numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +942 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/libnpymath.a +0 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +353 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1515 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5758 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2001 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4705 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_bounded_integers.pxd +29 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_common.pxd +107 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/bit_generator.pxd +35 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/libnpyrandom.a +0 -0
- numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +804 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.0.dist-info/METADATA +139 -0
- numpy-2.4.0.dist-info/RECORD +915 -0
- numpy-2.4.0.dist-info/WHEEL +5 -0
- numpy-2.4.0.dist-info/entry_points.txt +13 -0
- numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
- numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
- numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
- numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
- numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
- numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
|
@@ -0,0 +1,1048 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import math
|
|
3
|
+
import sys
|
|
4
|
+
from itertools import product
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import numpy._core.numeric as _nx
|
|
8
|
+
import numpy.matrixlib as matrixlib
|
|
9
|
+
from numpy._core import linspace, overrides
|
|
10
|
+
from numpy._core.multiarray import ravel_multi_index, unravel_index
|
|
11
|
+
from numpy._core.numeric import ScalarType, array
|
|
12
|
+
from numpy._core.numerictypes import issubdtype
|
|
13
|
+
from numpy._utils import set_module
|
|
14
|
+
from numpy.lib._function_base_impl import diff
|
|
15
|
+
|
|
16
|
+
array_function_dispatch = functools.partial(
|
|
17
|
+
overrides.array_function_dispatch, module='numpy')
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
__all__ = [
|
|
21
|
+
'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
|
|
22
|
+
's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
|
|
23
|
+
'diag_indices', 'diag_indices_from'
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def _ix__dispatcher(*args):
|
|
28
|
+
return args
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@array_function_dispatch(_ix__dispatcher)
|
|
32
|
+
def ix_(*args):
|
|
33
|
+
"""
|
|
34
|
+
Construct an open mesh from multiple sequences.
|
|
35
|
+
|
|
36
|
+
This function takes N 1-D sequences and returns N outputs with N
|
|
37
|
+
dimensions each, such that the shape is 1 in all but one dimension
|
|
38
|
+
and the dimension with the non-unit shape value cycles through all
|
|
39
|
+
N dimensions.
|
|
40
|
+
|
|
41
|
+
Using `ix_` one can quickly construct index arrays that will index
|
|
42
|
+
the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
|
|
43
|
+
``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
|
|
44
|
+
|
|
45
|
+
Parameters
|
|
46
|
+
----------
|
|
47
|
+
args : 1-D sequences
|
|
48
|
+
Each sequence should be of integer or boolean type.
|
|
49
|
+
Boolean sequences will be interpreted as boolean masks for the
|
|
50
|
+
corresponding dimension (equivalent to passing in
|
|
51
|
+
``np.nonzero(boolean_sequence)``).
|
|
52
|
+
|
|
53
|
+
Returns
|
|
54
|
+
-------
|
|
55
|
+
out : tuple of ndarrays
|
|
56
|
+
N arrays with N dimensions each, with N the number of input
|
|
57
|
+
sequences. Together these arrays form an open mesh.
|
|
58
|
+
|
|
59
|
+
See Also
|
|
60
|
+
--------
|
|
61
|
+
ogrid, mgrid, meshgrid
|
|
62
|
+
|
|
63
|
+
Examples
|
|
64
|
+
--------
|
|
65
|
+
>>> import numpy as np
|
|
66
|
+
>>> a = np.arange(10).reshape(2, 5)
|
|
67
|
+
>>> a
|
|
68
|
+
array([[0, 1, 2, 3, 4],
|
|
69
|
+
[5, 6, 7, 8, 9]])
|
|
70
|
+
>>> ixgrid = np.ix_([0, 1], [2, 4])
|
|
71
|
+
>>> ixgrid
|
|
72
|
+
(array([[0],
|
|
73
|
+
[1]]), array([[2, 4]]))
|
|
74
|
+
>>> ixgrid[0].shape, ixgrid[1].shape
|
|
75
|
+
((2, 1), (1, 2))
|
|
76
|
+
>>> a[ixgrid]
|
|
77
|
+
array([[2, 4],
|
|
78
|
+
[7, 9]])
|
|
79
|
+
|
|
80
|
+
>>> ixgrid = np.ix_([True, True], [2, 4])
|
|
81
|
+
>>> a[ixgrid]
|
|
82
|
+
array([[2, 4],
|
|
83
|
+
[7, 9]])
|
|
84
|
+
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
|
|
85
|
+
>>> a[ixgrid]
|
|
86
|
+
array([[2, 4],
|
|
87
|
+
[7, 9]])
|
|
88
|
+
|
|
89
|
+
"""
|
|
90
|
+
out = []
|
|
91
|
+
nd = len(args)
|
|
92
|
+
for k, new in enumerate(args):
|
|
93
|
+
if not isinstance(new, _nx.ndarray):
|
|
94
|
+
new = np.asarray(new)
|
|
95
|
+
if new.size == 0:
|
|
96
|
+
# Explicitly type empty arrays to avoid float default
|
|
97
|
+
new = new.astype(_nx.intp)
|
|
98
|
+
if new.ndim != 1:
|
|
99
|
+
raise ValueError("Cross index must be 1 dimensional")
|
|
100
|
+
if issubdtype(new.dtype, _nx.bool):
|
|
101
|
+
new, = new.nonzero()
|
|
102
|
+
new = new.reshape((1,) * k + (new.size,) + (1,) * (nd - k - 1))
|
|
103
|
+
out.append(new)
|
|
104
|
+
return tuple(out)
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class nd_grid:
|
|
108
|
+
"""
|
|
109
|
+
Construct a multi-dimensional "meshgrid".
|
|
110
|
+
|
|
111
|
+
``grid = nd_grid()`` creates an instance which will return a mesh-grid
|
|
112
|
+
when indexed. The dimension and number of the output arrays are equal
|
|
113
|
+
to the number of indexing dimensions. If the step length is not a
|
|
114
|
+
complex number, then the stop is not inclusive.
|
|
115
|
+
|
|
116
|
+
However, if the step length is a **complex number** (e.g. 5j), then the
|
|
117
|
+
integer part of its magnitude is interpreted as specifying the
|
|
118
|
+
number of points to create between the start and stop values, where
|
|
119
|
+
the stop value **is inclusive**.
|
|
120
|
+
|
|
121
|
+
If instantiated with an argument of ``sparse=True``, the mesh-grid is
|
|
122
|
+
open (or not fleshed out) so that only one-dimension of each returned
|
|
123
|
+
argument is greater than 1.
