numpy 2.4.0__cp313-cp313t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +942 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_multiarray_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_operand_flag_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_rational_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/libnpymath.a +0 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +353 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1515 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5758 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2001 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4705 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_bounded_integers.pxd +29 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_common.pxd +107 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/bit_generator.pxd +35 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/libnpyrandom.a +0 -0
- numpy/random/mtrand.cpython-313t-aarch64-linux-musl.so +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +804 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.0.dist-info/METADATA +139 -0
- numpy-2.4.0.dist-info/RECORD +915 -0
- numpy-2.4.0.dist-info/WHEEL +5 -0
- numpy-2.4.0.dist-info/entry_points.txt +13 -0
- numpy-2.4.0.dist-info/licenses/LICENSE.txt +935 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.0.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.0.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.0.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.0.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.0.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
- numpy.libs/libgcc_s-2d945d6c-767fb991.so.1 +0 -0
- numpy.libs/libgcc_s-2d945d6c.so.1 +0 -0
- numpy.libs/libgfortran-67378ab2-e7e7cfab.so.5.0.0 +0 -0
- numpy.libs/libscipy_openblas64_-1fc386ee.so +0 -0
- numpy.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
|
@@ -0,0 +1,1438 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
import warnings
|
|
3
|
+
from functools import partial
|
|
4
|
+
|
|
5
|
+
import pytest
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
from numpy._core.numeric import normalize_axis_tuple
|
|
9
|
+
from numpy.exceptions import AxisError, ComplexWarning
|
|
10
|
+
from numpy.lib._nanfunctions_impl import _nan_mask, _replace_nan
|
|
11
|
+
from numpy.testing import (
|
|
12
|
+
assert_,
|
|
13
|
+
assert_almost_equal,
|
|
14
|
+
assert_array_equal,
|
|
15
|
+
assert_equal,
|
|
16
|
+
assert_raises,
|
|
17
|
+
assert_raises_regex,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
# Test data
|
|
21
|
+
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
|
|
22
|
+
[0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
|
|
23
|
+
[np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
|
|
24
|
+
[0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
# Rows of _ndat with nans removed
|
|
28
|
+
_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
|
|
29
|
+
np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
|
|
30
|
+
np.array([0.1042, -0.5954]),
|
|
31
|
+
np.array([0.1610, 0.1859, 0.3146])]
|
|
32
|
+
|
|
33
|
+
# Rows of _ndat with nans converted to ones
|
|
34
|
+
_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170],
|
|
35
|
+
[0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833],
|
|
36
|
+
[1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954],
|
|
37
|
+
[0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]])
|
|
38
|
+
|
|
39
|
+
# Rows of _ndat with nans converted to zeros
|
|
40
|
+
_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
|
|
41
|
+
[0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833],
|
|
42
|
+
[0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954],
|
|
43
|
+
[0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class TestSignatureMatch:
|
|
47
|
+
NANFUNCS = {
|
|
48
|
+
np.nanmin: np.amin,
|
|
49
|
+
np.nanmax: np.amax,
|
|
50
|
+
np.nanargmin: np.argmin,
|
|
51
|
+
np.nanargmax: np.argmax,
|
|
52
|
+
np.nansum: np.sum,
|
|
53
|
+
np.nanprod: np.prod,
|
|
54
|
+
np.nancumsum: np.cumsum,
|
|
55
|
+
np.nancumprod: np.cumprod,
|
|
56
|
+
np.nanmean: np.mean,
|
|
57
|
+
np.nanmedian: np.median,
|
|
58
|
+
np.nanpercentile: np.percentile,
|
|
59
|
+
np.nanquantile: np.quantile,
|
|
60
|
+
np.nanvar: np.var,
|
|
61
|
+
np.nanstd: np.std,
|
|
62
|
+
}
|
|
63
|
+
IDS = [k.__name__ for k in NANFUNCS]
|
|
64
|
+
|
|
65
|
+
@staticmethod
|
|
66
|
+
def get_signature(func, default="..."):
|
|
67
|
+
"""Construct a signature and replace all default parameter-values."""
