numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (915) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  30. numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  31. numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  32. numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  33. numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
  34. numpy/_core/_simd.pyi +35 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
  43. numpy/_core/_umath_tests.pyi +47 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +353 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1515 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +630 -0
  280. numpy/exceptions.py +246 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +5 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +244 -0
  294. numpy/f2py/_backends/_meson.pyi +62 -0
  295. numpy/f2py/_backends/meson.build.template +58 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +28 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +262 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +266 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +788 -0
  315. numpy/f2py/f2py2e.pyi +74 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +41 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1518 -0
  326. numpy/f2py/symbolic.pyi +219 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +66 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +983 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +52 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +500 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +213 -0
  460. numpy/fft/__init__.pyi +38 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +44 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +137 -0
  465. numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
  466. numpy/fft/tests/__init__.py +0 -0
  467. numpy/fft/tests/test_helper.py +167 -0
  468. numpy/fft/tests/test_pocketfft.py +589 -0
  469. numpy/lib/__init__.py +97 -0
  470. numpy/lib/__init__.pyi +52 -0
  471. numpy/lib/_array_utils_impl.py +62 -0
  472. numpy/lib/_array_utils_impl.pyi +10 -0
  473. numpy/lib/_arraypad_impl.py +926 -0
  474. numpy/lib/_arraypad_impl.pyi +88 -0
  475. numpy/lib/_arraysetops_impl.py +1158 -0
  476. numpy/lib/_arraysetops_impl.pyi +462 -0
  477. numpy/lib/_arrayterator_impl.py +224 -0
  478. numpy/lib/_arrayterator_impl.pyi +45 -0
  479. numpy/lib/_datasource.py +700 -0
  480. numpy/lib/_datasource.pyi +30 -0
  481. numpy/lib/_format_impl.py +1036 -0
  482. numpy/lib/_format_impl.pyi +56 -0
  483. numpy/lib/_function_base_impl.py +5758 -0
  484. numpy/lib/_function_base_impl.pyi +2324 -0
  485. numpy/lib/_histograms_impl.py +1085 -0
  486. numpy/lib/_histograms_impl.pyi +40 -0
  487. numpy/lib/_index_tricks_impl.py +1048 -0
  488. numpy/lib/_index_tricks_impl.pyi +267 -0
  489. numpy/lib/_iotools.py +900 -0
  490. numpy/lib/_iotools.pyi +116 -0
  491. numpy/lib/_nanfunctions_impl.py +2001 -0
  492. numpy/lib/_nanfunctions_impl.pyi +48 -0
  493. numpy/lib/_npyio_impl.py +2583 -0
  494. numpy/lib/_npyio_impl.pyi +299 -0
  495. numpy/lib/_polynomial_impl.py +1465 -0
  496. numpy/lib/_polynomial_impl.pyi +338 -0
  497. numpy/lib/_scimath_impl.py +642 -0
  498. numpy/lib/_scimath_impl.pyi +93 -0
  499. numpy/lib/_shape_base_impl.py +1289 -0
  500. numpy/lib/_shape_base_impl.pyi +236 -0
  501. numpy/lib/_stride_tricks_impl.py +582 -0
  502. numpy/lib/_stride_tricks_impl.pyi +73 -0
  503. numpy/lib/_twodim_base_impl.py +1201 -0
  504. numpy/lib/_twodim_base_impl.pyi +408 -0
  505. numpy/lib/_type_check_impl.py +710 -0
  506. numpy/lib/_type_check_impl.pyi +348 -0
  507. numpy/lib/_ufunclike_impl.py +199 -0
  508. numpy/lib/_ufunclike_impl.pyi +60 -0
  509. numpy/lib/_user_array_impl.py +310 -0
  510. numpy/lib/_user_array_impl.pyi +226 -0
  511. numpy/lib/_utils_impl.py +784 -0
  512. numpy/lib/_utils_impl.pyi +22 -0
  513. numpy/lib/_version.py +153 -0
  514. numpy/lib/_version.pyi +17 -0
  515. numpy/lib/array_utils.py +7 -0
  516. numpy/lib/array_utils.pyi +6 -0
  517. numpy/lib/format.py +24 -0
  518. numpy/lib/format.pyi +24 -0
  519. numpy/lib/introspect.py +94 -0
  520. numpy/lib/introspect.pyi +3 -0
  521. numpy/lib/mixins.py +180 -0
  522. numpy/lib/mixins.pyi +78 -0
  523. numpy/lib/npyio.py +1 -0
  524. numpy/lib/npyio.pyi +5 -0
  525. numpy/lib/recfunctions.py +1681 -0
  526. numpy/lib/recfunctions.pyi +444 -0
  527. numpy/lib/scimath.py +13 -0
  528. numpy/lib/scimath.pyi +12 -0
  529. numpy/lib/stride_tricks.py +1 -0
  530. numpy/lib/stride_tricks.pyi +4 -0
  531. numpy/lib/tests/__init__.py +0 -0
  532. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  533. numpy/lib/tests/data/py2-objarr.npy +0 -0
  534. numpy/lib/tests/data/py2-objarr.npz +0 -0
  535. numpy/lib/tests/data/py3-objarr.npy +0 -0
  536. numpy/lib/tests/data/py3-objarr.npz +0 -0
  537. numpy/lib/tests/data/python3.npy +0 -0
  538. numpy/lib/tests/data/win64python2.npy +0 -0
  539. numpy/lib/tests/test__datasource.py +328 -0
  540. numpy/lib/tests/test__iotools.py +358 -0
  541. numpy/lib/tests/test__version.py +64 -0
  542. numpy/lib/tests/test_array_utils.py +32 -0
  543. numpy/lib/tests/test_arraypad.py +1427 -0
  544. numpy/lib/tests/test_arraysetops.py +1302 -0
  545. numpy/lib/tests/test_arrayterator.py +45 -0
  546. numpy/lib/tests/test_format.py +1054 -0
  547. numpy/lib/tests/test_function_base.py +4705 -0
  548. numpy/lib/tests/test_histograms.py +855 -0
  549. numpy/lib/tests/test_index_tricks.py +693 -0
  550. numpy/lib/tests/test_io.py +2857 -0
  551. numpy/lib/tests/test_loadtxt.py +1099 -0
  552. numpy/lib/tests/test_mixins.py +215 -0
  553. numpy/lib/tests/test_nanfunctions.py +1438 -0
  554. numpy/lib/tests/test_packbits.py +376 -0
  555. numpy/lib/tests/test_polynomial.py +325 -0
  556. numpy/lib/tests/test_recfunctions.py +1042 -0
  557. numpy/lib/tests/test_regression.py +231 -0
  558. numpy/lib/tests/test_shape_base.py +813 -0
  559. numpy/lib/tests/test_stride_tricks.py +655 -0
  560. numpy/lib/tests/test_twodim_base.py +559 -0
  561. numpy/lib/tests/test_type_check.py +473 -0
  562. numpy/lib/tests/test_ufunclike.py +97 -0
  563. numpy/lib/tests/test_utils.py +80 -0
  564. numpy/lib/user_array.py +1 -0
  565. numpy/lib/user_array.pyi +1 -0
  566. numpy/linalg/__init__.py +95 -0
  567. numpy/linalg/__init__.pyi +71 -0
  568. numpy/linalg/_linalg.py +3657 -0
  569. numpy/linalg/_linalg.pyi +548 -0
  570. numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
  571. numpy/linalg/_umath_linalg.pyi +60 -0
  572. numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
  573. numpy/linalg/lapack_lite.pyi +143 -0
  574. numpy/linalg/tests/__init__.py +0 -0
  575. numpy/linalg/tests/test_deprecations.py +21 -0
  576. numpy/linalg/tests/test_linalg.py +2442 -0
  577. numpy/linalg/tests/test_regression.py +182 -0
  578. numpy/ma/API_CHANGES.txt +135 -0
  579. numpy/ma/LICENSE +24 -0
  580. numpy/ma/README.rst +236 -0
  581. numpy/ma/__init__.py +53 -0
  582. numpy/ma/__init__.pyi +458 -0
  583. numpy/ma/core.py +8929 -0
  584. numpy/ma/core.pyi +3720 -0
  585. numpy/ma/extras.py +2266 -0
  586. numpy/ma/extras.pyi +297 -0
  587. numpy/ma/mrecords.py +762 -0
  588. numpy/ma/mrecords.pyi +96 -0
  589. numpy/ma/tests/__init__.py +0 -0
  590. numpy/ma/tests/test_arrayobject.py +40 -0
  591. numpy/ma/tests/test_core.py +6008 -0
  592. numpy/ma/tests/test_deprecations.py +65 -0
  593. numpy/ma/tests/test_extras.py +1945 -0
  594. numpy/ma/tests/test_mrecords.py +495 -0
  595. numpy/ma/tests/test_old_ma.py +939 -0
  596. numpy/ma/tests/test_regression.py +83 -0
  597. numpy/ma/tests/test_subclassing.py +469 -0
  598. numpy/ma/testutils.py +294 -0
  599. numpy/ma/testutils.pyi +69 -0
  600. numpy/matlib.py +380 -0
  601. numpy/matlib.pyi +580 -0
  602. numpy/matrixlib/__init__.py +12 -0
  603. numpy/matrixlib/__init__.pyi +3 -0
  604. numpy/matrixlib/defmatrix.py +1119 -0
  605. numpy/matrixlib/defmatrix.pyi +218 -0
  606. numpy/matrixlib/tests/__init__.py +0 -0
  607. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  608. numpy/matrixlib/tests/test_interaction.py +360 -0
  609. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  610. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  611. numpy/matrixlib/tests/test_multiarray.py +17 -0
  612. numpy/matrixlib/tests/test_numeric.py +18 -0
  613. numpy/matrixlib/tests/test_regression.py +31 -0
  614. numpy/polynomial/__init__.py +187 -0
  615. numpy/polynomial/__init__.pyi +31 -0
  616. numpy/polynomial/_polybase.py +1191 -0
  617. numpy/polynomial/_polybase.pyi +262 -0
  618. numpy/polynomial/_polytypes.pyi +501 -0
  619. numpy/polynomial/chebyshev.py +2001 -0
  620. numpy/polynomial/chebyshev.pyi +180 -0
  621. numpy/polynomial/hermite.py +1738 -0
  622. numpy/polynomial/hermite.pyi +106 -0
  623. numpy/polynomial/hermite_e.py +1640 -0
  624. numpy/polynomial/hermite_e.pyi +106 -0
  625. numpy/polynomial/laguerre.py +1673 -0
  626. numpy/polynomial/laguerre.pyi +100 -0
  627. numpy/polynomial/legendre.py +1603 -0
  628. numpy/polynomial/legendre.pyi +100 -0
  629. numpy/polynomial/polynomial.py +1625 -0
  630. numpy/polynomial/polynomial.pyi +109 -0
  631. numpy/polynomial/polyutils.py +759 -0
  632. numpy/polynomial/polyutils.pyi +307 -0
  633. numpy/polynomial/tests/__init__.py +0 -0
  634. numpy/polynomial/tests/test_chebyshev.py +618 -0
  635. numpy/polynomial/tests/test_classes.py +613 -0
  636. numpy/polynomial/tests/test_hermite.py +553 -0
  637. numpy/polynomial/tests/test_hermite_e.py +554 -0
  638. numpy/polynomial/tests/test_laguerre.py +535 -0
  639. numpy/polynomial/tests/test_legendre.py +566 -0
  640. numpy/polynomial/tests/test_polynomial.py +691 -0
  641. numpy/polynomial/tests/test_polyutils.py +123 -0
  642. numpy/polynomial/tests/test_printing.py +557 -0
  643. numpy/polynomial/tests/test_symbol.py +217 -0
  644. numpy/py.typed +0 -0
  645. numpy/random/LICENSE.md +71 -0
  646. numpy/random/__init__.pxd +14 -0
  647. numpy/random/__init__.py +213 -0
  648. numpy/random/__init__.pyi +124 -0
  649. numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
  650. numpy/random/_bounded_integers.pxd +29 -0
  651. numpy/random/_bounded_integers.pyi +1 -0
  652. numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
  653. numpy/random/_common.pxd +107 -0
  654. numpy/random/_common.pyi +16 -0
  655. numpy/random/_examples/cffi/extending.py +44 -0
  656. numpy/random/_examples/cffi/parse.py +53 -0
  657. numpy/random/_examples/cython/extending.pyx +77 -0
  658. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  659. numpy/random/_examples/cython/meson.build +53 -0
  660. numpy/random/_examples/numba/extending.py +86 -0
  661. numpy/random/_examples/numba/extending_distributions.py +67 -0
  662. numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  663. numpy/random/_generator.pyi +862 -0
  664. numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
  665. numpy/random/_mt19937.pyi +27 -0
  666. numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
  667. numpy/random/_pcg64.pyi +41 -0
  668. numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
  669. numpy/random/_philox.pyi +36 -0
  670. numpy/random/_pickle.py +88 -0
  671. numpy/random/_pickle.pyi +43 -0
  672. numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
  673. numpy/random/_sfc64.pyi +25 -0
  674. numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
  675. numpy/random/bit_generator.pxd +35 -0
  676. numpy/random/bit_generator.pyi +123 -0
  677. numpy/random/c_distributions.pxd +119 -0
  678. numpy/random/lib/libnpyrandom.a +0 -0
  679. numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
  680. numpy/random/mtrand.pyi +759 -0
  681. numpy/random/tests/__init__.py +0 -0
  682. numpy/random/tests/data/__init__.py +0 -0
  683. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  684. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  685. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  686. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  687. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  688. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  689. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  690. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  691. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  692. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  693. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  694. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  695. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  696. numpy/random/tests/test_direct.py +595 -0
  697. numpy/random/tests/test_extending.py +131 -0
  698. numpy/random/tests/test_generator_mt19937.py +2825 -0
  699. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  700. numpy/random/tests/test_random.py +1724 -0
  701. numpy/random/tests/test_randomstate.py +2099 -0