|
|
124
|
+
|
|
125
|
+
Parameters
|
|
126
|
+
----------
|
|
127
|
+
sparse : bool, optional
|
|
128
|
+
Whether the grid is sparse or not. Default is False.
|
|
129
|
+
|
|
130
|
+
Notes
|
|
131
|
+
-----
|
|
132
|
+
Two instances of `nd_grid` are made available in the NumPy namespace,
|
|
133
|
+
`mgrid` and `ogrid`, approximately defined as::
|
|
134
|
+
|
|
135
|
+
mgrid = nd_grid(sparse=False)
|
|
136
|
+
ogrid = nd_grid(sparse=True)
|
|
137
|
+
|
|
138
|
+
Users should use these pre-defined instances instead of using `nd_grid`
|
|
139
|
+
directly.
|
|
140
|
+
"""
|
|
141
|
+
__slots__ = ('sparse',)
|
|
142
|
+
|
|
143
|
+
def __init__(self, sparse=False):
|
|
144
|
+
self.sparse = sparse
|
|
145
|
+
|
|
146
|
+
def __getitem__(self, key):
|
|
147
|
+
try:
|
|
148
|
+
size = []
|
|
149
|
+
# Mimic the behavior of `np.arange` and use a data type
|
|
150
|
+
# which is at least as large as `np.int_`
|
|
151
|
+
num_list = [0]
|
|
152
|
+
for k in range(len(key)):
|
|
153
|
+
step = key[k].step
|
|
154
|
+
start = key[k].start
|
|
155
|
+
stop = key[k].stop
|
|
156
|
+
if start is None:
|
|
157
|
+
start = 0
|
|
158
|
+
if step is None:
|
|
159
|
+
step = 1
|
|
160
|
+
if isinstance(step, (_nx.complexfloating, complex)):
|
|
161
|
+
step = abs(step)
|
|
162
|
+
size.append(int(step))
|
|
163
|
+
else:
|
|
164
|
+
size.append(
|
|
165
|
+
math.ceil((stop - start) / step))
|
|
166
|
+
num_list += [start, stop, step]
|
|
167
|
+
typ = _nx.result_type(*num_list)
|
|
168
|
+
if self.sparse:
|
|
169
|
+
nn = [_nx.arange(_x, dtype=_t)
|
|
170
|
+
for _x, _t in zip(size, (typ,) * len(size))]
|
|
171
|
+
else:
|
|
172
|
+
nn = _nx.indices(size, typ)
|
|
173
|
+
for k, kk in enumerate(key):
|
|
174
|
+
step = kk.step
|
|
175
|
+
start = kk.start
|
|
176
|
+
if start is None:
|
|
177
|
+
start = 0
|
|
178
|
+
if step is None:
|
|
179
|
+
step = 1
|
|
180
|
+
if isinstance(step, (_nx.complexfloating, complex)):
|
|
181
|
+
step = int(abs(step))
|
|
182
|
+
if step != 1:
|
|
183
|
+
step = (kk.stop - start) / float(step - 1)
|
|
184
|
+
nn[k] = (nn[k] * step + start)
|
|
185
|
+
if self.sparse:
|
|
186
|
+
slobj = [_nx.newaxis] * len(size)
|
|
187
|
+
for k in range(len(size)):
|
|
188
|
+
slobj[k] = slice(None, None)
|
|
189
|
+
nn[k] = nn[k][tuple(slobj)]
|
|
190
|
+
slobj[k] = _nx.newaxis
|
|
191
|
+
return tuple(nn) # ogrid -> tuple of arrays
|
|
192
|
+
return nn # mgrid -> ndarray
|
|
193
|
+
except (IndexError, TypeError):
|
|
194
|
+
step = key.step
|
|
195
|
+
stop = key.stop
|
|
196
|
+
start = key.start
|
|
197
|
+
if start is None:
|
|
198
|
+
start = 0
|
|
199
|
+
if isinstance(step, (_nx.complexfloating, complex)):
|
|
200
|
+
# Prevent the (potential) creation of integer arrays
|
|
201
|
+
step_float = abs(step)
|
|
202
|
+
step = length = int(step_float)
|
|
203
|
+
if step != 1:
|
|
204
|
+
step = (key.stop - start) / float(step - 1)
|
|
205
|
+
typ = _nx.result_type(start, stop, step_float)
|
|
206
|
+
return _nx.arange(0, length, 1, dtype=typ) * step + start
|
|
207
|
+
else:
|
|
208
|
+
return _nx.arange(start, stop, step)
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
class MGridClass(nd_grid):
|
|
212
|
+
"""
|
|
213
|
+
An instance which returns a dense multi-dimensional "meshgrid".
|
|
214
|
+
|
|
215
|
+
An instance which returns a dense (or fleshed out) mesh-grid
|
|
216
|
+
when indexed, so that each returned argument has the same shape.
|
|
217
|
+
The dimensions and number of the output arrays are equal to the
|
|
218
|
+
number of indexing dimensions. If the step length is not a complex
|
|
219
|
+
number, then the stop is not inclusive.
|
|
220
|
+
|
|
221
|
+
However, if the step length is a **complex number** (e.g. 5j), then
|
|
222
|
+
the integer part of its magnitude is interpreted as specifying the
|
|
223
|
+
number of points to create between the start and stop values, where
|
|
224
|
+
the stop value **is inclusive**.
|
|
225
|
+
|
|
226
|
+
Returns
|
|
227
|
+
-------
|
|
228
|
+
mesh-grid : ndarray
|
|
229
|
+
A single array, containing a set of `ndarray`\\ s all of the same
|
|
230
|
+
dimensions. stacked along the first axis.