|
|
68
|
+
prm_list = []
|
|
69
|
+
signature = inspect.signature(func)
|
|
70
|
+
for prm in signature.parameters.values():
|
|
71
|
+
if prm.default is inspect.Parameter.empty:
|
|
72
|
+
prm_list.append(prm)
|
|
73
|
+
else:
|
|
74
|
+
prm_list.append(prm.replace(default=default))
|
|
75
|
+
return inspect.Signature(prm_list)
|
|
76
|
+
|
|
77
|
+
@pytest.mark.parametrize("nan_func,func", NANFUNCS.items(), ids=IDS)
|
|
78
|
+
def test_signature_match(self, nan_func, func):
|
|
79
|
+
# Ignore the default parameter-values as they can sometimes differ
|
|
80
|
+
# between the two functions (*e.g.* one has `False` while the other
|
|
81
|
+
# has `np._NoValue`)
|
|
82
|
+
signature = self.get_signature(func)
|
|
83
|
+
nan_signature = self.get_signature(nan_func)
|
|
84
|
+
np.testing.assert_equal(signature, nan_signature)
|
|
85
|
+
|
|
86
|
+
def test_exhaustiveness(self):
|
|
87
|
+
"""Validate that all nan functions are actually tested."""
|
|
88
|
+
np.testing.assert_equal(
|
|
89
|
+
set(self.IDS), set(np.lib._nanfunctions_impl.__all__)
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class TestNanFunctions_MinMax:
|
|
94
|
+
|
|
95
|
+
nanfuncs = [np.nanmin, np.nanmax]
|
|
96
|
+
stdfuncs = [np.min, np.max]
|
|
97
|
+
|
|
98
|
+
def test_mutation(self):
|
|
99
|
+
# Check that passed array is not modified.
|
|
100
|
+
ndat = _ndat.copy()
|
|
101
|
+
for f in self.nanfuncs:
|
|
102
|
+
f(ndat)
|
|
103
|
+
assert_equal(ndat, _ndat)
|
|
104
|
+
|
|
105
|
+
def test_keepdims(self):
|
|
106
|
+
mat = np.eye(3)
|
|
107
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
108
|
+
for axis in [None, 0, 1]:
|
|
109
|
+
tgt = rf(mat, axis=axis, keepdims=True)
|
|
110
|
+
res = nf(mat, axis=axis, keepdims=True)
|
|
111
|
+
assert_(res.ndim == tgt.ndim)
|
|
112
|
+
|
|
113
|
+
def test_out(self):
|
|
114
|
+
mat = np.eye(3)
|
|
115
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
116
|
+
resout = np.zeros(3)
|
|
117
|
+
tgt = rf(mat, axis=1)
|
|
118
|
+
res = nf(mat, axis=1, out=resout)
|
|
119
|
+
assert_almost_equal(res, resout)
|
|
120
|
+
assert_almost_equal(res, tgt)
|
|
121
|
+
|
|
122
|
+
def test_dtype_from_input(self):
|
|
123
|
+
codes = 'efdgFDG'
|
|
124
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
125
|
+
for c in codes:
|
|
126
|
+
mat = np.eye(3, dtype=c)
|
|
127
|
+
tgt = rf(mat, axis=1).dtype.type
|
|
128
|
+
res = nf(mat, axis=1).dtype.type
|
|
129
|
+
assert_(res is tgt)
|
|
130
|
+
# scalar case
|
|
131
|
+
tgt = rf(mat, axis=None).dtype.type
|
|
132
|
+
res = nf(mat, axis=None).dtype.type
|
|
133
|
+
assert_(res is tgt)
|
|
134
|
+
|
|
135
|
+
def test_result_values(self):
|
|
136
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
137
|
+
tgt = [rf(d) for d in _rdat]
|
|
138
|
+
res = nf(_ndat, axis=1)
|
|
139
|
+
assert_almost_equal(res, tgt)
|
|
140
|
+
|
|
141
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
142
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
143
|
+
@pytest.mark.parametrize("array", [
|
|
144
|
+
np.array(np.nan),
|
|
145
|
+
np.full((3, 3), np.nan),
|
|
146
|
+
], ids=["0d", "2d"])
|
|
147
|
+
def test_allnans(self, axis, dtype, array):
|
|
148
|
+
if axis is not None and array.ndim == 0:
|
|
149
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
150
|
+
|
|
151
|
+
array = array.astype(dtype)
|
|
152
|
+
match = "All-NaN slice encountered"
|
|
153
|
+
for func in self.nanfuncs:
|
|
154
|
+
with pytest.warns(RuntimeWarning, match=match):
|
|
155
|
+
out = func(array, axis=axis)
|
|
156
|
+
assert np.isnan(out).all()
|
|
157
|
+
assert out.dtype == array.dtype
|
|
158
|
+
|
|
159
|
+
def test_masked(self):
|
|
160
|
+
mat = np.ma.fix_invalid(_ndat)
|
|
161
|
+
msk = mat._mask.copy()
|
|
162
|
+
for f in [np.nanmin]:
|
|
163
|
+
res = f(mat, axis=1)
|
|
164
|
+
tgt = f(_ndat, axis=1)
|
|
165
|
+
assert_equal(res, tgt)
|
|
166
|
+
assert_equal(mat._mask, msk)
|
|
167
|
+
assert_(not np.isinf(mat).any())
|
|
168
|
+
|
|
169
|
+
def test_scalar(self):
|
|
170
|
+
for f in self.nanfuncs:
|
|
171
|
+
assert_(f(0.) == 0.)