  702. numpy/random/tests/test_randomstate_regression.py +213 -0
  703. numpy/random/tests/test_regression.py +175 -0
  704. numpy/random/tests/test_seed_sequence.py +79 -0
  705. numpy/random/tests/test_smoke.py +882 -0
  706. numpy/rec/__init__.py +2 -0
  707. numpy/rec/__init__.pyi +23 -0
  708. numpy/strings/__init__.py +2 -0
  709. numpy/strings/__init__.pyi +97 -0
  710. numpy/testing/__init__.py +22 -0
  711. numpy/testing/__init__.pyi +107 -0
  712. numpy/testing/_private/__init__.py +0 -0
  713. numpy/testing/_private/__init__.pyi +0 -0
  714. numpy/testing/_private/extbuild.py +250 -0
  715. numpy/testing/_private/extbuild.pyi +25 -0
  716. numpy/testing/_private/utils.py +2830 -0
  717. numpy/testing/_private/utils.pyi +505 -0
  718. numpy/testing/overrides.py +84 -0
  719. numpy/testing/overrides.pyi +10 -0
  720. numpy/testing/print_coercion_tables.py +207 -0
  721. numpy/testing/print_coercion_tables.pyi +26 -0
  722. numpy/testing/tests/__init__.py +0 -0
  723. numpy/testing/tests/test_utils.py +2123 -0
  724. numpy/tests/__init__.py +0 -0
  725. numpy/tests/test__all__.py +10 -0
  726. numpy/tests/test_configtool.py +51 -0
  727. numpy/tests/test_ctypeslib.py +383 -0
  728. numpy/tests/test_lazyloading.py +42 -0
  729. numpy/tests/test_matlib.py +59 -0
  730. numpy/tests/test_numpy_config.py +47 -0
  731. numpy/tests/test_numpy_version.py +54 -0
  732. numpy/tests/test_public_api.py +804 -0
  733. numpy/tests/test_reloading.py +76 -0
  734. numpy/tests/test_scripts.py +48 -0
  735. numpy/tests/test_warnings.py +79 -0
  736. numpy/typing/__init__.py +233 -0
  737. numpy/typing/__init__.pyi +3 -0
  738. numpy/typing/mypy_plugin.py +200 -0
  739. numpy/typing/tests/__init__.py +0 -0
  740. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  741. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  742. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  743. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  744. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  745. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  746. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  747. numpy/typing/tests/data/fail/char.pyi +63 -0
  748. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  749. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  750. numpy/typing/tests/data/fail/constants.pyi +3 -0
  751. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  752. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  753. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  754. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  755. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  756. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  757. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  758. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  759. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  760. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  761. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  762. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  763. numpy/typing/tests/data/fail/ma.pyi +155 -0
  764. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  765. numpy/typing/tests/data/fail/modules.pyi +17 -0
  766. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  767. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  768. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  769. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  770. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  771. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  772. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  773. numpy/typing/tests/data/fail/random.pyi +62 -0
  774. numpy/typing/tests/data/fail/rec.pyi +17 -0
  775. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  776. numpy/typing/tests/data/fail/shape.pyi +7 -0
  777. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  778. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  779. numpy/typing/tests/data/fail/strings.pyi +52 -0
  780. numpy/typing/tests/data/fail/testing.pyi +28 -0
  781. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  782. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  783. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  784. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  785. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  786. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  787. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  788. numpy/typing/tests/data/mypy.ini +8 -0
  789. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  790. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  791. numpy/typing/tests/data/pass/array_like.py +43 -0
  792. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  793. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  794. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  795. numpy/typing/tests/data/pass/comparisons.py +316 -0
  796. numpy/typing/tests/data/pass/dtype.py +57 -0
  797. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  798. numpy/typing/tests/data/pass/flatiter.py +26 -0
  799. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  800. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  801. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  802. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  803. numpy/typing/tests/data/pass/lib_version.py +18 -0
  804. numpy/typing/tests/data/pass/literal.py +52 -0
  805. numpy/typing/tests/data/pass/ma.py +199 -0
  806. numpy/typing/tests/data/pass/mod.py +149 -0
  807. numpy/typing/tests/data/pass/modules.py +45 -0
  808. numpy/typing/tests/data/pass/multiarray.py +77 -0
  809. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  810. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  811. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  812. numpy/typing/tests/data/pass/nditer.py +4 -0
  813. numpy/typing/tests/data/pass/numeric.py +90 -0
  814. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  815. numpy/typing/tests/data/pass/random.py +1498 -0
  816. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  817. numpy/typing/tests/data/pass/scalars.py +249 -0
  818. numpy/typing/tests/data/pass/shape.py +19 -0
  819. numpy/typing/tests/data/pass/simple.py +170 -0
  820. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  821. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  822. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  823. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  824. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  825. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  826. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  827. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  828. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  829. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  830. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  831. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  832. numpy/typing/tests/data/reveal/char.pyi +225 -0
  833. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  834. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  835. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  836. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  837. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  838. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  839. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  840. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  841. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  842. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  843. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  844. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  845. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  846. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  847. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  848. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  849. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  850. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  851. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  852. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  853. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  854. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  855. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  856. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  857. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  858. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  859. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  860. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  861. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  862. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  863. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  864. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  865. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  866. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  867. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  868. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  869. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  870. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  871. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  872. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  873. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  874. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  875. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  876. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  877. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  878. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  879. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  880. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  881. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  882. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  883. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  884. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  885. numpy/typing/tests/test_isfile.py +38 -0
  886. numpy/typing/tests/test_runtime.py +110 -0
  887. numpy/typing/tests/test_typing.py +205 -0
  888. numpy/version.py +11 -0
  889. numpy/version.pyi +9 -0
  890. numpy-2.4.0.dist-info/METADATA +139 -0
  891. numpy-2.4.0.dist-info/RECORD +915 -0
  892. numpy-2.4.0.dist-info/WHEEL +5 -0
  893. numpy-2.4.0.dist-info/entry_points.txt +13 -0
  894. numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
  895. numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  896. numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  897. numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  898. numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  899. numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  900. numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  901. numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  902. numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  903. numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
  904. numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  905. numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  906. numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  907. numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  908. numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  909. numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  910. numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  911. numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
  912. numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
  913. numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
  914. numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
  915. numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
@@ -0,0 +1,1693 @@
1
+ """
2
+ Discrete Fourier Transforms
3
+
4
+ Routines in this module:
5
+
6
+ fft(a, n=None, axis=-1, norm="backward")
7
+ ifft(a, n=None, axis=-1, norm="backward")
8
+ rfft(a, n=None, axis=-1, norm="backward")
9
+ irfft(a, n=None, axis=-1, norm="backward")
10
+ hfft(a, n=None, axis=-1, norm="backward")
11
+ ihfft(a, n=None, axis=-1, norm="backward")
12
+ fftn(a, s=None, axes=None, norm="backward")
13
+ ifftn(a, s=None, axes=None, norm="backward")
14
+ rfftn(a, s=None, axes=None, norm="backward")
15
+ irfftn(a, s=None, axes=None, norm="backward")
16
+ fft2(a, s=None, axes=(-2,-1), norm="backward")
17
+ ifft2(a, s=None, axes=(-2, -1), norm="backward")
18
+ rfft2(a, s=None, axes=(-2,-1), norm="backward")
19
+ irfft2(a, s=None, axes=(-2, -1), norm="backward")
20
+
21
+ i = inverse transform
22
+ r = transform of purely real data
23
+ h = Hermite transform
24
+ n = n-dimensional transform
25
+ 2 = 2-dimensional transform
26
+ (Note: 2D routines are just nD routines with different default
27
+ behavior.)