|
|
231
|
+
|
|
232
|
+
See Also
|
|
233
|
+
--------
|
|
234
|
+
ogrid : like `mgrid` but returns open (not fleshed out) mesh grids
|
|
235
|
+
meshgrid: return coordinate matrices from coordinate vectors
|
|
236
|
+
r_ : array concatenator
|
|
237
|
+
:ref:`how-to-partition`
|
|
238
|
+
|
|
239
|
+
Examples
|
|
240
|
+
--------
|
|
241
|
+
>>> import numpy as np
|
|
242
|
+
>>> np.mgrid[0:5, 0:5]
|
|
243
|
+
array([[[0, 0, 0, 0, 0],
|
|
244
|
+
[1, 1, 1, 1, 1],
|
|
245
|
+
[2, 2, 2, 2, 2],
|
|
246
|
+
[3, 3, 3, 3, 3],
|
|
247
|
+
[4, 4, 4, 4, 4]],
|
|
248
|
+
[[0, 1, 2, 3, 4],
|
|
249
|
+
[0, 1, 2, 3, 4],
|
|
250
|
+
[0, 1, 2, 3, 4],
|
|
251
|
+
[0, 1, 2, 3, 4],
|
|
252
|
+
[0, 1, 2, 3, 4]]])
|
|
253
|
+
>>> np.mgrid[-1:1:5j]
|
|
254
|
+
array([-1. , -0.5, 0. , 0.5, 1. ])
|
|
255
|
+
|
|
256
|
+
>>> np.mgrid[0:4].shape
|
|
257
|
+
(4,)
|
|
258
|
+
>>> np.mgrid[0:4, 0:5].shape
|
|
259
|
+
(2, 4, 5)
|
|
260
|
+
>>> np.mgrid[0:4, 0:5, 0:6].shape
|
|
261
|
+
(3, 4, 5, 6)
|
|
262
|
+
|
|
263
|
+
"""
|
|
264
|
+
__slots__ = ()
|
|
265
|
+
|
|
266
|
+
def __init__(self):
|
|
267
|
+
super().__init__(sparse=False)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
mgrid = MGridClass()
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
class OGridClass(nd_grid):
|
|
274
|
+
"""
|
|
275
|
+
An instance which returns an open multi-dimensional "meshgrid".
|
|
276
|
+
|
|
277
|
+
An instance which returns an open (i.e. not fleshed out) mesh-grid
|
|
278
|
+
when indexed, so that only one dimension of each returned array is
|
|
279
|
+
greater than 1. The dimension and number of the output arrays are
|
|
280
|
+
equal to the number of indexing dimensions. If the step length is
|
|
281
|
+
not a complex number, then the stop is not inclusive.
|
|
282
|
+
|
|
283
|
+
However, if the step length is a **complex number** (e.g. 5j), then
|
|
284
|
+
the integer part of its magnitude is interpreted as specifying the
|
|
285
|
+
number of points to create between the start and stop values, where
|
|
286
|
+
the stop value **is inclusive**.
|
|
287
|
+
|
|
288
|
+
Returns
|
|
289
|
+
-------
|
|
290
|
+
mesh-grid : ndarray or tuple of ndarrays
|
|
291
|
+
If the input is a single slice, returns an array.
|
|
292
|
+
If the input is multiple slices, returns a tuple of arrays, with
|
|
293
|
+
only one dimension not equal to 1.
|
|
294
|
+
|
|
295
|
+
See Also
|
|
296
|
+
--------
|
|
297
|
+
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
|
|
298
|
+
meshgrid: return coordinate matrices from coordinate vectors
|
|
299
|
+
r_ : array concatenator
|
|
300
|
+
:ref:`how-to-partition`
|
|
301
|
+
|
|
302
|
+
Examples
|
|
303
|
+
--------
|
|
304
|
+
>>> from numpy import ogrid
|
|
305
|
+
>>> ogrid[-1:1:5j]
|
|
306
|
+
array([-1. , -0.5, 0. , 0.5, 1. ])
|
|
307
|
+
>>> ogrid[0:5, 0:5]
|
|
308
|
+
(array([[0],
|
|
309
|
+
[1],
|
|
310
|
+
[2],
|
|
311
|
+
[3],
|
|
312
|
+
[4]]),
|
|
313
|
+
array([[0, 1, 2, 3, 4]]))
|
|
314
|
+
|
|
315
|
+
"""
|
|
316
|
+
__slots__ = ()
|
|
317
|
+
|
|
318
|
+
def __init__(self):
|
|
319
|
+
super().__init__(sparse=True)
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
ogrid = OGridClass()
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
class AxisConcatenator:
|
|
326
|
+
"""
|
|
327
|
+
Translates slice objects to concatenation along an axis.
|
|
328
|
+
|
|
329
|
+
For detailed documentation on usage, see `r_`.
|
|
330
|
+
"""
|
|
331
|
+
__slots__ = ('axis', 'matrix', 'ndmin', 'trans1d')
|
|
332
|
+
|
|
333
|
+
# allow ma.mr_ to override this
|
|
334
|
+
concatenate = staticmethod(_nx.concatenate)
|
|
335
|
+
makemat = staticmethod(matrixlib.matrix)
|
|
336
|
+
|
|
337
|
+
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
|
|
338
|
+
self.axis = axis
|
|
339
|
+
self.matrix = matrix
|
|
340
|
+
self.trans1d = trans1d
|
|
341
|
+
self.ndmin = ndmin
|
|
342
|
+
|
|
343
|
+
def __getitem__(self, key):
|
|
344
|
+
# handle matrix builder syntax
|
|
345
|
+
if isinstance(key, str):
|
|
346
|
+
frame = sys._getframe().f_back
|
|
347
|
+
mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
|
|
348
|
+
return mymat
|
|
349
|
+
|
|
350
|
+
if not isinstance(key, tuple):
|
|
351
|
+
key = (key,)
|
|
352
|
+
|
|
353
|
+
# copy attributes, since they can be overridden in the first argument
|
|
354
|
+
trans1d = self.trans1d
|
|
355
|
+
ndmin = self.ndmin
|
|
356
|
+
matrix = self.matrix
|
|
357
|
+
axis = self.axis
|
|
358
|
+
|
|
359
|
+
objs = []
|
|
360
|
+
# dtypes or scalars for weak scalar handling in result_type
|
|
361
|
+
result_type_objs = []
|
|
362
|
+
|
|
363
|
+
for k, item in enumerate(key):
|
|
364
|
+
scalar = False
|
|
365
|
+
if isinstance(item, slice):
|
|
366
|
+
step = item.step
|
|
367
|
+
start = item.start
|
|
368
|
+
stop = item.stop
|
|
369
|
+
if start is None:
|
|
370
|
+
start = 0
|
|
371
|
+
if step is None:
|
|
372
|
+
step = 1
|
|
373
|
+
if isinstance(step, (_nx.complexfloating, complex)):
|
|
374
|
+
size = int(abs(step))
|
|
375
|
+
newobj = linspace(start, stop, num=size)
|
|
376
|
+
else:
|
|
377
|
+
newobj = _nx.arange(start, stop, step)
|
|
378
|
+
if ndmin > 1:
|
|
379
|
+
newobj = array(newobj, copy=None, ndmin=ndmin)
|
|
380
|
+
if trans1d != -1:
|
|
381
|
+
newobj = newobj.swapaxes(-1, trans1d)
|
|
382
|
+
elif isinstance(item, str):
|
|
383
|
+
if k != 0:
|
|
384
|
+
raise ValueError("special directives must be the "
|
|
385
|
+
"first entry.")
