numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (915) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  30. numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  31. numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  32. numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  33. numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
  34. numpy/_core/_simd.pyi +35 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  43. numpy/_core/_umath_tests.pyi +47 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +353 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1515 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +630 -0
  280. numpy/exceptions.py +246 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +5 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +244 -0
  294. numpy/f2py/_backends/_meson.pyi +62 -0
  295. numpy/f2py/_backends/meson.build.template +58 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +28 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +262 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +266 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +788 -0
  315. numpy/f2py/f2py2e.pyi +74 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +41 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1518 -0
  326. numpy/f2py/symbolic.pyi +219 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +66 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +983 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +52 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +500 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +213 -0
  460. numpy/fft/__init__.pyi +38 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +44 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +137 -0
  465. numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  466. numpy/fft/tests/__init__.py +0 -0
  467. numpy/fft/tests/test_helper.py +167 -0
  468. numpy/fft/tests/test_pocketfft.py +589 -0
  469. numpy/lib/__init__.py +97 -0
  470. numpy/lib/__init__.pyi +52 -0
  471. numpy/lib/_array_utils_impl.py +62 -0
  472. numpy/lib/_array_utils_impl.pyi +10 -0
  473. numpy/lib/_arraypad_impl.py +926 -0
  474. numpy/lib/_arraypad_impl.pyi +88 -0
  475. numpy/lib/_arraysetops_impl.py +1158 -0
  476. numpy/lib/_arraysetops_impl.pyi +462 -0
  477. numpy/lib/_arrayterator_impl.py +224 -0
  478. numpy/lib/_arrayterator_impl.pyi +45 -0
  479. numpy/lib/_datasource.py +700 -0
  480. numpy/lib/_datasource.pyi +30 -0
  481. numpy/lib/_format_impl.py +1036 -0
  482. numpy/lib/_format_impl.pyi +56 -0
  483. numpy/lib/_function_base_impl.py +5758 -0
  484. numpy/lib/_function_base_impl.pyi +2324 -0
  485. numpy/lib/_histograms_impl.py +1085 -0
  486. numpy/lib/_histograms_impl.pyi +40 -0
  487. numpy/lib/_index_tricks_impl.py +1048 -0
  488. numpy/lib/_index_tricks_impl.pyi +267 -0
  489. numpy/lib/_iotools.py +900 -0
  490. numpy/lib/_iotools.pyi +116 -0
  491. numpy/lib/_nanfunctions_impl.py +2001 -0
  492. numpy/lib/_nanfunctions_impl.pyi +48 -0
  493. numpy/lib/_npyio_impl.py +2583 -0
  494. numpy/lib/_npyio_impl.pyi +299 -0
  495. numpy/lib/_polynomial_impl.py +1465 -0
  496. numpy/lib/_polynomial_impl.pyi +338 -0
  497. numpy/lib/_scimath_impl.py +642 -0
  498. numpy/lib/_scimath_impl.pyi +93 -0
  499. numpy/lib/_shape_base_impl.py +1289 -0
  500. numpy/lib/_shape_base_impl.pyi +236 -0
  501. numpy/lib/_stride_tricks_impl.py +582 -0
  502. numpy/lib/_stride_tricks_impl.pyi +73 -0
  503. numpy/lib/_twodim_base_impl.py +1201 -0
  504. numpy/lib/_twodim_base_impl.pyi +408 -0
  505. numpy/lib/_type_check_impl.py +710 -0
  506. numpy/lib/_type_check_impl.pyi +348 -0
  507. numpy/lib/_ufunclike_impl.py +199 -0
  508. numpy/lib/_ufunclike_impl.pyi +60 -0
  509. numpy/lib/_user_array_impl.py +310 -0
  510. numpy/lib/_user_array_impl.pyi +226 -0
  511. numpy/lib/_utils_impl.py +784 -0
  512. numpy/lib/_utils_impl.pyi +22 -0
  513. numpy/lib/_version.py +153 -0
  514. numpy/lib/_version.pyi +17 -0
  515. numpy/lib/array_utils.py +7 -0
  516. numpy/lib/array_utils.pyi +6 -0
  517. numpy/lib/format.py +24 -0
  518. numpy/lib/format.pyi +24 -0
  519. numpy/lib/introspect.py +94 -0
  520. numpy/lib/introspect.pyi +3 -0
  521. numpy/lib/mixins.py +180 -0
  522. numpy/lib/mixins.pyi +78 -0
  523. numpy/lib/npyio.py +1 -0
  524. numpy/lib/npyio.pyi +5 -0
  525. numpy/lib/recfunctions.py +1681 -0
  526. numpy/lib/recfunctions.pyi +444 -0
  527. numpy/lib/scimath.py +13 -0
  528. numpy/lib/scimath.pyi +12 -0
  529. numpy/lib/stride_tricks.py +1 -0
  530. numpy/lib/stride_tricks.pyi +4 -0
  531. numpy/lib/tests/__init__.py +0 -0
  532. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  533. numpy/lib/tests/data/py2-objarr.npy +0 -0
  534. numpy/lib/tests/data/py2-objarr.npz +0 -0
  535. numpy/lib/tests/data/py3-objarr.npy +0 -0
  536. numpy/lib/tests/data/py3-objarr.npz +0 -0
  537. numpy/lib/tests/data/python3.npy +0 -0
  538. numpy/lib/tests/data/win64python2.npy +0 -0
  539. numpy/lib/tests/test__datasource.py +328 -0
  540. numpy/lib/tests/test__iotools.py +358 -0
  541. numpy/lib/tests/test__version.py +64 -0
  542. numpy/lib/tests/test_array_utils.py +32 -0
  543. numpy/lib/tests/test_arraypad.py +1427 -0
  544. numpy/lib/tests/test_arraysetops.py +1302 -0
  545. numpy/lib/tests/test_arrayterator.py +45 -0
  546. numpy/lib/tests/test_format.py +1054 -0
  547. numpy/lib/tests/test_function_base.py +4705 -0
  548. numpy/lib/tests/test_histograms.py +855 -0
  549. numpy/lib/tests/test_index_tricks.py +693 -0
  550. numpy/lib/tests/test_io.py +2857 -0
  551. numpy/lib/tests/test_loadtxt.py +1099 -0
  552. numpy/lib/tests/test_mixins.py +215 -0
  553. numpy/lib/tests/test_nanfunctions.py +1438 -0
  554. numpy/lib/tests/test_packbits.py +376 -0
  555. numpy/lib/tests/test_polynomial.py +325 -0
  556. numpy/lib/tests/test_recfunctions.py +1042 -0
  557. numpy/lib/tests/test_regression.py +231 -0
  558. numpy/lib/tests/test_shape_base.py +813 -0
  559. numpy/lib/tests/test_stride_tricks.py +655 -0
  560. numpy/lib/tests/test_twodim_base.py +559 -0
  561. numpy/lib/tests/test_type_check.py +473 -0
  562. numpy/lib/tests/test_ufunclike.py +97 -0
  563. numpy/lib/tests/test_utils.py +80 -0
  564. numpy/lib/user_array.py +1 -0
  565. numpy/lib/user_array.pyi +1 -0
  566. numpy/linalg/__init__.py +95 -0
  567. numpy/linalg/__init__.pyi +71 -0
  568. numpy/linalg/_linalg.py +3657 -0
  569. numpy/linalg/_linalg.pyi +548 -0
  570. numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
  571. numpy/linalg/_umath_linalg.pyi +60 -0
  572. numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
  573. numpy/linalg/lapack_lite.pyi +143 -0
  574. numpy/linalg/tests/__init__.py +0 -0
  575. numpy/linalg/tests/test_deprecations.py +21 -0
  576. numpy/linalg/tests/test_linalg.py +2442 -0
  577. numpy/linalg/tests/test_regression.py +182 -0
  578. numpy/ma/API_CHANGES.txt +135 -0
  579. numpy/ma/LICENSE +24 -0
  580. numpy/ma/README.rst +236 -0
  581. numpy/ma/__init__.py +53 -0
  582. numpy/ma/__init__.pyi +458 -0
  583. numpy/ma/core.py +8929 -0
  584. numpy/ma/core.pyi +3720 -0
  585. numpy/ma/extras.py +2266 -0
  586. numpy/ma/extras.pyi +297 -0
  587. numpy/ma/mrecords.py +762 -0
  588. numpy/ma/mrecords.pyi +96 -0
  589. numpy/ma/tests/__init__.py +0 -0
  590. numpy/ma/tests/test_arrayobject.py +40 -0
  591. numpy/ma/tests/test_core.py +6008 -0
  592. numpy/ma/tests/test_deprecations.py +65 -0
  593. numpy/ma/tests/test_extras.py +1945 -0
  594. numpy/ma/tests/test_mrecords.py +495 -0
  595. numpy/ma/tests/test_old_ma.py +939 -0
  596. numpy/ma/tests/test_regression.py +83 -0
  597. numpy/ma/tests/test_subclassing.py +469 -0
  598. numpy/ma/testutils.py +294 -0
  599. numpy/ma/testutils.pyi +69 -0
  600. numpy/matlib.py +380 -0
  601. numpy/matlib.pyi +580 -0
  602. numpy/matrixlib/__init__.py +12 -0
  603. numpy/matrixlib/__init__.pyi +3 -0
  604. numpy/matrixlib/defmatrix.py +1119 -0
  605. numpy/matrixlib/defmatrix.pyi +218 -0
  606. numpy/matrixlib/tests/__init__.py +0 -0
  607. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  608. numpy/matrixlib/tests/test_interaction.py +360 -0
  609. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  610. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  611. numpy/matrixlib/tests/test_multiarray.py +17 -0
  612. numpy/matrixlib/tests/test_numeric.py +18 -0
  613. numpy/matrixlib/tests/test_regression.py +31 -0
  614. numpy/polynomial/__init__.py +187 -0
  615. numpy/polynomial/__init__.pyi +31 -0
  616. numpy/polynomial/_polybase.py +1191 -0
  617. numpy/polynomial/_polybase.pyi +262 -0