28
+
29
+ """
30
+ __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
31
+ 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn']
32
+
33
+ import functools
34
+ import warnings
35
+
36
+ from numpy._core import (
37
+ asarray,
38
+ conjugate,
39
+ empty_like,
40
+ overrides,
41
+ reciprocal,
42
+ result_type,
43
+ sqrt,
44
+ take,
45
+ )
46
+ from numpy.lib.array_utils import normalize_axis_index
47
+
48
+ from . import _pocketfft_umath as pfu
49
+
50
+ array_function_dispatch = functools.partial(
51
+ overrides.array_function_dispatch, module='numpy.fft')
52
+
53
+
54
+ # `inv_norm` is a float by which the result of the transform needs to be
55
+ # divided. This replaces the original, more intuitive 'fct` parameter to avoid
56
+ # divisions by zero (or alternatively additional checks) in the case of
57
+ # zero-length axes during its computation.
58
+ def _raw_fft(a, n, axis, is_real, is_forward, norm, out=None):
59
+ if n < 1:
60
+ raise ValueError(f"Invalid number of FFT data points ({n}) specified.")
61
+
62
+ # Calculate the normalization factor, passing in the array dtype to
63
+ # avoid precision loss in the possible sqrt or reciprocal.
64
+ if not is_forward:
65
+ norm = _swap_direction(norm)
66
+
67
+ real_dtype = result_type(a.real.dtype, 1.0)
68
+ if norm is None or norm == "backward":
69
+ fct = 1
70
+ elif norm == "ortho":
71
+ fct = reciprocal(sqrt(n, dtype=real_dtype))
72
+ elif norm == "forward":
73
+ fct = reciprocal(n, dtype=real_dtype)
74
+ else:
75
+ raise ValueError(f'Invalid norm value {norm}; should be "backward",'
76
+ '"ortho" or "forward".')
77
+
78
+ n_out = n
79
+ if is_real:
80
+ if is_forward:
81
+ ufunc = pfu.rfft_n_even if n % 2 == 0 else pfu.rfft_n_odd
82
+ n_out = n // 2 + 1
83
+ else:
84
+ ufunc = pfu.irfft
85
+ else:
86
+ ufunc = pfu.fft if is_forward else pfu.ifft
87
+
88
+ axis = normalize_axis_index(axis, a.ndim)
89
+
90
+ if out is None:
91
+ if is_real and not is_forward: # irfft, complex in, real output.
92
+ out_dtype = real_dtype
93
+ else: # Others, complex output.
94
+ out_dtype = result_type(a.dtype, 1j)
95
+ out = empty_like(a, shape=a.shape[:axis] + (n_out,) + a.shape[axis + 1:],
96
+ dtype=out_dtype)
97
+ elif ((shape := getattr(out, "shape", None)) is not None
98
+ and (len(shape) != a.ndim or shape[axis] != n_out)):
99
+ raise ValueError("output array has wrong shape.")
100
+
101
+ return ufunc(a, fct, axes=[(axis,), (), (axis,)], out=out)
102
+
103
+
104
+ _SWAP_DIRECTION_MAP = {"backward": "forward", None: "forward",
105
+ "ortho": "ortho", "forward": "backward"}
106
+
107
+
108
+ def _swap_direction(norm):
109
+ try:
110
+ return _SWAP_DIRECTION_MAP[norm]
111
+ except KeyError:
112
+ raise ValueError(f'Invalid norm value {norm}; should be "backward", '
113
+ '"ortho" or "forward".') from None
114
+
115
+
116
+ def _fft_dispatcher(a, n=None, axis=None, norm=None, out=None):
117
+ return (a, out)
118
+
119
+
120
+ @array_function_dispatch(_fft_dispatcher)
121
+ def fft(a, n=None, axis=-1, norm=None, out=None):
122
+ """
123
+ Compute the one-dimensional discrete Fourier Transform.
124
+
125
+ This function computes the one-dimensional *n*-point discrete Fourier
126
+ Transform (DFT) with the efficient Fast Fourier Transform (FFT)
127
+ algorithm [CT]_.
128
+
129
+ Parameters
130
+ ----------
131
+ a : array_like
132
+ Input array, can be complex.
133
+ n : int, optional
134
+ Length of the transformed axis of the output.
135
+ If `n` is smaller than the length of the input, the input is cropped.
136
+ If it is larger, the input is padded with zeros. If `n` is not given,
137
+ the length of the input along the axis specified by `axis` is used.
138
+ axis : int, optional
139
+ Axis over which to compute the FFT. If not given, the last axis is
140
+ used.
141
+ norm : {"backward", "ortho", "forward"}, optional
142
+ Normalization mode (see `numpy.fft`). Default is "backward".
143
+ Indicates which direction of the forward/backward pair of transforms
144
+ is scaled and with what normalization factor.
145
+
146
+ .. versionadded:: 1.20.0
147
+
148
+ The "backward", "forward" values were added.
149
+ out : complex ndarray, optional
150
+ If provided, the result will be placed in this array. It should be
151
+ of the appropriate shape and dtype.
152
+
153
+ .. versionadded:: 2.0.0
154
+
155
+ Returns
156
+ -------
157
+ out : complex ndarray
158
+ The truncated or zero-padded input, transformed along the axis
159
+ indicated by `axis`, or the last one if `axis` is not specified.
160
+
161
+ Raises
162
+ ------
163
+ IndexError
164
+ If `axis` is not a valid axis of `a`.
165
+
166
+ See Also
167
+ --------
168
+ numpy.fft : for definition of the DFT and conventions used.
169
+ ifft : The inverse of `fft`.
170
+ fft2 : The two-dimensional FFT.
171
+ fftn : The *n*-dimensional FFT.
172
+ rfftn : The *n*-dimensional FFT of real input.
173
+ fftfreq : Frequency bins for given FFT parameters.
174
+
175
+ Notes
176
+ -----
177
+ FFT (Fast Fourier Transform) refers to a way the discrete Fourier
178
+ Transform (DFT) can be calculated efficiently, by using symmetries in the
179
+ calculated terms. The symmetry is highest when `n` is a power of 2, and
180
+ the transform is therefore most efficient for these sizes.
181
+
182
+ The DFT is defined, with the conventions used in this implementation, in
183
+ the documentation for the `numpy.fft` module.
184
+
185
+ References
186
+ ----------
187
+ .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
188
+ machine calculation of complex Fourier series," *Math. Comput.*
189
+ 19: 297-301.
190
+
191
+ Examples
192
+ --------
193
+ >>> import numpy as np
194
+ >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
195
+ array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
196
+ 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
197
+ -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
198
+ 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
199
+
200
+ In this example, real input has an FFT which is Hermitian, i.e., symmetric
201
+ in the real part and anti-symmetric in the imaginary part, as described in
202
+ the `numpy.fft` documentation:
203
+
204
+ >>> import matplotlib.pyplot as plt
205
+ >>> t = np.arange(256)
206
+ >>> sp = np.fft.fft(np.sin(t))
207
+ >>> freq = np.fft.fftfreq(t.shape[-1])
208
+ >>> _ = plt.plot(freq, sp.real, freq, sp.imag)
209
+ >>> plt.show()
210
+
211
+ """
212
+ a = asarray(a)
213
+ if n is None:
214
+ n = a.shape[axis]
215
+ output = _raw_fft(a, n, axis, False, True, norm, out)
216
+ return output
217
+
218
+
219
+ @array_function_dispatch(_fft_dispatcher)
220
+ def ifft(a, n=None, axis=-1, norm=None, out=None):
221
+ """
222
+ Compute the one-dimensional inverse discrete Fourier Transform.
223
+
224
+ This function computes the inverse of the one-dimensional *n*-point
225
+ discrete Fourier transform computed by `fft`. In other words,
226
+ ``ifft(fft(a)) == a`` to within numerical accuracy.
227
+ For a general description of the algorithm and definitions,
228
+ see `numpy.fft`.
229
+
230
+ The input should be ordered in the same way as is returned by `fft`,
231
+ i.e.,
232
+
233
+ * ``a[0]`` should contain the zero frequency term,
234
+ * ``a[1:n//2]`` should contain the positive-frequency terms,
235
+ * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in
236
+ increasing order starting from the most negative frequency.
237
+
238
+ For an even number of input points, ``A[n//2]`` represents the sum of
239
+ the values at the positive and negative Nyquist frequencies, as the two
240
+ are aliased together. See `numpy.fft` for details.
241
+
242
+ Parameters
243
+ ----------
244
+ a : array_like
245
+ Input array, can be complex.
246
+ n : int, optional
247
+ Length of the transformed axis of the output.
248
+ If `n` is smaller than the length of the input, the input is cropped.
249
+ If it is larger, the input is padded with zeros. If `n` is not given,
250
+ the length of the input along the axis specified by `axis` is used.
251
+ See notes about padding issues.
252
+ axis : int, optional
253
+ Axis over which to compute the inverse DFT. If not given, the last
254
+ axis is used.
255
+ norm : {"backward", "ortho", "forward"}, optional
256
+ Normalization mode (see `numpy.fft`). Default is "backward".
257
+ Indicates which direction of the forward/backward pair of transforms
258
+ is scaled and with what normalization factor.
259
+
260
+ .. versionadded:: 1.20.0
261
+
262
+ The "backward", "forward" values were added.
263
+
264
+ out : complex ndarray, optional
265
+ If provided, the result will be placed in this array. It should be
266
+ of the appropriate shape and dtype.
267
+
268
+ .. versionadded:: 2.0.0
269
+
270
+ Returns
271
+ -------
272
+ out : complex ndarray
273
+ The truncated or zero-padded input, transformed along the axis
274
+ indicated by `axis`, or the last one if `axis` is not specified.
275
+
276
+ Raises
277
+ ------
278
+ IndexError
279
+ If `axis` is not a valid axis of `a`.
280
+
281
+ See Also
282
+ --------
283
+ numpy.fft : An introduction, with definitions and general explanations.
284
+ fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse
285
+ ifft2 : The two-dimensional inverse FFT.
286
+ ifftn : The n-dimensional inverse FFT.
287
+
288
+ Notes
289
+ -----
290
+ If the input parameter `n` is larger than the size of the input, the input
291
+ is padded by appending zeros at the end. Even though this is the common
292
+ approach, it might lead to surprising results. If a different padding is
293
+ desired, it must be performed before calling `ifft`.
