782
+ masked_array(data=[1, 2, 3, ..., 4, 5, 6],
1783
+ mask=False,
1784
+ fill_value=999999)
1785
+
1786
+ """
1787
+ __slots__ = ()
1788
+
1789
+ def __init__(self):
1790
+ MAxisConcatenator.__init__(self, 0)
1791
+
1792
+
1793
+ mr_ = mr_class()
1794
+
1795
+
1796
+ #####--------------------------------------------------------------------------
1797
+ #---- Find unmasked data ---
1798
+ #####--------------------------------------------------------------------------
1799
+
1800
+ def ndenumerate(a, compressed=True):
1801
+ """
1802
+ Multidimensional index iterator.
1803
+
1804
+ Return an iterator yielding pairs of array coordinates and values,
1805
+ skipping elements that are masked. With `compressed=False`,
1806
+ `ma.masked` is yielded as the value of masked elements. This
1807
+ behavior differs from that of `numpy.ndenumerate`, which yields the
1808
+ value of the underlying data array.
1809
+
1810
+ Notes
1811
+ -----
1812
+ .. versionadded:: 1.23.0
1813
+
1814
+ Parameters
1815
+ ----------
1816
+ a : array_like
1817
+ An array with (possibly) masked elements.
1818
+ compressed : bool, optional
1819
+ If True (default), masked elements are skipped.
1820
+
1821
+ See Also
1822
+ --------
1823
+ numpy.ndenumerate : Equivalent function ignoring any mask.
1824
+
1825
+ Examples
1826
+ --------
1827
+ >>> import numpy as np
1828
+ >>> a = np.ma.arange(9).reshape((3, 3))
1829
+ >>> a[1, 0] = np.ma.masked
1830
+ >>> a[1, 2] = np.ma.masked
1831
+ >>> a[2, 1] = np.ma.masked
1832
+ >>> a
1833
+ masked_array(
1834
+ data=[[0, 1, 2],
1835
+ [--, 4, --],
1836
+ [6, --, 8]],
1837
+ mask=[[False, False, False],
1838
+ [ True, False, True],
1839
+ [False, True, False]],
1840
+ fill_value=999999)
1841
+ >>> for index, x in np.ma.ndenumerate(a):
1842
+ ... print(index, x)
1843
+ (0, 0) 0
1844
+ (0, 1) 1
1845
+ (0, 2) 2
1846
+ (1, 1) 4
1847
+ (2, 0) 6
1848
+ (2, 2) 8
1849
+
1850
+ >>> for index, x in np.ma.ndenumerate(a, compressed=False):
1851
+ ... print(index, x)
1852
+ (0, 0) 0
1853
+ (0, 1) 1
1854
+ (0, 2) 2
1855
+ (1, 0) --
1856
+ (1, 1) 4
1857
+ (1, 2) --
1858
+ (2, 0) 6
1859
+ (2, 1) --
1860
+ (2, 2) 8
1861
+ """
1862
+ for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat):
1863
+ if not mask:
1864
+ yield it
1865
+ elif not compressed:
1866
+ yield it[0], masked
1867
+
1868
+
1869
+ def flatnotmasked_edges(a):
1870
+ """
1871
+ Find the indices of the first and last unmasked values.
1872
+
1873
+ Expects a 1-D `MaskedArray`, returns None if all values are masked.
1874
+
1875
+ Parameters
1876
+ ----------
1877
+ a : array_like
1878
+ Input 1-D `MaskedArray`
1879
+
1880
+ Returns
1881
+ -------
1882
+ edges : ndarray or None
1883
+ The indices of first and last non-masked value in the array.
1884
+ Returns None if all values are masked.
1885
+
1886
+ See Also
1887
+ --------
1888
+ flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
1889
+ clump_masked, clump_unmasked
1890
+
1891
+ Notes
1892
+ -----
1893
+ Only accepts 1-D arrays.