|
|
386
|
+
if item in ('r', 'c'):
|
|
387
|
+
matrix = True
|
|
388
|
+
col = (item == 'c')
|
|
389
|
+
continue
|
|
390
|
+
if ',' in item:
|
|
391
|
+
vec = item.split(',')
|
|
392
|
+
try:
|
|
393
|
+
axis, ndmin = [int(x) for x in vec[:2]]
|
|
394
|
+
if len(vec) == 3:
|
|
395
|
+
trans1d = int(vec[2])
|
|
396
|
+
continue
|
|
397
|
+
except Exception as e:
|
|
398
|
+
raise ValueError(
|
|
399
|
+
f"unknown special directive {item!r}"
|
|
400
|
+
) from e
|
|
401
|
+
try:
|
|
402
|
+
axis = int(item)
|
|
403
|
+
continue
|
|
404
|
+
except (ValueError, TypeError) as e:
|
|
405
|
+
raise ValueError("unknown special directive") from e
|
|
406
|
+
elif type(item) in ScalarType:
|
|
407
|
+
scalar = True
|
|
408
|
+
newobj = item
|
|
409
|
+
else:
|
|
410
|
+
item_ndim = np.ndim(item)
|
|
411
|
+
newobj = array(item, copy=None, subok=True, ndmin=ndmin)
|
|
412
|
+
if trans1d != -1 and item_ndim < ndmin:
|
|
413
|
+
k2 = ndmin - item_ndim
|
|
414
|
+
k1 = trans1d
|
|
415
|
+
if k1 < 0:
|
|
416
|
+
k1 += k2 + 1
|
|
417
|
+
defaxes = list(range(ndmin))
|
|
418
|
+
axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
|
|
419
|
+
newobj = newobj.transpose(axes)
|
|
420
|
+
|
|
421
|
+
objs.append(newobj)
|
|
422
|
+
if scalar:
|
|
423
|
+
result_type_objs.append(item)
|
|
424
|
+
else:
|
|
425
|
+
result_type_objs.append(newobj.dtype)
|
|
426
|
+
|
|
427
|
+
# Ensure that scalars won't up-cast unless warranted, for 0, drops
|
|
428
|
+
# through to error in concatenate.
|
|
429
|
+
if len(result_type_objs) != 0:
|
|
430
|
+
final_dtype = _nx.result_type(*result_type_objs)
|
|
431
|
+
# concatenate could do cast, but that can be overridden:
|
|
432
|
+
objs = [array(obj, copy=None, subok=True,
|
|
433
|
+
ndmin=ndmin, dtype=final_dtype) for obj in objs]
|
|
434
|
+
|
|
435
|
+
res = self.concatenate(tuple(objs), axis=axis)
|
|
436
|
+
|
|
437
|
+
if matrix:
|
|
438
|
+
oldndim = res.ndim
|
|
439
|
+
res = self.makemat(res)
|
|
440
|
+
if oldndim == 1 and col:
|
|
441
|
+
res = res.T
|
|
442
|
+
return res
|
|
443
|
+
|
|
444
|
+
def __len__(self):
|
|
445
|
+
return 0
|
|
446
|
+
|
|
447
|
+
# separate classes are used here instead of just making r_ = concatenator(0),
|
|
448
|
+
# etc. because otherwise we couldn't get the doc string to come out right
|
|
449
|
+
# in help(r_)
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
class RClass(AxisConcatenator):
|
|
453
|
+
"""
|
|
454
|
+
Translates slice objects to concatenation along the first axis.
|
|
455
|
+
|
|
456
|
+
This is a simple way to build up arrays quickly. There are two use cases.
|
|
457
|
+
|
|
458
|
+
1. If the index expression contains comma separated arrays, then stack
|
|
459
|
+
them along their first axis.
|
|
460
|
+
2. If the index expression contains slice notation or scalars then create
|
|
461
|
+
a 1-D array with a range indicated by the slice notation.
|
|
462
|
+
|
|
463
|
+
If slice notation is used, the syntax ``start:stop:step`` is equivalent
|
|
464
|
+
to ``np.arange(start, stop, step)`` inside of the brackets. However, if
|
|
465
|
+
``step`` is an imaginary number (i.e. 100j) then its integer portion is
|
|
466
|
+
interpreted as a number-of-points desired and the start and stop are
|
|
467
|
+
inclusive. In other words ``start:stop:stepj`` is interpreted as
|
|
468
|
+
``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
|
|
469
|
+
After expansion of slice notation, all comma separated sequences are
|
|
470
|
+
concatenated together.
|
|
471
|
+
|
|
472
|
+
Optional character strings placed as the first element of the index
|
|
473
|
+
expression can be used to change the output. The strings 'r' or 'c' result
|
|
474
|
+
in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
|
|
475
|
+
matrix is produced. If the result is 1-D and 'c' is specified, then
|
|
476
|
+
an N x 1 (column) matrix is produced.
|
|
477
|
+
If the result is 2-D then both provide the same matrix result.
|
|
478
|
+
|
|
479
|
+
A string integer specifies which axis to stack multiple comma separated
|
|
480
|
+
arrays along. A string of two comma-separated integers allows indication
|
|
481
|
+
of the minimum number of dimensions to force each entry into as the
|
|
482
|
+
second integer (the axis to concatenate along is still the first integer).
|
|
483
|
+
|
|
484
|
+
A string with three comma-separated integers allows specification of the
|
|
485
|
+
axis to concatenate along, the minimum number of dimensions to force the
|
|
486
|
+
entries to, and which axis should contain the start of the arrays which
|
|
487
|
+
are less than the specified number of dimensions. In other words the third
|
|
488
|
+
integer allows you to specify where the 1's should be placed in the shape
|
|
489
|
+
of the arrays that have their shapes upgraded. By default, they are placed
|
|
490
|
+
in the front of the shape tuple. The third argument allows you to specify
|
|
491
|
+
where the start of the array should be instead. Thus, a third argument of
|
|
492
|
+
'0' would place the 1's at the end of the array shape. Negative integers
|
|
493
|
+
specify where in the new shape tuple the last dimension of upgraded arrays
|
|
494
|
+
should be placed, so the default is '-1'.
