numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +942 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/libnpymath.a +0 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +353 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1515 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5758 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2001 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4705 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_bounded_integers.pxd +29 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_common.pxd +107 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/bit_generator.pxd +35 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/libnpyrandom.a +0 -0
- numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +804 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.0.dist-info/METADATA +139 -0
- numpy-2.4.0.dist-info/RECORD +915 -0
- numpy-2.4.0.dist-info/WHEEL +5 -0
- numpy-2.4.0.dist-info/entry_points.txt +13 -0
- numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
- numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
- numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
- numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
- numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
- numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
|
@@ -0,0 +1,855 @@
|
|
|
1
|
+
import warnings
|
|
2
|
+
|
|
3
|
+
import pytest
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from numpy import histogram, histogram_bin_edges, histogramdd
|
|
7
|
+
from numpy.testing import (
|
|
8
|
+
assert_,
|
|
9
|
+
assert_allclose,
|
|
10
|
+
assert_almost_equal,
|
|
11
|
+
assert_array_almost_equal,
|
|
12
|
+
assert_array_equal,
|
|
13
|
+
assert_array_max_ulp,
|
|
14
|
+
assert_equal,
|
|
15
|
+
assert_raises,
|
|
16
|
+
assert_raises_regex,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class TestHistogram:
|
|
21
|
+
|
|
22
|
+
def setup_method(self):
|
|
23
|
+
pass
|
|
24
|
+
|
|
25
|
+
def teardown_method(self):
|
|
26
|
+
pass
|
|
27
|
+
|
|
28
|
+
def test_simple(self):
|
|
29
|
+
n = 100
|
|
30
|
+
v = np.random.rand(n)
|
|
31
|
+
(a, b) = histogram(v)
|
|
32
|
+
# check if the sum of the bins equals the number of samples
|
|
33
|
+
assert_equal(np.sum(a, axis=0), n)
|
|
34
|
+
# check that the bin counts are evenly spaced when the data is from
|
|
35
|
+
# a linear function
|
|
36
|
+
(a, b) = histogram(np.linspace(0, 10, 100))
|
|
37
|
+
assert_array_equal(a, 10)
|
|
38
|
+
|
|
39
|
+
def test_one_bin(self):
|
|
40
|
+
# Ticket 632
|
|
41
|
+
hist, edges = histogram([1, 2, 3, 4], [1, 2])
|
|
42
|
+
assert_array_equal(hist, [2, ])
|
|
43
|
+
assert_array_equal(edges, [1, 2])
|
|
44
|
+
assert_raises(ValueError, histogram, [1, 2], bins=0)
|
|
45
|
+
h, e = histogram([1, 2], bins=1)
|
|
46
|
+
assert_equal(h, np.array([2]))
|
|
47
|
+
assert_allclose(e, np.array([1., 2.]))
|
|
48
|
+
|
|
49
|
+
def test_density(self):
|
|
50
|
+
# Check that the integral of the density equals 1.
|
|
51
|
+
n = 100
|
|
52
|
+
v = np.random.rand(n)
|
|
53
|
+
a, b = histogram(v, density=True)
|
|
54
|
+
area = np.sum(a * np.diff(b))
|
|
55
|
+
assert_almost_equal(area, 1)
|
|
56
|
+
|
|
57
|
+
# Check with non-constant bin widths
|
|
58
|
+
v = np.arange(10)
|
|
59
|
+
bins = [0, 1, 3, 6, 10]
|
|
60
|
+
a, b = histogram(v, bins, density=True)
|
|
61
|
+
assert_array_equal(a, .1)
|
|
62
|
+
assert_equal(np.sum(a * np.diff(b)), 1)
|
|
63
|
+
|
|
64
|
+
# Test that passing False works too
|
|
65
|
+
a, b = histogram(v, bins, density=False)
|
|
66
|
+
assert_array_equal(a, [1, 2, 3, 4])
|
|
67
|
+
|
|
68
|
+
# Variable bin widths are especially useful to deal with
|
|
69
|
+
# infinities.
|
|
70
|
+
v = np.arange(10)
|
|
71
|
+
bins = [0, 1, 3, 6, np.inf]
|
|
72
|
+
a, b = histogram(v, bins, density=True)
|
|
73
|
+
assert_array_equal(a, [.1, .1, .1, 0.])
|
|
74
|
+
|
|
75
|
+
# Taken from a bug report from N. Becker on the numpy-discussion
|
|
76
|
+
# mailing list Aug. 6, 2010.
|
|
77
|
+
counts, dmy = np.histogram(
|
|
78
|
+
[1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
|
|
79
|
+
assert_equal(counts, [.25, 0])
|
|
80
|
+
|
|
81
|
+
def test_outliers(self):
|
|
82
|
+
# Check that outliers are not tallied
|
|
83
|
+
a = np.arange(10) + .5
|
|
84
|
+
|
|
85
|
+
# Lower outliers
|
|
86
|
+
h, b = histogram(a, range=[0, 9])
|
|
87
|
+
assert_equal(h.sum(), 9)
|
|
88
|
+
|
|
89
|
+
# Upper outliers
|
|
90
|
+
h, b = histogram(a, range=[1, 10])
|
|
91
|
+
assert_equal(h.sum(), 9)
|
|
92
|
+
|
|
93
|
+
# Normalization
|
|
94
|
+
h, b = histogram(a, range=[1, 9], density=True)
|
|
95
|
+
assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)
|
|
96
|
+
|
|
97
|
+
# Weights
|
|
98
|
+
w = np.arange(10) + .5
|
|
99
|
+
h, b = histogram(a, range=[1, 9], weights=w, density=True)
|
|
100
|
+
assert_equal((h * np.diff(b)).sum(), 1)
|
|
101
|
+
|
|
102
|
+
h, b = histogram(a, bins=8, range=[1, 9], weights=w)
|
|
103
|
+
assert_equal(h, w[1:-1])
|
|
104
|
+
|
|
105
|
+
def test_arr_weights_mismatch(self):
|
|
106
|
+
a = np.arange(10) + .5
|
|
107
|
+
w = np.arange(11) + .5
|
|
108
|
+
with assert_raises_regex(ValueError, "same shape as"):
|
|
109
|
+
h, b = histogram(a, range=[1, 9], weights=w, density=True)
|
|
110
|
+
|
|
111
|
+
def test_type(self):
|
|
112
|
+
# Check the type of the returned histogram
|
|
113
|
+
a = np.arange(10) + .5
|
|
114
|
+
h, b = histogram(a)
|
|
115
|
+
assert_(np.issubdtype(h.dtype, np.integer))
|
|
116
|
+
|
|
117
|
+
h, b = histogram(a, density=True)
|
|
118
|
+
assert_(np.issubdtype(h.dtype, np.floating))
|
|
119
|
+
|
|
120
|
+
h, b = histogram(a, weights=np.ones(10, int))
|
|
121
|
+
assert_(np.issubdtype(h.dtype, np.integer))
|
|
122
|
+
|
|
123
|
+
h, b = histogram(a, weights=np.ones(10, float))
|
|
124
|
+
assert_(np.issubdtype(h.dtype, np.floating))
|
|
125
|
+
|
|
126
|
+
def test_f32_rounding(self):
|
|
127
|
+
# gh-4799, check that the rounding of the edges works with float32
|
|
128
|
+
x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
|
|
129
|
+
y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
|
|
130
|
+
counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
|
|
131
|
+
assert_equal(counts_hist.sum(), 3.)