  618. numpy/polynomial/_polytypes.pyi +501 -0
  619. numpy/polynomial/chebyshev.py +2001 -0
  620. numpy/polynomial/chebyshev.pyi +180 -0
  621. numpy/polynomial/hermite.py +1738 -0
  622. numpy/polynomial/hermite.pyi +106 -0
  623. numpy/polynomial/hermite_e.py +1640 -0
  624. numpy/polynomial/hermite_e.pyi +106 -0
  625. numpy/polynomial/laguerre.py +1673 -0
  626. numpy/polynomial/laguerre.pyi +100 -0
  627. numpy/polynomial/legendre.py +1603 -0
  628. numpy/polynomial/legendre.pyi +100 -0
  629. numpy/polynomial/polynomial.py +1625 -0
  630. numpy/polynomial/polynomial.pyi +109 -0
  631. numpy/polynomial/polyutils.py +759 -0
  632. numpy/polynomial/polyutils.pyi +307 -0
  633. numpy/polynomial/tests/__init__.py +0 -0
  634. numpy/polynomial/tests/test_chebyshev.py +618 -0
  635. numpy/polynomial/tests/test_classes.py +613 -0
  636. numpy/polynomial/tests/test_hermite.py +553 -0
  637. numpy/polynomial/tests/test_hermite_e.py +554 -0
  638. numpy/polynomial/tests/test_laguerre.py +535 -0
  639. numpy/polynomial/tests/test_legendre.py +566 -0
  640. numpy/polynomial/tests/test_polynomial.py +691 -0
  641. numpy/polynomial/tests/test_polyutils.py +123 -0
  642. numpy/polynomial/tests/test_printing.py +557 -0
  643. numpy/polynomial/tests/test_symbol.py +217 -0
  644. numpy/py.typed +0 -0
  645. numpy/random/LICENSE.md +71 -0
  646. numpy/random/__init__.pxd +14 -0
  647. numpy/random/__init__.py +213 -0
  648. numpy/random/__init__.pyi +124 -0
  649. numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
  650. numpy/random/_bounded_integers.pxd +29 -0
  651. numpy/random/_bounded_integers.pyi +1 -0
  652. numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
  653. numpy/random/_common.pxd +107 -0
  654. numpy/random/_common.pyi +16 -0
  655. numpy/random/_examples/cffi/extending.py +44 -0
  656. numpy/random/_examples/cffi/parse.py +53 -0
  657. numpy/random/_examples/cython/extending.pyx +77 -0
  658. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  659. numpy/random/_examples/cython/meson.build +53 -0
  660. numpy/random/_examples/numba/extending.py +86 -0
  661. numpy/random/_examples/numba/extending_distributions.py +67 -0
  662. numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  663. numpy/random/_generator.pyi +862 -0
  664. numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
  665. numpy/random/_mt19937.pyi +27 -0
  666. numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
  667. numpy/random/_pcg64.pyi +41 -0
  668. numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
  669. numpy/random/_philox.pyi +36 -0
  670. numpy/random/_pickle.py +88 -0
  671. numpy/random/_pickle.pyi +43 -0
  672. numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
  673. numpy/random/_sfc64.pyi +25 -0
  674. numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  675. numpy/random/bit_generator.pxd +35 -0
  676. numpy/random/bit_generator.pyi +123 -0
  677. numpy/random/c_distributions.pxd +119 -0
  678. numpy/random/lib/libnpyrandom.a +0 -0
  679. numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
  680. numpy/random/mtrand.pyi +759 -0
  681. numpy/random/tests/__init__.py +0 -0
  682. numpy/random/tests/data/__init__.py +0 -0
  683. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  684. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  685. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  686. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  687. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  688. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  689. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  690. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  691. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  692. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  693. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  694. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  695. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  696. numpy/random/tests/test_direct.py +595 -0
  697. numpy/random/tests/test_extending.py +131 -0
  698. numpy/random/tests/test_generator_mt19937.py +2825 -0
  699. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  700. numpy/random/tests/test_random.py +1724 -0
  701. numpy/random/tests/test_randomstate.py +2099 -0
  702. numpy/random/tests/test_randomstate_regression.py +213 -0
  703. numpy/random/tests/test_regression.py +175 -0
  704. numpy/random/tests/test_seed_sequence.py +79 -0
  705. numpy/random/tests/test_smoke.py +882 -0
  706. numpy/rec/__init__.py +2 -0
  707. numpy/rec/__init__.pyi +23 -0
  708. numpy/strings/__init__.py +2 -0
  709. numpy/strings/__init__.pyi +97 -0
  710. numpy/testing/__init__.py +22 -0
  711. numpy/testing/__init__.pyi +107 -0
  712. numpy/testing/_private/__init__.py +0 -0
  713. numpy/testing/_private/__init__.pyi +0 -0
  714. numpy/testing/_private/extbuild.py +250 -0
  715. numpy/testing/_private/extbuild.pyi +25 -0
  716. numpy/testing/_private/utils.py +2830 -0
  717. numpy/testing/_private/utils.pyi +505 -0
  718. numpy/testing/overrides.py +84 -0
  719. numpy/testing/overrides.pyi +10 -0
  720. numpy/testing/print_coercion_tables.py +207 -0
  721. numpy/testing/print_coercion_tables.pyi +26 -0
  722. numpy/testing/tests/__init__.py +0 -0
  723. numpy/testing/tests/test_utils.py +2123 -0
  724. numpy/tests/__init__.py +0 -0
  725. numpy/tests/test__all__.py +10 -0
  726. numpy/tests/test_configtool.py +51 -0
  727. numpy/tests/test_ctypeslib.py +383 -0
  728. numpy/tests/test_lazyloading.py +42 -0
  729. numpy/tests/test_matlib.py +59 -0
  730. numpy/tests/test_numpy_config.py +47 -0
  731. numpy/tests/test_numpy_version.py +54 -0
  732. numpy/tests/test_public_api.py +804 -0
  733. numpy/tests/test_reloading.py +76 -0
  734. numpy/tests/test_scripts.py +48 -0
  735. numpy/tests/test_warnings.py +79 -0
  736. numpy/typing/__init__.py +233 -0
  737. numpy/typing/__init__.pyi +3 -0
  738. numpy/typing/mypy_plugin.py +200 -0
  739. numpy/typing/tests/__init__.py +0 -0
  740. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  741. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  742. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  743. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  744. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  745. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  746. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  747. numpy/typing/tests/data/fail/char.pyi +63 -0
  748. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  749. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  750. numpy/typing/tests/data/fail/constants.pyi +3 -0
  751. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  752. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  753. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  754. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  755. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  756. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  757. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  758. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  759. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  760. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  761. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  762. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  763. numpy/typing/tests/data/fail/ma.pyi +155 -0
  764. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  765. numpy/typing/tests/data/fail/modules.pyi +17 -0
  766. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  767. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  768. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  769. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  770. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  771. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  772. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  773. numpy/typing/tests/data/fail/random.pyi +62 -0
  774. numpy/typing/tests/data/fail/rec.pyi +17 -0
  775. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  776. numpy/typing/tests/data/fail/shape.pyi +7 -0
  777. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  778. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  779. numpy/typing/tests/data/fail/strings.pyi +52 -0
  780. numpy/typing/tests/data/fail/testing.pyi +28 -0
  781. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  782. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  783. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  784. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  785. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  786. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  787. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  788. numpy/typing/tests/data/mypy.ini +8 -0