|
|
495
|
+
|
|
496
|
+
Parameters
|
|
497
|
+
----------
|
|
498
|
+
Not a function, so takes no parameters
|
|
499
|
+
|
|
500
|
+
|
|
501
|
+
Returns
|
|
502
|
+
-------
|
|
503
|
+
A concatenated ndarray or matrix.
|
|
504
|
+
|
|
505
|
+
See Also
|
|
506
|
+
--------
|
|
507
|
+
concatenate : Join a sequence of arrays along an existing axis.
|
|
508
|
+
c_ : Translates slice objects to concatenation along the second axis.
|
|
509
|
+
|
|
510
|
+
Examples
|
|
511
|
+
--------
|
|
512
|
+
>>> import numpy as np
|
|
513
|
+
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
|
|
514
|
+
array([1, 2, 3, ..., 4, 5, 6])
|
|
515
|
+
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
|
|
516
|
+
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
|
|
517
|
+
|
|
518
|
+
String integers specify the axis to concatenate along or the minimum
|
|
519
|
+
number of dimensions to force entries into.
|
|
520
|
+
|
|
521
|
+
>>> a = np.array([[0, 1, 2], [3, 4, 5]])
|
|
522
|
+
>>> np.r_['-1', a, a] # concatenate along last axis
|
|
523
|
+
array([[0, 1, 2, 0, 1, 2],
|
|
524
|
+
[3, 4, 5, 3, 4, 5]])
|
|
525
|
+
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
|
|
526
|
+
array([[1, 2, 3],
|
|
527
|
+
[4, 5, 6]])
|
|
528
|
+
|
|
529
|
+
>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
|
|
530
|
+
array([[1],
|
|
531
|
+
[2],
|
|
532
|
+
[3],
|
|
533
|
+
[4],
|
|
534
|
+
[5],
|
|
535
|
+
[6]])
|
|
536
|
+
>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
|
|
537
|
+
array([[1, 4],
|
|
538
|
+
[2, 5],
|
|
539
|
+
[3, 6]])
|
|
540
|
+
|
|
541
|
+
Using 'r' or 'c' as a first string argument creates a matrix.
|
|
542
|
+
|
|
543
|
+
>>> np.r_['r',[1,2,3], [4,5,6]]
|
|
544
|
+
matrix([[1, 2, 3, 4, 5, 6]])
|
|
545
|
+
|
|
546
|
+
"""
|
|
547
|
+
__slots__ = ()
|
|
548
|
+
|
|
549
|
+
def __init__(self):
|
|
550
|
+
AxisConcatenator.__init__(self, 0)
|
|
551
|
+
|
|
552
|
+
|
|
553
|
+
r_ = RClass()
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
class CClass(AxisConcatenator):
|
|
557
|
+
"""
|
|
558
|
+
Translates slice objects to concatenation along the second axis.
|
|
559
|
+
|
|
560
|
+
This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
|
|
561
|
+
useful because of its common occurrence. In particular, arrays will be
|
|
562
|
+
stacked along their last axis after being upgraded to at least 2-D with
|
|
563
|
+
1's post-pended to the shape (column vectors made out of 1-D arrays).
|
|
564
|
+
|
|
565
|
+
See Also
|
|
566
|
+
--------
|
|
567
|
+
column_stack : Stack 1-D arrays as columns into a 2-D array.
|
|
568
|
+
r_ : For more detailed documentation.
|
|
569
|
+
|
|
570
|
+
Examples
|
|
571
|
+
--------
|
|
572
|
+
>>> import numpy as np
|
|
573
|
+
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
|
|
574
|
+
array([[1, 4],
|
|
575
|
+
[2, 5],
|
|
576
|
+
[3, 6]])
|
|
577
|
+
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
|
|
578
|
+
array([[1, 2, 3, ..., 4, 5, 6]])
|
|
579
|
+
|
|
580
|
+
"""
|
|
581
|
+
__slots__ = ()
|
|
582
|
+
|
|
583
|
+
def __init__(self):
|
|
584
|
+
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
|
|
585
|
+
|
|
586
|
+
|
|
587
|
+
c_ = CClass()
|
|
588
|
+
|
|
589
|
+
|
|
590
|
+
@set_module('numpy')
|
|
591
|
+
class ndenumerate:
|
|
592
|
+
"""
|
|
593
|
+
Multidimensional index iterator.
|
|
594
|
+
|
|
595
|
+
Return an iterator yielding pairs of array coordinates and values.
|
|
596
|
+
|
|
597
|
+
Parameters
|
|
598
|
+
----------
|
|
599
|
+
arr : ndarray
|
|
600
|
+
Input array.
|
|
601
|
+
|
|
602
|
+
See Also
|
|
603
|
+
--------
|
|
604
|
+
ndindex, flatiter
|
|
605
|
+
|
|
606
|
+
Examples
|
|
607
|
+
--------
|
|
608
|
+
>>> import numpy as np
|
|
609
|
+
>>> a = np.array([[1, 2], [3, 4]])
|
|
610
|
+
>>> for index, x in np.ndenumerate(a):
|
|
611
|
+
... print(index, x)
|
|
612
|
+
(0, 0) 1
|
|
613
|
+
(0, 1) 2
|
|
614
|
+
(1, 0) 3
|
|
615
|
+
(1, 1) 4
|
|
616
|
+
|
|
617
|
+
"""
|
|
618
|
+
|
|
619
|
+
def __init__(self, arr):
|
|
620
|
+
self.iter = np.asarray(arr).flat
|
|
621
|
+
|
|
622
|
+
def __next__(self):
|
|
623
|
+
"""
|
|
624
|
+
Standard iterator method, returns the index tuple and array value.
|
|
625
|
+
|
|
626
|
+
Returns
|
|
627
|
+
-------
|
|
628
|
+
coords : tuple of ints
|
|
629
|
+
The indices of the current iteration.
|
|
630
|
+
val : scalar
|
|
631
|
+
The array element of the current iteration.
|
|
632
|
+
|
|
633
|
+
"""
|
|
634
|
+
return self.iter.coords, next(self.iter)
|
|
635
|
+
|
|
636
|
+
def __iter__(self):
|
|
637
|
+
return self
|
|
638
|
+
|
|
639
|
+
|
|
640
|
+
@set_module('numpy')
|
|
641
|
+
class ndindex:
|
|
642
|
+
"""
|
|
643
|
+
An N-dimensional iterator object to index arrays.
|
|
644
|
+
|
|
645
|
+
Given the shape of an array, an `ndindex` instance iterates over
|
|
646
|
+
the N-dimensional index of the array. At each iteration a tuple
|
|
647
|
+
of indices is returned, the last dimension is iterated over first.