294
+
295
+ Examples
296
+ --------
297
+ >>> import numpy as np
298
+ >>> np.fft.ifft([0, 4, 0, 0])
299
+ array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
300
+
301
+ Create and plot a band-limited signal with random phases:
302
+
303
+ >>> import matplotlib.pyplot as plt
304
+ >>> t = np.arange(400)
305
+ >>> n = np.zeros((400,), dtype=complex)
306
+ >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
307
+ >>> s = np.fft.ifft(n)
308
+ >>> plt.plot(t, s.real, label='real')
309
+ [<matplotlib.lines.Line2D object at ...>]
310
+ >>> plt.plot(t, s.imag, '--', label='imaginary')
311
+ [<matplotlib.lines.Line2D object at ...>]
312
+ >>> plt.legend()
313
+ <matplotlib.legend.Legend object at ...>
314
+ >>> plt.show()
315
+
316
+ """
317
+ a = asarray(a)
318
+ if n is None:
319
+ n = a.shape[axis]
320
+ output = _raw_fft(a, n, axis, False, False, norm, out=out)
321
+ return output
322
+
323
+
324
+ @array_function_dispatch(_fft_dispatcher)
325
+ def rfft(a, n=None, axis=-1, norm=None, out=None):
326
+ """
327
+ Compute the one-dimensional discrete Fourier Transform for real input.
328
+
329
+ This function computes the one-dimensional *n*-point discrete Fourier
330
+ Transform (DFT) of a real-valued array by means of an efficient algorithm
331
+ called the Fast Fourier Transform (FFT).
332
+
333
+ Parameters
334
+ ----------
335
+ a : array_like
336
+ Input array
337
+ n : int, optional
338
+ Number of points along transformation axis in the input to use.
339
+ If `n` is smaller than the length of the input, the input is cropped.
340
+ If it is larger, the input is padded with zeros. If `n` is not given,
341
+ the length of the input along the axis specified by `axis` is used.
342
+ axis : int, optional
343
+ Axis over which to compute the FFT. If not given, the last axis is
344
+ used.
345
+ norm : {"backward", "ortho", "forward"}, optional
346
+ Normalization mode (see `numpy.fft`). Default is "backward".
347
+ Indicates which direction of the forward/backward pair of transforms
348
+ is scaled and with what normalization factor.
349
+
350
+ .. versionadded:: 1.20.0
351
+
352
+ The "backward", "forward" values were added.
353
+
354
+ out : complex ndarray, optional
355
+ If provided, the result will be placed in this array. It should be
356
+ of the appropriate shape and dtype.
357
+
358
+ .. versionadded:: 2.0.0
359
+
360
+ Returns
361
+ -------
362
+ out : complex ndarray
363
+ The truncated or zero-padded input, transformed along the axis
364
+ indicated by `axis`, or the last one if `axis` is not specified.
365
+ If `n` is even, the length of the transformed axis is ``(n/2)+1``.
366
+ If `n` is odd, the length is ``(n+1)/2``.
367
+
368
+ Raises
369
+ ------
370
+ IndexError
371
+ If `axis` is not a valid axis of `a`.
372
+
373
+ See Also
374
+ --------
375
+ numpy.fft : For definition of the DFT and conventions used.
376
+ irfft : The inverse of `rfft`.
377
+ fft : The one-dimensional FFT of general (complex) input.
378
+ fftn : The *n*-dimensional FFT.
379
+ rfftn : The *n*-dimensional FFT of real input.
380
+
381
+ Notes
382
+ -----
383
+ When the DFT is computed for purely real input, the output is
384
+ Hermitian-symmetric, i.e. the negative frequency terms are just the complex
385
+ conjugates of the corresponding positive-frequency terms, and the
386
+ negative-frequency terms are therefore redundant. This function does not
387
+ compute the negative frequency terms, and the length of the transformed
388
+ axis of the output is therefore ``n//2 + 1``.
389
+
390
+ When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains
391
+ the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
392
+
393
+ If `n` is even, ``A[-1]`` contains the term representing both positive
394
+ and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
395
+ real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
396
+ the largest positive frequency (fs/2*(n-1)/n), and is complex in the
397
+ general case.
398
+
399
+ If the input `a` contains an imaginary part, it is silently discarded.
400
+
401
+ Examples
402
+ --------
403
+ >>> import numpy as np
404
+ >>> np.fft.fft([0, 1, 0, 0])
405
+ array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
406
+ >>> np.fft.rfft([0, 1, 0, 0])
407
+ array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
408
+
409
+ Notice how the final element of the `fft` output is the complex conjugate
410
+ of the second element, for real input. For `rfft`, this symmetry is
411
+ exploited to compute only the non-negative frequency terms.
412
+
413
+ """
414
+ a = asarray(a)
415
+ if n is None:
416
+ n = a.shape[axis]
417
+ output = _raw_fft(a, n, axis, True, True, norm, out=out)
418
+ return output
419
+
420
+
421
+ @array_function_dispatch(_fft_dispatcher)
422
+ def irfft(a, n=None, axis=-1, norm=None, out=None):
423
+ """
424
+ Computes the inverse of `rfft`.
425
+
426
+ This function computes the inverse of the one-dimensional *n*-point
427
+ discrete Fourier Transform of real input computed by `rfft`.
428
+ In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
429
+ accuracy. (See Notes below for why ``len(a)`` is necessary here.)
430
+
431
+ The input is expected to be in the form returned by `rfft`, i.e. the
432
+ real zero-frequency term followed by the complex positive frequency terms
433
+ in order of increasing frequency. Since the discrete Fourier Transform of
434
+ real input is Hermitian-symmetric, the negative frequency terms are taken
435
+ to be the complex conjugates of the corresponding positive frequency terms.
436
+
437
+ Parameters
438
+ ----------
439
+ a : array_like
440
+ The input array.
441
+ n : int, optional
442
+ Length of the transformed axis of the output.
443
+ For `n` output points, ``n//2+1`` input points are necessary. If the
444
+ input is longer than this, it is cropped. If it is shorter than this,
445
+ it is padded with zeros. If `n` is not given, it is taken to be
446
+ ``2*(m-1)`` where ``m`` is the length of the input along the axis
447
+ specified by `axis`.
448
+ axis : int, optional
449
+ Axis over which to compute the inverse FFT. If not given, the last
450
+ axis is used.
451
+ norm : {"backward", "ortho", "forward"}, optional
452
+ Normalization mode (see `numpy.fft`). Default is "backward".
453
+ Indicates which direction of the forward/backward pair of transforms
454
+ is scaled and with what normalization factor.
455
+
456
+ .. versionadded:: 1.20.0
457
+
458
+ The "backward", "forward" values were added.
459
+
460
+ out : ndarray, optional
461
+ If provided, the result will be placed in this array. It should be
462
+ of the appropriate shape and dtype.
463
+
464
+ .. versionadded:: 2.0.0
465
+
466
+ Returns
467
+ -------
468
+ out : ndarray
469
+ The truncated or zero-padded input, transformed along the axis
470
+ indicated by `axis`, or the last one if `axis` is not specified.
471
+ The length of the transformed axis is `n`, or, if `n` is not given,
472
+ ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
473
+ input. To get an odd number of output points, `n` must be specified.
474
+
475
+ Raises
476
+ ------
477
+ IndexError
478
+ If `axis` is not a valid axis of `a`.
479
+
480
+ See Also
481
+ --------
482
+ numpy.fft : For definition of the DFT and conventions used.
483
+ rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
484
+ fft : The one-dimensional FFT.
485
+ irfft2 : The inverse of the two-dimensional FFT of real input.
486
+ irfftn : The inverse of the *n*-dimensional FFT of real input.
487
+
488
+ Notes
489
+ -----
490
+ Returns the real valued `n`-point inverse discrete Fourier transform
491
+ of `a`, where `a` contains the non-negative frequency terms of a
492
+ Hermitian-symmetric sequence. `n` is the length of the result, not the
493
+ input.
494
+
495
+ If you specify an `n` such that `a` must be zero-padded or truncated, the
496
+ extra/removed values will be added/removed at high frequencies. One can
497
+ thus resample a series to `m` points via Fourier interpolation by:
498
+ ``a_resamp = irfft(rfft(a), m)``.
499
+
500
+ The correct interpretation of the hermitian input depends on the length of
501
+ the original data, as given by `n`. This is because each input shape could
502
+ correspond to either an odd or even length signal. By default, `irfft`
503
+ assumes an even output length which puts the last entry at the Nyquist
504
+ frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
505
+ the value is thus treated as purely real. To avoid losing information, the
506
+ correct length of the real input **must** be given.
507
+
508
+ Examples
509
+ --------
510
+ >>> import numpy as np
511
+ >>> np.fft.ifft([1, -1j, -1, 1j])
512
+ array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
513
+ >>> np.fft.irfft([1, -1j, -1])
514
+ array([0., 1., 0., 0.])
515
+
516
+ Notice how the last term in the input to the ordinary `ifft` is the
517
+ complex conjugate of the second term, and the output has zero imaginary
518
+ part everywhere. When calling `irfft`, the negative frequencies are not
519
+ specified, and the output array is purely real.
520
+
521
+ """
522
+ a = asarray(a)
523
+ if n is None:
524
+ n = (a.shape[axis] - 1) * 2
525
+ output = _raw_fft(a, n, axis, True, False, norm, out=out)
526
+ return output
527
+
528
+
529
+ @array_function_dispatch(_fft_dispatcher)
530
+ def hfft(a, n=None, axis=-1, norm=None, out=None):
531
+ """
532
+ Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
533
+ spectrum.
534
+
535
+ Parameters
536
+ ----------
537
+ a : array_like
538
+ The input array.
539
+ n : int, optional
540
+ Length of the transformed axis of the output. For `n` output
541
+ points, ``n//2 + 1`` input points are necessary. If the input is
542
+ longer than this, it is cropped. If it is shorter than this, it is
543
+ padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)``
544
+ where ``m`` is the length of the input along the axis specified by
545
+ `axis`.
546
+ axis : int, optional
547
+ Axis over which to compute the FFT. If not given, the last
548
+ axis is used.
549
+ norm : {"backward", "ortho", "forward"}, optional
550
+ Normalization mode (see `numpy.fft`). Default is "backward".
551
+ Indicates which direction of the forward/backward pair of transforms
552
+ is scaled and with what normalization factor.
553
+
554
+ .. versionadded:: 1.20.0
555
+
556
+ The "backward", "forward" values were added.
557
+
558
+ out : ndarray, optional
559
+ If provided, the result will be placed in this array. It should be
560
+ of the appropriate shape and dtype.
561
+
562
+ .. versionadded:: 2.0.0
563
+
564
+ Returns
565
+ -------
566
+ out : ndarray
567
+ The truncated or zero-padded input, transformed along the axis
568
+ indicated by `axis`, or the last one if `axis` is not specified.
569
+ The length of the transformed axis is `n`, or, if `n` is not given,
570
+ ``2*m - 2`` where ``m`` is the length of the transformed axis of
571
+ the input. To get an odd number of output points, `n` must be
572
+ specified, for instance as ``2*m - 1`` in the typical case,
573
+
574
+ Raises
575
+ ------
576
+ IndexError
577
+ If `axis` is not a valid axis of `a`.