  789. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  790. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  791. numpy/typing/tests/data/pass/array_like.py +43 -0
  792. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  793. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  794. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  795. numpy/typing/tests/data/pass/comparisons.py +316 -0
  796. numpy/typing/tests/data/pass/dtype.py +57 -0
  797. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  798. numpy/typing/tests/data/pass/flatiter.py +26 -0
  799. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  800. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  801. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  802. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  803. numpy/typing/tests/data/pass/lib_version.py +18 -0
  804. numpy/typing/tests/data/pass/literal.py +52 -0
  805. numpy/typing/tests/data/pass/ma.py +199 -0
  806. numpy/typing/tests/data/pass/mod.py +149 -0
  807. numpy/typing/tests/data/pass/modules.py +45 -0
  808. numpy/typing/tests/data/pass/multiarray.py +77 -0
  809. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  810. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  811. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  812. numpy/typing/tests/data/pass/nditer.py +4 -0
  813. numpy/typing/tests/data/pass/numeric.py +90 -0
  814. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  815. numpy/typing/tests/data/pass/random.py +1498 -0
  816. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  817. numpy/typing/tests/data/pass/scalars.py +249 -0
  818. numpy/typing/tests/data/pass/shape.py +19 -0
  819. numpy/typing/tests/data/pass/simple.py +170 -0
  820. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  821. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  822. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  823. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  824. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  825. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  826. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  827. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  828. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  829. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  830. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  831. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  832. numpy/typing/tests/data/reveal/char.pyi +225 -0
  833. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  834. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  835. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  836. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  837. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  838. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  839. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  840. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  841. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  842. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  843. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  844. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  845. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  846. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  847. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  848. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  849. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  850. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  851. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  852. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  853. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  854. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  855. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  856. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  857. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  858. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  859. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  860. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  861. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  862. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  863. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  864. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  865. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  866. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  867. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  868. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  869. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  870. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  871. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  872. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  873. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  874. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  875. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  876. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  877. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  878. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  879. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  880. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  881. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  882. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  883. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  884. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  885. numpy/typing/tests/test_isfile.py +38 -0
  886. numpy/typing/tests/test_runtime.py +110 -0
  887. numpy/typing/tests/test_typing.py +205 -0
  888. numpy/version.py +11 -0
  889. numpy/version.pyi +9 -0
  890. numpy-2.4.0.dist-info/METADATA +139 -0
  891. numpy-2.4.0.dist-info/RECORD +915 -0
  892. numpy-2.4.0.dist-info/WHEEL +5 -0
  893. numpy-2.4.0.dist-info/entry_points.txt +13 -0
  894. numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
  895. numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  896. numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  897. numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  898. numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  899. numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  900. numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  901. numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  902. numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  903. numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
  904. numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  905. numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  906. numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  907. numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  908. numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  909. numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  910. numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  911. numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
  912. numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
  913. numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
  914. numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
  915. numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
@@ -0,0 +1,1048 @@
1
+ import functools
2
+ import math
3
+ import sys
4
+ from itertools import product
5
+
6
+ import numpy as np
7
+ import numpy._core.numeric as _nx
8
+ import numpy.matrixlib as matrixlib
9
+ from numpy._core import linspace, overrides
10
+ from numpy._core.multiarray import ravel_multi_index, unravel_index
11
+ from numpy._core.numeric import ScalarType, array
12
+ from numpy._core.numerictypes import issubdtype
13
+ from numpy._utils import set_module
14
+ from numpy.lib._function_base_impl import diff
15
+
16
+ array_function_dispatch = functools.partial(
17
+ overrides.array_function_dispatch, module='numpy')
18
+
19
+
20
+ __all__ = [
21
+ 'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
22
+ 's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
23
+ 'diag_indices', 'diag_indices_from'
24
+ ]
25
+
26
+
27
+ def _ix__dispatcher(*args):
28
+ return args
29
+
30
+
31
+ @array_function_dispatch(_ix__dispatcher)
32
+ def ix_(*args):
33
+ """
34
+ Construct an open mesh from multiple sequences.