|
|
648
|
+
|
|
649
|
+
Parameters
|
|
650
|
+
----------
|
|
651
|
+
shape : ints, or a single tuple of ints
|
|
652
|
+
The size of each dimension of the array can be passed as
|
|
653
|
+
individual parameters or as the elements of a tuple.
|
|
654
|
+
|
|
655
|
+
See Also
|
|
656
|
+
--------
|
|
657
|
+
ndenumerate, flatiter
|
|
658
|
+
|
|
659
|
+
Examples
|
|
660
|
+
--------
|
|
661
|
+
>>> import numpy as np
|
|
662
|
+
|
|
663
|
+
Dimensions as individual arguments
|
|
664
|
+
|
|
665
|
+
>>> for index in np.ndindex(3, 2, 1):
|
|
666
|
+
... print(index)
|
|
667
|
+
(0, 0, 0)
|
|
668
|
+
(0, 1, 0)
|
|
669
|
+
(1, 0, 0)
|
|
670
|
+
(1, 1, 0)
|
|
671
|
+
(2, 0, 0)
|
|
672
|
+
(2, 1, 0)
|
|
673
|
+
|
|
674
|
+
Same dimensions - but in a tuple ``(3, 2, 1)``
|
|
675
|
+
|
|
676
|
+
>>> for index in np.ndindex((3, 2, 1)):
|
|
677
|
+
... print(index)
|
|
678
|
+
(0, 0, 0)
|
|
679
|
+
(0, 1, 0)
|
|
680
|
+
(1, 0, 0)
|
|
681
|
+
(1, 1, 0)
|
|
682
|
+
(2, 0, 0)
|
|
683
|
+
(2, 1, 0)
|
|
684
|
+
|
|
685
|
+
"""
|
|
686
|
+
|
|
687
|
+
def __init__(self, *shape):
|
|
688
|
+
if len(shape) == 1 and isinstance(shape[0], tuple):
|
|
689
|
+
shape = shape[0]
|
|
690
|
+
if min(shape, default=0) < 0:
|
|
691
|
+
raise ValueError("negative dimensions are not allowed")
|
|
692
|
+
self._iter = product(*map(range, shape))
|
|
693
|
+
|
|
694
|
+
def __iter__(self):
|
|
695
|
+
return self
|
|
696
|
+
|
|
697
|
+
def __next__(self):
|
|
698
|
+
"""
|
|
699
|
+
Standard iterator method, updates the index and returns the index
|
|
700
|
+
tuple.
|
|
701
|
+
|
|
702
|
+
Returns
|
|
703
|
+
-------
|
|
704
|
+
val : tuple of ints
|
|
705
|
+
Returns a tuple containing the indices of the current
|
|
706
|
+
iteration.
|
|
707
|
+
|
|
708
|
+
"""
|
|
709
|
+
return next(self._iter)
|
|
710
|
+
|
|
711
|
+
|
|
712
|
+
# You can do all this with slice() plus a few special objects,
|
|
713
|
+
# but there's a lot to remember. This version is simpler because
|
|
714
|
+
# it uses the standard array indexing syntax.
|
|
715
|
+
#
|
|
716
|
+
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
|
|
717
|
+
# last revision: 1999-7-23
|
|
718
|
+
#
|
|
719
|
+
# Cosmetic changes by T. Oliphant 2001
|
|
720
|
+
#
|
|
721
|
+
#
|
|
722
|
+
|
|
723
|
+
class IndexExpression:
|
|
724
|
+
"""
|
|
725
|
+
A nicer way to build up index tuples for arrays.
|
|
726
|
+
|
|
727
|
+
.. note::
|
|
728
|
+
Use one of the two predefined instances ``index_exp`` or `s_`
|
|
729
|
+
rather than directly using `IndexExpression`.
|
|
730
|
+
|
|
731
|
+
For any index combination, including slicing and axis insertion,
|
|
732
|
+
``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
|
|
733
|
+
array `a`. However, ``np.index_exp[indices]`` can be used anywhere
|
|
734
|
+
in Python code and returns a tuple of slice objects that can be
|
|
735
|
+
used in the construction of complex index expressions.
|
|
736
|
+
|
|
737
|
+
Parameters
|
|
738
|
+
----------
|
|
739
|
+
maketuple : bool
|
|
740
|
+
If True, always returns a tuple.
|
|
741
|
+
|
|
742
|
+
See Also
|
|
743
|
+
--------
|
|
744
|
+
s_ : Predefined instance without tuple conversion:
|
|
745
|
+
`s_ = IndexExpression(maketuple=False)`.
|
|
746
|
+
The ``index_exp`` is another predefined instance that
|
|
747
|
+
always returns a tuple:
|
|
748
|
+
`index_exp = IndexExpression(maketuple=True)`.
|
|
749
|
+
|
|
750
|
+
Notes
|
|
751
|
+
-----
|
|
752
|
+
You can do all this with :class:`slice` plus a few special objects,
|
|
753
|
+
but there's a lot to remember and this version is simpler because
|
|
754
|
+
it uses the standard array indexing syntax.
|
|
755
|
+
|
|
756
|
+
Examples
|
|
757
|
+
--------
|
|
758
|
+
>>> import numpy as np
|
|
759
|
+
>>> np.s_[2::2]
|
|
760
|
+
slice(2, None, 2)
|
|
761
|
+
>>> np.index_exp[2::2]
|
|
762
|
+
(slice(2, None, 2),)
|
|
763
|
+
|
|
764
|
+
>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
|
|
765
|
+
array([2, 4])
|
|
766
|
+
|
|
767
|
+
"""
|
|
768
|
+
__slots__ = ('maketuple',)
|
|
769
|
+
|
|
770
|
+
def __init__(self, maketuple):
|
|
771
|
+
self.maketuple = maketuple
|
|
772
|
+
|
|
773
|
+
def __getitem__(self, item):
|
|
774
|
+
if self.maketuple and not isinstance(item, tuple):
|
|
775
|
+
return (item,)
|
|
776
|
+
else:
|
|
777
|
+
return item
|
|
778
|
+
|
|
779
|
+
|
|
780
|
+
index_exp = IndexExpression(maketuple=True)
|
|
781
|
+
s_ = IndexExpression(maketuple=False)
|
|
782
|
+
|
|
783
|
+
# End contribution from Konrad.
|
|
784
|
+
|
|
785
|
+
|
|
786
|
+
# The following functions complement those in twodim_base, but are
|
|
787
|
+
# applicable to N-dimensions.
|
|
788
|
+
|
|
789
|
+
|
|
790
|
+
def _fill_diagonal_dispatcher(a, val, wrap=None):
|
|
791
|
+
return (a,)
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
@array_function_dispatch(_fill_diagonal_dispatcher)
|
|
795
|
+
def fill_diagonal(a, val, wrap=False):
|
|
796
|
+
"""Fill the main diagonal of the given array of any dimensionality.