578
+
579
+ See also
580
+ --------
581
+ rfft : Compute the one-dimensional FFT for real input.
582
+ ihfft : The inverse of `hfft`.
583
+
584
+ Notes
585
+ -----
586
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
587
+ opposite case: here the signal has Hermitian symmetry in the time
588
+ domain and is real in the frequency domain. So here it's `hfft` for
589
+ which you must supply the length of the result if it is to be odd.
590
+
591
+ * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
592
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.
593
+
594
+ The correct interpretation of the hermitian input depends on the length of
595
+ the original data, as given by `n`. This is because each input shape could
596
+ correspond to either an odd or even length signal. By default, `hfft`
597
+ assumes an even output length which puts the last entry at the Nyquist
598
+ frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
599
+ the value is thus treated as purely real. To avoid losing information, the
600
+ shape of the full signal **must** be given.
601
+
602
+ Examples
603
+ --------
604
+ >>> import numpy as np
605
+ >>> signal = np.array([1, 2, 3, 4, 3, 2])
606
+ >>> np.fft.fft(signal)
607
+ array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary
608
+ >>> np.fft.hfft(signal[:4]) # Input first half of signal
609
+ array([15., -4., 0., -1., 0., -4.])
610
+ >>> np.fft.hfft(signal, 6) # Input entire signal and truncate
611
+ array([15., -4., 0., -1., 0., -4.])
612
+
613
+
614
+ >>> signal = np.array([[1, 1.j], [-1.j, 2]])
615
+ >>> np.conj(signal.T) - signal # check Hermitian symmetry
616
+ array([[ 0.-0.j, -0.+0.j], # may vary
617
+ [ 0.+0.j, 0.-0.j]])
618
+ >>> freq_spectrum = np.fft.hfft(signal)
619
+ >>> freq_spectrum
620
+ array([[ 1., 1.],
621
+ [ 2., -2.]])
622
+
623
+ """
624
+ a = asarray(a)
625
+ if n is None:
626
+ n = (a.shape[axis] - 1) * 2
627
+ new_norm = _swap_direction(norm)
628
+ output = irfft(conjugate(a), n, axis, norm=new_norm, out=None)
629
+ return output
630
+
631
+
632
+ @array_function_dispatch(_fft_dispatcher)
633
+ def ihfft(a, n=None, axis=-1, norm=None, out=None):
634
+ """
635
+ Compute the inverse FFT of a signal that has Hermitian symmetry.
636
+
637
+ Parameters
638
+ ----------
639
+ a : array_like
640
+ Input array.
641
+ n : int, optional
642
+ Length of the inverse FFT, the number of points along
643
+ transformation axis in the input to use. If `n` is smaller than
644
+ the length of the input, the input is cropped. If it is larger,
645
+ the input is padded with zeros. If `n` is not given, the length of
646
+ the input along the axis specified by `axis` is used.
647
+ axis : int, optional
648
+ Axis over which to compute the inverse FFT. If not given, the last
649
+ axis is used.
650
+ norm : {"backward", "ortho", "forward"}, optional
651
+ Normalization mode (see `numpy.fft`). Default is "backward".
652
+ Indicates which direction of the forward/backward pair of transforms
653
+ is scaled and with what normalization factor.
654
+
655
+ .. versionadded:: 1.20.0
656
+
657
+ The "backward", "forward" values were added.
658
+
659
+ out : complex ndarray, optional
660
+ If provided, the result will be placed in this array. It should be
661
+ of the appropriate shape and dtype.
662
+
663
+ .. versionadded:: 2.0.0
664
+
665
+ Returns
666
+ -------
667
+ out : complex ndarray
668
+ The truncated or zero-padded input, transformed along the axis
669
+ indicated by `axis`, or the last one if `axis` is not specified.
670
+ The length of the transformed axis is ``n//2 + 1``.
671
+
672
+ See also
673
+ --------
674
+ hfft, irfft
675
+
676
+ Notes
677
+ -----
678
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
679
+ opposite case: here the signal has Hermitian symmetry in the time
680
+ domain and is real in the frequency domain. So here it's `hfft` for
681
+ which you must supply the length of the result if it is to be odd:
682
+
683
+ * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
684
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.
685
+
686
+ Examples
687
+ --------
688
+ >>> import numpy as np
689
+ >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
690
+ >>> np.fft.ifft(spectrum)
691
+ array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
692
+ >>> np.fft.ihfft(spectrum)
693
+ array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
694
+
695
+ """
696
+ a = asarray(a)
697
+ if n is None:
698
+ n = a.shape[axis]
699
+ new_norm = _swap_direction(norm)
700
+ out = rfft(a, n, axis, norm=new_norm, out=out)
701
+ return conjugate(out, out=out)
702
+
703
+
704
+ def _cook_nd_args(a, s=None, axes=None, invreal=0):
705
+ if s is None:
706
+ shapeless = True
707
+ if axes is None:
708
+ s = list(a.shape)
709
+ else:
710
+ s = take(a.shape, axes)
711
+ else:
712
+ shapeless = False
713
+ s = list(s)
714
+ if axes is None:
715
+ if not shapeless:
716
+ msg = ("`axes` should not be `None` if `s` is not `None` "
717
+ "(Deprecated in NumPy 2.0). In a future version of NumPy, "
718
+ "this will raise an error and `s[i]` will correspond to "
719
+ "the size along the transformed axis specified by "
720
+ "`axes[i]`. To retain current behaviour, pass a sequence "
721
+ "[0, ..., k-1] to `axes` for an array of dimension k.")
722
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
723
+ axes = list(range(-len(s), 0))
724
+ if len(s) != len(axes):
725
+ raise ValueError("Shape and axes have different lengths.")
726
+ if invreal and shapeless:
727
+ s[-1] = (a.shape[axes[-1]] - 1) * 2
728
+ if None in s:
729
+ msg = ("Passing an array containing `None` values to `s` is "
730
+ "deprecated in NumPy 2.0 and will raise an error in "
731
+ "a future version of NumPy. To use the default behaviour "
732
+ "of the corresponding 1-D transform, pass the value matching "
733
+ "the default for its `n` parameter. To use the default "
734
+ "behaviour for every axis, the `s` argument can be omitted.")
735
+ warnings.warn(msg, DeprecationWarning, stacklevel=3)
736
+ # use the whole input array along axis `i` if `s[i] == -1`
737
+ s = [a.shape[_a] if _s == -1 else _s for _s, _a in zip(s, axes)]
738
+ return s, axes
739
+
740
+
741
+ def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None, out=None):
742
+ a = asarray(a)
743
+ s, axes = _cook_nd_args(a, s, axes)
744
+ itl = list(range(len(axes)))
745
+ itl.reverse()
746
+ for ii in itl:
747
+ a = function(a, n=s[ii], axis=axes[ii], norm=norm, out=out)
748
+ return a
749
+
750
+
751
+ def _fftn_dispatcher(a, s=None, axes=None, norm=None, out=None):
752
+ return (a, out)
753
+
754
+
755
+ @array_function_dispatch(_fftn_dispatcher)
756
+ def fftn(a, s=None, axes=None, norm=None, out=None):
757
+ """
758
+ Compute the N-dimensional discrete Fourier Transform.
759
+
760
+ This function computes the *N*-dimensional discrete Fourier Transform over
761
+ any number of axes in an *M*-dimensional array by means of the Fast Fourier
762
+ Transform (FFT).
763
+
764
+ Parameters
765
+ ----------
766
+ a : array_like
767
+ Input array, can be complex.
768
+ s : sequence of ints, optional
769
+ Shape (length of each transformed axis) of the output
770
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
771
+ This corresponds to ``n`` for ``fft(x, n)``.
772
+ Along any axis, if the given shape is smaller than that of the input,
773
+ the input is cropped. If it is larger, the input is padded with zeros.
774
+
775
+ .. versionchanged:: 2.0
776
+
777
+ If it is ``-1``, the whole input is used (no padding/trimming).
778
+
779
+ If `s` is not given, the shape of the input along the axes specified
780
+ by `axes` is used.
781
+
782
+ .. deprecated:: 2.0
783
+
784
+ If `s` is not ``None``, `axes` must not be ``None`` either.
785
+
786
+ .. deprecated:: 2.0
787
+
788
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
789
+ values currently mean that the default value for ``n`` is used
790
+ in the corresponding 1-D transform, but this behaviour is
791
+ deprecated.
792
+
793
+ axes : sequence of ints, optional
794
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
795
+ axes are used, or all axes if `s` is also not specified.
796
+ Repeated indices in `axes` means that the transform over that axis is
797
+ performed multiple times.
798
+
799
+ .. deprecated:: 2.0
800
+
801
+ If `s` is specified, the corresponding `axes` to be transformed
802
+ must be explicitly specified too.
803
+
804
+ norm : {"backward", "ortho", "forward"}, optional
805
+ Normalization mode (see `numpy.fft`). Default is "backward".
806
+ Indicates which direction of the forward/backward pair of transforms
807
+ is scaled and with what normalization factor.
808
+
809
+ .. versionadded:: 1.20.0
810
+
811
+ The "backward", "forward" values were added.
812
+
813
+ out : complex ndarray, optional
814
+ If provided, the result will be placed in this array. It should be
815
+ of the appropriate shape and dtype for all axes (and hence is
816
+ incompatible with passing in all but the trivial ``s``).
817
+
818
+ .. versionadded:: 2.0.0
819
+
820
+ Returns
821
+ -------
822
+ out : complex ndarray
823
+ The truncated or zero-padded input, transformed along the axes
824
+ indicated by `axes`, or by a combination of `s` and `a`,
825
+ as explained in the parameters section above.
826
+
827
+ Raises
828
+ ------
829
+ ValueError
830
+ If `s` and `axes` have different length.
831
+ IndexError
832
+ If an element of `axes` is larger than than the number of axes of `a`.
833
+
834
+ See Also
835
+ --------
836
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
837
+ and conventions used.
838
+ ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT.
839
+ fft : The one-dimensional FFT, with definitions and conventions used.
840
+ rfftn : The *n*-dimensional FFT of real input.
841
+ fft2 : The two-dimensional FFT.
842
+ fftshift : Shifts zero-frequency terms to centre of array
843
+
844
+ Notes
845
+ -----
846
+ The output, analogously to `fft`, contains the term for zero frequency in
847
+ the low-order corner of all axes, the positive frequency terms in the
848
+ first half of all axes, the term for the Nyquist frequency in the middle
849
+ of all axes and the negative frequency terms in the second half of all
850
+ axes, in order of decreasingly negative frequency.
851
+
852
+ See `numpy.fft` for details, definitions and conventions used.