|
|
172
|
+
|
|
173
|
+
def test_subclass(self):
|
|
174
|
+
class MyNDArray(np.ndarray):
|
|
175
|
+
pass
|
|
176
|
+
|
|
177
|
+
# Check that it works and that type and
|
|
178
|
+
# shape are preserved
|
|
179
|
+
mine = np.eye(3).view(MyNDArray)
|
|
180
|
+
for f in self.nanfuncs:
|
|
181
|
+
res = f(mine, axis=0)
|
|
182
|
+
assert_(isinstance(res, MyNDArray))
|
|
183
|
+
assert_(res.shape == (3,))
|
|
184
|
+
res = f(mine, axis=1)
|
|
185
|
+
assert_(isinstance(res, MyNDArray))
|
|
186
|
+
assert_(res.shape == (3,))
|
|
187
|
+
res = f(mine)
|
|
188
|
+
assert_(res.shape == ())
|
|
189
|
+
|
|
190
|
+
# check that rows of nan are dealt with for subclasses (#4628)
|
|
191
|
+
mine[1] = np.nan
|
|
192
|
+
for f in self.nanfuncs:
|
|
193
|
+
with warnings.catch_warnings(record=True) as w:
|
|
194
|
+
warnings.simplefilter('always')
|
|
195
|
+
res = f(mine, axis=0)
|
|
196
|
+
assert_(isinstance(res, MyNDArray))
|
|
197
|
+
assert_(not np.any(np.isnan(res)))
|
|
198
|
+
assert_(len(w) == 0)
|
|
199
|
+
|
|
200
|
+
with warnings.catch_warnings(record=True) as w:
|
|
201
|
+
warnings.simplefilter('always')
|
|
202
|
+
res = f(mine, axis=1)
|
|
203
|
+
assert_(isinstance(res, MyNDArray))
|
|
204
|
+
assert_(np.isnan(res[1]) and not np.isnan(res[0])
|
|
205
|
+
and not np.isnan(res[2]))
|
|
206
|
+
assert_(len(w) == 1, 'no warning raised')
|
|
207
|
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
208
|
+
|
|
209
|
+
with warnings.catch_warnings(record=True) as w:
|
|
210
|
+
warnings.simplefilter('always')
|
|
211
|
+
res = f(mine)
|
|
212
|
+
assert_(res.shape == ())
|
|
213
|
+
assert_(res != np.nan)
|
|
214
|
+
assert_(len(w) == 0)
|
|
215
|
+
|
|
216
|
+
def test_object_array(self):
|
|
217
|
+
arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object)
|
|
218
|
+
assert_equal(np.nanmin(arr), 1.0)
|
|
219
|
+
assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0])
|
|
220
|
+
|
|
221
|
+
with warnings.catch_warnings(record=True) as w:
|
|
222
|
+
warnings.simplefilter('always')
|
|
223
|
+
# assert_equal does not work on object arrays of nan
|
|
224
|
+
assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan])
|
|
225
|
+
assert_(len(w) == 1, 'no warning raised')
|
|
226
|
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
227
|
+
|
|
228
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
229
|
+
def test_initial(self, dtype):
|
|
230
|
+
class MyNDArray(np.ndarray):
|
|
231
|
+
pass
|
|
232
|
+
|
|
233
|
+
ar = np.arange(9).astype(dtype)
|
|
234
|
+
ar[:5] = np.nan
|
|
235
|
+
|
|
236
|
+
for f in self.nanfuncs:
|
|
237
|
+
initial = 100 if f is np.nanmax else 0
|
|
238
|
+
|
|
239
|
+
ret1 = f(ar, initial=initial)
|
|
240
|
+
assert ret1.dtype == dtype
|
|
241
|
+
assert ret1 == initial
|
|
242
|
+
|
|
243
|
+
ret2 = f(ar.view(MyNDArray), initial=initial)
|
|
244
|
+
assert ret2.dtype == dtype
|
|
245
|
+
assert ret2 == initial