|
|
797
|
+
|
|
798
|
+
For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
|
|
799
|
+
values ``a[i, ..., i]`` with indices ``i`` all identical. This function
|
|
800
|
+
modifies the input array in-place without returning a value.
|
|
801
|
+
|
|
802
|
+
Parameters
|
|
803
|
+
----------
|
|
804
|
+
a : array, at least 2-D.
|
|
805
|
+
Array whose diagonal is to be filled in-place.
|
|
806
|
+
val : scalar or array_like
|
|
807
|
+
Value(s) to write on the diagonal. If `val` is scalar, the value is
|
|
808
|
+
written along the diagonal. If array-like, the flattened `val` is
|
|
809
|
+
written along the diagonal, repeating if necessary to fill all
|
|
810
|
+
diagonal entries.
|
|
811
|
+
|
|
812
|
+
wrap : bool
|
|
813
|
+
For tall matrices in NumPy version up to 1.6.2, the
|
|
814
|
+
diagonal "wrapped" after N columns. You can have this behavior
|
|
815
|
+
with this option. This affects only tall matrices.
|
|
816
|
+
|
|
817
|
+
See also
|
|
818
|
+
--------
|
|
819
|
+
diag_indices, diag_indices_from
|
|
820
|
+
|
|
821
|
+
Notes
|
|
822
|
+
-----
|
|
823
|
+
This functionality can be obtained via `diag_indices`, but internally
|
|
824
|
+
this version uses a much faster implementation that never constructs the
|
|
825
|
+
indices and uses simple slicing.
|
|
826
|
+
|
|
827
|
+
Examples
|
|
828
|
+
--------
|
|
829
|
+
>>> import numpy as np
|
|
830
|
+
>>> a = np.zeros((3, 3), int)
|
|
831
|
+
>>> np.fill_diagonal(a, 5)
|
|
832
|
+
>>> a
|
|
833
|
+
array([[5, 0, 0],
|
|
834
|
+
[0, 5, 0],
|
|
835
|
+
[0, 0, 5]])
|
|
836
|
+
|
|
837
|
+
The same function can operate on a 4-D array:
|
|
838
|
+
|
|
839
|
+
>>> a = np.zeros((3, 3, 3, 3), int)
|
|
840
|
+
>>> np.fill_diagonal(a, 4)
|
|
841
|
+
|
|
842
|
+
We only show a few blocks for clarity:
|
|
843
|
+
|
|
844
|
+
>>> a[0, 0]
|
|
845
|
+
array([[4, 0, 0],
|
|
846
|
+
[0, 0, 0],
|
|
847
|
+
[0, 0, 0]])
|
|
848
|
+
>>> a[1, 1]
|
|
849
|
+
array([[0, 0, 0],
|
|
850
|
+
[0, 4, 0],
|
|
851
|
+
[0, 0, 0]])
|
|
852
|
+
>>> a[2, 2]
|
|
853
|
+
array([[0, 0, 0],
|
|
854
|
+
[0, 0, 0],
|
|
855
|
+
[0, 0, 4]])
|
|
856
|
+
|
|
857
|
+
The wrap option affects only tall matrices:
|
|
858
|
+
|
|
859
|
+
>>> # tall matrices no wrap
|
|
860
|
+
>>> a = np.zeros((5, 3), int)
|
|
861
|
+
>>> np.fill_diagonal(a, 4)
|
|
862
|
+
>>> a
|
|
863
|
+
array([[4, 0, 0],
|
|
864
|
+
[0, 4, 0],
|
|
865
|
+
[0, 0, 4],
|
|
866
|
+
[0, 0, 0],
|
|
867
|
+
[0, 0, 0]])
|
|
868
|
+
|
|
869
|
+
>>> # tall matrices wrap
|
|
870
|
+
>>> a = np.zeros((5, 3), int)
|
|
871
|
+
>>> np.fill_diagonal(a, 4, wrap=True)
|
|
872
|
+
>>> a
|
|
873
|
+
array([[4, 0, 0],
|
|
874
|
+
[0, 4, 0],
|
|
875
|
+
[0, 0, 4],
|
|
876
|
+
[0, 0, 0],
|
|
877
|
+
[4, 0, 0]])
|
|
878
|
+
|
|
879
|
+
>>> # wide matrices
|
|
880
|
+
>>> a = np.zeros((3, 5), int)
|
|
881
|
+
>>> np.fill_diagonal(a, 4, wrap=True)
|
|
882
|
+
>>> a
|
|
883
|
+
array([[4, 0, 0, 0, 0],
|
|
884
|
+
[0, 4, 0, 0, 0],
|
|
885
|
+
[0, 0, 4, 0, 0]])
|
|
886
|
+
|
|
887
|
+
The anti-diagonal can be filled by reversing the order of elements
|
|
888
|
+
using either `numpy.flipud` or `numpy.fliplr`.
|
|
889
|
+
|
|
890
|
+
>>> a = np.zeros((3, 3), int);
|
|
891
|
+
>>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
|
|
892
|
+
>>> a
|
|
893
|
+
array([[0, 0, 1],
|
|
894
|
+
[0, 2, 0],
|
|
895
|
+
[3, 0, 0]])
|
|
896
|
+
>>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
|
|
897
|
+
>>> a
|
|
898
|
+
array([[0, 0, 3],
|
|
899
|
+
[0, 2, 0],
|
|
900
|
+
[1, 0, 0]])
|
|
901
|
+
|
|
902
|
+
Note that the order in which the diagonal is filled varies depending
|
|
903
|
+
on the flip function.