853
+
854
+ Examples
855
+ --------
856
+ >>> import numpy as np
857
+ >>> a = np.mgrid[:3, :3, :3][0]
858
+ >>> np.fft.fftn(a, axes=(1, 2))
859
+ array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
860
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
861
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
862
+ [[ 9.+0.j, 0.+0.j, 0.+0.j],
863
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
864
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
865
+ [[18.+0.j, 0.+0.j, 0.+0.j],
866
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
867
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
868
+ >>> np.fft.fftn(a, (2, 2), axes=(0, 1))
869
+ array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
870
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
871
+ [[-2.+0.j, -2.+0.j, -2.+0.j],
872
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
873
+
874
+ >>> import matplotlib.pyplot as plt
875
+ >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
876
+ ... 2 * np.pi * np.arange(200) / 34)
877
+ >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
878
+ >>> FS = np.fft.fftn(S)
879
+ >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
880
+ <matplotlib.image.AxesImage object at 0x...>
881
+ >>> plt.show()
882
+
883
+ """
884
+ return _raw_fftnd(a, s, axes, fft, norm, out=out)
885
+
886
+
887
+ @array_function_dispatch(_fftn_dispatcher)
888
+ def ifftn(a, s=None, axes=None, norm=None, out=None):
889
+ """
890
+ Compute the N-dimensional inverse discrete Fourier Transform.
891
+
892
+ This function computes the inverse of the N-dimensional discrete
893
+ Fourier Transform over any number of axes in an M-dimensional array by
894
+ means of the Fast Fourier Transform (FFT). In other words,
895
+ ``ifftn(fftn(a)) == a`` to within numerical accuracy.
896
+ For a description of the definitions and conventions used, see `numpy.fft`.
897
+
898
+ The input, analogously to `ifft`, should be ordered in the same way as is
899
+ returned by `fftn`, i.e. it should have the term for zero frequency
900
+ in all axes in the low-order corner, the positive frequency terms in the
901
+ first half of all axes, the term for the Nyquist frequency in the middle
902
+ of all axes and the negative frequency terms in the second half of all
903
+ axes, in order of decreasingly negative frequency.
904
+
905
+ Parameters
906
+ ----------
907
+ a : array_like
908
+ Input array, can be complex.
909
+ s : sequence of ints, optional
910
+ Shape (length of each transformed axis) of the output
911
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
912
+ This corresponds to ``n`` for ``ifft(x, n)``.
913
+ Along any axis, if the given shape is smaller than that of the input,
914
+ the input is cropped. If it is larger, the input is padded with zeros.
915
+
916
+ .. versionchanged:: 2.0
917
+
918
+ If it is ``-1``, the whole input is used (no padding/trimming).
919
+
920
+ If `s` is not given, the shape of the input along the axes specified
921
+ by `axes` is used. See notes for issue on `ifft` zero padding.
922
+
923
+ .. deprecated:: 2.0
924
+
925
+ If `s` is not ``None``, `axes` must not be ``None`` either.
926
+
927
+ .. deprecated:: 2.0
928
+
929
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
930
+ values currently mean that the default value for ``n`` is used
931
+ in the corresponding 1-D transform, but this behaviour is
932
+ deprecated.
933
+
934
+ axes : sequence of ints, optional
935
+ Axes over which to compute the IFFT. If not given, the last ``len(s)``
936
+ axes are used, or all axes if `s` is also not specified.
937
+ Repeated indices in `axes` means that the inverse transform over that
938
+ axis is performed multiple times.
939
+
940
+ .. deprecated:: 2.0
941
+
942
+ If `s` is specified, the corresponding `axes` to be transformed
943
+ must be explicitly specified too.
944
+
945
+ norm : {"backward", "ortho", "forward"}, optional
946
+ Normalization mode (see `numpy.fft`). Default is "backward".
947
+ Indicates which direction of the forward/backward pair of transforms
948
+ is scaled and with what normalization factor.
949
+
950
+ .. versionadded:: 1.20.0
951
+
952
+ The "backward", "forward" values were added.
953
+
954
+ out : complex ndarray, optional
955
+ If provided, the result will be placed in this array. It should be
956
+ of the appropriate shape and dtype for all axes (and hence is
957
+ incompatible with passing in all but the trivial ``s``).
958
+
959
+ .. versionadded:: 2.0.0
960
+
961
+ Returns
962
+ -------
963
+ out : complex ndarray
964
+ The truncated or zero-padded input, transformed along the axes
965
+ indicated by `axes`, or by a combination of `s` or `a`,
966
+ as explained in the parameters section above.
967
+
968
+ Raises
969
+ ------
970
+ ValueError
971
+ If `s` and `axes` have different length.
972
+ IndexError
973
+ If an element of `axes` is larger than than the number of axes of `a`.
974
+
975
+ See Also
976
+ --------
977
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
978
+ and conventions used.
979
+ fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse.
980
+ ifft : The one-dimensional inverse FFT.
981
+ ifft2 : The two-dimensional inverse FFT.
982
+ ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
983
+ of array.
984
+
985
+ Notes
986
+ -----
987
+ See `numpy.fft` for definitions and conventions used.
988
+
989
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
990
+ the input along the specified dimension. Although this is the common
991
+ approach, it might lead to surprising results. If another form of zero
992
+ padding is desired, it must be performed before `ifftn` is called.
993
+
994
+ Examples
995
+ --------
996
+ >>> import numpy as np
997
+ >>> a = np.eye(4)
998
+ >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
999
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
1000
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
1001
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
1002
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
1003
+
1004
+
1005
+ Create and plot an image with band-limited frequency content:
1006
+
1007
+ >>> import matplotlib.pyplot as plt
1008
+ >>> n = np.zeros((200,200), dtype=complex)
1009
+ >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
1010
+ >>> im = np.fft.ifftn(n).real
1011
+ >>> plt.imshow(im)
1012
+ <matplotlib.image.AxesImage object at 0x...>
1013
+ >>> plt.show()
1014
+
1015
+ """
1016
+ return _raw_fftnd(a, s, axes, ifft, norm, out=out)
1017
+
1018
+
1019
+ @array_function_dispatch(_fftn_dispatcher)
1020
+ def fft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1021
+ """
1022
+ Compute the 2-dimensional discrete Fourier Transform.
1023
+
1024
+ This function computes the *n*-dimensional discrete Fourier Transform
1025
+ over any axes in an *M*-dimensional array by means of the
1026
+ Fast Fourier Transform (FFT). By default, the transform is computed over
1027
+ the last two axes of the input array, i.e., a 2-dimensional FFT.
1028
+
1029
+ Parameters
1030
+ ----------
1031
+ a : array_like
1032
+ Input array, can be complex
1033
+ s : sequence of ints, optional
1034
+ Shape (length of each transformed axis) of the output
1035
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1036
+ This corresponds to ``n`` for ``fft(x, n)``.
1037
+ Along each axis, if the given shape is smaller than that of the input,
1038
+ the input is cropped. If it is larger, the input is padded with zeros.
1039
+
1040
+ .. versionchanged:: 2.0
1041
+
1042
+ If it is ``-1``, the whole input is used (no padding/trimming).
1043
+
1044
+ If `s` is not given, the shape of the input along the axes specified
1045
+ by `axes` is used.
1046
+
1047
+ .. deprecated:: 2.0
1048
+
1049
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1050
+
1051
+ .. deprecated:: 2.0
1052
+
1053
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1054
+ values currently mean that the default value for ``n`` is used
1055
+ in the corresponding 1-D transform, but this behaviour is
1056
+ deprecated.
1057
+
1058
+ axes : sequence of ints, optional
1059
+ Axes over which to compute the FFT. If not given, the last two
1060
+ axes are used. A repeated index in `axes` means the transform over
1061
+ that axis is performed multiple times. A one-element sequence means
1062
+ that a one-dimensional FFT is performed. Default: ``(-2, -1)``.
1063
+
1064
+ .. deprecated:: 2.0
1065
+
1066
+ If `s` is specified, the corresponding `axes` to be transformed
1067
+ must not be ``None``.
1068
+
1069
+ norm : {"backward", "ortho", "forward"}, optional
1070
+ Normalization mode (see `numpy.fft`). Default is "backward".
1071
+ Indicates which direction of the forward/backward pair of transforms
1072
+ is scaled and with what normalization factor.
1073
+
1074
+ .. versionadded:: 1.20.0
1075
+
1076
+ The "backward", "forward" values were added.
1077
+
1078
+ out : complex ndarray, optional
1079
+ If provided, the result will be placed in this array. It should be
1080
+ of the appropriate shape and dtype for all axes (and hence only the
1081
+ last axis can have ``s`` not equal to the shape at that axis).
1082
+
1083
+ .. versionadded:: 2.0.0
1084
+
1085
+ Returns
1086
+ -------
1087
+ out : complex ndarray
1088
+ The truncated or zero-padded input, transformed along the axes
1089
+ indicated by `axes`, or the last two axes if `axes` is not given.
1090
+
1091
+ Raises
1092
+ ------
1093
+ ValueError
1094
+ If `s` and `axes` have different length, or `axes` not given and
1095
+ ``len(s) != 2``.
1096
+ IndexError
1097
+ If an element of `axes` is larger than than the number of axes of `a`.
1098
+
1099
+ See Also
1100
+ --------
1101
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
1102
+ and conventions used.
1103
+ ifft2 : The inverse two-dimensional FFT.
1104
+ fft : The one-dimensional FFT.
1105
+ fftn : The *n*-dimensional FFT.
1106
+ fftshift : Shifts zero-frequency terms to the center of the array.
1107
+ For two-dimensional input, swaps first and third quadrants, and second
1108
+ and fourth quadrants.
1109
+
1110
+ Notes
1111
+ -----
1112
+ `fft2` is just `fftn` with a different default for `axes`.
1113
+
1114
+ The output, analogously to `fft`, contains the term for zero frequency in
1115
+ the low-order corner of the transformed axes, the positive frequency terms
1116
+ in the first half of these axes, the term for the Nyquist frequency in the
1117
+ middle of the axes and the negative frequency terms in the second half of
1118
+ the axes, in order of decreasingly negative frequency.
1119
+
1120
+ See `fftn` for details and a plotting example, and `numpy.fft` for
1121
+ definitions and conventions used.
1122
+
1123
+
1124
+ Examples
1125
+ --------
1126
+ >>> import numpy as np
1127
+ >>> a = np.mgrid[:5, :5][0]
1128
+ >>> np.fft.fft2(a)
1129
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary
1130
+ 0. +0.j , 0. +0.j ],
1131
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
1132
+ 0. +0.j , 0. +0.j ],
1133
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,
1134
+ 0. +0.j , 0. +0.j ],
1135
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,
1136
+ 0. +0.j , 0. +0.j ],
1137
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
1138
+ 0. +0.j , 0. +0.j ]])
1139
+
1140
+ """
1141
+ return _raw_fftnd(a, s, axes, fft, norm, out=out)
1142
+
1143
+
1144
+ @array_function_dispatch(_fftn_dispatcher)
1145
+ def ifft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1146
+ """
1147
+ Compute the 2-dimensional inverse discrete Fourier Transform.
