numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (915) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  30. numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  31. numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  32. numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  33. numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
  34. numpy/_core/_simd.pyi +35 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  43. numpy/_core/_umath_tests.pyi +47 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +353 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1515 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +630 -0
  280. numpy/exceptions.py +246 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +5 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +244 -0
  294. numpy/f2py/_backends/_meson.pyi +62 -0
  295. numpy/f2py/_backends/meson.build.template +58 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +28 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +262 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +266 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +788 -0
  315. numpy/f2py/f2py2e.pyi +74 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +41 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1518 -0
  326. numpy/f2py/symbolic.pyi +219 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +66 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +983 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +52 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +500 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +213 -0
  460. numpy/fft/__init__.pyi +38 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +44 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +137 -0
  465. numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  466. numpy/fft/tests/__init__.py +0 -0
  467. numpy/fft/tests/test_helper.py +167 -0
  468. numpy/fft/tests/test_pocketfft.py +589 -0
  469. numpy/lib/__init__.py +97 -0
  470. numpy/lib/__init__.pyi +52 -0
  471. numpy/lib/_array_utils_impl.py +62 -0
  472. numpy/lib/_array_utils_impl.pyi +10 -0
  473. numpy/lib/_arraypad_impl.py +926 -0
  474. numpy/lib/_arraypad_impl.pyi +88 -0
  475. numpy/lib/_arraysetops_impl.py +1158 -0
  476. numpy/lib/_arraysetops_impl.pyi +462 -0
  477. numpy/lib/_arrayterator_impl.py +224 -0
  478. numpy/lib/_arrayterator_impl.pyi +45 -0
  479. numpy/lib/_datasource.py +700 -0
  480. numpy/lib/_datasource.pyi +30 -0
  481. numpy/lib/_format_impl.py +1036 -0
  482. numpy/lib/_format_impl.pyi +56 -0
  483. numpy/lib/_function_base_impl.py +5758 -0
  484. numpy/lib/_function_base_impl.pyi +2324 -0
  485. numpy/lib/_histograms_impl.py +1085 -0
  486. numpy/lib/_histograms_impl.pyi +40 -0
  487. numpy/lib/_index_tricks_impl.py +1048 -0
  488. numpy/lib/_index_tricks_impl.pyi +267 -0
  489. numpy/lib/_iotools.py +900 -0
  490. numpy/lib/_iotools.pyi +116 -0
  491. numpy/lib/_nanfunctions_impl.py +2001 -0
  492. numpy/lib/_nanfunctions_impl.pyi +48 -0
  493. numpy/lib/_npyio_impl.py +2583 -0
  494. numpy/lib/_npyio_impl.pyi +299 -0
  495. numpy/lib/_polynomial_impl.py +1465 -0
  496. numpy/lib/_polynomial_impl.pyi +338 -0
  497. numpy/lib/_scimath_impl.py +642 -0
  498. numpy/lib/_scimath_impl.pyi +93 -0
  499. numpy/lib/_shape_base_impl.py +1289 -0
  500. numpy/lib/_shape_base_impl.pyi +236 -0
  501. numpy/lib/_stride_tricks_impl.py +582 -0
  502. numpy/lib/_stride_tricks_impl.pyi +73 -0
  503. numpy/lib/_twodim_base_impl.py +1201 -0
  504. numpy/lib/_twodim_base_impl.pyi +408 -0
  505. numpy/lib/_type_check_impl.py +710 -0
  506. numpy/lib/_type_check_impl.pyi +348 -0
  507. numpy/lib/_ufunclike_impl.py +199 -0
  508. numpy/lib/_ufunclike_impl.pyi +60 -0
  509. numpy/lib/_user_array_impl.py +310 -0
  510. numpy/lib/_user_array_impl.pyi +226 -0
  511. numpy/lib/_utils_impl.py +784 -0
  512. numpy/lib/_utils_impl.pyi +22 -0
  513. numpy/lib/_version.py +153 -0
  514. numpy/lib/_version.pyi +17 -0
  515. numpy/lib/array_utils.py +7 -0
  516. numpy/lib/array_utils.pyi +6 -0
  517. numpy/lib/format.py +24 -0
  518. numpy/lib/format.pyi +24 -0
  519. numpy/lib/introspect.py +94 -0
  520. numpy/lib/introspect.pyi +3 -0
  521. numpy/lib/mixins.py +180 -0
  522. numpy/lib/mixins.pyi +78 -0
  523. numpy/lib/npyio.py +1 -0
  524. numpy/lib/npyio.pyi +5 -0
  525. numpy/lib/recfunctions.py +1681 -0
  526. numpy/lib/recfunctions.pyi +444 -0
  527. numpy/lib/scimath.py +13 -0
  528. numpy/lib/scimath.pyi +12 -0
  529. numpy/lib/stride_tricks.py +1 -0
  530. numpy/lib/stride_tricks.pyi +4 -0
  531. numpy/lib/tests/__init__.py +0 -0
  532. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  533. numpy/lib/tests/data/py2-objarr.npy +0 -0
  534. numpy/lib/tests/data/py2-objarr.npz +0 -0
  535. numpy/lib/tests/data/py3-objarr.npy +0 -0
  536. numpy/lib/tests/data/py3-objarr.npz +0 -0
  537. numpy/lib/tests/data/python3.npy +0 -0
  538. numpy/lib/tests/data/win64python2.npy +0 -0
  539. numpy/lib/tests/test__datasource.py +328 -0
  540. numpy/lib/tests/test__iotools.py +358 -0
  541. numpy/lib/tests/test__version.py +64 -0
  542. numpy/lib/tests/test_array_utils.py +32 -0
  543. numpy/lib/tests/test_arraypad.py +1427 -0
  544. numpy/lib/tests/test_arraysetops.py +1302 -0
  545. numpy/lib/tests/test_arrayterator.py +45 -0
  546. numpy/lib/tests/test_format.py +1054 -0
  547. numpy/lib/tests/test_function_base.py +4705 -0
  548. numpy/lib/tests/test_histograms.py +855 -0
  549. numpy/lib/tests/test_index_tricks.py +693 -0
  550. numpy/lib/tests/test_io.py +2857 -0
  551. numpy/lib/tests/test_loadtxt.py +1099 -0
  552. numpy/lib/tests/test_mixins.py +215 -0
  553. numpy/lib/tests/test_nanfunctions.py +1438 -0
  554. numpy/lib/tests/test_packbits.py +376 -0
  555. numpy/lib/tests/test_polynomial.py +325 -0
  556. numpy/lib/tests/test_recfunctions.py +1042 -0
  557. numpy/lib/tests/test_regression.py +231 -0
  558. numpy/lib/tests/test_shape_base.py +813 -0
  559. numpy/lib/tests/test_stride_tricks.py +655 -0
  560. numpy/lib/tests/test_twodim_base.py +559 -0
  561. numpy/lib/tests/test_type_check.py +473 -0
  562. numpy/lib/tests/test_ufunclike.py +97 -0
  563. numpy/lib/tests/test_utils.py +80 -0
  564. numpy/lib/user_array.py +1 -0
  565. numpy/lib/user_array.pyi +1 -0
  566. numpy/linalg/__init__.py +95 -0
  567. numpy/linalg/__init__.pyi +71 -0
  568. numpy/linalg/_linalg.py +3657 -0
  569. numpy/linalg/_linalg.pyi +548 -0
  570. numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
  571. numpy/linalg/_umath_linalg.pyi +60 -0
  572. numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
  573. numpy/linalg/lapack_lite.pyi +143 -0
  574. numpy/linalg/tests/__init__.py +0 -0
  575. numpy/linalg/tests/test_deprecations.py +21 -0
  576. numpy/linalg/tests/test_linalg.py +2442 -0
  577. numpy/linalg/tests/test_regression.py +182 -0
  578. numpy/ma/API_CHANGES.txt +135 -0
  579. numpy/ma/LICENSE +24 -0
  580. numpy/ma/README.rst +236 -0
  581. numpy/ma/__init__.py +53 -0
  582. numpy/ma/__init__.pyi +458 -0
  583. numpy/ma/core.py +8929 -0
  584. numpy/ma/core.pyi +3720 -0
  585. numpy/ma/extras.py +2266 -0
  586. numpy/ma/extras.pyi +297 -0
  587. numpy/ma/mrecords.py +762 -0
  588. numpy/ma/mrecords.pyi +96 -0
  589. numpy/ma/tests/__init__.py +0 -0
  590. numpy/ma/tests/test_arrayobject.py +40 -0
  591. numpy/ma/tests/test_core.py +6008 -0
  592. numpy/ma/tests/test_deprecations.py +65 -0
  593. numpy/ma/tests/test_extras.py +1945 -0
  594. numpy/ma/tests/test_mrecords.py +495 -0
  595. numpy/ma/tests/test_old_ma.py +939 -0
  596. numpy/ma/tests/test_regression.py +83 -0
  597. numpy/ma/tests/test_subclassing.py +469 -0
  598. numpy/ma/testutils.py +294 -0
  599. numpy/ma/testutils.pyi +69 -0
  600. numpy/matlib.py +380 -0
  601. numpy/matlib.pyi +580 -0
  602. numpy/matrixlib/__init__.py +12 -0
  603. numpy/matrixlib/__init__.pyi +3 -0
  604. numpy/matrixlib/defmatrix.py +1119 -0
  605. numpy/matrixlib/defmatrix.pyi +218 -0
  606. numpy/matrixlib/tests/__init__.py +0 -0
  607. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  608. numpy/matrixlib/tests/test_interaction.py +360 -0
  609. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  610. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  611. numpy/matrixlib/tests/test_multiarray.py +17 -0
  612. numpy/matrixlib/tests/test_numeric.py +18 -0
  613. numpy/matrixlib/tests/test_regression.py +31 -0
  614. numpy/polynomial/__init__.py +187 -0
  615. numpy/polynomial/__init__.pyi +31 -0
  616. numpy/polynomial/_polybase.py +1191 -0
  617. numpy/polynomial/_polybase.pyi +262 -0
  618. numpy/polynomial/_polytypes.pyi +501 -0
  619. numpy/polynomial/chebyshev.py +2001 -0
  620. numpy/polynomial/chebyshev.pyi +180 -0
  621. numpy/polynomial/hermite.py +1738 -0
  622. numpy/polynomial/hermite.pyi +106 -0
  623. numpy/polynomial/hermite_e.py +1640 -0
  624. numpy/polynomial/hermite_e.pyi +106 -0
  625. numpy/polynomial/laguerre.py +1673 -0
  626. numpy/polynomial/laguerre.pyi +100 -0
  627. numpy/polynomial/legendre.py +1603 -0
  628. numpy/polynomial/legendre.pyi +100 -0
  629. numpy/polynomial/polynomial.py +1625 -0
  630. numpy/polynomial/polynomial.pyi +109 -0
  631. numpy/polynomial/polyutils.py +759 -0
  632. numpy/polynomial/polyutils.pyi +307 -0