|
|
132
|
+
|
|
133
|
+
def test_bool_conversion(self):
|
|
134
|
+
# gh-12107
|
|
135
|
+
# Reference integer histogram
|
|
136
|
+
a = np.array([1, 1, 0], dtype=np.uint8)
|
|
137
|
+
int_hist, int_edges = np.histogram(a)
|
|
138
|
+
|
|
139
|
+
# Should raise a warning on booleans
|
|
140
|
+
# Ensure that the histograms are equivalent, need to suppress
|
|
141
|
+
# the warnings to get the actual outputs
|
|
142
|
+
with pytest.warns(RuntimeWarning, match='Converting input from .*'):
|
|
143
|
+
hist, edges = np.histogram([True, True, False])
|
|
144
|
+
# A warning should be issued
|
|
145
|
+
assert_array_equal(hist, int_hist)
|
|
146
|
+
assert_array_equal(edges, int_edges)
|
|
147
|
+
|
|
148
|
+
def test_weights(self):
|
|
149
|
+
v = np.random.rand(100)
|
|
150
|
+
w = np.ones(100) * 5
|
|
151
|
+
a, b = histogram(v)
|
|
152
|
+
na, nb = histogram(v, density=True)
|
|
153
|
+
wa, wb = histogram(v, weights=w)
|
|
154
|
+
nwa, nwb = histogram(v, weights=w, density=True)
|
|
155
|
+
assert_array_almost_equal(a * 5, wa)
|
|
156
|
+
assert_array_almost_equal(na, nwa)
|
|
157
|
+
|
|
158
|
+
# Check weights are properly applied.
|
|
159
|
+
v = np.linspace(0, 10, 10)
|
|
160
|
+
w = np.concatenate((np.zeros(5), np.ones(5)))
|
|
161
|
+
wa, wb = histogram(v, bins=np.arange(11), weights=w)
|
|
162
|
+
assert_array_almost_equal(wa, w)
|
|
163
|
+
|
|
164
|
+
# Check with integer weights
|
|
165
|
+
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
|
|
166
|
+
assert_array_equal(wa, [4, 5, 0, 1])
|
|
167
|
+
wa, wb = histogram(
|
|
168
|
+
[1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True)
|
|
169
|
+
assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
|
|
170
|
+
|
|
171
|
+
# Check weights with non-uniform bin widths
|
|
172
|
+
a, b = histogram(
|
|
173
|
+
np.arange(9), [0, 1, 3, 6, 10],
|
|
174
|
+
weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
|
|
175
|
+
assert_almost_equal(a, [.2, .1, .1, .075])
|
|
176
|
+
|
|
177
|
+
def test_exotic_weights(self):
|
|
178
|
+
|
|
179
|
+
# Test the use of weights that are not integer or floats, but e.g.
|
|
180
|
+
# complex numbers or object types.
|
|
181
|
+
|
|
182
|
+
# Complex weights
|
|
183
|
+
values = np.array([1.3, 2.5, 2.3])
|
|
184
|
+
weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
|
|
185
|
+
|
|
186
|
+
# Check with custom bins
|
|
187
|
+
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
|
|
188
|
+
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
|
|
189
|
+
|
|
190
|
+
# Check with even bins
|
|
191
|
+
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
|
|
192
|
+
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
|
|
193
|
+
|
|
194
|
+
# Decimal weights
|
|
195
|
+
from decimal import Decimal
|
|
196
|
+
values = np.array([1.3, 2.5, 2.3])
|
|
197
|
+
weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
|
|
198
|
+
|
|
199
|
+
# Check with custom bins
|
|
200
|
+
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
|
|
201
|
+
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
|
|
202
|
+
|
|
203
|
+
# Check with even bins
|
|
204
|
+
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
|
|
205
|
+
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
|
|
206
|
+
|
|
207
|
+
def test_no_side_effects(self):