|
|
246
|
+
|
|
247
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
248
|
+
def test_where(self, dtype):
|
|
249
|
+
class MyNDArray(np.ndarray):
|
|
250
|
+
pass
|
|
251
|
+
|
|
252
|
+
ar = np.arange(9).reshape(3, 3).astype(dtype)
|
|
253
|
+
ar[0, :] = np.nan
|
|
254
|
+
where = np.ones_like(ar, dtype=np.bool)
|
|
255
|
+
where[:, 0] = False
|
|
256
|
+
|
|
257
|
+
for f in self.nanfuncs:
|
|
258
|
+
reference = 4 if f is np.nanmin else 8
|
|
259
|
+
|
|
260
|
+
ret1 = f(ar, where=where, initial=5)
|
|
261
|
+
assert ret1.dtype == dtype
|
|
262
|
+
assert ret1 == reference
|
|
263
|
+
|
|
264
|
+
ret2 = f(ar.view(MyNDArray), where=where, initial=5)
|
|
265
|
+
assert ret2.dtype == dtype
|
|
266
|
+
assert ret2 == reference
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
class TestNanFunctions_ArgminArgmax:
|
|
270
|
+
|
|
271
|
+
nanfuncs = [np.nanargmin, np.nanargmax]
|
|
272
|
+
|
|
273
|
+
def test_mutation(self):
|
|
274
|
+
# Check that passed array is not modified.
|
|
275
|
+
ndat = _ndat.copy()
|
|
276
|
+
for f in self.nanfuncs:
|
|
277
|
+
f(ndat)
|
|
278
|
+
assert_equal(ndat, _ndat)
|
|
279
|
+
|
|
280
|
+
def test_result_values(self):
|
|
281
|
+
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
|
|
282
|
+
for row in _ndat:
|
|
283
|
+
with warnings.catch_warnings():
|
|
284
|
+
warnings.filterwarnings(
|
|
285
|
+
'ignore', "invalid value encountered in", RuntimeWarning)
|
|
286
|
+
ind = f(row)
|
|
287
|
+
val = row[ind]
|
|
288
|
+
# comparing with NaN is tricky as the result
|
|
289
|
+
# is always false except for NaN != NaN
|
|
290
|
+
assert_(not np.isnan(val))
|
|
291
|
+
assert_(not fcmp(val, row).any())
|
|
292
|
+
assert_(not np.equal(val, row[:ind]).any())
|
|
293
|
+
|
|
294
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
295
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
296
|
+
@pytest.mark.parametrize("array", [
|
|
297
|
+
np.array(np.nan),
|
|
298
|
+
np.full((3, 3), np.nan),
|
|
299
|
+
], ids=["0d", "2d"])
|
|
300
|
+
def test_allnans(self, axis, dtype, array):
|
|
301
|
+
if axis is not None and array.ndim == 0:
|
|
302
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
303
|
+
|
|
304
|
+
array = array.astype(dtype)
|
|
305
|
+
for func in self.nanfuncs:
|
|
306
|
+
with pytest.raises(ValueError, match="All-NaN slice encountered"):
|
|
307
|
+
func(array, axis=axis)
|
|
308
|
+
|
|
309
|
+
def test_empty(self):
|
|
310
|
+
mat = np.zeros((0, 3))
|
|
311
|
+
for f in self.nanfuncs:
|
|
312
|
+
for axis in [0, None]:
|
|
313
|
+
assert_raises_regex(
|
|
314
|
+
ValueError,
|
|
315
|
+
"attempt to get argm.. of an empty sequence",
|
|
316
|
+
f, mat, axis=axis)
|
|
317
|
+
for axis in [1]:
|
|
318
|
+
res = f(mat, axis=axis)
|
|
319
|
+
assert_equal(res, np.zeros(0))
|
|
320
|
+
|
|
321
|
+
def test_scalar(self):
|
|
322
|
+
for f in self.nanfuncs:
|
|
323
|
+
assert_(f(0.) == 0.)