35
+
36
+ This function takes N 1-D sequences and returns N outputs with N
37
+ dimensions each, such that the shape is 1 in all but one dimension
38
+ and the dimension with the non-unit shape value cycles through all
39
+ N dimensions.
40
+
41
+ Using `ix_` one can quickly construct index arrays that will index
42
+ the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
43
+ ``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
44
+
45
+ Parameters
46
+ ----------
47
+ args : 1-D sequences
48
+ Each sequence should be of integer or boolean type.
49
+ Boolean sequences will be interpreted as boolean masks for the
50
+ corresponding dimension (equivalent to passing in
51
+ ``np.nonzero(boolean_sequence)``).
52
+
53
+ Returns
54
+ -------
55
+ out : tuple of ndarrays
56
+ N arrays with N dimensions each, with N the number of input
57
+ sequences. Together these arrays form an open mesh.
58
+
59
+ See Also
60
+ --------
61
+ ogrid, mgrid, meshgrid
62
+
63
+ Examples
64
+ --------
65
+ >>> import numpy as np
66
+ >>> a = np.arange(10).reshape(2, 5)
67
+ >>> a
68
+ array([[0, 1, 2, 3, 4],
69
+ [5, 6, 7, 8, 9]])
70
+ >>> ixgrid = np.ix_([0, 1], [2, 4])
71
+ >>> ixgrid
72
+ (array([[0],
73
+ [1]]), array([[2, 4]]))
74
+ >>> ixgrid[0].shape, ixgrid[1].shape
75
+ ((2, 1), (1, 2))
76
+ >>> a[ixgrid]
77
+ array([[2, 4],
78
+ [7, 9]])
79
+
80
+ >>> ixgrid = np.ix_([True, True], [2, 4])
81
+ >>> a[ixgrid]
82
+ array([[2, 4],
83
+ [7, 9]])
84
+ >>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
85
+ >>> a[ixgrid]
86
+ array([[2, 4],
87
+ [7, 9]])
88
+
89
+ """
90
+ out = []
91
+ nd = len(args)
92
+ for k, new in enumerate(args):
93
+ if not isinstance(new, _nx.ndarray):
94
+ new = np.asarray(new)
95
+ if new.size == 0:
96
+ # Explicitly type empty arrays to avoid float default
97
+ new = new.astype(_nx.intp)
98
+ if new.ndim != 1:
99
+ raise ValueError("Cross index must be 1 dimensional")
100
+ if issubdtype(new.dtype, _nx.bool):
101
+ new, = new.nonzero()
102
+ new = new.reshape((1,) * k + (new.size,) + (1,) * (nd - k - 1))
103
+ out.append(new)
104
+ return tuple(out)
105
+
106
+
107
+ class nd_grid:
108
+ """
109
+ Construct a multi-dimensional "meshgrid".
110
+
111
+ ``grid = nd_grid()`` creates an instance which will return a mesh-grid
112
+ when indexed. The dimension and number of the output arrays are equal
113
+ to the number of indexing dimensions. If the step length is not a
114
+ complex number, then the stop is not inclusive.
115
+
116
+ However, if the step length is a **complex number** (e.g. 5j), then the
117
+ integer part of its magnitude is interpreted as specifying the
118
+ number of points to create between the start and stop values, where
119
+ the stop value **is inclusive**.
120
+
121
+ If instantiated with an argument of ``sparse=True``, the mesh-grid is
122
+ open (or not fleshed out) so that only one-dimension of each returned
123
+ argument is greater than 1.
124
+
125
+ Parameters
126
+ ----------
127
+ sparse : bool, optional
128
+ Whether the grid is sparse or not. Default is False.
129
+
130
+ Notes
131
+ -----
132
+ Two instances of `nd_grid` are made available in the NumPy namespace,
133
+ `mgrid` and `ogrid`, approximately defined as::
134
+
135
+ mgrid = nd_grid(sparse=False)
136
+ ogrid = nd_grid(sparse=True)
137
+
138
+ Users should use these pre-defined instances instead of using `nd_grid`
139
+ directly.
140
+ """
141
+ __slots__ = ('sparse',)
142
+
143
+ def __init__(self, sparse=False):
144
+ self.sparse = sparse
145
+
146
+ def __getitem__(self, key):
147
+ try:
148
+ size = []
149
+ # Mimic the behavior of `np.arange` and use a data type
150
+ # which is at least as large as `np.int_`
151
+ num_list = [0]
152
+ for k in range(len(key)):
153
+ step = key[k].step
154
+ start = key[k].start
155
+ stop = key[k].stop
156
+ if start is None:
157
+ start = 0
158
+ if step is None:
159
+ step = 1
160
+ if isinstance(step, (_nx.complexfloating, complex)):
161
+ step = abs(step)
162
+ size.append(int(step))
163
+ else:
164
+ size.append(
165
+ math.ceil((stop - start) / step))
166
+ num_list += [start, stop, step]
167
+ typ = _nx.result_type(*num_list)
168
+ if self.sparse:
169
+ nn = [_nx.arange(_x, dtype=_t)
170
+ for _x, _t in zip(size, (typ,) * len(size))]
171
+ else:
172
+ nn = _nx.indices(size, typ)
173
+ for k, kk in enumerate(key):
174
+ step = kk.step
175
+ start = kk.start
176
+ if start is None:
177
+ start = 0
178
+ if step is None:
179
+ step = 1
180
+ if isinstance(step, (_nx.complexfloating, complex)):
181
+ step = int(abs(step))
182
+ if step != 1:
183
+ step = (kk.stop - start) / float(step - 1)
184
+ nn[k] = (nn[k] * step + start)
185
+ if self.sparse:
186
+ slobj = [_nx.newaxis] * len(size)
187
+ for k in range(len(size)):
188
+ slobj[k] = slice(None, None)
189
+ nn[k] = nn[k][tuple(slobj)]
190
+ slobj[k] = _nx.newaxis
191
+ return tuple(nn) # ogrid -> tuple of arrays
192
+ return nn # mgrid -> ndarray
193
+ except (IndexError, TypeError):
194
+ step = key.step
195
+ stop = key.stop
196
+ start = key.start
197
+ if start is None:
198
+ start = 0
199
+ if isinstance(step, (_nx.complexfloating, complex)):
200
+ # Prevent the (potential) creation of integer arrays
201
+ step_float = abs(step)
202
+ step = length = int(step_float)
203
+ if step != 1:
204
+ step = (key.stop - start) / float(step - 1)
205
+ typ = _nx.result_type(start, stop, step_float)
206
+ return _nx.arange(0, length, 1, dtype=typ) * step + start
207
+ else:
208
+ return _nx.arange(start, stop, step)
209
+
210
+
211
+ class MGridClass(nd_grid):
212
+ """
213
+ An instance which returns a dense multi-dimensional "meshgrid".
214
+
215
+ An instance which returns a dense (or fleshed out) mesh-grid
216
+ when indexed, so that each returned argument has the same shape.
217
+ The dimensions and number of the output arrays are equal to the
218
+ number of indexing dimensions. If the step length is not a complex
219
+ number, then the stop is not inclusive.