|
|
208
|
+
# This is a regression test that ensures that values passed to
|
|
209
|
+
# ``histogram`` are unchanged.
|
|
210
|
+
values = np.array([1.3, 2.5, 2.3])
|
|
211
|
+
np.histogram(values, range=[-10, 10], bins=100)
|
|
212
|
+
assert_array_almost_equal(values, [1.3, 2.5, 2.3])
|
|
213
|
+
|
|
214
|
+
def test_empty(self):
|
|
215
|
+
a, b = histogram([], bins=([0, 1]))
|
|
216
|
+
assert_array_equal(a, np.array([0]))
|
|
217
|
+
assert_array_equal(b, np.array([0, 1]))
|
|
218
|
+
|
|
219
|
+
def test_error_binnum_type(self):
|
|
220
|
+
# Tests if right Error is raised if bins argument is float
|
|
221
|
+
vals = np.linspace(0.0, 1.0, num=100)
|
|
222
|
+
histogram(vals, 5)
|
|
223
|
+
assert_raises(TypeError, histogram, vals, 2.4)
|
|
224
|
+
|
|
225
|
+
def test_finite_range(self):
|
|
226
|
+
# Normal ranges should be fine
|
|
227
|
+
vals = np.linspace(0.0, 1.0, num=100)
|
|
228
|
+
histogram(vals, range=[0.25, 0.75])
|
|
229
|
+
assert_raises(ValueError, histogram, vals, range=[np.nan, 0.75])
|
|
230
|
+
assert_raises(ValueError, histogram, vals, range=[0.25, np.inf])
|
|
231
|
+
|
|
232
|
+
def test_invalid_range(self):
|
|
233
|
+
# start of range must be < end of range
|
|
234
|
+
vals = np.linspace(0.0, 1.0, num=100)
|
|
235
|
+
with assert_raises_regex(ValueError, "max must be larger than"):
|
|
236
|
+
np.histogram(vals, range=[0.1, 0.01])
|
|
237
|
+
|
|
238
|
+
def test_bin_edge_cases(self):
|
|
239
|
+
# Ensure that floating-point computations correctly place edge cases.
|
|
240
|
+
arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
|
|
241
|
+
hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
|
|
242
|
+
mask = hist > 0
|
|
243
|
+
left_edges = edges[:-1][mask]
|
|
244
|
+
right_edges = edges[1:][mask]
|
|
245
|
+
for x, left, right in zip(arr, left_edges, right_edges):
|
|
246
|
+
assert_(x >= left)
|
|
247
|
+
assert_(x < right)
|
|
248
|
+
|
|
249
|
+
def test_last_bin_inclusive_range(self):
|
|
250
|
+
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
|
|
251
|
+
hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
|
|
252
|
+
assert_equal(hist[-1], 1)
|
|
253
|
+
|
|
254
|
+
def test_bin_array_dims(self):
|
|
255
|
+
# gracefully handle bins object > 1 dimension
|
|
256
|
+
vals = np.linspace(0.0, 1.0, num=100)
|
|
257
|
+
bins = np.array([[0, 0.5], [0.6, 1.0]])
|
|
258
|
+
with assert_raises_regex(ValueError, "must be 1d"):
|
|
259
|
+
np.histogram(vals, bins=bins)
|
|
260
|
+
|
|
261
|
+
def test_unsigned_monotonicity_check(self):
|
|
262
|
+
# Ensures ValueError is raised if bins not increasing monotonically
|
|
263
|
+
# when bins contain unsigned values (see #9222)
|
|
264
|
+
arr = np.array([2])
|
|
265
|
+
bins = np.array([1, 3, 1], dtype='uint64')
|
|
266
|
+
with assert_raises(ValueError):
|
|
267
|
+
hist, edges = np.histogram(arr, bins=bins)
|
|
268
|
+
|
|
269
|
+
def test_object_array_of_0d(self):
|
|
270
|
+
# gh-7864
|
|
271
|
+
assert_raises(ValueError,
|
|
272
|
+
histogram, [np.array(0.4) for i in range(10)] + [-np.inf])
|
|
273
|
+
assert_raises(ValueError,
|
|
274
|
+
histogram, [np.array(0.4) for i in range(10)] + [np.inf])
|
|
275
|
+
|
|
276
|
+
# these should not crash
|
|
277
|
+
np.histogram([np.array(0.5) for i in range(10)] + [.500000000000002])
|
|
278
|
+
np.histogram([np.array(0.5) for i in range(10)] + [.5])
|
|
279
|
+
|
|
280
|
+
def test_some_nan_values(self):
|
|
281
|
+
# gh-7503
|
|
282
|
+
one_nan = np.array([0, 1, np.nan])
|
|
283
|
+
all_nan = np.array([np.nan, np.nan])
|
|
284
|
+
|
|
285
|
+
# the internal comparisons with NaN give warnings
|
|
286
|
+
with warnings.catch_warnings():
|
|
287
|
+
warnings.simplefilter('ignore', RuntimeWarning)
|
|
288
|
+
# can't infer range with nan
|
|
289
|
+
assert_raises(ValueError, histogram, one_nan, bins='auto')
|
|
290
|
+
assert_raises(ValueError, histogram, all_nan, bins='auto')
|
|
291
|
+
|
|
292
|
+
# explicit range solves the problem
|
|
293
|
+
h, b = histogram(one_nan, bins='auto', range=(0, 1))
|
|
294
|
+
assert_equal(h.sum(), 2) # nan is not counted
|
|
295
|
+
h, b = histogram(all_nan, bins='auto', range=(0, 1))
|
|
296
|
+
assert_equal(h.sum(), 0) # nan is not counted
|
|
297
|
+
|
|
298
|
+
# as does an explicit set of bins
|
|
299
|
+
h, b = histogram(one_nan, bins=[0, 1])
|
|
300
|
+
assert_equal(h.sum(), 2) # nan is not counted
|
|
301
|
+
h, b = histogram(all_nan, bins=[0, 1])
|
|
302
|
+
assert_equal(h.sum(), 0) # nan is not counted
|
|
303
|
+
|
|
304
|
+
def test_datetime(self):
|
|
305
|
+
begin = np.datetime64('2000-01-01', 'D')
|
|
306
|
+
offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20])
|
|
307
|
+
bins = np.array([0, 2, 7, 20])
|
|
308
|
+
dates = begin + offsets
|
|
309
|
+
date_bins = begin + bins
|
|
310
|
+
|
|
311
|
+
td = np.dtype('timedelta64[D]')