  633. numpy/polynomial/tests/__init__.py +0 -0
  634. numpy/polynomial/tests/test_chebyshev.py +618 -0
  635. numpy/polynomial/tests/test_classes.py +613 -0
  636. numpy/polynomial/tests/test_hermite.py +553 -0
  637. numpy/polynomial/tests/test_hermite_e.py +554 -0
  638. numpy/polynomial/tests/test_laguerre.py +535 -0
  639. numpy/polynomial/tests/test_legendre.py +566 -0
  640. numpy/polynomial/tests/test_polynomial.py +691 -0
  641. numpy/polynomial/tests/test_polyutils.py +123 -0
  642. numpy/polynomial/tests/test_printing.py +557 -0
  643. numpy/polynomial/tests/test_symbol.py +217 -0
  644. numpy/py.typed +0 -0
  645. numpy/random/LICENSE.md +71 -0
  646. numpy/random/__init__.pxd +14 -0
  647. numpy/random/__init__.py +213 -0
  648. numpy/random/__init__.pyi +124 -0
  649. numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
  650. numpy/random/_bounded_integers.pxd +29 -0
  651. numpy/random/_bounded_integers.pyi +1 -0
  652. numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
  653. numpy/random/_common.pxd +107 -0
  654. numpy/random/_common.pyi +16 -0
  655. numpy/random/_examples/cffi/extending.py +44 -0
  656. numpy/random/_examples/cffi/parse.py +53 -0
  657. numpy/random/_examples/cython/extending.pyx +77 -0
  658. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  659. numpy/random/_examples/cython/meson.build +53 -0
  660. numpy/random/_examples/numba/extending.py +86 -0
  661. numpy/random/_examples/numba/extending_distributions.py +67 -0
  662. numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  663. numpy/random/_generator.pyi +862 -0
  664. numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
  665. numpy/random/_mt19937.pyi +27 -0
  666. numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
  667. numpy/random/_pcg64.pyi +41 -0
  668. numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
  669. numpy/random/_philox.pyi +36 -0
  670. numpy/random/_pickle.py +88 -0
  671. numpy/random/_pickle.pyi +43 -0
  672. numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
  673. numpy/random/_sfc64.pyi +25 -0
  674. numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  675. numpy/random/bit_generator.pxd +35 -0
  676. numpy/random/bit_generator.pyi +123 -0
  677. numpy/random/c_distributions.pxd +119 -0
  678. numpy/random/lib/libnpyrandom.a +0 -0
  679. numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
  680. numpy/random/mtrand.pyi +759 -0
  681. numpy/random/tests/__init__.py +0 -0
  682. numpy/random/tests/data/__init__.py +0 -0
  683. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  684. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  685. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  686. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  687. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  688. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  689. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  690. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  691. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  692. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  693. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  694. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  695. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  696. numpy/random/tests/test_direct.py +595 -0
  697. numpy/random/tests/test_extending.py +131 -0
  698. numpy/random/tests/test_generator_mt19937.py +2825 -0
  699. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  700. numpy/random/tests/test_random.py +1724 -0
  701. numpy/random/tests/test_randomstate.py +2099 -0
  702. numpy/random/tests/test_randomstate_regression.py +213 -0
  703. numpy/random/tests/test_regression.py +175 -0
  704. numpy/random/tests/test_seed_sequence.py +79 -0
  705. numpy/random/tests/test_smoke.py +882 -0
  706. numpy/rec/__init__.py +2 -0
  707. numpy/rec/__init__.pyi +23 -0
  708. numpy/strings/__init__.py +2 -0
  709. numpy/strings/__init__.pyi +97 -0
  710. numpy/testing/__init__.py +22 -0
  711. numpy/testing/__init__.pyi +107 -0
  712. numpy/testing/_private/__init__.py +0 -0
  713. numpy/testing/_private/__init__.pyi +0 -0
  714. numpy/testing/_private/extbuild.py +250 -0
  715. numpy/testing/_private/extbuild.pyi +25 -0
  716. numpy/testing/_private/utils.py +2830 -0
  717. numpy/testing/_private/utils.pyi +505 -0
  718. numpy/testing/overrides.py +84 -0
  719. numpy/testing/overrides.pyi +10 -0
  720. numpy/testing/print_coercion_tables.py +207 -0
  721. numpy/testing/print_coercion_tables.pyi +26 -0
  722. numpy/testing/tests/__init__.py +0 -0
  723. numpy/testing/tests/test_utils.py +2123 -0
  724. numpy/tests/__init__.py +0 -0
  725. numpy/tests/test__all__.py +10 -0
  726. numpy/tests/test_configtool.py +51 -0
  727. numpy/tests/test_ctypeslib.py +383 -0
  728. numpy/tests/test_lazyloading.py +42 -0
  729. numpy/tests/test_matlib.py +59 -0
  730. numpy/tests/test_numpy_config.py +47 -0
  731. numpy/tests/test_numpy_version.py +54 -0
  732. numpy/tests/test_public_api.py +804 -0
  733. numpy/tests/test_reloading.py +76 -0
  734. numpy/tests/test_scripts.py +48 -0
  735. numpy/tests/test_warnings.py +79 -0
  736. numpy/typing/__init__.py +233 -0
  737. numpy/typing/__init__.pyi +3 -0
  738. numpy/typing/mypy_plugin.py +200 -0
  739. numpy/typing/tests/__init__.py +0 -0
  740. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  741. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  742. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  743. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  744. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  745. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  746. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  747. numpy/typing/tests/data/fail/char.pyi +63 -0
  748. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  749. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  750. numpy/typing/tests/data/fail/constants.pyi +3 -0
  751. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  752. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  753. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  754. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  755. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  756. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  757. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  758. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  759. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  760. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  761. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  762. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  763. numpy/typing/tests/data/fail/ma.pyi +155 -0
  764. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  765. numpy/typing/tests/data/fail/modules.pyi +17 -0
  766. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  767. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  768. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  769. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  770. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  771. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  772. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  773. numpy/typing/tests/data/fail/random.pyi +62 -0
  774. numpy/typing/tests/data/fail/rec.pyi +17 -0
  775. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  776. numpy/typing/tests/data/fail/shape.pyi +7 -0
  777. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  778. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  779. numpy/typing/tests/data/fail/strings.pyi +52 -0
  780. numpy/typing/tests/data/fail/testing.pyi +28 -0
  781. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  782. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  783. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  784. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  785. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  786. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  787. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  788. numpy/typing/tests/data/mypy.ini +8 -0
  789. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  790. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  791. numpy/typing/tests/data/pass/array_like.py +43 -0
  792. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  793. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  794. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  795. numpy/typing/tests/data/pass/comparisons.py +316 -0
  796. numpy/typing/tests/data/pass/dtype.py +57 -0
  797. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  798. numpy/typing/tests/data/pass/flatiter.py +26 -0
  799. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  800. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  801. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  802. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  803. numpy/typing/tests/data/pass/lib_version.py +18 -0
  804. numpy/typing/tests/data/pass/literal.py +52 -0
  805. numpy/typing/tests/data/pass/ma.py +199 -0
  806. numpy/typing/tests/data/pass/mod.py +149 -0
  807. numpy/typing/tests/data/pass/modules.py +45 -0