220
+
221
+ However, if the step length is a **complex number** (e.g. 5j), then
222
+ the integer part of its magnitude is interpreted as specifying the
223
+ number of points to create between the start and stop values, where
224
+ the stop value **is inclusive**.
225
+
226
+ Returns
227
+ -------
228
+ mesh-grid : ndarray
229
+ A single array, containing a set of `ndarray`\\ s all of the same
230
+ dimensions. stacked along the first axis.
231
+
232
+ See Also
233
+ --------
234
+ ogrid : like `mgrid` but returns open (not fleshed out) mesh grids
235
+ meshgrid: return coordinate matrices from coordinate vectors
236
+ r_ : array concatenator
237
+ :ref:`how-to-partition`
238
+
239
+ Examples
240
+ --------
241
+ >>> import numpy as np
242
+ >>> np.mgrid[0:5, 0:5]
243
+ array([[[0, 0, 0, 0, 0],
244
+ [1, 1, 1, 1, 1],
245
+ [2, 2, 2, 2, 2],
246
+ [3, 3, 3, 3, 3],
247
+ [4, 4, 4, 4, 4]],
248
+ [[0, 1, 2, 3, 4],
249
+ [0, 1, 2, 3, 4],
250
+ [0, 1, 2, 3, 4],
251
+ [0, 1, 2, 3, 4],
252
+ [0, 1, 2, 3, 4]]])
253
+ >>> np.mgrid[-1:1:5j]
254
+ array([-1. , -0.5, 0. , 0.5, 1. ])
255
+
256
+ >>> np.mgrid[0:4].shape
257
+ (4,)
258
+ >>> np.mgrid[0:4, 0:5].shape
259
+ (2, 4, 5)
260
+ >>> np.mgrid[0:4, 0:5, 0:6].shape
261
+ (3, 4, 5, 6)
262
+
263
+ """
264
+ __slots__ = ()
265
+
266
+ def __init__(self):
267
+ super().__init__(sparse=False)
268
+
269
+
270
+ mgrid = MGridClass()
271
+
272
+
273
+ class OGridClass(nd_grid):
274
+ """
275
+ An instance which returns an open multi-dimensional "meshgrid".
276
+
277
+ An instance which returns an open (i.e. not fleshed out) mesh-grid
278
+ when indexed, so that only one dimension of each returned array is
279
+ greater than 1. The dimension and number of the output arrays are
280
+ equal to the number of indexing dimensions. If the step length is
281
+ not a complex number, then the stop is not inclusive.
282
+
283
+ However, if the step length is a **complex number** (e.g. 5j), then
284
+ the integer part of its magnitude is interpreted as specifying the
285
+ number of points to create between the start and stop values, where
286
+ the stop value **is inclusive**.
287
+
288
+ Returns
289
+ -------
290
+ mesh-grid : ndarray or tuple of ndarrays
291
+ If the input is a single slice, returns an array.
292
+ If the input is multiple slices, returns a tuple of arrays, with
293
+ only one dimension not equal to 1.
294
+
295
+ See Also
296
+ --------
297
+ mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
298
+ meshgrid: return coordinate matrices from coordinate vectors
299
+ r_ : array concatenator
300
+ :ref:`how-to-partition`
301
+
302
+ Examples
303
+ --------
304
+ >>> from numpy import ogrid
305
+ >>> ogrid[-1:1:5j]
306
+ array([-1. , -0.5, 0. , 0.5, 1. ])
307
+ >>> ogrid[0:5, 0:5]
308
+ (array([[0],
309
+ [1],
310
+ [2],
311
+ [3],
312
+ [4]]),
313
+ array([[0, 1, 2, 3, 4]]))
314
+
315
+ """
316
+ __slots__ = ()
317
+
318
+ def __init__(self):
319
+ super().__init__(sparse=True)
320
+
321
+
322
+ ogrid = OGridClass()
323
+
324
+
325
+ class AxisConcatenator:
326
+ """
327
+ Translates slice objects to concatenation along an axis.
328
+
329
+ For detailed documentation on usage, see `r_`.
330
+ """
331
+ __slots__ = ('axis', 'matrix', 'ndmin', 'trans1d')
332
+
333
+ # allow ma.mr_ to override this
334
+ concatenate = staticmethod(_nx.concatenate)
335
+ makemat = staticmethod(matrixlib.matrix)
336
+
337
+ def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
338
+ self.axis = axis
339
+ self.matrix = matrix
340
+ self.trans1d = trans1d
341
+ self.ndmin = ndmin
342
+
343
+ def __getitem__(self, key):
344
+ # handle matrix builder syntax
345
+ if isinstance(key, str):
346
+ frame = sys._getframe().f_back
347
+ mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
348
+ return mymat
349
+
350
+ if not isinstance(key, tuple):
351
+ key = (key,)
352
+
353
+ # copy attributes, since they can be overridden in the first argument
354
+ trans1d = self.trans1d
355
+ ndmin = self.ndmin
356
+ matrix = self.matrix
357
+ axis = self.axis
358
+
359
+ objs = []
360
+ # dtypes or scalars for weak scalar handling in result_type
361
+ result_type_objs = []
362
+
363
+ for k, item in enumerate(key):
364
+ scalar = False
365
+ if isinstance(item, slice):
366
+ step = item.step
367
+ start = item.start
368
+ stop = item.stop
369
+ if start is None:
370
+ start = 0
371
+ if step is None:
372
+ step = 1
373
+ if isinstance(step, (_nx.complexfloating, complex)):
374
+ size = int(abs(step))
375
+ newobj = linspace(start, stop, num=size)
376
+ else:
377
+ newobj = _nx.arange(start, stop, step)
378
+ if ndmin > 1:
379
+ newobj = array(newobj, copy=None, ndmin=ndmin)
380
+ if trans1d != -1:
381
+ newobj = newobj.swapaxes(-1, trans1d)
382
+ elif isinstance(item, str):
383
+ if k != 0:
384
+ raise ValueError("special directives must be the "
385
+ "first entry.")
386
+ if item in ('r', 'c'):
387
+ matrix = True
388
+ col = (item == 'c')
389
+ continue
390
+ if ',' in item:
391
+ vec = item.split(',')
392
+ try:
393
+ axis, ndmin = [int(x) for x in vec[:2]]
394
+ if len(vec) == 3:
395
+ trans1d = int(vec[2])
396
+ continue
397
+ except Exception as e:
398
+ raise ValueError(
399
+ f"unknown special directive {item!r}"
400
+ ) from e
401
+ try:
402
+ axis = int(item)
403
+ continue
404
+ except (ValueError, TypeError) as e:
405
+ raise ValueError("unknown special directive") from e
406
+ elif type(item) in ScalarType:
407
+ scalar = True
408
+ newobj = item
409
+ else:
410
+ item_ndim = np.ndim(item)
411
+ newobj = array(item, copy=None, subok=True, ndmin=ndmin)
412
+ if trans1d != -1 and item_ndim < ndmin:
413
+ k2 = ndmin - item_ndim
414
+ k1 = trans1d
415
+ if k1 < 0:
416
+ k1 += k2 + 1
417
+ defaxes = list(range(ndmin))
418
+ axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
419
+ newobj = newobj.transpose(axes)
420
+
421
+ objs.append(newobj)
422
+ if scalar:
423
+ result_type_objs.append(item)
424
+ else:
425
+ result_type_objs.append(newobj.dtype)
426
+
427
+ # Ensure that scalars won't up-cast unless warranted, for 0, drops
428
+ # through to error in concatenate.