|
|
312
|
+
|
|
313
|
+
# Results should be the same for integer offsets or datetime values.
|
|
314
|
+
# For now, only explicit bins are supported, since linspace does not
|
|
315
|
+
# work on datetimes or timedeltas
|
|
316
|
+
d_count, d_edge = histogram(dates, bins=date_bins)
|
|
317
|
+
t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td))
|
|
318
|
+
i_count, i_edge = histogram(offsets, bins=bins)
|
|
319
|
+
|
|
320
|
+
assert_equal(d_count, i_count)
|
|
321
|
+
assert_equal(t_count, i_count)
|
|
322
|
+
|
|
323
|
+
assert_equal((d_edge - begin).astype(int), i_edge)
|
|
324
|
+
assert_equal(t_edge.astype(int), i_edge)
|
|
325
|
+
|
|
326
|
+
assert_equal(d_edge.dtype, dates.dtype)
|
|
327
|
+
assert_equal(t_edge.dtype, td)
|
|
328
|
+
|
|
329
|
+
def do_signed_overflow_bounds(self, dtype):
|
|
330
|
+
exponent = 8 * np.dtype(dtype).itemsize - 1
|
|
331
|
+
arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype)
|
|
332
|
+
hist, e = histogram(arr, bins=2)
|
|
333
|
+
assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4])
|
|
334
|
+
assert_equal(hist, [1, 1])
|
|
335
|
+
|
|
336
|
+
def test_signed_overflow_bounds(self):
|
|
337
|
+
self.do_signed_overflow_bounds(np.byte)
|
|
338
|
+
self.do_signed_overflow_bounds(np.short)
|
|
339
|
+
self.do_signed_overflow_bounds(np.intc)
|
|
340
|
+
self.do_signed_overflow_bounds(np.int_)
|
|
341
|
+
self.do_signed_overflow_bounds(np.longlong)
|
|
342
|
+
|
|
343
|
+
def do_precision_lower_bound(self, float_small, float_large):
|
|
344
|
+
eps = np.finfo(float_large).eps
|
|
345
|
+
|
|
346
|
+
arr = np.array([1.0], float_small)
|
|
347
|
+
range = np.array([1.0 + eps, 2.0], float_large)
|
|
348
|
+
|
|
349
|
+
# test is looking for behavior when the bounds change between dtypes
|
|
350
|
+
if range.astype(float_small)[0] != 1:
|
|
351
|
+
return
|
|
352
|
+
|
|
353
|
+
# previously crashed
|
|
354
|
+
count, x_loc = np.histogram(arr, bins=1, range=range)
|
|
355
|
+
assert_equal(count, [0])
|
|
356
|
+
assert_equal(x_loc.dtype, float_large)
|
|
357
|
+
|
|
358
|
+
def do_precision_upper_bound(self, float_small, float_large):
|
|
359
|
+
eps = np.finfo(float_large).eps
|
|
360
|
+
|
|
361
|
+
arr = np.array([1.0], float_small)
|
|
362
|
+
range = np.array([0.0, 1.0 - eps], float_large)
|
|
363
|
+
|
|
364
|
+
# test is looking for behavior when the bounds change between dtypes
|
|
365
|
+
if range.astype(float_small)[-1] != 1:
|
|
366
|
+
return
|
|
367
|
+
|
|
368
|
+
# previously crashed
|
|
369
|
+
count, x_loc = np.histogram(arr, bins=1, range=range)
|
|
370
|
+
assert_equal(count, [0])
|
|
371
|
+
|
|
372
|
+
assert_equal(x_loc.dtype, float_large)
|
|
373
|
+
|
|
374
|
+
def do_precision(self, float_small, float_large):
|
|
375
|
+
self.do_precision_lower_bound(float_small, float_large)
|
|
376
|
+
self.do_precision_upper_bound(float_small, float_large)
|
|
377
|
+
|
|
378
|
+
def test_precision(self):
|
|
379
|
+
# not looping results in a useful stack trace upon failure
|
|
380
|
+
self.do_precision(np.half, np.single)
|
|
381
|
+
self.do_precision(np.half, np.double)
|
|
382
|
+
self.do_precision(np.half, np.longdouble)
|
|
383
|
+
self.do_precision(np.single, np.double)
|
|
384
|
+
self.do_precision(np.single, np.longdouble)
|
|
385
|
+
self.do_precision(np.double, np.longdouble)
|
|
386
|
+
|
|
387
|
+
def test_histogram_bin_edges(self):
|
|
388
|
+
hist, e = histogram([1, 2, 3, 4], [1, 2])
|
|
389
|
+
edges = histogram_bin_edges([1, 2, 3, 4], [1, 2])
|
|
390
|
+
assert_array_equal(edges, e)
|
|
391
|
+
|
|
392
|
+
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
|
|
393
|
+
hist, e = histogram(arr, bins=30, range=(-0.5, 5))
|
|
394
|
+
edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5))
|
|
395
|
+
assert_array_equal(edges, e)
|
|
396
|
+
|
|
397
|
+
hist, e = histogram(arr, bins='auto', range=(0, 1))
|
|
398
|
+
edges = histogram_bin_edges(arr, bins='auto', range=(0, 1))
|
|
399
|
+
assert_array_equal(edges, e)
|
|
400
|
+
|
|
401
|
+
def test_small_value_range(self):
|
|
402
|
+
arr = np.array([1, 1 + 2e-16] * 10)
|
|
403
|
+
with pytest.raises(ValueError, match="Too many bins for data range"):
|
|
404
|
+
histogram(arr, bins=10)
|
|
405
|
+
|
|
406
|
+
# @requires_memory(free_bytes=1e10)
|
|
407
|
+
# @pytest.mark.slow
|
|
408
|
+
@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
|
|
409
|
+
def test_big_arrays(self):
|
|
410
|
+
sample = np.zeros([100000000, 3])
|
|
411
|
+
xbins = 400
|
|
412
|
+
ybins = 400
|
|
413
|
+
zbins = np.arange(16000)
|
|
414
|
+
hist = np.histogramdd(sample=sample, bins=(xbins, ybins, zbins))
|
|
415
|
+
assert_equal(type(hist), type((1, 2)))
|
|
416
|
+
|
|
417
|
+
def test_gh_23110(self):
|
|
418
|
+
hist, e = np.histogram(np.array([-0.9e-308], dtype='>f8'),
|
|
419
|
+
bins=2,
|
|
420
|
+
range=(-1e-308, -2e-313))
|
|
421
|
+
expected_hist = np.array([1, 0])
|
|
422
|
+
assert_array_equal(hist, expected_hist)
|
|
423
|
+
|
|
424
|
+
def test_gh_28400(self):
|
|
425
|
+
e = 1 + 1e-12
|
|
426
|
+
Z = [0, 1, 1, 1, 1, 1, e, e, e, e, e, e, 2]
|
|
427
|
+
counts, edges = np.histogram(Z, bins="auto")
|
|
428
|
+
assert len(counts) < 10
|
|
429
|
+
assert edges[0] == Z[0]
|
|
430
|
+
assert edges[-1] == Z[-1]
|
|
431
|
+
|
|
432
|
+
class TestHistogramOptimBinNums:
|
|
433
|
+
"""
|
|
434
|
+
Provide test coverage when using provided estimators for optimal number of
|
|
435
|
+
bins
|
|
436
|
+
"""
|
|
437
|
+
|
|
438
|
+
def test_empty(self):
|
|
439
|
+
estimator_list = ['fd', 'scott', 'rice', 'sturges',
|
|
440
|
+
'doane', 'sqrt', 'auto', 'stone']
|
|
441
|
+
# check it can deal with empty data
|
|
442
|
+
for estimator in estimator_list:
|
|
443
|
+
a, b = histogram([], bins=estimator)
|
|
444
|
+
assert_array_equal(a, np.array([0]))
|
|
445
|
+
assert_array_equal(b, np.array([0, 1]))
|
|
446
|
+
|
|
447
|
+
def test_simple(self):
|
|
448
|
+
"""
|
|
449
|
+
Straightforward testing with a mixture of linspace data (for
|
|
450
|
+
consistency). All test values have been precomputed and the values
|
|
451
|
+
shouldn't change
|
|
452
|
+
"""