  808. numpy/typing/tests/data/pass/multiarray.py +77 -0
  809. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  810. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  811. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  812. numpy/typing/tests/data/pass/nditer.py +4 -0
  813. numpy/typing/tests/data/pass/numeric.py +90 -0
  814. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  815. numpy/typing/tests/data/pass/random.py +1498 -0
  816. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  817. numpy/typing/tests/data/pass/scalars.py +249 -0
  818. numpy/typing/tests/data/pass/shape.py +19 -0
  819. numpy/typing/tests/data/pass/simple.py +170 -0
  820. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  821. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  822. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  823. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  824. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  825. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  826. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  827. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  828. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  829. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  830. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  831. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  832. numpy/typing/tests/data/reveal/char.pyi +225 -0
  833. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  834. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  835. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  836. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  837. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  838. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  839. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  840. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  841. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  842. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  843. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  844. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  845. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  846. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  847. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  848. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  849. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  850. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  851. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  852. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  853. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  854. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  855. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  856. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  857. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  858. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  859. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  860. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  861. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  862. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  863. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  864. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  865. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  866. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  867. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  868. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  869. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  870. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  871. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  872. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  873. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  874. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  875. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  876. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  877. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  878. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  879. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  880. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  881. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  882. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  883. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  884. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  885. numpy/typing/tests/test_isfile.py +38 -0
  886. numpy/typing/tests/test_runtime.py +110 -0
  887. numpy/typing/tests/test_typing.py +205 -0
  888. numpy/version.py +11 -0
  889. numpy/version.pyi +9 -0
  890. numpy-2.4.0.dist-info/METADATA +139 -0
  891. numpy-2.4.0.dist-info/RECORD +915 -0
  892. numpy-2.4.0.dist-info/WHEEL +5 -0
  893. numpy-2.4.0.dist-info/entry_points.txt +13 -0
  894. numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
  895. numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  896. numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  897. numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  898. numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  899. numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  900. numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  901. numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  902. numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  903. numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
  904. numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  905. numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  906. numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  907. numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  908. numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  909. numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  910. numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  911. numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
  912. numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
  913. numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
  914. numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
  915. numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
@@ -0,0 +1,1158 @@
1
+ """
2
+ Set operations for arrays based on sorting.
3
+
4
+ Notes
5
+ -----
6
+
7
+ For floating point arrays, inaccurate results may appear due to usual round-off
8
+ and floating point comparison issues.
9
+
10
+ Speed could be gained in some operations by an implementation of
11
+ `numpy.sort`, that can provide directly the permutation vectors, thus avoiding
12
+ calls to `numpy.argsort`.
13
+
14
+ Original author: Robert Cimrman
15
+
16
+ """
17
+ import functools
18
+ from typing import NamedTuple
19
+
20
+ import numpy as np
21
+ from numpy._core import overrides
22
+ from numpy._core._multiarray_umath import _array_converter, _unique_hash
23
+ from numpy.lib.array_utils import normalize_axis_index
24
+
25
+ array_function_dispatch = functools.partial(
26
+ overrides.array_function_dispatch, module='numpy')
27
+
28
+
29
+ __all__ = [
30
+ "ediff1d", "intersect1d", "isin", "setdiff1d", "setxor1d",
31
+ "union1d", "unique", "unique_all", "unique_counts", "unique_inverse",
32
+ "unique_values"
33
+ ]
34
+
35
+
36
+ def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
37
+ return (ary, to_end, to_begin)
38
+
39
+
40
+ @array_function_dispatch(_ediff1d_dispatcher)
41
+ def ediff1d(ary, to_end=None, to_begin=None):
42
+ """
43
+ The differences between consecutive elements of an array.
44
+
45
+ Parameters
46
+ ----------
47
+ ary : array_like
48
+ If necessary, will be flattened before the differences are taken.
49
+ to_end : array_like, optional
50
+ Number(s) to append at the end of the returned differences.
51
+ to_begin : array_like, optional
52
+ Number(s) to prepend at the beginning of the returned differences.
53
+
54
+ Returns
55
+ -------
56
+ ediff1d : ndarray
57
+ The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
58
+
59
+ See Also
60
+ --------
61
+ diff, gradient
62
+
63
+ Notes
64
+ -----
65
+ When applied to masked arrays, this function drops the mask information
66
+ if the `to_begin` and/or `to_end` parameters are used.
67
+
68
+ Examples
69
+ --------
70
+ >>> import numpy as np
71
+ >>> x = np.array([1, 2, 4, 7, 0])
72
+ >>> np.ediff1d(x)
73
+ array([ 1, 2, 3, -7])
74
+
75
+ >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
76
+ array([-99, 1, 2, ..., -7, 88, 99])
77
+
78
+ The returned array is always 1D.
79
+
80
+ >>> y = [[1, 2, 4], [1, 6, 24]]
81
+ >>> np.ediff1d(y)
82
+ array([ 1, 2, -3, 5, 18])
83
+
84
+ """
85
+ conv = _array_converter(ary)
86
+ # Convert to (any) array and ravel:
87
+ ary = conv[0].ravel()
88
+
89
+ # enforce that the dtype of `ary` is used for the output
90
+ dtype_req = ary.dtype
91
+
92
+ # fast track default case
93
+ if to_begin is None and to_end is None:
94
+ return ary[1:] - ary[:-1]
95
+
96
+ if to_begin is None:
97
+ l_begin = 0
98
+ else:
99
+ to_begin = np.asanyarray(to_begin)
100
+ if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
101
+ raise TypeError("dtype of `to_begin` must be compatible "
102
+ "with input `ary` under the `same_kind` rule.")