|
|
324
|
+
|
|
325
|
+
def test_subclass(self):
|
|
326
|
+
class MyNDArray(np.ndarray):
|
|
327
|
+
pass
|
|
328
|
+
|
|
329
|
+
# Check that it works and that type and
|
|
330
|
+
# shape are preserved
|
|
331
|
+
mine = np.eye(3).view(MyNDArray)
|
|
332
|
+
for f in self.nanfuncs:
|
|
333
|
+
res = f(mine, axis=0)
|
|
334
|
+
assert_(isinstance(res, MyNDArray))
|
|
335
|
+
assert_(res.shape == (3,))
|
|
336
|
+
res = f(mine, axis=1)
|
|
337
|
+
assert_(isinstance(res, MyNDArray))
|
|
338
|
+
assert_(res.shape == (3,))
|
|
339
|
+
res = f(mine)
|
|
340
|
+
assert_(res.shape == ())
|
|
341
|
+
|
|
342
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
343
|
+
def test_keepdims(self, dtype):
|
|
344
|
+
ar = np.arange(9).astype(dtype)
|
|
345
|
+
ar[:5] = np.nan
|
|
346
|
+
|
|
347
|
+
for f in self.nanfuncs:
|
|
348
|
+
reference = 5 if f is np.nanargmin else 8
|
|
349
|
+
ret = f(ar, keepdims=True)
|
|
350
|
+
assert ret.ndim == ar.ndim
|
|
351
|
+
assert ret == reference
|
|
352
|
+
|
|
353
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
354
|
+
def test_out(self, dtype):
|
|
355
|
+
ar = np.arange(9).astype(dtype)
|
|
356
|
+
ar[:5] = np.nan
|
|
357
|
+
|
|
358
|
+
for f in self.nanfuncs:
|
|
359
|
+
out = np.zeros((), dtype=np.intp)
|
|
360
|
+
reference = 5 if f is np.nanargmin else 8
|
|
361
|
+
ret = f(ar, out=out)
|
|
362
|
+
assert ret is out
|
|
363
|
+
assert ret == reference
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
_TEST_ARRAYS = {
|
|
367
|
+
"0d": np.array(5),
|
|
368
|
+
"1d": np.array([127, 39, 93, 87, 46])
|
|
369
|
+
}
|
|
370
|
+
for _v in _TEST_ARRAYS.values():
|
|
371
|
+
_v.setflags(write=False)
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
@pytest.mark.parametrize(
|
|
375
|
+
"dtype",
|
|
376
|
+
np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O",
|
|
377
|
+
)
|
|
378
|
+
@pytest.mark.parametrize("mat", _TEST_ARRAYS.values(), ids=_TEST_ARRAYS.keys())
|
|
379
|
+
class TestNanFunctions_NumberTypes:
|
|
380
|
+
nanfuncs = {
|
|
381
|
+
np.nanmin: np.min,
|
|
382
|
+
np.nanmax: np.max,
|
|
383
|
+
np.nanargmin: np.argmin,
|
|
384
|
+
np.nanargmax: np.argmax,
|
|
385
|
+
np.nansum: np.sum,
|
|
386
|
+
np.nanprod: np.prod,
|
|
387
|
+
np.nancumsum: np.cumsum,
|
|
388
|
+
np.nancumprod: np.cumprod,
|
|
389
|
+
np.nanmean: np.mean,
|
|
390
|
+
np.nanmedian: np.median,