429
+ if len(result_type_objs) != 0:
430
+ final_dtype = _nx.result_type(*result_type_objs)
431
+ # concatenate could do cast, but that can be overridden:
432
+ objs = [array(obj, copy=None, subok=True,
433
+ ndmin=ndmin, dtype=final_dtype) for obj in objs]
434
+
435
+ res = self.concatenate(tuple(objs), axis=axis)
436
+
437
+ if matrix:
438
+ oldndim = res.ndim
439
+ res = self.makemat(res)
440
+ if oldndim == 1 and col:
441
+ res = res.T
442
+ return res
443
+
444
+ def __len__(self):
445
+ return 0
446
+
447
+ # separate classes are used here instead of just making r_ = concatenator(0),
448
+ # etc. because otherwise we couldn't get the doc string to come out right
449
+ # in help(r_)
450
+
451
+
452
+ class RClass(AxisConcatenator):
453
+ """
454
+ Translates slice objects to concatenation along the first axis.
455
+
456
+ This is a simple way to build up arrays quickly. There are two use cases.
457
+
458
+ 1. If the index expression contains comma separated arrays, then stack
459
+ them along their first axis.
460
+ 2. If the index expression contains slice notation or scalars then create
461
+ a 1-D array with a range indicated by the slice notation.
462
+
463
+ If slice notation is used, the syntax ``start:stop:step`` is equivalent
464
+ to ``np.arange(start, stop, step)`` inside of the brackets. However, if
465
+ ``step`` is an imaginary number (i.e. 100j) then its integer portion is
466
+ interpreted as a number-of-points desired and the start and stop are
467
+ inclusive. In other words ``start:stop:stepj`` is interpreted as
468
+ ``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
469
+ After expansion of slice notation, all comma separated sequences are
470
+ concatenated together.
471
+
472
+ Optional character strings placed as the first element of the index
473
+ expression can be used to change the output. The strings 'r' or 'c' result
474
+ in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
475
+ matrix is produced. If the result is 1-D and 'c' is specified, then
476
+ an N x 1 (column) matrix is produced.
477
+ If the result is 2-D then both provide the same matrix result.
478
+
479
+ A string integer specifies which axis to stack multiple comma separated
480
+ arrays along. A string of two comma-separated integers allows indication
481
+ of the minimum number of dimensions to force each entry into as the
482
+ second integer (the axis to concatenate along is still the first integer).
483
+
484
+ A string with three comma-separated integers allows specification of the
485
+ axis to concatenate along, the minimum number of dimensions to force the
486
+ entries to, and which axis should contain the start of the arrays which
487
+ are less than the specified number of dimensions. In other words the third
488
+ integer allows you to specify where the 1's should be placed in the shape
489
+ of the arrays that have their shapes upgraded. By default, they are placed
490
+ in the front of the shape tuple. The third argument allows you to specify
491
+ where the start of the array should be instead. Thus, a third argument of
492
+ '0' would place the 1's at the end of the array shape. Negative integers
493
+ specify where in the new shape tuple the last dimension of upgraded arrays
494
+ should be placed, so the default is '-1'.
495
+
496
+ Parameters
497
+ ----------
498
+ Not a function, so takes no parameters
499
+
500
+
501
+ Returns
502
+ -------
503
+ A concatenated ndarray or matrix.
504
+
505
+ See Also
506
+ --------
507
+ concatenate : Join a sequence of arrays along an existing axis.
508
+ c_ : Translates slice objects to concatenation along the second axis.
509
+
510
+ Examples
511
+ --------
512
+ >>> import numpy as np
513
+ >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
514
+ array([1, 2, 3, ..., 4, 5, 6])
515
+ >>> np.r_[-1:1:6j, [0]*3, 5, 6]
516
+ array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
517
+
518
+ String integers specify the axis to concatenate along or the minimum
519
+ number of dimensions to force entries into.
520
+
521
+ >>> a = np.array([[0, 1, 2], [3, 4, 5]])
522
+ >>> np.r_['-1', a, a] # concatenate along last axis
523
+ array([[0, 1, 2, 0, 1, 2],
524
+ [3, 4, 5, 3, 4, 5]])
525
+ >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
526
+ array([[1, 2, 3],
527
+ [4, 5, 6]])
528
+
529
+ >>> np.r_['0,2,0', [1,2,3], [4,5,6]]
530
+ array([[1],
531
+ [2],
532
+ [3],
533
+ [4],
534
+ [5],
535
+ [6]])
536
+ >>> np.r_['1,2,0', [1,2,3], [4,5,6]]
537
+ array([[1, 4],
538
+ [2, 5],
539
+ [3, 6]])
540
+
541
+ Using 'r' or 'c' as a first string argument creates a matrix.
542
+
543
+ >>> np.r_['r',[1,2,3], [4,5,6]]
544
+ matrix([[1, 2, 3, 4, 5, 6]])
545
+
546
+ """
547
+ __slots__ = ()
548
+
549
+ def __init__(self):
550
+ AxisConcatenator.__init__(self, 0)
551
+
552
+
553
+ r_ = RClass()
554
+
555
+
556
+ class CClass(AxisConcatenator):
557
+ """
558
+ Translates slice objects to concatenation along the second axis.
559
+
560
+ This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
561
+ useful because of its common occurrence. In particular, arrays will be
562
+ stacked along their last axis after being upgraded to at least 2-D with
563
+ 1's post-pended to the shape (column vectors made out of 1-D arrays).
564
+
565
+ See Also
566
+ --------
567
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
568
+ r_ : For more detailed documentation.
569
+
570
+ Examples
571
+ --------
572
+ >>> import numpy as np
573
+ >>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
574
+ array([[1, 4],
575
+ [2, 5],
576
+ [3, 6]])
577
+ >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
578
+ array([[1, 2, 3, ..., 4, 5, 6]])
579
+
580
+ """
581
+ __slots__ = ()
582
+
583
+ def __init__(self):
584
+ AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
585
+
586
+
587
+ c_ = CClass()
588
+
589
+
590
+ @set_module('numpy')
591
+ class ndenumerate:
592
+ """
593
+ Multidimensional index iterator.
594
+
595
+ Return an iterator yielding pairs of array coordinates and values.
596
+
597
+ Parameters
598
+ ----------
599
+ arr : ndarray
600
+ Input array.
601
+
602
+ See Also
603
+ --------
604
+ ndindex, flatiter
605
+
606
+ Examples
607
+ --------
608
+ >>> import numpy as np
609
+ >>> a = np.array([[1, 2], [3, 4]])
610
+ >>> for index, x in np.ndenumerate(a):
611
+ ... print(index, x)
612
+ (0, 0) 1
613
+ (0, 1) 2
614
+ (1, 0) 3
615
+ (1, 1) 4
616
+
617
+ """
618
+
619
+ def __init__(self, arr):
620
+ self.iter = np.asarray(arr).flat
621
+
622
+ def __next__(self):
623
+ """
624
+ Standard iterator method, returns the index tuple and array value.