1148
+
1149
+ This function computes the inverse of the 2-dimensional discrete Fourier
1150
+ Transform over any number of axes in an M-dimensional array by means of
1151
+ the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a``
1152
+ to within numerical accuracy. By default, the inverse transform is
1153
+ computed over the last two axes of the input array.
1154
+
1155
+ The input, analogously to `ifft`, should be ordered in the same way as is
1156
+ returned by `fft2`, i.e. it should have the term for zero frequency
1157
+ in the low-order corner of the two axes, the positive frequency terms in
1158
+ the first half of these axes, the term for the Nyquist frequency in the
1159
+ middle of the axes and the negative frequency terms in the second half of
1160
+ both axes, in order of decreasingly negative frequency.
1161
+
1162
+ Parameters
1163
+ ----------
1164
+ a : array_like
1165
+ Input array, can be complex.
1166
+ s : sequence of ints, optional
1167
+ Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
1168
+ ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``.
1169
+ Along each axis, if the given shape is smaller than that of the input,
1170
+ the input is cropped. If it is larger, the input is padded with zeros.
1171
+
1172
+ .. versionchanged:: 2.0
1173
+
1174
+ If it is ``-1``, the whole input is used (no padding/trimming).
1175
+
1176
+ If `s` is not given, the shape of the input along the axes specified
1177
+ by `axes` is used. See notes for issue on `ifft` zero padding.
1178
+
1179
+ .. deprecated:: 2.0
1180
+
1181
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1182
+
1183
+ .. deprecated:: 2.0
1184
+
1185
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1186
+ values currently mean that the default value for ``n`` is used
1187
+ in the corresponding 1-D transform, but this behaviour is
1188
+ deprecated.
1189
+
1190
+ axes : sequence of ints, optional
1191
+ Axes over which to compute the FFT. If not given, the last two
1192
+ axes are used. A repeated index in `axes` means the transform over
1193
+ that axis is performed multiple times. A one-element sequence means
1194
+ that a one-dimensional FFT is performed. Default: ``(-2, -1)``.
1195
+
1196
+ .. deprecated:: 2.0
1197
+
1198
+ If `s` is specified, the corresponding `axes` to be transformed
1199
+ must not be ``None``.
1200
+
1201
+ norm : {"backward", "ortho", "forward"}, optional
1202
+ Normalization mode (see `numpy.fft`). Default is "backward".
1203
+ Indicates which direction of the forward/backward pair of transforms
1204
+ is scaled and with what normalization factor.
1205
+
1206
+ .. versionadded:: 1.20.0
1207
+
1208
+ The "backward", "forward" values were added.
1209
+
1210
+ out : complex ndarray, optional
1211
+ If provided, the result will be placed in this array. It should be
1212
+ of the appropriate shape and dtype for all axes (and hence is
1213
+ incompatible with passing in all but the trivial ``s``).
1214
+
1215
+ .. versionadded:: 2.0.0
1216
+
1217
+ Returns
1218
+ -------
1219
+ out : complex ndarray
1220
+ The truncated or zero-padded input, transformed along the axes
1221
+ indicated by `axes`, or the last two axes if `axes` is not given.
1222
+
1223
+ Raises
1224
+ ------
1225
+ ValueError
1226
+ If `s` and `axes` have different length, or `axes` not given and
1227
+ ``len(s) != 2``.
1228
+ IndexError
1229
+ If an element of `axes` is larger than than the number of axes of `a`.
1230
+
1231
+ See Also
1232
+ --------
1233
+ numpy.fft : Overall view of discrete Fourier transforms, with definitions
1234
+ and conventions used.
1235
+ fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse.
1236
+ ifftn : The inverse of the *n*-dimensional FFT.
1237
+ fft : The one-dimensional FFT.
1238
+ ifft : The one-dimensional inverse FFT.
1239
+
1240
+ Notes
1241
+ -----
1242
+ `ifft2` is just `ifftn` with a different default for `axes`.
1243
+
1244
+ See `ifftn` for details and a plotting example, and `numpy.fft` for
1245
+ definition and conventions used.
1246
+
1247
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
1248
+ the input along the specified dimension. Although this is the common
1249
+ approach, it might lead to surprising results. If another form of zero
1250
+ padding is desired, it must be performed before `ifft2` is called.
1251
+
1252
+ Examples
1253
+ --------
1254
+ >>> import numpy as np
1255
+ >>> a = 4 * np.eye(4)
1256
+ >>> np.fft.ifft2(a)
1257
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
1258
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
1259
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
1260
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
1261
+
1262
+ """
1263
+ return _raw_fftnd(a, s, axes, ifft, norm, out=None)
1264
+
1265
+
1266
+ @array_function_dispatch(_fftn_dispatcher)
1267
+ def rfftn(a, s=None, axes=None, norm=None, out=None):
1268
+ """
1269
+ Compute the N-dimensional discrete Fourier Transform for real input.
1270
+
1271
+ This function computes the N-dimensional discrete Fourier Transform over
1272
+ any number of axes in an M-dimensional real array by means of the Fast
1273
+ Fourier Transform (FFT). By default, all axes are transformed, with the
1274
+ real transform performed over the last axis, while the remaining
1275
+ transforms are complex.
1276
+
1277
+ Parameters
1278
+ ----------
1279
+ a : array_like
1280
+ Input array, taken to be real.
1281
+ s : sequence of ints, optional
1282
+ Shape (length along each transformed axis) to use from the input.
1283
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1284
+ The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
1285
+ for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
1286
+ Along any axis, if the given shape is smaller than that of the input,
1287
+ the input is cropped. If it is larger, the input is padded with zeros.
1288
+
1289
+ .. versionchanged:: 2.0
1290
+
1291
+ If it is ``-1``, the whole input is used (no padding/trimming).
1292
+
1293
+ If `s` is not given, the shape of the input along the axes specified
1294
+ by `axes` is used.
1295
+
1296
+ .. deprecated:: 2.0
1297
+
1298
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1299
+
1300
+ .. deprecated:: 2.0
1301
+
1302
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1303
+ values currently mean that the default value for ``n`` is used
1304
+ in the corresponding 1-D transform, but this behaviour is
1305
+ deprecated.
1306
+
1307
+ axes : sequence of ints, optional
1308
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
1309
+ axes are used, or all axes if `s` is also not specified.
1310
+
1311
+ .. deprecated:: 2.0
1312
+
1313
+ If `s` is specified, the corresponding `axes` to be transformed
1314
+ must be explicitly specified too.
1315
+
1316
+ norm : {"backward", "ortho", "forward"}, optional
1317
+ Normalization mode (see `numpy.fft`). Default is "backward".
1318
+ Indicates which direction of the forward/backward pair of transforms
1319
+ is scaled and with what normalization factor.
1320
+
1321
+ .. versionadded:: 1.20.0
1322
+
1323
+ The "backward", "forward" values were added.
1324
+
1325
+ out : complex ndarray, optional
1326
+ If provided, the result will be placed in this array. It should be
1327
+ of the appropriate shape and dtype for all axes (and hence is
1328
+ incompatible with passing in all but the trivial ``s``).
1329
+
1330
+ .. versionadded:: 2.0.0
1331
+
1332
+ Returns
1333
+ -------
1334
+ out : complex ndarray
1335
+ The truncated or zero-padded input, transformed along the axes
1336
+ indicated by `axes`, or by a combination of `s` and `a`,
1337
+ as explained in the parameters section above.
1338
+ The length of the last axis transformed will be ``s[-1]//2+1``,
1339
+ while the remaining transformed axes will have lengths according to
1340
+ `s`, or unchanged from the input.
1341
+
1342
+ Raises
1343
+ ------
1344
+ ValueError
1345
+ If `s` and `axes` have different length.
1346
+ IndexError
1347
+ If an element of `axes` is larger than than the number of axes of `a`.
1348
+
1349
+ See Also
1350
+ --------
1351
+ irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT
1352
+ of real input.
1353
+ fft : The one-dimensional FFT, with definitions and conventions used.
1354
+ rfft : The one-dimensional FFT of real input.
1355
+ fftn : The n-dimensional FFT.
1356
+ rfft2 : The two-dimensional FFT of real input.
1357
+
1358
+ Notes
1359
+ -----
1360
+ The transform for real input is performed over the last transformation
1361
+ axis, as by `rfft`, then the transform over the remaining axes is
1362
+ performed as by `fftn`. The order of the output is as for `rfft` for the
1363
+ final transformation axis, and as for `fftn` for the remaining
1364
+ transformation axes.
1365
+
1366
+ See `fft` for details, definitions and conventions used.
1367
+
1368
+ Examples
1369
+ --------
1370
+ >>> import numpy as np
1371
+ >>> a = np.ones((2, 2, 2))
1372
+ >>> np.fft.rfftn(a)
1373
+ array([[[8.+0.j, 0.+0.j], # may vary
1374
+ [0.+0.j, 0.+0.j]],
1375
+ [[0.+0.j, 0.+0.j],
1376
+ [0.+0.j, 0.+0.j]]])
1377
+
1378
+ >>> np.fft.rfftn(a, axes=(2, 0))
1379
+ array([[[4.+0.j, 0.+0.j], # may vary
1380
+ [4.+0.j, 0.+0.j]],
1381
+ [[0.+0.j, 0.+0.j],
1382
+ [0.+0.j, 0.+0.j]]])
1383
+
1384
+ """
1385
+ a = asarray(a)
1386
+ s, axes = _cook_nd_args(a, s, axes)
1387
+ a = rfft(a, s[-1], axes[-1], norm, out=out)
1388
+ for ii in range(len(axes) - 2, -1, -1):
1389
+ a = fft(a, s[ii], axes[ii], norm, out=out)
1390
+ return a
1391
+
1392
+
1393
+ @array_function_dispatch(_fftn_dispatcher)
1394
+ def rfft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1395
+ """
1396
+ Compute the 2-dimensional FFT of a real array.
1397
+
1398
+ Parameters
1399
+ ----------
1400
+ a : array
1401
+ Input array, taken to be real.
1402
+ s : sequence of ints, optional
1403
+ Shape of the FFT.
1404
+
1405
+ .. versionchanged:: 2.0
1406
+
1407
+ If it is ``-1``, the whole input is used (no padding/trimming).
1408
+
1409
+ .. deprecated:: 2.0
1410
+
1411
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1412
+
1413
+ .. deprecated:: 2.0
1414
+
1415
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1416
+ values currently mean that the default value for ``n`` is used
1417
+ in the corresponding 1-D transform, but this behaviour is
1418
+ deprecated.
1419
+
1420
+ axes : sequence of ints, optional
1421
+ Axes over which to compute the FFT. Default: ``(-2, -1)``.