|
|
453
|
+
# Some basic sanity checking, with some fixed data.
|
|
454
|
+
# Checking for the correct number of bins
|
|
455
|
+
basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
|
|
456
|
+
'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2},
|
|
457
|
+
500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
|
|
458
|
+
'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9},
|
|
459
|
+
5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
|
|
460
|
+
'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}}
|
|
461
|
+
|
|
462
|
+
for testlen, expectedResults in basic_test.items():
|
|
463
|
+
# Create some sort of non uniform data to test with
|
|
464
|
+
# (2 peak uniform mixture)
|
|
465
|
+
x1 = np.linspace(-10, -1, testlen // 5 * 2)
|
|
466
|
+
x2 = np.linspace(1, 10, testlen // 5 * 3)
|
|
467
|
+
x = np.concatenate((x1, x2))
|
|
468
|
+
for estimator, numbins in expectedResults.items():
|
|
469
|
+
a, b = np.histogram(x, estimator)
|
|
470
|
+
assert_equal(len(a), numbins, err_msg=f"For the {estimator} estimator "
|
|
471
|
+
f"with datasize of {testlen}")
|
|
472
|
+
|
|
473
|
+
def test_small(self):
|
|
474
|
+
"""
|
|
475
|
+
Smaller datasets have the potential to cause issues with the data
|
|
476
|
+
adaptive methods, especially the FD method. All bin numbers have been
|
|
477
|
+
precalculated.
|
|
478
|
+
"""
|
|
479
|
+
small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
|
|
480
|
+
'doane': 1, 'sqrt': 1, 'stone': 1},
|
|
481
|
+
2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
|
|
482
|
+
'doane': 1, 'sqrt': 2, 'stone': 1},
|
|
483
|
+
3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
|
|
484
|
+
'doane': 3, 'sqrt': 2, 'stone': 1}}
|
|
485
|
+
|
|
486
|
+
for testlen, expectedResults in small_dat.items():
|
|
487
|
+
testdat = np.arange(testlen).astype(float)
|
|
488
|
+
for estimator, expbins in expectedResults.items():
|
|
489
|
+
a, b = np.histogram(testdat, estimator)
|
|
490
|
+
assert_equal(len(a), expbins, err_msg=f"For the {estimator} estimator "
|
|
491
|
+
f"with datasize of {testlen}")
|
|
492
|
+
|
|
493
|
+
def test_incorrect_methods(self):
|
|
494
|
+
"""
|
|
495
|
+
Check a Value Error is thrown when an unknown string is passed in
|
|
496
|
+
"""
|
|
497
|
+
check_list = ['mad', 'freeman', 'histograms', 'IQR']
|
|
498
|
+
for estimator in check_list:
|
|
499
|
+
assert_raises(ValueError, histogram, [1, 2, 3], estimator)
|
|
500
|
+
|
|
501
|
+
def test_novariance(self):
|
|
502
|
+
"""
|
|
503
|
+
Check that methods handle no variance in data
|
|
504
|
+
Primarily for Scott and FD as the SD and IQR are both 0 in this case
|
|
505
|
+
"""
|
|
506
|
+
novar_dataset = np.ones(100)
|
|
507
|
+
novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
|
|
508
|
+
'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1}
|
|
509
|
+
|
|
510
|
+
for estimator, numbins in novar_resultdict.items():
|
|
511
|
+
a, b = np.histogram(novar_dataset, estimator)
|
|
512
|
+
assert_equal(len(a), numbins,
|
|
513
|
+
err_msg=f"{estimator} estimator, No Variance test")
|
|
514
|
+
|
|
515
|
+
def test_limited_variance(self):
|
|
516
|
+
"""
|
|
517
|
+
Check when IQR is 0, but variance exists, we return a reasonable value.
|
|
518
|
+
"""
|
|
519
|
+
lim_var_data = np.ones(1000)
|
|
520
|
+
lim_var_data[:3] = 0
|
|
521
|
+
lim_var_data[-4:] = 100
|
|
522
|
+
|
|
523
|
+
edges_auto = histogram_bin_edges(lim_var_data, 'auto')
|
|
524
|
+
assert_equal(edges_auto[0], 0)
|
|
525
|
+
assert_equal(edges_auto[-1], 100.)