|
|
904
|
+
"""
|
|
905
|
+
if a.ndim < 2:
|
|
906
|
+
raise ValueError("array must be at least 2-d")
|
|
907
|
+
end = None
|
|
908
|
+
if a.ndim == 2:
|
|
909
|
+
# Explicit, fast formula for the common case. For 2-d arrays, we
|
|
910
|
+
# accept rectangular ones.
|
|
911
|
+
step = a.shape[1] + 1
|
|
912
|
+
# This is needed to don't have tall matrix have the diagonal wrap.
|
|
913
|
+
if not wrap:
|
|
914
|
+
end = a.shape[1] * a.shape[1]
|
|
915
|
+
else:
|
|
916
|
+
# For more than d=2, the strided formula is only valid for arrays with
|
|
917
|
+
# all dimensions equal, so we check first.
|
|
918
|
+
if not np.all(diff(a.shape) == 0):
|
|
919
|
+
raise ValueError("All dimensions of input must be of equal length")
|
|
920
|
+
step = 1 + (np.cumprod(a.shape[:-1])).sum()
|
|
921
|
+
|
|
922
|
+
# Write the value out into the diagonal.
|
|
923
|
+
a.flat[:end:step] = val
|
|
924
|
+
|
|
925
|
+
|
|
926
|
+
@set_module('numpy')
|
|
927
|
+
def diag_indices(n, ndim=2):
|
|
928
|
+
"""
|
|
929
|
+
Return the indices to access the main diagonal of an array.
|
|
930
|
+
|
|
931
|
+
This returns a tuple of indices that can be used to access the main
|
|
932
|
+
diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
|
|
933
|
+
(n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
|
|
934
|
+
``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
|
|
935
|
+
for ``i = [0..n-1]``.
|
|
936
|
+
|
|
937
|
+
Parameters
|
|
938
|
+
----------
|
|
939
|
+
n : int
|
|
940
|
+
The size, along each dimension, of the arrays for which the returned
|
|
941
|
+
indices can be used.
|
|
942
|
+
|
|
943
|
+
ndim : int, optional
|
|
944
|
+
The number of dimensions.
|
|
945
|
+
|
|
946
|
+
See Also
|
|
947
|
+
--------
|
|
948
|
+
diag_indices_from
|
|
949
|
+
|
|
950
|
+
Examples
|
|
951
|
+
--------
|
|
952
|
+
>>> import numpy as np
|
|
953
|
+
|
|
954
|
+
Create a set of indices to access the diagonal of a (4, 4) array:
|
|
955
|
+
|
|
956
|
+
>>> di = np.diag_indices(4)
|
|
957
|
+
>>> di
|
|
958
|
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
|
959
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
960
|
+
>>> a
|
|
961
|
+
array([[ 0, 1, 2, 3],
|
|
962
|
+
[ 4, 5, 6, 7],
|
|
963
|
+
[ 8, 9, 10, 11],
|
|
964
|
+
[12, 13, 14, 15]])
|
|
965
|
+
>>> a[di] = 100
|
|
966
|
+
>>> a
|
|
967
|
+
array([[100, 1, 2, 3],
|
|
968
|
+
[ 4, 100, 6, 7],
|
|
969
|
+
[ 8, 9, 100, 11],
|
|
970
|
+
[ 12, 13, 14, 100]])
|
|
971
|
+
|
|
972
|
+
Now, we create indices to manipulate a 3-D array:
|
|
973
|
+
|
|
974
|
+
>>> d3 = np.diag_indices(2, 3)
|
|
975
|
+
>>> d3
|
|
976
|
+
(array([0, 1]), array([0, 1]), array([0, 1]))
|
|
977
|
+
|
|
978
|
+
And use it to set the diagonal of an array of zeros to 1:
|
|
979
|
+
|
|
980
|
+
>>> a = np.zeros((2, 2, 2), dtype=int)
|
|
981
|
+
>>> a[d3] = 1
|
|
982
|
+
>>> a
|
|
983
|
+
array([[[1, 0],
|
|
984
|
+
[0, 0]],
|
|
985
|
+
[[0, 0],
|
|
986
|
+
[0, 1]]])
|
|
987
|
+
|
|
988
|
+
"""
|
|
989
|
+
idx = np.arange(n)
|
|
990
|
+
return (idx,) * ndim
|
|
991
|
+
|
|
992
|
+
|
|
993
|
+
def _diag_indices_from(arr):
|
|
994
|
+
return (arr,)
|
|
995
|
+
|
|
996
|
+
|
|
997
|
+
@array_function_dispatch(_diag_indices_from)
|
|
998
|
+
def diag_indices_from(arr):
|
|
999
|
+
"""
|
|
1000
|
+
Return the indices to access the main diagonal of an n-dimensional array.
|
|
1001
|
+
|
|
1002
|
+
See `diag_indices` for full details.
|
|
1003
|
+
|
|
1004
|
+
Parameters
|
|
1005
|
+
----------
|
|
1006
|
+
arr : array, at least 2-D
|
|
1007
|
+
|
|
1008
|
+
See Also
|
|
1009
|
+
--------
|
|
1010
|
+
diag_indices
|
|
1011
|
+
|
|
1012
|
+
Examples
|
|
1013
|
+
--------
|
|
1014
|
+
>>> import numpy as np
|
|
1015
|
+
|
|
1016
|
+
Create a 4 by 4 array.
|
|
1017
|
+
|
|
1018
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
1019
|
+
>>> a
|
|
1020
|
+
array([[ 0, 1, 2, 3],
|
|
1021
|
+
[ 4, 5, 6, 7],
|
|
1022
|
+
[ 8, 9, 10, 11],
|
|
1023
|
+
[12, 13, 14, 15]])
|
|
1024
|
+
|
|
1025
|
+
Get the indices of the diagonal elements.
|
|
1026
|
+
|
|
1027
|
+
>>> di = np.diag_indices_from(a)
|
|
1028
|
+
>>> di
|
|
1029
|
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
|
1030
|
+
|
|
1031
|
+
>>> a[di]
|
|
1032
|
+
array([ 0, 5, 10, 15])
|
|
1033
|
+
|
|
1034
|
+
This is simply syntactic sugar for diag_indices.
|
|
1035
|
+
|
|
1036
|
+
>>> np.diag_indices(a.shape[0])
|
|
1037
|
+
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
|
|
1038
|
+
|
|
1039
|
+
"""
|
|
1040
|
+
|
|
1041
|
+
if not arr.ndim >= 2:
|
|
1042
|
+
raise ValueError("input array must be at least 2-d")
|
|
1043
|
+
# For more than d=2, the strided formula is only valid for arrays with
|
|
1044
|
+
# all dimensions equal, so we check first.
|
|
1045
|
+
if not np.all(diff(arr.shape) == 0):
|
|
1046
|
+
raise ValueError("All dimensions of input must be of equal length")
|
|
1047
|
+
|
|
1048
|
+
return diag_indices(arr.shape[0], arr.ndim)
|