1422
+
1423
+ .. deprecated:: 2.0
1424
+
1425
+ If `s` is specified, the corresponding `axes` to be transformed
1426
+ must not be ``None``.
1427
+
1428
+ norm : {"backward", "ortho", "forward"}, optional
1429
+ Normalization mode (see `numpy.fft`). Default is "backward".
1430
+ Indicates which direction of the forward/backward pair of transforms
1431
+ is scaled and with what normalization factor.
1432
+
1433
+ .. versionadded:: 1.20.0
1434
+
1435
+ The "backward", "forward" values were added.
1436
+
1437
+ out : complex ndarray, optional
1438
+ If provided, the result will be placed in this array. It should be
1439
+ of the appropriate shape and dtype for the last inverse transform.
1440
+ incompatible with passing in all but the trivial ``s``).
1441
+
1442
+ .. versionadded:: 2.0.0
1443
+
1444
+ Returns
1445
+ -------
1446
+ out : ndarray
1447
+ The result of the real 2-D FFT.
1448
+
1449
+ See Also
1450
+ --------
1451
+ rfftn : Compute the N-dimensional discrete Fourier Transform for real
1452
+ input.
1453
+
1454
+ Notes
1455
+ -----
1456
+ This is really just `rfftn` with different default behavior.
1457
+ For more details see `rfftn`.
1458
+
1459
+ Examples
1460
+ --------
1461
+ >>> import numpy as np
1462
+ >>> a = np.mgrid[:5, :5][0]
1463
+ >>> np.fft.rfft2(a)
1464
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j ],
1465
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ],
1466
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ],
1467
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ],
1468
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ]])
1469
+ """
1470
+ return rfftn(a, s, axes, norm, out=out)
1471
+
1472
+
1473
+ @array_function_dispatch(_fftn_dispatcher)
1474
+ def irfftn(a, s=None, axes=None, norm=None, out=None):
1475
+ """
1476
+ Computes the inverse of `rfftn`.
1477
+
1478
+ This function computes the inverse of the N-dimensional discrete
1479
+ Fourier Transform for real input over any number of axes in an
1480
+ M-dimensional array by means of the Fast Fourier Transform (FFT). In
1481
+ other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical
1482
+ accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
1483
+ and for the same reason.)
1484
+
1485
+ The input should be ordered in the same way as is returned by `rfftn`,
1486
+ i.e. as for `irfft` for the final transformation axis, and as for `ifftn`
1487
+ along all the other axes.
1488
+
1489
+ Parameters
1490
+ ----------
1491
+ a : array_like
1492
+ Input array.
1493
+ s : sequence of ints, optional
1494
+ Shape (length of each transformed axis) of the output
1495
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
1496
+ number of input points used along this axis, except for the last axis,
1497
+ where ``s[-1]//2+1`` points of the input are used.
1498
+ Along any axis, if the shape indicated by `s` is smaller than that of
1499
+ the input, the input is cropped. If it is larger, the input is padded
1500
+ with zeros.
1501
+
1502
+ .. versionchanged:: 2.0
1503
+
1504
+ If it is ``-1``, the whole input is used (no padding/trimming).
1505
+
1506
+ If `s` is not given, the shape of the input along the axes
1507
+ specified by axes is used. Except for the last axis which is taken to
1508
+ be ``2*(m-1)`` where ``m`` is the length of the input along that axis.
1509
+
1510
+ .. deprecated:: 2.0
1511
+
1512
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1513
+
1514
+ .. deprecated:: 2.0
1515
+
1516
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1517
+ values currently mean that the default value for ``n`` is used
1518
+ in the corresponding 1-D transform, but this behaviour is
1519
+ deprecated.
1520
+
1521
+ axes : sequence of ints, optional
1522
+ Axes over which to compute the inverse FFT. If not given, the last
1523
+ `len(s)` axes are used, or all axes if `s` is also not specified.
1524
+ Repeated indices in `axes` means that the inverse transform over that
1525
+ axis is performed multiple times.
1526
+
1527
+ .. deprecated:: 2.0
1528
+
1529
+ If `s` is specified, the corresponding `axes` to be transformed
1530
+ must be explicitly specified too.
1531
+
1532
+ norm : {"backward", "ortho", "forward"}, optional
1533
+ Normalization mode (see `numpy.fft`). Default is "backward".
1534
+ Indicates which direction of the forward/backward pair of transforms
1535
+ is scaled and with what normalization factor.
1536
+
1537
+ .. versionadded:: 1.20.0
1538
+
1539
+ The "backward", "forward" values were added.
1540
+
1541
+ out : ndarray, optional
1542
+ If provided, the result will be placed in this array. It should be
1543
+ of the appropriate shape and dtype for the last transformation.
1544
+
1545
+ .. versionadded:: 2.0.0
1546
+
1547
+ Returns
1548
+ -------
1549
+ out : ndarray
1550
+ The truncated or zero-padded input, transformed along the axes
1551
+ indicated by `axes`, or by a combination of `s` or `a`,
1552
+ as explained in the parameters section above.
1553
+ The length of each transformed axis is as given by the corresponding
1554
+ element of `s`, or the length of the input in every axis except for the
1555
+ last one if `s` is not given. In the final transformed axis the length
1556
+ of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
1557
+ length of the final transformed axis of the input. To get an odd
1558
+ number of output points in the final axis, `s` must be specified.
1559
+
1560
+ Raises
1561
+ ------
1562
+ ValueError
1563
+ If `s` and `axes` have different length.
1564
+ IndexError
1565
+ If an element of `axes` is larger than than the number of axes of `a`.
1566
+
1567
+ See Also
1568
+ --------
1569
+ rfftn : The forward n-dimensional FFT of real input,
1570
+ of which `ifftn` is the inverse.
1571
+ fft : The one-dimensional FFT, with definitions and conventions used.
1572
+ irfft : The inverse of the one-dimensional FFT of real input.
1573
+ irfft2 : The inverse of the two-dimensional FFT of real input.
1574
+
1575
+ Notes
1576
+ -----
1577
+ See `fft` for definitions and conventions used.
1578
+
1579
+ See `rfft` for definitions and conventions used for real input.
1580
+
1581
+ The correct interpretation of the hermitian input depends on the shape of
1582
+ the original data, as given by `s`. This is because each input shape could
1583
+ correspond to either an odd or even length signal. By default, `irfftn`
1584
+ assumes an even output length which puts the last entry at the Nyquist
1585
+ frequency; aliasing with its symmetric counterpart. When performing the
1586
+ final complex to real transform, the last value is thus treated as purely
1587
+ real. To avoid losing information, the correct shape of the real input
1588
+ **must** be given.
1589
+
1590
+ Examples
1591
+ --------
1592
+ >>> import numpy as np
1593
+ >>> a = np.zeros((3, 2, 2))
1594
+ >>> a[0, 0, 0] = 3 * 2 * 2
1595
+ >>> np.fft.irfftn(a)
1596
+ array([[[1., 1.],
1597
+ [1., 1.]],
1598
+ [[1., 1.],
1599
+ [1., 1.]],
1600
+ [[1., 1.],
1601
+ [1., 1.]]])
1602
+
1603
+ """
1604
+ a = asarray(a)
1605
+ s, axes = _cook_nd_args(a, s, axes, invreal=1)
1606
+ for ii in range(len(axes) - 1):
1607
+ a = ifft(a, s[ii], axes[ii], norm)
1608
+ a = irfft(a, s[-1], axes[-1], norm, out=out)
1609
+ return a
1610
+
1611
+
1612
+ @array_function_dispatch(_fftn_dispatcher)
1613
+ def irfft2(a, s=None, axes=(-2, -1), norm=None, out=None):
1614
+ """
1615
+ Computes the inverse of `rfft2`.
1616
+
1617
+ Parameters
1618
+ ----------
1619
+ a : array_like
1620
+ The input array
1621
+ s : sequence of ints, optional
1622
+ Shape of the real output to the inverse FFT.
1623
+
1624
+ .. versionchanged:: 2.0
1625
+
1626
+ If it is ``-1``, the whole input is used (no padding/trimming).
1627
+
1628
+ .. deprecated:: 2.0
1629
+
1630
+ If `s` is not ``None``, `axes` must not be ``None`` either.
1631
+
1632
+ .. deprecated:: 2.0
1633
+
1634
+ `s` must contain only ``int`` s, not ``None`` values. ``None``
1635
+ values currently mean that the default value for ``n`` is used
1636
+ in the corresponding 1-D transform, but this behaviour is
1637
+ deprecated.
1638
+
1639
+ axes : sequence of ints, optional
1640
+ The axes over which to compute the inverse fft.
1641
+ Default: ``(-2, -1)``, the last two axes.
1642
+
1643
+ .. deprecated:: 2.0
1644
+
1645
+ If `s` is specified, the corresponding `axes` to be transformed
1646
+ must not be ``None``.
1647
+
1648
+ norm : {"backward", "ortho", "forward"}, optional
1649
+ Normalization mode (see `numpy.fft`). Default is "backward".
1650
+ Indicates which direction of the forward/backward pair of transforms
1651
+ is scaled and with what normalization factor.
1652
+
1653
+ .. versionadded:: 1.20.0
1654
+
1655
+ The "backward", "forward" values were added.
1656
+
1657
+ out : ndarray, optional
1658
+ If provided, the result will be placed in this array. It should be
1659
+ of the appropriate shape and dtype for the last transformation.
1660
+
1661
+ .. versionadded:: 2.0.0
1662
+
1663
+ Returns
1664
+ -------
1665
+ out : ndarray
1666
+ The result of the inverse real 2-D FFT.
1667
+
1668
+ See Also
1669
+ --------
1670
+ rfft2 : The forward two-dimensional FFT of real input,
1671
+ of which `irfft2` is the inverse.
1672
+ rfft : The one-dimensional FFT for real input.
1673
+ irfft : The inverse of the one-dimensional FFT of real input.
1674
+ irfftn : Compute the inverse of the N-dimensional FFT of real input.
1675
+
1676
+ Notes
1677
+ -----
1678
+ This is really `irfftn` with different defaults.
1679
+ For more details see `irfftn`.
1680
+
1681
+ Examples
1682
+ --------
1683
+ >>> import numpy as np
1684
+ >>> a = np.mgrid[:5, :5][0]
1685
+ >>> A = np.fft.rfft2(a)
1686
+ >>> np.fft.irfft2(A, s=a.shape)
1687
+ array([[0., 0., 0., 0., 0.],
1688
+ [1., 1., 1., 1., 1.],
1689
+ [2., 2., 2., 2., 2.],
1690
+ [3., 3., 3., 3., 3.],
1691
+ [4., 4., 4., 4., 4.]])
1692
+ """
1693
+ return irfftn(a, s, axes, norm, out=None)