|
|
526
|
+
assert len(edges_auto) < 100
|
|
527
|
+
|
|
528
|
+
edges_fd = histogram_bin_edges(lim_var_data, 'fd')
|
|
529
|
+
assert_equal(edges_fd, np.array([0, 100]))
|
|
530
|
+
|
|
531
|
+
edges_sturges = histogram_bin_edges(lim_var_data, 'sturges')
|
|
532
|
+
assert_equal(edges_sturges, np.linspace(0, 100, 12))
|
|
533
|
+
|
|
534
|
+
def test_outlier(self):
|
|
535
|
+
"""
|
|
536
|
+
Check the FD, Scott and Doane with outliers.
|
|
537
|
+
|
|
538
|
+
The FD estimates a smaller binwidth since it's less affected by
|
|
539
|
+
outliers. Since the range is so (artificially) large, this means more
|
|
540
|
+
bins, most of which will be empty, but the data of interest usually is
|
|
541
|
+
unaffected. The Scott estimator is more affected and returns fewer bins,
|
|
542
|
+
despite most of the variance being in one area of the data. The Doane
|
|
543
|
+
estimator lies somewhere between the other two.
|
|
544
|
+
"""
|
|
545
|
+
xcenter = np.linspace(-10, 10, 50)
|
|
546
|
+
outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
|
|
547
|
+
|
|
548
|
+
outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6}
|
|
549
|
+
|
|
550
|
+
for estimator, numbins in outlier_resultdict.items():
|
|
551
|
+
a, b = np.histogram(outlier_dataset, estimator)
|
|
552
|
+
assert_equal(len(a), numbins)
|
|
553
|
+
|
|
554
|
+
def test_scott_vs_stone(self):
|
|
555
|
+
# Verify that Scott's rule and Stone's rule converges for normally
|
|
556
|
+
# distributed data
|
|
557
|
+
|
|
558
|
+
def nbins_ratio(seed, size):
|
|
559
|
+
rng = np.random.RandomState(seed)
|
|
560
|
+
x = rng.normal(loc=0, scale=2, size=size)
|
|
561
|
+
a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0])
|
|
562
|
+
return a / (a + b)
|
|
563
|
+
|
|
564
|
+
geom_space = np.geomspace(start=10, stop=100, num=4).round().astype(int)
|
|
565
|
+
ll = [[nbins_ratio(seed, size) for size in geom_space] for seed in range(10)]
|
|
566
|
+
|
|
567
|
+
# the average difference between the two methods decreases as the dataset
|
|
568
|
+
# size increases.
|
|
569
|
+
avg = abs(np.mean(ll, axis=0) - 0.5)
|
|
570
|
+
assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2)
|
|
571
|
+
|
|
572
|
+
def test_simple_range(self):
|
|
573
|
+
"""
|
|
574
|
+
Straightforward testing with a mixture of linspace data (for
|
|
575
|
+
consistency). Adding in a 3rd mixture that will then be
|
|
576
|
+
completely ignored. All test values have been precomputed and
|
|
577
|
+
the shouldn't change.
|
|
578
|
+
"""
|
|
579
|
+
# some basic sanity checking, with some fixed data.
|
|
580
|
+
# Checking for the correct number of bins
|
|
581
|
+
basic_test = {
|
|
582
|
+
50: {'fd': 8, 'scott': 8, 'rice': 15,
|
|
583
|
+
'sturges': 14, 'auto': 14, 'stone': 8},
|
|
584
|
+
500: {'fd': 15, 'scott': 16, 'rice': 32,
|
|
585
|
+
'sturges': 20, 'auto': 20, 'stone': 80},
|
|
586
|
+
5000: {'fd': 33, 'scott': 33, 'rice': 69,
|
|
587
|
+
'sturges': 27, 'auto': 33, 'stone': 80}
|
|
588
|
+
}
|
|
589
|
+
|
|
590
|
+
for testlen, expectedResults in basic_test.items():
|
|
591
|
+
# create some sort of non uniform data to test with
|
|
592
|
+
# (3 peak uniform mixture)
|
|
593
|
+
x1 = np.linspace(-10, -1, testlen // 5 * 2)
|
|
594
|
+
x2 = np.linspace(1, 10, testlen // 5 * 3)
|
|
595
|
+
x3 = np.linspace(-100, -50, testlen)
|
|
596
|
+
x = np.hstack((x1, x2, x3))
|
|
597
|
+
for estimator, numbins in expectedResults.items():
|
|
598
|
+
a, b = np.histogram(x, estimator, range=(-20, 20))
|
|
599
|
+
msg = f"For the {estimator} estimator"
|
|
600
|
+
msg += f" with datasize of {testlen}"
|
|
601
|
+
assert_equal(len(a), numbins, err_msg=msg)
|
|
602
|
+
|
|
603
|
+
@pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
|
|
604
|
+
'stone', 'rice', 'sturges'])
|
|
605
|
+
def test_signed_integer_data(self, bins):
|
|
606
|
+
# Regression test for gh-14379.
|
|
607
|
+
a = np.array([-2, 0, 127], dtype=np.int8)
|
|
608
|
+
hist, edges = np.histogram(a, bins=bins)
|
|
609
|
+
hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins)
|
|
610
|
+
assert_array_equal(hist, hist32)
|
|
611
|
+
assert_array_equal(edges, edges32)
|
|
612
|
+
|
|
613
|
+
@pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
|
|
614
|
+
'stone', 'rice', 'sturges'])
|
|
615
|
+
def test_integer(self, bins):
|
|
616
|
+
"""
|
|
617
|
+
Test that bin width for integer data is at least 1.
|
|
618
|
+
"""
|
|
619
|
+
with warnings.catch_warnings():
|
|
620
|
+
if bins == 'stone':
|
|
621
|
+
warnings.simplefilter('ignore', RuntimeWarning)
|
|
622
|
+
assert_equal(
|
|
623
|
+
np.histogram_bin_edges(np.tile(np.arange(9), 1000), bins),
|
|
624
|
+
np.arange(9))
|
|
625
|
+
|
|
626
|
+
def test_integer_non_auto(self):
|
|
627
|
+
"""
|
|
628
|
+
Test that the bin-width>=1 requirement *only* applies to auto binning.