|
|
391
|
+
np.nanvar: np.var,
|
|
392
|
+
np.nanstd: np.std,
|
|
393
|
+
}
|
|
394
|
+
nanfunc_ids = [i.__name__ for i in nanfuncs]
|
|
395
|
+
|
|
396
|
+
@pytest.mark.parametrize("nanfunc,func", nanfuncs.items(), ids=nanfunc_ids)
|
|
397
|
+
@np.errstate(over="ignore")
|
|
398
|
+
def test_nanfunc(self, mat, dtype, nanfunc, func):
|
|
399
|
+
mat = mat.astype(dtype)
|
|
400
|
+
tgt = func(mat)
|
|
401
|
+
out = nanfunc(mat)
|
|
402
|
+
|
|
403
|
+
assert_almost_equal(out, tgt)
|
|
404
|
+
if dtype == "O":
|
|
405
|
+
assert type(out) is type(tgt)
|
|
406
|
+
else:
|
|
407
|
+
assert out.dtype == tgt.dtype
|
|
408
|
+
|
|
409
|
+
@pytest.mark.parametrize(
|
|
410
|
+
"nanfunc,func",
|
|
411
|
+
[(np.nanquantile, np.quantile), (np.nanpercentile, np.percentile)],
|
|
412
|
+
ids=["nanquantile", "nanpercentile"],
|
|
413
|
+
)
|
|
414
|
+
def test_nanfunc_q(self, mat, dtype, nanfunc, func):
|
|
415
|
+
mat = mat.astype(dtype)
|
|
416
|
+
if mat.dtype.kind == "c":
|
|
417
|
+
assert_raises(TypeError, func, mat, q=1)
|
|
418
|
+
assert_raises(TypeError, nanfunc, mat, q=1)
|
|
419
|
+
|
|
420
|
+
else:
|
|
421
|
+
tgt = func(mat, q=1)
|
|
422
|
+
out = nanfunc(mat, q=1)
|
|
423
|
+
|
|
424
|
+
assert_almost_equal(out, tgt)
|
|
425
|
+
|
|
426
|
+
if dtype == "O":
|
|
427
|
+
assert type(out) is type(tgt)
|
|
428
|
+
else:
|
|
429
|
+
assert out.dtype == tgt.dtype
|
|
430
|
+
|
|
431
|
+
@pytest.mark.parametrize(
|
|
432
|
+
"nanfunc,func",
|
|
433
|
+
[(np.nanvar, np.var), (np.nanstd, np.std)],
|
|
434
|
+
ids=["nanvar", "nanstd"],
|
|
435
|
+
)
|
|
436
|
+
def test_nanfunc_ddof(self, mat, dtype, nanfunc, func):
|
|
437
|
+
mat = mat.astype(dtype)
|
|
438
|
+
tgt = func(mat, ddof=0.5)
|
|
439
|
+
out = nanfunc(mat, ddof=0.5)
|
|
440
|
+
|
|
441
|
+
assert_almost_equal(out, tgt)
|
|
442
|
+
if dtype == "O":
|
|
443
|
+
assert type(out) is type(tgt)
|
|
444
|
+
else:
|
|
445
|
+
assert out.dtype == tgt.dtype
|
|
446
|
+
|
|
447
|
+
@pytest.mark.parametrize(
|
|
448
|
+
"nanfunc", [np.nanvar, np.nanstd]
|
|
449
|
+
)
|
|
450
|
+
def test_nanfunc_correction(self, mat, dtype, nanfunc):
|
|
451
|
+
mat = mat.astype(dtype)
|
|
452
|
+
assert_almost_equal(
|
|
453
|
+
nanfunc(mat, correction=0.5), nanfunc(mat, ddof=0.5)
|
|
454
|
+
)
|
|
455
|
+
|
|
456
|
+
err_msg = "ddof and correction can't be provided simultaneously."