625
+
626
+ Returns
627
+ -------
628
+ coords : tuple of ints
629
+ The indices of the current iteration.
630
+ val : scalar
631
+ The array element of the current iteration.
632
+
633
+ """
634
+ return self.iter.coords, next(self.iter)
635
+
636
+ def __iter__(self):
637
+ return self
638
+
639
+
640
+ @set_module('numpy')
641
+ class ndindex:
642
+ """
643
+ An N-dimensional iterator object to index arrays.
644
+
645
+ Given the shape of an array, an `ndindex` instance iterates over
646
+ the N-dimensional index of the array. At each iteration a tuple
647
+ of indices is returned, the last dimension is iterated over first.
648
+
649
+ Parameters
650
+ ----------
651
+ shape : ints, or a single tuple of ints
652
+ The size of each dimension of the array can be passed as
653
+ individual parameters or as the elements of a tuple.
654
+
655
+ See Also
656
+ --------
657
+ ndenumerate, flatiter
658
+
659
+ Examples
660
+ --------
661
+ >>> import numpy as np
662
+
663
+ Dimensions as individual arguments
664
+
665
+ >>> for index in np.ndindex(3, 2, 1):
666
+ ... print(index)
667
+ (0, 0, 0)
668
+ (0, 1, 0)
669
+ (1, 0, 0)
670
+ (1, 1, 0)
671
+ (2, 0, 0)
672
+ (2, 1, 0)
673
+
674
+ Same dimensions - but in a tuple ``(3, 2, 1)``
675
+
676
+ >>> for index in np.ndindex((3, 2, 1)):
677
+ ... print(index)
678
+ (0, 0, 0)
679
+ (0, 1, 0)
680
+ (1, 0, 0)
681
+ (1, 1, 0)
682
+ (2, 0, 0)
683
+ (2, 1, 0)
684
+
685
+ """
686
+
687
+ def __init__(self, *shape):
688
+ if len(shape) == 1 and isinstance(shape[0], tuple):
689
+ shape = shape[0]
690
+ if min(shape, default=0) < 0:
691
+ raise ValueError("negative dimensions are not allowed")
692
+ self._iter = product(*map(range, shape))
693
+
694
+ def __iter__(self):
695
+ return self
696
+
697
+ def __next__(self):
698
+ """
699
+ Standard iterator method, updates the index and returns the index
700
+ tuple.
701
+
702
+ Returns
703
+ -------
704
+ val : tuple of ints
705
+ Returns a tuple containing the indices of the current
706
+ iteration.
707
+
708
+ """
709
+ return next(self._iter)
710
+
711
+
712
+ # You can do all this with slice() plus a few special objects,
713
+ # but there's a lot to remember. This version is simpler because
714
+ # it uses the standard array indexing syntax.
715
+ #
716
+ # Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
717
+ # last revision: 1999-7-23
718
+ #
719
+ # Cosmetic changes by T. Oliphant 2001
720
+ #
721
+ #
722
+
723
+ class IndexExpression:
724
+ """
725
+ A nicer way to build up index tuples for arrays.
726
+
727
+ .. note::
728
+ Use one of the two predefined instances ``index_exp`` or `s_`
729
+ rather than directly using `IndexExpression`.
730
+
731
+ For any index combination, including slicing and axis insertion,
732
+ ``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
733
+ array `a`. However, ``np.index_exp[indices]`` can be used anywhere
734
+ in Python code and returns a tuple of slice objects that can be
735
+ used in the construction of complex index expressions.
736
+
737
+ Parameters
738
+ ----------
739
+ maketuple : bool
740
+ If True, always returns a tuple.
741
+
742
+ See Also
743
+ --------
744
+ s_ : Predefined instance without tuple conversion:
745
+ `s_ = IndexExpression(maketuple=False)`.
746
+ The ``index_exp`` is another predefined instance that
747
+ always returns a tuple:
748
+ `index_exp = IndexExpression(maketuple=True)`.
749
+
750
+ Notes
751
+ -----
752
+ You can do all this with :class:`slice` plus a few special objects,
753
+ but there's a lot to remember and this version is simpler because
754
+ it uses the standard array indexing syntax.
755
+
756
+ Examples
757
+ --------
758
+ >>> import numpy as np
759
+ >>> np.s_[2::2]
760
+ slice(2, None, 2)
761
+ >>> np.index_exp[2::2]
762
+ (slice(2, None, 2),)
763
+
764
+ >>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
765
+ array([2, 4])
766
+
767
+ """
768
+ __slots__ = ('maketuple',)
769
+
770
+ def __init__(self, maketuple):
771
+ self.maketuple = maketuple
772
+
773
+ def __getitem__(self, item):
774
+ if self.maketuple and not isinstance(item, tuple):
775
+ return (item,)
776
+ else:
777
+ return item
778
+
779
+
780
+ index_exp = IndexExpression(maketuple=True)
781
+ s_ = IndexExpression(maketuple=False)
782
+
783
+ # End contribution from Konrad.
784
+
785
+
786
+ # The following functions complement those in twodim_base, but are
787
+ # applicable to N-dimensions.
788
+
789
+
790
+ def _fill_diagonal_dispatcher(a, val, wrap=None):
791
+ return (a,)
792
+
793
+
794
+ @array_function_dispatch(_fill_diagonal_dispatcher)
795
+ def fill_diagonal(a, val, wrap=False):
796
+ """Fill the main diagonal of the given array of any dimensionality.
797
+
798
+ For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
799
+ values ``a[i, ..., i]`` with indices ``i`` all identical. This function
800
+ modifies the input array in-place without returning a value.
801
+
802
+ Parameters
803
+ ----------
804
+ a : array, at least 2-D.
805
+ Array whose diagonal is to be filled in-place.
806
+ val : scalar or array_like
807
+ Value(s) to write on the diagonal. If `val` is scalar, the value is
808
+ written along the diagonal. If array-like, the flattened `val` is
809
+ written along the diagonal, repeating if necessary to fill all
810
+ diagonal entries.
811
+
812
+ wrap : bool
813
+ For tall matrices in NumPy version up to 1.6.2, the
814
+ diagonal "wrapped" after N columns. You can have this behavior
815
+ with this option. This affects only tall matrices.
816
+
817
+ See also
818
+ --------
819
+ diag_indices, diag_indices_from
820
+
821
+ Notes
822
+ -----
823
+ This functionality can be obtained via `diag_indices`, but internally
824
+ this version uses a much faster implementation that never constructs the
825
+ indices and uses simple slicing.