103
+
104
+ to_begin = to_begin.ravel()
105
+ l_begin = len(to_begin)
106
+
107
+ if to_end is None:
108
+ l_end = 0
109
+ else:
110
+ to_end = np.asanyarray(to_end)
111
+ if not np.can_cast(to_end, dtype_req, casting="same_kind"):
112
+ raise TypeError("dtype of `to_end` must be compatible "
113
+ "with input `ary` under the `same_kind` rule.")
114
+
115
+ to_end = to_end.ravel()
116
+ l_end = len(to_end)
117
+
118
+ # do the calculation in place and copy to_begin and to_end
119
+ l_diff = max(len(ary) - 1, 0)
120
+ result = np.empty_like(ary, shape=l_diff + l_begin + l_end)
121
+
122
+ if l_begin > 0:
123
+ result[:l_begin] = to_begin
124
+ if l_end > 0:
125
+ result[l_begin + l_diff:] = to_end
126
+ np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
127
+
128
+ return conv.wrap(result)
129
+
130
+
131
+ def _unpack_tuple(x):
132
+ """ Unpacks one-element tuples for use as return values """
133
+ if len(x) == 1:
134
+ return x[0]
135
+ else:
136
+ return x
137
+
138
+
139
+ def _unique_dispatcher(ar, return_index=None, return_inverse=None,
140
+ return_counts=None, axis=None, *, equal_nan=None,
141
+ sorted=True):
142
+ return (ar,)
143
+
144
+
145
+ @array_function_dispatch(_unique_dispatcher)
146
+ def unique(ar, return_index=False, return_inverse=False,
147
+ return_counts=False, axis=None, *, equal_nan=True,
148
+ sorted=True):
149
+ """
150
+ Find the unique elements of an array.
151
+
152
+ Returns the sorted unique elements of an array. There are three optional
153
+ outputs in addition to the unique elements:
154
+
155
+ * the indices of the input array that give the unique values
156
+ * the indices of the unique array that reconstruct the input array
157
+ * the number of times each unique value comes up in the input array
158
+
159
+ Parameters
160
+ ----------
161
+ ar : array_like
162
+ Input array. Unless `axis` is specified, this will be flattened if it
163
+ is not already 1-D.
164
+ return_index : bool, optional
165
+ If True, also return the indices of `ar` (along the specified axis,
166
+ if provided, or in the flattened array) that result in the unique array.
167
+ return_inverse : bool, optional
168
+ If True, also return the indices of the unique array (for the specified
169
+ axis, if provided) that can be used to reconstruct `ar`.
170
+ return_counts : bool, optional
171
+ If True, also return the number of times each unique item appears
172
+ in `ar`.
173
+ axis : int or None, optional
174
+ The axis to operate on. If None, `ar` will be flattened. If an integer,
175
+ the subarrays indexed by the given axis will be flattened and treated
176
+ as the elements of a 1-D array with the dimension of the given axis,
177
+ see the notes for more details. Object arrays or structured arrays
178
+ that contain objects are not supported if the `axis` kwarg is used. The
179
+ default is None.
180
+
181
+ equal_nan : bool, optional
182
+ If True, collapses multiple NaN values in the return array into one.
183
+
184
+ .. versionadded:: 1.24
185
+
186
+ sorted : bool, optional
187
+ If True, the unique elements are sorted. Elements may be sorted in
188
+ practice even if ``sorted=False``, but this could change without
189
+ notice.
190
+
191
+ .. versionadded:: 2.3
192
+
193
+ Returns
194
+ -------
195
+ unique : ndarray
196
+ The sorted unique values.
197
+ unique_indices : ndarray, optional
198
+ The indices of the first occurrences of the unique values in the
199
+ original array. Only provided if `return_index` is True.
200
+ unique_inverse : ndarray, optional
201
+ The indices to reconstruct the original array from the
202
+ unique array. Only provided if `return_inverse` is True.
203
+ unique_counts : ndarray, optional
204
+ The number of times each of the unique values comes up in the
205
+ original array. Only provided if `return_counts` is True.
206
+
207
+ See Also
208
+ --------
209
+ repeat : Repeat elements of an array.
210
+ sort : Return a sorted copy of an array.
211
+
212
+ Notes
213
+ -----
214
+ When an axis is specified the subarrays indexed by the axis are sorted.
215
+ This is done by making the specified axis the first dimension of the array
216
+ (move the axis to the first dimension to keep the order of the other axes)
217
+ and then flattening the subarrays in C order. The flattened subarrays are
218
+ then viewed as a structured type with each element given a label, with the
219
+ effect that we end up with a 1-D array of structured types that can be
220
+ treated in the same way as any other 1-D array. The result is that the
221
+ flattened subarrays are sorted in lexicographic order starting with the
222
+ first element.
223
+
224
+ .. versionchanged:: 1.21
225
+ Like np.sort, NaN will sort to the end of the values.
226
+ For complex arrays all NaN values are considered equivalent
227
+ (no matter whether the NaN is in the real or imaginary part).
228
+ As the representant for the returned array the smallest one in the
229
+ lexicographical order is chosen - see np.sort for how the lexicographical
230
+ order is defined for complex arrays.
231
+
232
+ .. versionchanged:: 2.0
233
+ For multi-dimensional inputs, ``unique_inverse`` is reshaped
234
+ such that the input can be reconstructed using
235
+ ``np.take(unique, unique_inverse, axis=axis)``. The result is
236
+ now not 1-dimensional when ``axis=None``.
237
+
238
+ Note that in NumPy 2.0.0 a higher dimensional array was returned also
239
+ when ``axis`` was not ``None``. This was reverted, but
240
+ ``inverse.reshape(-1)`` can be used to ensure compatibility with both
241
+ versions.
242
+
243
+ Examples
244
+ --------
245
+ >>> import numpy as np
246
+ >>> np.unique([1, 1, 2, 2, 3, 3])
247
+ array([1, 2, 3])
248
+ >>> a = np.array([[1, 1], [2, 3]])
249
+ >>> np.unique(a)
250
+ array([1, 2, 3])
251
+
252
+ Return the unique rows of a 2D array
253
+
254
+ >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
255
+ >>> np.unique(a, axis=0)
256
+ array([[1, 0, 0], [2, 3, 4]])
257
+
258
+ Return the indices of the original array that give the unique values:
259
+
260
+ >>> a = np.array(['a', 'b', 'b', 'c', 'a'])
261
+ >>> u, indices = np.unique(a, return_index=True)
262
+ >>> u
263
+ array(['a', 'b', 'c'], dtype='<U1')
264
+ >>> indices
265
+ array([0, 1, 3])
266
+ >>> a[indices]
267
+ array(['a', 'b', 'c'], dtype='<U1')
268
+
269
+ Reconstruct the input array from the unique values and inverse:
270
+
271
+ >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
272
+ >>> u, indices = np.unique(a, return_inverse=True)
273
+ >>> u
274
+ array([1, 2, 3, 4, 6])
275
+ >>> indices
276
+ array([0, 1, 4, 3, 1, 2, 1])
277
+ >>> u[indices]
278
+ array([1, 2, 6, 4, 2, 3, 2])
279
+
280
+ Reconstruct the input values from the unique values and counts:
281
+
282
+ >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
283
+ >>> values, counts = np.unique(a, return_counts=True)
284
+ >>> values
285
+ array([1, 2, 3, 4, 6])
286
+ >>> counts
287
+ array([1, 3, 1, 1, 1])
288
+ >>> np.repeat(values, counts)
289
+ array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved
290
+
291
+ """
292
+ ar = np.asanyarray(ar)
293
+ if axis is None or ar.ndim == 1:
294
+ if axis is not None:
295
+ normalize_axis_index(axis, ar.ndim)
296
+ ret = _unique1d(ar, return_index, return_inverse, return_counts,
297
+ equal_nan=equal_nan, inverse_shape=ar.shape, axis=None,
298
+ sorted=sorted)
299
+ return _unpack_tuple(ret)
300
+
301
+ # axis was specified and not None
302
+ try:
303
+ ar = np.moveaxis(ar, axis, 0)
304
+ except np.exceptions.AxisError:
305
+ # this removes the "axis1" or "axis2" prefix from the error message
306
+ raise np.exceptions.AxisError(axis, ar.ndim) from None
307
+ inverse_shape = [1] * ar.ndim
308
+ inverse_shape[axis] = ar.shape[0]
309
+
310
+ # Must reshape to a contiguous 2D array for this to work...