1894
+
1895
+ Examples
1896
+ --------
1897
+ >>> import numpy as np
1898
+ >>> a = np.ma.arange(10)
1899
+ >>> np.ma.flatnotmasked_edges(a)
1900
+ array([0, 9])
1901
+
1902
+ >>> mask = (a < 3) | (a > 8) | (a == 5)
1903
+ >>> a[mask] = np.ma.masked
1904
+ >>> np.array(a[~a.mask])
1905
+ array([3, 4, 6, 7, 8])
1906
+
1907
+ >>> np.ma.flatnotmasked_edges(a)
1908
+ array([3, 8])
1909
+
1910
+ >>> a[:] = np.ma.masked
1911
+ >>> print(np.ma.flatnotmasked_edges(a))
1912
+ None
1913
+
1914
+ """
1915
+ m = getmask(a)
1916
+ if m is nomask or not np.any(m):
1917
+ return np.array([0, a.size - 1])
1918
+ unmasked = np.flatnonzero(~m)
1919
+ if len(unmasked) > 0:
1920
+ return unmasked[[0, -1]]
1921
+ else:
1922
+ return None
1923
+
1924
+
1925
+ def notmasked_edges(a, axis=None):
1926
+ """
1927
+ Find the indices of the first and last unmasked values along an axis.
1928
+
1929
+ If all values are masked, return None. Otherwise, return a list
1930
+ of two tuples, corresponding to the indices of the first and last
1931
+ unmasked values respectively.
1932
+
1933
+ Parameters
1934
+ ----------
1935
+ a : array_like
1936
+ The input array.
1937
+ axis : int, optional
1938
+ Axis along which to perform the operation.
1939
+ If None (default), applies to a flattened version of the array.
1940
+
1941
+ Returns
1942
+ -------
1943
+ edges : ndarray or list
1944
+ An array of start and end indexes if there are any masked data in
1945
+ the array. If there are no masked data in the array, `edges` is a
1946
+ list of the first and last index.
1947
+
1948
+ See Also
1949
+ --------
1950
+ flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
1951
+ clump_masked, clump_unmasked
1952
+
1953
+ Examples
1954
+ --------
1955
+ >>> import numpy as np
1956
+ >>> a = np.arange(9).reshape((3, 3))
1957
+ >>> m = np.zeros_like(a)
1958
+ >>> m[1:, 1:] = 1
1959
+
1960
+ >>> am = np.ma.array(a, mask=m)
1961
+ >>> np.array(am[~am.mask])
1962
+ array([0, 1, 2, 3, 6])
1963
+
1964
+ >>> np.ma.notmasked_edges(am)
1965
+ array([0, 6])
1966
+
1967
+ """
1968
+ a = asarray(a)
1969
+ if axis is None or a.ndim == 1:
1970
+ return flatnotmasked_edges(a)
1971
+ m = getmaskarray(a)
1972
+ idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim))
1973
+ return [tuple(idx[i].min(axis).compressed() for i in range(a.ndim)),
1974
+ tuple(idx[i].max(axis).compressed() for i in range(a.ndim)), ]
1975
+
1976
+
1977
+ def flatnotmasked_contiguous(a):
1978
+ """
1979
+ Find contiguous unmasked data in a masked array.
1980
+
1981
+ Parameters
1982
+ ----------
1983
+ a : array_like
1984
+ The input array.
1985
+
1986
+ Returns
1987
+ -------
1988
+ slice_list : list
1989
+ A sorted sequence of `slice` objects (start index, end index).
1990
+
1991
+ See Also
1992
+ --------
1993
+ flatnotmasked_edges, notmasked_contiguous, notmasked_edges
1994
+ clump_masked, clump_unmasked
1995
+
1996
+ Notes
1997
+ -----
1998
+ Only accepts 2-D arrays at most.
1999
+
2000
+ Examples
2001
+ --------
2002
+ >>> import numpy as np
2003
+ >>> a = np.ma.arange(10)
2004
+ >>> np.ma.flatnotmasked_contiguous(a)
2005
+ [slice(0, 10, None)]
2006
+
2007
+ >>> mask = (a < 3) | (a > 8) | (a == 5)
2008
+ >>> a[mask] = np.ma.masked
2009
+ >>> np.array(a[~a.mask])
2010
+ array([3, 4, 6, 7, 8])
2011
+
2012
+ >>> np.ma.flatnotmasked_contiguous(a)
2013
+ [slice(3, 5, None), slice(6, 9, None)]
2014
+ >>> a[:] = np.ma.masked
2015
+ >>> np.ma.flatnotmasked_contiguous(a)
2016
+ []
2017
+
2018
+ """
2019
+ m = getmask(a)
2020
+ if m is nomask:
2021
+ return [slice(0, a.size)]
2022
+ i = 0
2023
+ result = []
2024
+ for (k, g) in itertools.groupby(m.ravel()):
2025
+ n = len(list(g))
2026
+ if not k:
2027
+ result.append(slice(i, i + n))
2028
+ i += n
2029
+ return result
2030
+
2031
+
2032
+ def notmasked_contiguous(a, axis=None):
2033
+ """
2034
+ Find contiguous unmasked data in a masked array along the given axis.