|
|
629
|
+
"""
|
|
630
|
+
assert_equal(
|
|
631
|
+
np.histogram_bin_edges(np.tile(np.arange(9), 1000), 16),
|
|
632
|
+
np.arange(17) / 2)
|
|
633
|
+
assert_equal(
|
|
634
|
+
np.histogram_bin_edges(np.tile(np.arange(9), 1000), [.1, .2]),
|
|
635
|
+
[.1, .2])
|
|
636
|
+
|
|
637
|
+
def test_simple_weighted(self):
|
|
638
|
+
"""
|
|
639
|
+
Check that weighted data raises a TypeError
|
|
640
|
+
"""
|
|
641
|
+
estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
|
|
642
|
+
for estimator in estimator_list:
|
|
643
|
+
assert_raises(TypeError, histogram, [1, 2, 3],
|
|
644
|
+
estimator, weights=[1, 2, 3])
|
|
645
|
+
|
|
646
|
+
|
|
647
|
+
class TestHistogramdd:
|
|
648
|
+
|
|
649
|
+
def test_simple(self):
|
|
650
|
+
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
|
|
651
|
+
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
|
|
652
|
+
H, edges = histogramdd(x, (2, 3, 3),
|
|
653
|
+
range=[[-1, 1], [0, 3], [0, 3]])
|
|
654
|
+
answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
|
|
655
|
+
[[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
|
|
656
|
+
assert_array_equal(H, answer)
|
|
657
|
+
|
|
658
|
+
# Check normalization
|
|
659
|
+
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
|
|
660
|
+
H, edges = histogramdd(x, bins=ed, density=True)
|
|
661
|
+
assert_(np.all(H == answer / 12.))
|
|
662
|
+
|
|
663
|
+
# Check that H has the correct shape.
|
|
664
|
+
H, edges = histogramdd(x, (2, 3, 4),
|
|
665
|
+
range=[[-1, 1], [0, 3], [0, 4]],
|
|
666
|
+
density=True)
|
|
667
|
+
answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
|
|
668
|
+
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
|
|
669
|
+
assert_array_almost_equal(H, answer / 6., 4)
|
|
670
|
+
# Check that a sequence of arrays is accepted and H has the correct
|
|
671
|
+
# shape.
|
|
672
|
+
z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
|
|
673
|
+
H, edges = histogramdd(
|
|
674
|
+
z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
|
|
675
|
+
answer = np.array([[[0, 0], [0, 0], [0, 0]],
|
|
676
|
+
[[0, 1], [0, 0], [1, 0]],
|
|
677
|
+
[[0, 1], [0, 0], [0, 0]],
|
|
678
|
+
[[0, 0], [0, 0], [0, 0]]])
|
|
679
|
+
assert_array_equal(H, answer)
|
|
680
|
+
|
|
681
|
+
Z = np.zeros((5, 5, 5))
|
|
682
|
+
Z[list(range(5)), list(range(5)), list(range(5))] = 1.
|
|
683
|
+
H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
|
|
684
|
+
assert_array_equal(H, Z)
|
|
685
|
+
|
|
686
|
+
def test_shape_3d(self):
|
|
687
|
+
# All possible permutations for bins of different lengths in 3D.
|
|
688
|
+
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
|
|
689
|
+
(4, 5, 6))
|
|
690
|
+
r = np.random.rand(10, 3)
|
|
691
|
+
for b in bins:
|
|
692
|
+
H, edges = histogramdd(r, b)
|
|
693
|
+
assert_(H.shape == b)
|
|
694
|
+
|
|
695
|
+
def test_shape_4d(self):
|
|
696
|
+
# All possible permutations for bins of different lengths in 4D.
|
|
697
|
+
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
|
|
698
|
+
(5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
|
|
699
|
+
(7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
|
|
700
|
+
(4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
|
|
701
|
+
(6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
|
|
702
|
+
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
|
|
703
|
+
|
|
704
|
+
r = np.random.rand(10, 4)
|
|
705
|
+
for b in bins:
|
|
706
|
+
H, edges = histogramdd(r, b)
|
|
707
|
+
assert_(H.shape == b)
|
|
708
|
+
|
|
709
|
+
def test_weights(self):
|
|
710
|
+
v = np.random.rand(100, 2)
|
|
711
|
+
hist, edges = histogramdd(v)
|
|
712
|
+
n_hist, edges = histogramdd(v, density=True)
|
|
713
|
+
w_hist, edges = histogramdd(v, weights=np.ones(100))
|
|
714
|
+
assert_array_equal(w_hist, hist)
|
|
715
|
+
w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True)
|
|
716
|
+
assert_array_equal(w_hist, n_hist)
|
|
717
|
+
w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
|
|
718
|
+
assert_array_equal(w_hist, 2 * hist)
|
|
719
|
+
|
|
720
|
+
def test_identical_samples(self):
|
|
721
|
+
x = np.zeros((10, 2), int)
|
|
722
|
+
hist, edges = histogramdd(x, bins=2)
|
|
723
|
+
assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
|
|
724
|
+
|
|
725
|
+
def test_empty(self):
|
|
726
|
+
a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
|
|
727
|
+
assert_array_max_ulp(a, np.array([[0.]]))
|
|
728
|
+
a, b = np.histogramdd([[], [], []], bins=2)
|
|
729
|
+
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
|
|
730
|
+
|
|
731
|
+
def test_bins_errors(self):
|
|
732
|
+
# There are two ways to specify bins. Check for the right errors
|
|
733
|
+
# when mixing those.
|
|
734
|
+
x = np.arange(8).reshape(2, 4)
|
|
735
|
+
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
|
|
736
|
+
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
|
|
737
|
+
assert_raises(
|
|
738
|
+
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
|
|
739
|
+
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
|
|
740
|
+
|
|
741
|
+
def test_inf_edges(self):
|
|
742
|
+
# Test using +/-inf bin edges works. See #1788.
|
|
743
|
+
with np.errstate(invalid='ignore'):
|
|
744
|
+
x = np.arange(6).reshape(3, 2)
|
|
745
|
+
expected = np.array([[1, 0], [0, 1], [0, 1]])
|
|
746
|
+
h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
|
|
747
|
+
assert_allclose(h, expected)
|
|
748
|
+
h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
|
|
749
|
+
assert_allclose(h, expected)
|
|
750
|
+
h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
|
|
751
|
+
assert_allclose(h, expected)
|
|
752
|
+
|
|
753
|
+
def test_rightmost_binedge(self):
|
|
754
|
+
# Test event very close to rightmost binedge. See Github issue #4266
|
|
755
|
+
x = [0.9999999995]
|
|
756
|
+
bins = [[0., 0.5, 1.0]]
|
|
757
|
+
hist, _ = histogramdd(x, bins=bins)
|
|
758
|
+
assert_(hist[0] == 0.0)
|
|
759
|
+
assert_(hist[1] == 1.)