311
+ orig_shape, orig_dtype = ar.shape, ar.dtype
312
+ ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
313
+ ar = np.ascontiguousarray(ar)
314
+ dtype = [(f'f{i}', ar.dtype) for i in range(ar.shape[1])]
315
+
316
+ # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
317
+ # data type with `m` fields where each field has the data type of `ar`.
318
+ # In the following, we create the array `consolidated`, which has
319
+ # shape `(n,)` with data type `dtype`.
320
+ try:
321
+ if ar.shape[1] > 0:
322
+ consolidated = ar.view(dtype)
323
+ else:
324
+ # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
325
+ # a data type with itemsize 0, and the call `ar.view(dtype)` will
326
+ # fail. Instead, we'll use `np.empty` to explicitly create the
327
+ # array with shape `(len(ar),)`. Because `dtype` in this case has
328
+ # itemsize 0, the total size of the result is still 0 bytes.
329
+ consolidated = np.empty(len(ar), dtype=dtype)
330
+ except TypeError as e:
331
+ # There's no good way to do this for object arrays, etc...
332
+ msg = 'The axis argument to unique is not supported for dtype {dt}'
333
+ raise TypeError(msg.format(dt=ar.dtype)) from e
334
+
335
+ def reshape_uniq(uniq):
336
+ n = len(uniq)
337
+ uniq = uniq.view(orig_dtype)
338
+ uniq = uniq.reshape(n, *orig_shape[1:])
339
+ uniq = np.moveaxis(uniq, 0, axis)
340
+ return uniq
341
+
342
+ output = _unique1d(consolidated, return_index,
343
+ return_inverse, return_counts,
344
+ equal_nan=equal_nan, inverse_shape=inverse_shape,
345
+ axis=axis, sorted=sorted)
346
+ output = (reshape_uniq(output[0]),) + output[1:]
347
+ return _unpack_tuple(output)
348
+
349
+
350
+ def _unique1d(ar, return_index=False, return_inverse=False,
351
+ return_counts=False, *, equal_nan=True, inverse_shape=None,
352
+ axis=None, sorted=True):
353
+ """
354
+ Find the unique elements of an array, ignoring shape.
355
+
356
+ Uses a hash table to find the unique elements if possible.
357
+ """
358
+ ar = np.asanyarray(ar).flatten()
359
+ if len(ar.shape) != 1:
360
+ # np.matrix, and maybe some other array subclasses, insist on keeping
361
+ # two dimensions for all operations. Coerce to an ndarray in such cases.
362
+ ar = np.asarray(ar).flatten()
363
+
364
+ optional_indices = return_index or return_inverse
365
+
366
+ # masked arrays are not supported yet.
367
+ if not optional_indices and not return_counts and not np.ma.is_masked(ar):
368
+ # First we convert the array to a numpy array, later we wrap it back
369
+ # in case it was a subclass of numpy.ndarray.
370
+ conv = _array_converter(ar)
371
+ ar_, = conv
372
+
373
+ if (hash_unique := _unique_hash(ar_, equal_nan=equal_nan)) \
374
+ is not NotImplemented:
375
+ if sorted:
376
+ hash_unique.sort()
377
+ # We wrap the result back in case it was a subclass of numpy.ndarray.
378
+ return (conv.wrap(hash_unique),)
379
+
380
+ # If we don't use the hash map, we use the slower sorting method.
381
+ if optional_indices:
382
+ perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
383
+ aux = ar[perm]
384
+ else:
385
+ ar.sort()
386
+ aux = ar
387
+ mask = np.empty(aux.shape, dtype=np.bool)
388
+ mask[:1] = True
389
+ if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
390
+ np.isnan(aux[-1])):
391
+ if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
392
+ aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
393
+ else:
394
+ aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
395
+ if aux_firstnan > 0:
396
+ mask[1:aux_firstnan] = (
397
+ aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
398
+ mask[aux_firstnan] = True
399
+ mask[aux_firstnan + 1:] = False
400
+ else:
401
+ mask[1:] = aux[1:] != aux[:-1]
402
+
403
+ ret = (aux[mask],)
404
+ if return_index:
405
+ ret += (perm[mask],)
406
+ if return_inverse:
407
+ imask = np.cumsum(mask) - 1
408
+ inv_idx = np.empty(mask.shape, dtype=np.intp)
409
+ inv_idx[perm] = imask
410
+ ret += (inv_idx.reshape(inverse_shape) if axis is None else inv_idx,)
411
+ if return_counts:
412
+ idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
413
+ ret += (np.diff(idx),)
414
+ return ret
415
+
416
+
417
+ # Array API set functions
418
+
419
+ class UniqueAllResult(NamedTuple):
420
+ values: np.ndarray
421
+ indices: np.ndarray
422
+ inverse_indices: np.ndarray
423
+ counts: np.ndarray
424
+
425
+
426
+ class UniqueCountsResult(NamedTuple):
427
+ values: np.ndarray
428
+ counts: np.ndarray
429
+
430
+
431
+ class UniqueInverseResult(NamedTuple):
432
+ values: np.ndarray
433
+ inverse_indices: np.ndarray
434
+
435
+
436
+ def _unique_all_dispatcher(x, /):
437
+ return (x,)
438
+
439
+
440
+ @array_function_dispatch(_unique_all_dispatcher)
441
+ def unique_all(x):
442
+ """
443
+ Find the unique elements of an array, and counts, inverse, and indices.
444
+
445
+ This function is an Array API compatible alternative to::
446
+
447
+ np.unique(x, return_index=True, return_inverse=True,
448
+ return_counts=True, equal_nan=False, sorted=False)
449
+
450
+ but returns a namedtuple for easier access to each output.
451
+
452
+ .. note::
453
+ This function currently always returns a sorted result, however,
454
+ this could change in any NumPy minor release.
455
+
456
+ Parameters
457
+ ----------
458
+ x : array_like
459
+ Input array. It will be flattened if it is not already 1-D.
460
+
461
+ Returns
462
+ -------
463
+ out : namedtuple
464
+ The result containing:
465
+
466
+ * values - The unique elements of an input array.
467
+ * indices - The first occurring indices for each unique element.
468
+ * inverse_indices - The indices from the set of unique elements
469
+ that reconstruct `x`.
470
+ * counts - The corresponding counts for each unique element.
471
+
472
+ See Also
473
+ --------
474
+ unique : Find the unique elements of an array.
475
+
476
+ Examples
477
+ --------
478
+ >>> import numpy as np
479
+ >>> x = [1, 1, 2]
480
+ >>> uniq = np.unique_all(x)
481
+ >>> uniq.values
482
+ array([1, 2])
483
+ >>> uniq.indices
484
+ array([0, 2])
485
+ >>> uniq.inverse_indices
486
+ array([0, 0, 1])
487
+ >>> uniq.counts
488
+ array([2, 1])
489
+ """
490
+ result = unique(
491
+ x,
492
+ return_index=True,
493
+ return_inverse=True,
494
+ return_counts=True,
495
+ equal_nan=False,
496
+ )
497
+ return UniqueAllResult(*result)
498
+
499
+
500
+ def _unique_counts_dispatcher(x, /):
501
+ return (x,)
502
+
503
+
504
+ @array_function_dispatch(_unique_counts_dispatcher)
505
+ def unique_counts(x):
506
+ """
507
+ Find the unique elements and counts of an input array `x`.