2035
+
2036
+ Parameters
2037
+ ----------
2038
+ a : array_like
2039
+ The input array.
2040
+ axis : int, optional
2041
+ Axis along which to perform the operation.
2042
+ If None (default), applies to a flattened version of the array, and this
2043
+ is the same as `flatnotmasked_contiguous`.
2044
+
2045
+ Returns
2046
+ -------
2047
+ endpoints : list
2048
+ A list of slices (start and end indexes) of unmasked indexes
2049
+ in the array.
2050
+
2051
+ If the input is 2d and axis is specified, the result is a list of lists.
2052
+
2053
+ See Also
2054
+ --------
2055
+ flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
2056
+ clump_masked, clump_unmasked
2057
+
2058
+ Notes
2059
+ -----
2060
+ Only accepts 2-D arrays at most.
2061
+
2062
+ Examples
2063
+ --------
2064
+ >>> import numpy as np
2065
+ >>> a = np.arange(12).reshape((3, 4))
2066
+ >>> mask = np.zeros_like(a)
2067
+ >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
2068
+ >>> ma = np.ma.array(a, mask=mask)
2069
+ >>> ma
2070
+ masked_array(
2071
+ data=[[0, --, 2, 3],
2072
+ [--, --, --, 7],
2073
+ [8, --, --, 11]],
2074
+ mask=[[False, True, False, False],
2075
+ [ True, True, True, False],
2076
+ [False, True, True, False]],
2077
+ fill_value=999999)
2078
+ >>> np.array(ma[~ma.mask])
2079
+ array([ 0, 2, 3, 7, 8, 11])
2080
+
2081
+ >>> np.ma.notmasked_contiguous(ma)
2082
+ [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
2083
+
2084
+ >>> np.ma.notmasked_contiguous(ma, axis=0)
2085
+ [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]
2086
+
2087
+ >>> np.ma.notmasked_contiguous(ma, axis=1)
2088
+ [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
2089
+
2090
+ """ # noqa: E501
2091
+ a = asarray(a)
2092
+ nd = a.ndim
2093
+ if nd > 2:
2094
+ raise NotImplementedError("Currently limited to at most 2D array.")
2095
+ if axis is None or nd == 1:
2096
+ return flatnotmasked_contiguous(a)
2097
+ #
2098
+ result = []
2099
+ #
2100
+ other = (axis + 1) % 2
2101
+ idx = [0, 0]
2102
+ idx[axis] = slice(None, None)
2103
+ #
2104
+ for i in range(a.shape[other]):
2105
+ idx[other] = i
2106
+ result.append(flatnotmasked_contiguous(a[tuple(idx)]))
2107
+ return result
2108
+
2109
+
2110
+ def _ezclump(mask):
2111
+ """
2112
+ Finds the clumps (groups of data with the same values) for a 1D bool array.
2113
+
2114
+ Returns a series of slices.
2115
+ """
2116
+ if mask.ndim > 1:
2117
+ mask = mask.ravel()
2118
+ idx = (mask[1:] ^ mask[:-1]).nonzero()
2119
+ idx = idx[0] + 1
2120
+
2121
+ if mask[0]:
2122
+ if len(idx) == 0:
2123
+ return [slice(0, mask.size)]
2124
+
2125
+ r = [slice(0, idx[0])]
2126
+ r.extend((slice(left, right)
2127
+ for left, right in zip(idx[1:-1:2], idx[2::2])))
2128
+ else:
2129
+ if len(idx) == 0:
2130
+ return []
2131
+
2132
+ r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])]
2133
+
2134
+ if mask[-1]:
2135
+ r.append(slice(idx[-1], mask.size))
2136
+ return r
2137
+
2138
+
2139
+ def clump_unmasked(a):
2140
+ """
2141
+ Return list of slices corresponding to the unmasked clumps of a 1-D array.