826
+
827
+ Examples
828
+ --------
829
+ >>> import numpy as np
830
+ >>> a = np.zeros((3, 3), int)
831
+ >>> np.fill_diagonal(a, 5)
832
+ >>> a
833
+ array([[5, 0, 0],
834
+ [0, 5, 0],
835
+ [0, 0, 5]])
836
+
837
+ The same function can operate on a 4-D array:
838
+
839
+ >>> a = np.zeros((3, 3, 3, 3), int)
840
+ >>> np.fill_diagonal(a, 4)
841
+
842
+ We only show a few blocks for clarity:
843
+
844
+ >>> a[0, 0]
845
+ array([[4, 0, 0],
846
+ [0, 0, 0],
847
+ [0, 0, 0]])
848
+ >>> a[1, 1]
849
+ array([[0, 0, 0],
850
+ [0, 4, 0],
851
+ [0, 0, 0]])
852
+ >>> a[2, 2]
853
+ array([[0, 0, 0],
854
+ [0, 0, 0],
855
+ [0, 0, 4]])
856
+
857
+ The wrap option affects only tall matrices:
858
+
859
+ >>> # tall matrices no wrap
860
+ >>> a = np.zeros((5, 3), int)
861
+ >>> np.fill_diagonal(a, 4)
862
+ >>> a
863
+ array([[4, 0, 0],
864
+ [0, 4, 0],
865
+ [0, 0, 4],
866
+ [0, 0, 0],
867
+ [0, 0, 0]])
868
+
869
+ >>> # tall matrices wrap
870
+ >>> a = np.zeros((5, 3), int)
871
+ >>> np.fill_diagonal(a, 4, wrap=True)
872
+ >>> a
873
+ array([[4, 0, 0],
874
+ [0, 4, 0],
875
+ [0, 0, 4],
876
+ [0, 0, 0],
877
+ [4, 0, 0]])
878
+
879
+ >>> # wide matrices
880
+ >>> a = np.zeros((3, 5), int)
881
+ >>> np.fill_diagonal(a, 4, wrap=True)
882
+ >>> a
883
+ array([[4, 0, 0, 0, 0],
884
+ [0, 4, 0, 0, 0],
885
+ [0, 0, 4, 0, 0]])
886
+
887
+ The anti-diagonal can be filled by reversing the order of elements
888
+ using either `numpy.flipud` or `numpy.fliplr`.
889
+
890
+ >>> a = np.zeros((3, 3), int);
891
+ >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
892
+ >>> a
893
+ array([[0, 0, 1],
894
+ [0, 2, 0],
895
+ [3, 0, 0]])
896
+ >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
897
+ >>> a
898
+ array([[0, 0, 3],
899
+ [0, 2, 0],
900
+ [1, 0, 0]])
901
+
902
+ Note that the order in which the diagonal is filled varies depending
903
+ on the flip function.
904
+ """
905
+ if a.ndim < 2:
906
+ raise ValueError("array must be at least 2-d")
907
+ end = None
908
+ if a.ndim == 2:
909
+ # Explicit, fast formula for the common case. For 2-d arrays, we
910
+ # accept rectangular ones.
911
+ step = a.shape[1] + 1
912
+ # This is needed to don't have tall matrix have the diagonal wrap.
913
+ if not wrap:
914
+ end = a.shape[1] * a.shape[1]
915
+ else:
916
+ # For more than d=2, the strided formula is only valid for arrays with
917
+ # all dimensions equal, so we check first.
918
+ if not np.all(diff(a.shape) == 0):
919
+ raise ValueError("All dimensions of input must be of equal length")
920
+ step = 1 + (np.cumprod(a.shape[:-1])).sum()
921
+
922
+ # Write the value out into the diagonal.
923
+ a.flat[:end:step] = val
924
+
925
+
926
+ @set_module('numpy')
927
+ def diag_indices(n, ndim=2):
928
+ """
929
+ Return the indices to access the main diagonal of an array.
930
+
931
+ This returns a tuple of indices that can be used to access the main
932
+ diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
933
+ (n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
934
+ ``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
935
+ for ``i = [0..n-1]``.
936
+
937
+ Parameters
938
+ ----------
939
+ n : int
940
+ The size, along each dimension, of the arrays for which the returned
941
+ indices can be used.
942
+
943
+ ndim : int, optional
944
+ The number of dimensions.
945
+
946
+ See Also
947
+ --------
948
+ diag_indices_from
949
+
950
+ Examples
951
+ --------
952
+ >>> import numpy as np
953
+
954
+ Create a set of indices to access the diagonal of a (4, 4) array:
955
+
956
+ >>> di = np.diag_indices(4)
957
+ >>> di
958
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
959
+ >>> a = np.arange(16).reshape(4, 4)
960
+ >>> a
961
+ array([[ 0, 1, 2, 3],
962
+ [ 4, 5, 6, 7],
963
+ [ 8, 9, 10, 11],
964
+ [12, 13, 14, 15]])
965
+ >>> a[di] = 100
966
+ >>> a
967
+ array([[100, 1, 2, 3],
968
+ [ 4, 100, 6, 7],
969
+ [ 8, 9, 100, 11],
970
+ [ 12, 13, 14, 100]])
971
+
972
+ Now, we create indices to manipulate a 3-D array:
973
+
974
+ >>> d3 = np.diag_indices(2, 3)
975
+ >>> d3
976
+ (array([0, 1]), array([0, 1]), array([0, 1]))
977
+
978
+ And use it to set the diagonal of an array of zeros to 1:
979
+
980
+ >>> a = np.zeros((2, 2, 2), dtype=int)
981
+ >>> a[d3] = 1
982
+ >>> a
983
+ array([[[1, 0],
984
+ [0, 0]],
985
+ [[0, 0],
986
+ [0, 1]]])
987
+
988
+ """
989
+ idx = np.arange(n)
990
+ return (idx,) * ndim
991
+
992
+
993
+ def _diag_indices_from(arr):
994
+ return (arr,)
995
+
996
+
997
+ @array_function_dispatch(_diag_indices_from)
998
+ def diag_indices_from(arr):
999
+ """
1000
+ Return the indices to access the main diagonal of an n-dimensional array.
1001
+
1002
+ See `diag_indices` for full details.
1003
+
1004
+ Parameters
1005
+ ----------
1006
+ arr : array, at least 2-D
1007
+
1008
+ See Also
1009
+ --------
1010
+ diag_indices
1011
+
1012
+ Examples
1013
+ --------
1014
+ >>> import numpy as np
1015
+
1016
+ Create a 4 by 4 array.
1017
+
1018
+ >>> a = np.arange(16).reshape(4, 4)
1019
+ >>> a
1020
+ array([[ 0, 1, 2, 3],
1021
+ [ 4, 5, 6, 7],
1022
+ [ 8, 9, 10, 11],
1023
+ [12, 13, 14, 15]])
1024
+
1025
+ Get the indices of the diagonal elements.
1026
+
1027
+ >>> di = np.diag_indices_from(a)
1028
+ >>> di
1029
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
1030
+
1031
+ >>> a[di]
1032
+ array([ 0, 5, 10, 15])
1033
+
1034
+ This is simply syntactic sugar for diag_indices.
1035
+
1036
+ >>> np.diag_indices(a.shape[0])
1037
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
1038
+
1039
+ """
1040
+
1041
+ if not arr.ndim >= 2:
1042
+ raise ValueError("input array must be at least 2-d")
1043
+ # For more than d=2, the strided formula is only valid for arrays with
1044
+ # all dimensions equal, so we check first.
1045
+ if not np.all(diff(arr.shape) == 0):
1046
+ raise ValueError("All dimensions of input must be of equal length")
1047
+
1048
+ return diag_indices(arr.shape[0], arr.ndim)