508
+
509
+ This function is an Array API compatible alternative to::
510
+
511
+ np.unique(x, return_counts=True, equal_nan=False, sorted=False)
512
+
513
+ but returns a namedtuple for easier access to each output.
514
+
515
+ .. note::
516
+ This function currently always returns a sorted result, however,
517
+ this could change in any NumPy minor release.
518
+
519
+ Parameters
520
+ ----------
521
+ x : array_like
522
+ Input array. It will be flattened if it is not already 1-D.
523
+
524
+ Returns
525
+ -------
526
+ out : namedtuple
527
+ The result containing:
528
+
529
+ * values - The unique elements of an input array.
530
+ * counts - The corresponding counts for each unique element.
531
+
532
+ See Also
533
+ --------
534
+ unique : Find the unique elements of an array.
535
+
536
+ Examples
537
+ --------
538
+ >>> import numpy as np
539
+ >>> x = [1, 1, 2]
540
+ >>> uniq = np.unique_counts(x)
541
+ >>> uniq.values
542
+ array([1, 2])
543
+ >>> uniq.counts
544
+ array([2, 1])
545
+ """
546
+ result = unique(
547
+ x,
548
+ return_index=False,
549
+ return_inverse=False,
550
+ return_counts=True,
551
+ equal_nan=False,
552
+ )
553
+ return UniqueCountsResult(*result)
554
+
555
+
556
+ def _unique_inverse_dispatcher(x, /):
557
+ return (x,)
558
+
559
+
560
+ @array_function_dispatch(_unique_inverse_dispatcher)
561
+ def unique_inverse(x):
562
+ """
563
+ Find the unique elements of `x` and indices to reconstruct `x`.
564
+
565
+ This function is an Array API compatible alternative to::
566
+
567
+ np.unique(x, return_inverse=True, equal_nan=False, sorted=False)
568
+
569
+ but returns a namedtuple for easier access to each output.
570
+
571
+ .. note::
572
+ This function currently always returns a sorted result, however,
573
+ this could change in any NumPy minor release.
574
+
575
+ Parameters
576
+ ----------
577
+ x : array_like
578
+ Input array. It will be flattened if it is not already 1-D.
579
+
580
+ Returns
581
+ -------
582
+ out : namedtuple
583
+ The result containing:
584
+
585
+ * values - The unique elements of an input array.
586
+ * inverse_indices - The indices from the set of unique elements
587
+ that reconstruct `x`.
588
+
589
+ See Also
590
+ --------
591
+ unique : Find the unique elements of an array.
592
+
593
+ Examples
594
+ --------
595
+ >>> import numpy as np
596
+ >>> x = [1, 1, 2]
597
+ >>> uniq = np.unique_inverse(x)
598
+ >>> uniq.values
599
+ array([1, 2])
600
+ >>> uniq.inverse_indices
601
+ array([0, 0, 1])
602
+ """
603
+ result = unique(
604
+ x,
605
+ return_index=False,
606
+ return_inverse=True,
607
+ return_counts=False,
608
+ equal_nan=False,
609
+ )
610
+ return UniqueInverseResult(*result)
611
+
612
+
613
+ def _unique_values_dispatcher(x, /):
614
+ return (x,)
615
+
616
+
617
+ @array_function_dispatch(_unique_values_dispatcher)
618
+ def unique_values(x):
619
+ """
620
+ Returns the unique elements of an input array `x`.
621
+
622
+ This function is an Array API compatible alternative to::
623
+
624
+ np.unique(x, equal_nan=False, sorted=False)
625
+
626
+ .. versionchanged:: 2.3
627
+ The algorithm was changed to a faster one that does not rely on
628
+ sorting, and hence the results are no longer implicitly sorted.
629
+
630
+ Parameters
631
+ ----------
632
+ x : array_like
633
+ Input array. It will be flattened if it is not already 1-D.
634
+
635
+ Returns
636
+ -------
637
+ out : ndarray
638
+ The unique elements of an input array.
639
+
640
+ See Also
641
+ --------
642
+ unique : Find the unique elements of an array.
643
+
644
+ Examples
645
+ --------
646
+ >>> import numpy as np
647
+ >>> np.unique_values([1, 1, 2])
648
+ array([1, 2]) # may vary
649
+
650
+ """
651
+ return unique(
652
+ x,
653
+ return_index=False,
654
+ return_inverse=False,
655
+ return_counts=False,
656
+ equal_nan=False,
657
+ sorted=False,
658
+ )
659
+
660
+
661
+ def _intersect1d_dispatcher(
662
+ ar1, ar2, assume_unique=None, return_indices=None):
663
+ return (ar1, ar2)
664
+
665
+
666
+ @array_function_dispatch(_intersect1d_dispatcher)
667
+ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
668
+ """
669
+ Find the intersection of two arrays.
670
+
671
+ Return the sorted, unique values that are in both of the input arrays.
672
+
673
+ Parameters
674
+ ----------
675
+ ar1, ar2 : array_like
676
+ Input arrays. Will be flattened if not already 1D.
677
+ assume_unique : bool
678
+ If True, the input arrays are both assumed to be unique, which
679
+ can speed up the calculation. If True but ``ar1`` or ``ar2`` are not
680
+ unique, incorrect results and out-of-bounds indices could result.
681
+ Default is False.
682
+ return_indices : bool
683
+ If True, the indices which correspond to the intersection of the two
684
+ arrays are returned. The first instance of a value is used if there are
685
+ multiple. Default is False.
686
+
687
+ Returns
688
+ -------
689
+ intersect1d : ndarray
690
+ Sorted 1D array of common and unique elements.
691
+ comm1 : ndarray
692
+ The indices of the first occurrences of the common values in `ar1`.
693
+ Only provided if `return_indices` is True.
694
+ comm2 : ndarray
695
+ The indices of the first occurrences of the common values in `ar2`.
696
+ Only provided if `return_indices` is True.
697
+
698
+ Examples
699
+ --------
700
+ >>> import numpy as np
701
+ >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
702
+ array([1, 3])
703
+
704
+ To intersect more than two arrays, use functools.reduce:
705
+
706
+ >>> from functools import reduce
707
+ >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
708
+ array([3])
709
+
710
+ To return the indices of the values common to the input arrays
711
+ along with the intersected values:
712
+
713
+ >>> x = np.array([1, 1, 2, 3, 4])
714
+ >>> y = np.array([2, 1, 4, 6])
715
+ >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
716
+ >>> x_ind, y_ind
717
+ (array([0, 2, 4]), array([1, 0, 2]))
718
+ >>> xy, x[x_ind], y[y_ind]
719
+ (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
720
+
721
+ """
722
+ ar1 = np.asanyarray(ar1)
723
+ ar2 = np.asanyarray(ar2)
724
+
725
+ if not assume_unique:
726
+ if return_indices:
727
+ ar1, ind1 = unique(ar1, return_index=True)
728
+ ar2, ind2 = unique(ar2, return_index=True)
729
+ else:
730
+ ar1 = unique(ar1)
731
+ ar2 = unique(ar2)
732
+ else:
733
+ ar1 = ar1.ravel()
734
+ ar2 = ar2.ravel()
735
+
736
+ aux = np.concatenate((ar1, ar2))
737
+ if return_indices:
738
+ aux_sort_indices = np.argsort(aux, kind='mergesort')
739
+ aux = aux[aux_sort_indices]
740
+ else:
741
+ aux.sort()
742
+
743
+ mask = aux[1:] == aux[:-1]
744
+ int1d = aux[:-1][mask]
745
+
746
+ if return_indices:
747
+ ar1_indices = aux_sort_indices[:-1][mask]
748
+ ar2_indices = aux_sort_indices[1:][mask] - ar1.size
749
+ if not assume_unique:
750
+ ar1_indices = ind1[ar1_indices]
751
+ ar2_indices = ind2[ar2_indices]
752
+
753
+ return int1d, ar1_indices, ar2_indices
754
+ else:
755
+ return int1d
756
+
757
+
758
+ def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
759
+ return (ar1, ar2)
760
+
761
+
762
+ @array_function_dispatch(_setxor1d_dispatcher)
763
+ def setxor1d(ar1, ar2, assume_unique=False):
764
+ """
765
+ Find the set exclusive-or of two arrays.