2142
+ (A "clump" is defined as a contiguous region of the array).
2143
+
2144
+ Parameters
2145
+ ----------
2146
+ a : ndarray
2147
+ A one-dimensional masked array.
2148
+
2149
+ Returns
2150
+ -------
2151
+ slices : list of slice
2152
+ The list of slices, one for each continuous region of unmasked
2153
+ elements in `a`.
2154
+
2155
+ See Also
2156
+ --------
2157
+ flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
2158
+ notmasked_contiguous, clump_masked
2159
+
2160
+ Examples
2161
+ --------
2162
+ >>> import numpy as np
2163
+ >>> a = np.ma.masked_array(np.arange(10))
2164
+ >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
2165
+ >>> np.ma.clump_unmasked(a)
2166
+ [slice(3, 6, None), slice(7, 8, None)]
2167
+
2168
+ """
2169
+ mask = getattr(a, '_mask', nomask)
2170
+ if mask is nomask:
2171
+ return [slice(0, a.size)]
2172
+ return _ezclump(~mask)
2173
+
2174
+
2175
+ def clump_masked(a):
2176
+ """
2177
+ Returns a list of slices corresponding to the masked clumps of a 1-D array.
2178
+ (A "clump" is defined as a contiguous region of the array).
2179
+
2180
+ Parameters
2181
+ ----------
2182
+ a : ndarray
2183
+ A one-dimensional masked array.
2184
+
2185
+ Returns
2186
+ -------
2187
+ slices : list of slice
2188
+ The list of slices, one for each continuous region of masked elements
2189
+ in `a`.
2190
+
2191
+ See Also
2192
+ --------
2193
+ flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
2194
+ notmasked_contiguous, clump_unmasked
2195
+
2196
+ Examples
2197
+ --------
2198
+ >>> import numpy as np
2199
+ >>> a = np.ma.masked_array(np.arange(10))
2200
+ >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
2201
+ >>> np.ma.clump_masked(a)
2202
+ [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]
2203
+
2204
+ """
2205
+ mask = ma.getmask(a)
2206
+ if mask is nomask:
2207
+ return []
2208
+ return _ezclump(mask)
2209
+
2210
+
2211
+ ###############################################################################
2212
+ # Polynomial fit #
2213
+ ###############################################################################
2214
+
2215
+
2216
+ def vander(x, n=None):
2217
+ """
2218
+ Masked values in the input array result in rows of zeros.
2219
+
2220
+ """
2221
+ _vander = np.vander(x, n)
2222
+ m = getmask(x)
2223
+ if m is not nomask:
2224
+ _vander[m] = 0
2225
+ return _vander
2226
+
2227
+
2228
+ vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__)
2229
+
2230
+
2231
+ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
2232
+ """
2233
+ Any masked values in x is propagated in y, and vice-versa.
2234
+
2235
+ """
2236
+ x = asarray(x)
2237
+ y = asarray(y)
2238
+
2239
+ m = getmask(x)
2240
+ if y.ndim == 1:
2241
+ m = mask_or(m, getmask(y))
2242
+ elif y.ndim == 2:
2243
+ my = getmask(mask_rows(y))
2244
+ if my is not nomask:
2245
+ m = mask_or(m, my[:, 0])
2246
+ else:
2247
+ raise TypeError("Expected a 1D or 2D array for y!")
2248
+
2249
+ if w is not None:
2250
+ w = asarray(w)
2251
+ if w.ndim != 1:
2252
+ raise TypeError("expected a 1-d array for weights")
2253
+ if w.shape[0] != y.shape[0]:
2254
+ raise TypeError("expected w and y to have the same length")
2255
+ m = mask_or(m, getmask(w))
2256
+
2257
+ if m is not nomask:
2258
+ not_m = ~m
2259
+ if w is not None:
2260
+ w = w[not_m]
2261
+ return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov)
2262
+ else:
2263
+ return np.polyfit(x, y, deg, rcond, full, w, cov)
2264
+
2265
+
2266
+ polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)