|
|
760
|
+
x = [1.0]
|
|
761
|
+
bins = [[0., 0.5, 1.0]]
|
|
762
|
+
hist, _ = histogramdd(x, bins=bins)
|
|
763
|
+
assert_(hist[0] == 0.0)
|
|
764
|
+
assert_(hist[1] == 1.)
|
|
765
|
+
x = [1.0000000001]
|
|
766
|
+
bins = [[0., 0.5, 1.0]]
|
|
767
|
+
hist, _ = histogramdd(x, bins=bins)
|
|
768
|
+
assert_(hist[0] == 0.0)
|
|
769
|
+
assert_(hist[1] == 0.0)
|
|
770
|
+
x = [1.0001]
|
|
771
|
+
bins = [[0., 0.5, 1.0]]
|
|
772
|
+
hist, _ = histogramdd(x, bins=bins)
|
|
773
|
+
assert_(hist[0] == 0.0)
|
|
774
|
+
assert_(hist[1] == 0.0)
|
|
775
|
+
|
|
776
|
+
def test_finite_range(self):
|
|
777
|
+
vals = np.random.random((100, 3))
|
|
778
|
+
histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
|
|
779
|
+
assert_raises(ValueError, histogramdd, vals,
|
|
780
|
+
range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
|
|
781
|
+
assert_raises(ValueError, histogramdd, vals,
|
|
782
|
+
range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
|
|
783
|
+
|
|
784
|
+
def test_equal_edges(self):
|
|
785
|
+
""" Test that adjacent entries in an edge array can be equal """
|
|
786
|
+
x = np.array([0, 1, 2])
|
|
787
|
+
y = np.array([0, 1, 2])
|
|
788
|
+
x_edges = np.array([0, 2, 2])
|
|
789
|
+
y_edges = 1
|
|
790
|
+
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
|
|
791
|
+
|
|
792
|
+
hist_expected = np.array([
|
|
793
|
+
[2.],
|
|
794
|
+
[1.], # x == 2 falls in the final bin
|
|
795
|
+
])
|
|
796
|
+
assert_equal(hist, hist_expected)
|
|
797
|
+
|
|
798
|
+
def test_edge_dtype(self):
|
|
799
|
+
""" Test that if an edge array is input, its type is preserved """
|
|
800
|
+
x = np.array([0, 10, 20])
|
|
801
|
+
y = x / 10
|
|
802
|
+
x_edges = np.array([0, 5, 15, 20])
|
|
803
|
+
y_edges = x_edges / 10
|
|
804
|
+
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
|
|
805
|
+
|
|
806
|
+
assert_equal(edges[0].dtype, x_edges.dtype)
|
|
807
|
+
assert_equal(edges[1].dtype, y_edges.dtype)
|
|
808
|
+
|
|
809
|
+
def test_large_integers(self):
|
|
810
|
+
big = 2**60 # Too large to represent with a full precision float
|
|
811
|
+
|
|
812
|
+
x = np.array([0], np.int64)
|
|
813
|
+
x_edges = np.array([-1, +1], np.int64)
|
|
814
|
+
y = big + x
|
|
815
|
+
y_edges = big + x_edges
|
|
816
|
+
|
|
817
|
+
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
|
|
818
|
+
|
|
819
|
+
assert_equal(hist[0, 0], 1)
|
|
820
|
+
|
|
821
|
+
def test_density_non_uniform_2d(self):
|
|
822
|
+
# Defines the following grid:
|
|
823
|
+
#
|
|
824
|
+
# 0 2 8
|
|
825
|
+
# 0+-+-----+
|
|
826
|
+
# + | +
|
|
827
|
+
# + | +
|
|
828
|
+
# 6+-+-----+
|
|
829
|
+
# 8+-+-----+
|
|
830
|
+
x_edges = np.array([0, 2, 8])
|
|
831
|
+
y_edges = np.array([0, 6, 8])
|
|
832
|
+
relative_areas = np.array([
|
|
833
|
+
[3, 9],
|
|
834
|
+
[1, 3]])
|
|
835
|
+
|
|
836
|
+
# ensure the number of points in each region is proportional to its area
|
|
837
|
+
x = np.array([1] + [1] * 3 + [7] * 3 + [7] * 9)
|
|
838
|
+
y = np.array([7] + [1] * 3 + [7] * 3 + [1] * 9)
|
|
839
|
+
|
|
840
|
+
# sanity check that the above worked as intended
|
|
841
|
+
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges))
|
|
842
|
+
assert_equal(hist, relative_areas)
|
|
843
|
+
|
|
844
|
+
# resulting histogram should be uniform, since counts and areas are proportional
|
|
845
|
+
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
|
|
846
|
+
assert_equal(hist, 1 / (8 * 8))
|
|
847
|
+
|
|
848
|
+
def test_density_non_uniform_1d(self):
|
|
849
|
+
# compare to histogram to show the results are the same
|
|
850
|
+
v = np.arange(10)
|
|
851
|
+
bins = np.array([0, 1, 3, 6, 10])
|
|
852
|
+
hist, edges = histogram(v, bins, density=True)
|
|
853
|
+
hist_dd, edges_dd = histogramdd((v,), (bins,), density=True)
|
|
854
|
+
assert_equal(hist, hist_dd)
|
|
855
|
+
assert_equal(edges, edges_dd[0])
|