766
+
767
+ Return the sorted, unique values that are in only one (not both) of the
768
+ input arrays.
769
+
770
+ Parameters
771
+ ----------
772
+ ar1, ar2 : array_like
773
+ Input arrays.
774
+ assume_unique : bool
775
+ If True, the input arrays are both assumed to be unique, which
776
+ can speed up the calculation. Default is False.
777
+
778
+ Returns
779
+ -------
780
+ setxor1d : ndarray
781
+ Sorted 1D array of unique values that are in only one of the input
782
+ arrays.
783
+
784
+ Examples
785
+ --------
786
+ >>> import numpy as np
787
+ >>> a = np.array([1, 2, 3, 2, 4])
788
+ >>> b = np.array([2, 3, 5, 7, 5])
789
+ >>> np.setxor1d(a,b)
790
+ array([1, 4, 5, 7])
791
+
792
+ """
793
+ if not assume_unique:
794
+ ar1 = unique(ar1)
795
+ ar2 = unique(ar2)
796
+
797
+ aux = np.concatenate((ar1, ar2), axis=None)
798
+ if aux.size == 0:
799
+ return aux
800
+
801
+ aux.sort()
802
+ flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
803
+ return aux[flag[1:] & flag[:-1]]
804
+
805
+
806
+ def _isin(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
807
+ # Ravel both arrays, behavior for the first array could be different
808
+ ar1 = np.asarray(ar1).ravel()
809
+ ar2 = np.asarray(ar2).ravel()
810
+
811
+ # Ensure that iteration through object arrays yields size-1 arrays
812
+ if ar2.dtype == object:
813
+ ar2 = ar2.reshape(-1, 1)
814
+
815
+ if kind not in {None, 'sort', 'table'}:
816
+ raise ValueError(
817
+ f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.")
818
+
819
+ # Can use the table method if all arrays are integers or boolean:
820
+ is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2))
821
+ use_table_method = is_int_arrays and kind in {None, 'table'}
822
+
823
+ if use_table_method:
824
+ if ar2.size == 0:
825
+ if invert:
826
+ return np.ones_like(ar1, dtype=bool)
827
+ else:
828
+ return np.zeros_like(ar1, dtype=bool)
829
+
830
+ # Convert booleans to uint8 so we can use the fast integer algorithm
831
+ if ar1.dtype == bool:
832
+ ar1 = ar1.astype(np.uint8)
833
+ if ar2.dtype == bool:
834
+ ar2 = ar2.astype(np.uint8)
835
+
836
+ ar2_min = int(np.min(ar2))
837
+ ar2_max = int(np.max(ar2))
838
+
839
+ ar2_range = ar2_max - ar2_min
840
+
841
+ # Constraints on whether we can actually use the table method:
842
+ # 1. Assert memory usage is not too large
843
+ below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size)
844
+ # 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype
845
+ range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max
846
+
847
+ # Optimal performance is for approximately
848
+ # log10(size) > (log10(range) - 2.27) / 0.927.
849
+ # However, here we set the requirement that by default
850
+ # the intermediate array can only be 6x
851
+ # the combined memory allocation of the original
852
+ # arrays. See discussion on
853
+ # https://github.com/numpy/numpy/pull/12065.
854
+
855
+ if (
856
+ range_safe_from_overflow and
857
+ (below_memory_constraint or kind == 'table')
858
+ ):
859
+
860
+ if invert:
861
+ outgoing_array = np.ones_like(ar1, dtype=bool)
862
+ else:
863
+ outgoing_array = np.zeros_like(ar1, dtype=bool)
864
+
865
+ # Make elements 1 where the integer exists in ar2
866
+ if invert:
867
+ isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
868
+ isin_helper_ar[ar2 - ar2_min] = 0
869
+ else:
870
+ isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
871
+ isin_helper_ar[ar2 - ar2_min] = 1
872
+
873
+ # Mask out elements we know won't work
874
+ basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
875
+ in_range_ar1 = ar1[basic_mask]
876
+ if in_range_ar1.size == 0:
877
+ # Nothing more to do, since all values are out of range.
878
+ return outgoing_array
879
+
880
+ # Unfortunately, ar2_min can be out of range for `intp` even
881
+ # if the calculation result must fit in range (and be positive).
882
+ # In that case, use ar2.dtype which must work for all unmasked
883
+ # values.
884
+ try:
885
+ ar2_min = np.array(ar2_min, dtype=np.intp)
886
+ dtype = np.intp
887
+ except OverflowError:
888
+ dtype = ar2.dtype
889
+
890
+ out = np.empty_like(in_range_ar1, dtype=np.intp)
891
+ outgoing_array[basic_mask] = isin_helper_ar[
892
+ np.subtract(in_range_ar1, ar2_min, dtype=dtype,
893
+ out=out, casting="unsafe")]
894
+
895
+ return outgoing_array
896
+ elif kind == 'table': # not range_safe_from_overflow
897
+ raise RuntimeError(
898
+ "You have specified kind='table', "
899
+ "but the range of values in `ar2` or `ar1` exceed the "
900
+ "maximum integer of the datatype. "
901
+ "Please set `kind` to None or 'sort'."
902
+ )
903
+ elif kind == 'table':
904
+ raise ValueError(
905
+ "The 'table' method is only "
906
+ "supported for boolean or integer arrays. "
907
+ "Please select 'sort' or None for kind."
908
+ )
909
+
910
+ # Check if one of the arrays may contain arbitrary objects
911
+ contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
912
+
913
+ # This code is run when
914
+ # a) the first condition is true, making the code significantly faster
915
+ # b) the second condition is true (i.e. `ar1` or `ar2` may contain
916
+ # arbitrary objects), since then sorting is not guaranteed to work
917
+ if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
918
+ if invert:
919
+ mask = np.ones(len(ar1), dtype=bool)
920
+ for a in ar2:
921
+ mask &= (ar1 != a)
922
+ else:
923
+ mask = np.zeros(len(ar1), dtype=bool)
924
+ for a in ar2:
925
+ mask |= (ar1 == a)
926
+ return mask
927
+
928
+ # Otherwise use sorting
929
+ if not assume_unique:
930
+ ar1, rev_idx = np.unique(ar1, return_inverse=True)
931
+ ar2 = np.unique(ar2)
932
+
933
+ ar = np.concatenate((ar1, ar2))
934
+ # We need this to be a stable sort, so always use 'mergesort'
935
+ # here. The values from the first array should always come before
936
+ # the values from the second array.
937
+ order = ar.argsort(kind='mergesort')
938
+ sar = ar[order]
939
+ if invert:
940
+ bool_ar = (sar[1:] != sar[:-1])
941
+ else:
942
+ bool_ar = (sar[1:] == sar[:-1])
943
+ flag = np.concatenate((bool_ar, [invert]))
944
+ ret = np.empty(ar.shape, dtype=bool)
945
+ ret[order] = flag
946
+
947
+ if assume_unique:
948
+ return ret[:len(ar1)]
949
+ else:
950
+ return ret[rev_idx]
951
+
952
+
953
+ def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None,
954
+ *, kind=None):
955
+ return (element, test_elements)
956
+
957
+
958
+ @array_function_dispatch(_isin_dispatcher)
959
+ def isin(element, test_elements, assume_unique=False, invert=False, *,
960
+ kind=None):
961
+ """
962
+ Calculates ``element in test_elements``, broadcasting over `element` only.
963
+ Returns a boolean array of the same shape as `element` that is True
964
+ where an element of `element` is in `test_elements` and False otherwise.
965
+
966
+ Parameters
967
+ ----------
968
+ element : array_like
969
+ Input array.
970
+ test_elements : array_like
971
+ The values against which to test each value of `element`.
972
+ This argument is flattened if it is an array or array_like.
973
+ See notes for behavior with non-array-like parameters.
974
+ assume_unique : bool, optional
975
+ If True, the input arrays are both assumed to be unique, which
976
+ can speed up the calculation. Default is False.
977
+ invert : bool, optional
978
+ If True, the values in the returned array are inverted, as if
979
+ calculating `element not in test_elements`. Default is False.
980
+ ``np.isin(a, b, invert=True)`` is equivalent to (but faster
981
+ than) ``np.invert(np.isin(a, b))``.
982
+ kind : {None, 'sort', 'table'}, optional
983
+ The algorithm to use. This will not affect the final result,
984
+ but will affect the speed and memory use. The default, None,
985
+ will select automatically based on memory considerations.
986
+
987
+ * If 'sort', will use a mergesort-based approach. This will have
988
+ a memory usage of roughly 6 times the sum of the sizes of
989
+ `element` and `test_elements`, not accounting for size of dtypes.
990
+ * If 'table', will use a lookup table approach similar
991
+ to a counting sort. This is only available for boolean and
992
+ integer arrays. This will have a memory usage of the
993
+ size of `element` plus the max-min value of `test_elements`.
994
+ `assume_unique` has no effect when the 'table' option is used.
995
+ * If None, will automatically choose 'table' if
996
+ the required memory allocation is less than or equal to
997
+ 6 times the sum of the sizes of `element` and `test_elements`,
998
+ otherwise will use 'sort'. This is done to not use
999
+ a large amount of memory by default, even though
1000
+ 'table' may be faster in most cases. If 'table' is chosen,
1001
+ `assume_unique` will have no effect.
1002
+
1003
+
1004
+ Returns
1005
+ -------
1006
+ isin : ndarray, bool
1007
+ Has the same shape as `element`. The values `element[isin]`
1008
+ are in `test_elements`.
1009
+
1010
+ Notes
1011
+ -----
1012
+ `isin` is an element-wise function version of the python keyword `in`.
1013
+ ``isin(a, b)`` is roughly equivalent to
1014
+ ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
1015
+
1016
+ `element` and `test_elements` are converted to arrays if they are not
1017
+ already. If `test_elements` is a set (or other non-sequence collection)
1018
+ it will be converted to an object array with one element, rather than an
1019
+ array of the values contained in `test_elements`. This is a consequence
1020
+ of the `array` constructor's way of handling non-sequence collections.
1021
+ Converting the set to a list usually gives the desired behavior.
1022
+
1023
+ Using ``kind='table'`` tends to be faster than `kind='sort'` if the
1024
+ following relationship is true:
1025
+ ``log10(len(test_elements)) >
1026
+ (log10(max(test_elements)-min(test_elements)) - 2.27) / 0.927``,
1027
+ but may use greater memory. The default value for `kind` will
1028
+ be automatically selected based only on memory usage, so one may
1029
+ manually set ``kind='table'`` if memory constraints can be relaxed.
1030
+
1031
+ Examples
1032
+ --------
1033
+ >>> import numpy as np
1034
+ >>> element = 2*np.arange(4).reshape((2, 2))
1035
+ >>> element
1036
+ array([[0, 2],
1037
+ [4, 6]])
1038
+ >>> test_elements = [1, 2, 4, 8]
1039
+ >>> mask = np.isin(element, test_elements)
1040
+ >>> mask
1041
+ array([[False, True],
1042
+ [ True, False]])
1043
+ >>> element[mask]
1044
+ array([2, 4])
1045
+
1046
+ The indices of the matched values can be obtained with `nonzero`:
1047
+
1048
+ >>> np.nonzero(mask)
1049
+ (array([0, 1]), array([1, 0]))
1050
+
1051
+ The test can also be inverted:
1052
+
1053
+ >>> mask = np.isin(element, test_elements, invert=True)
1054
+ >>> mask
1055
+ array([[ True, False],
1056
+ [False, True]])
1057
+ >>> element[mask]
1058
+ array([0, 6])
1059
+
1060
+ Because of how `array` handles sets, the following does not
1061
+ work as expected:
1062
+
1063
+ >>> test_set = {1, 2, 4, 8}
1064
+ >>> np.isin(element, test_set)
1065
+ array([[False, False],
1066
+ [False, False]])
1067
+
1068
+ Casting the set to a list gives the expected result:
1069
+
1070
+ >>> np.isin(element, list(test_set))
1071
+ array([[False, True],
1072
+ [ True, False]])
1073
+ """
1074
+ element = np.asarray(element)
1075
+ return _isin(element, test_elements, assume_unique=assume_unique,
1076
+ invert=invert, kind=kind).reshape(element.shape)
1077
+
1078
+
1079
+ def _union1d_dispatcher(ar1, ar2):
1080
+ return (ar1, ar2)
1081
+
1082
+
1083
+ @array_function_dispatch(_union1d_dispatcher)
1084
+ def union1d(ar1, ar2):
1085
+ """
1086
+ Find the union of two arrays.
1087
+
1088
+ Return the unique, sorted array of values that are in either of the two
1089
+ input arrays.
1090
+
1091
+ Parameters
1092
+ ----------
1093
+ ar1, ar2 : array_like
1094
+ Input arrays. They are flattened if they are not already 1D.
1095
+
1096
+ Returns
1097
+ -------
1098
+ union1d : ndarray
1099
+ Unique, sorted union of the input arrays.
1100
+
1101
+ Examples
1102
+ --------
1103
+ >>> import numpy as np
1104
+ >>> np.union1d([-1, 0, 1], [-2, 0, 2])
1105
+ array([-2, -1, 0, 1, 2])
1106
+
1107
+ To find the union of more than two arrays, use functools.reduce:
1108
+
1109
+ >>> from functools import reduce
1110
+ >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
1111
+ array([1, 2, 3, 4, 6])
1112
+ """
1113
+ return unique(np.concatenate((ar1, ar2), axis=None))
1114
+
1115
+
1116
+ def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
1117
+ return (ar1, ar2)
1118
+
1119
+
1120
+ @array_function_dispatch(_setdiff1d_dispatcher)
1121
+ def setdiff1d(ar1, ar2, assume_unique=False):
1122
+ """
1123
+ Find the set difference of two arrays.
1124
+
1125
+ Return the unique values in `ar1` that are not in `ar2`.
1126
+
1127
+ Parameters
1128
+ ----------
1129
+ ar1 : array_like
1130
+ Input array.
1131
+ ar2 : array_like
1132
+ Input comparison array.
1133
+ assume_unique : bool
1134
+ If True, the input arrays are both assumed to be unique, which
1135
+ can speed up the calculation. Default is False.
1136
+
1137
+ Returns
1138
+ -------
1139
+ setdiff1d : ndarray
1140
+ 1D array of values in `ar1` that are not in `ar2`. The result
1141
+ is sorted when `assume_unique=False`, but otherwise only sorted
1142
+ if the input is sorted.
1143
+
1144
+ Examples
1145
+ --------
1146
+ >>> import numpy as np
1147
+ >>> a = np.array([1, 2, 3, 2, 4, 1])
1148
+ >>> b = np.array([3, 4, 5, 6])
1149
+ >>> np.setdiff1d(a, b)
1150
+ array([1, 2])
1151
+
1152
+ """
1153
+ if assume_unique:
1154
+ ar1 = np.asarray(ar1).ravel()
1155
+ else:
1156
+ ar1 = unique(ar1)
1157
+ ar2 = unique(ar2)
1158
+ return ar1[_isin(ar1, ar2, assume_unique=True, invert=True)]