|
|
457
|
+
with assert_raises_regex(ValueError, err_msg):
|
|
458
|
+
nanfunc(mat, ddof=0.5, correction=0.5)
|
|
459
|
+
|
|
460
|
+
with assert_raises_regex(ValueError, err_msg):
|
|
461
|
+
nanfunc(mat, ddof=1, correction=0)
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
class SharedNanFunctionsTestsMixin:
|
|
465
|
+
def test_mutation(self):
|
|
466
|
+
# Check that passed array is not modified.
|
|
467
|
+
ndat = _ndat.copy()
|
|
468
|
+
for f in self.nanfuncs:
|
|
469
|
+
f(ndat)
|
|
470
|
+
assert_equal(ndat, _ndat)
|
|
471
|
+
|
|
472
|
+
def test_keepdims(self):
|
|
473
|
+
mat = np.eye(3)
|
|
474
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
475
|
+
for axis in [None, 0, 1]:
|
|
476
|
+
tgt = rf(mat, axis=axis, keepdims=True)
|
|
477
|
+
res = nf(mat, axis=axis, keepdims=True)
|
|
478
|
+
assert_(res.ndim == tgt.ndim)
|
|
479
|
+
|
|
480
|
+
def test_out(self):
|
|
481
|
+
mat = np.eye(3)
|
|
482
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
483
|
+
resout = np.zeros(3)
|
|
484
|
+
tgt = rf(mat, axis=1)
|
|
485
|
+
res = nf(mat, axis=1, out=resout)
|
|
486
|
+
assert_almost_equal(res, resout)
|
|
487
|
+
assert_almost_equal(res, tgt)
|
|
488
|
+
|
|
489
|
+
def test_dtype_from_dtype(self):
|
|
490
|
+
mat = np.eye(3)
|
|
491
|
+
codes = 'efdgFDG'
|
|
492
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
493
|
+
for c in codes:
|
|
494
|
+
with warnings.catch_warnings():
|
|
495
|
+
if nf in {np.nanstd, np.nanvar} and c in 'FDG':
|
|
496
|
+
# Giving the warning is a small bug, see gh-8000
|
|
497
|
+
warnings.simplefilter('ignore', ComplexWarning)
|
|
498
|
+
tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
|
|
499
|
+
res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
|
|
500
|
+
assert_(res is tgt)
|
|
501
|
+
# scalar case
|
|
502
|
+
tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
|
|
503
|
+
res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
|
|
504
|
+
assert_(res is tgt)
|
|
505
|
+
|
|
506
|
+
def test_dtype_from_char(self):
|
|
507
|
+
mat = np.eye(3)
|
|
508
|
+
codes = 'efdgFDG'
|
|
509
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
510
|
+
for c in codes:
|
|
511
|
+
with warnings.catch_warnings():
|
|
512
|
+
if nf in {np.nanstd, np.nanvar} and c in 'FDG':
|
|
513
|
+
# Giving the warning is a small bug, see gh-8000
|
|
514
|
+
warnings.simplefilter('ignore', ComplexWarning)
|
|
515
|
+
tgt = rf(mat, dtype=c, axis=1).dtype.type
|
|
516
|
+
res = nf(mat, dtype=c, axis=1).dtype.type
|
|
517
|
+
assert_(res is tgt)
|
|
518
|
+
# scalar case
|
|
519
|
+
tgt = rf(mat, dtype=c, axis=None).dtype.type
|
|
520
|
+
res = nf(mat, dtype=c, axis=None).dtype.type
|
|
521
|
+
assert_(res is tgt)
|
|
522
|
+
|
|
523
|
+
def test_dtype_from_input(self):
|
|
524
|
+
codes = 'efdgFDG'
|
|
525
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
526
|
+
for c in codes:
|
|
527
|
+
mat = np.eye(3, dtype=c)
|
|
528
|
+
tgt = rf(mat, axis=1).dtype.type
|
|
529
|
+
res = nf(mat, axis=1).dtype.type
|
|
530
|
+
assert_(res is tgt, f"res {res}, tgt {tgt}")
|
|
531
|
+
# scalar case
|
|
532
|
+
tgt = rf(mat, axis=None).dtype.type
|
|
533
|
+
res = nf(mat, axis=None).dtype.type
|
|
534
|
+
assert_(res is tgt)
|
|
535
|
+
|
|
536
|
+
def test_result_values(self):
|
|
537
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
538
|
+
tgt = [rf(d) for d in _rdat]
|
|
539
|
+
res = nf(_ndat, axis=1)
|
|
540
|
+
assert_almost_equal(res, tgt)
|
|
541
|
+
|
|
542
|
+
def test_scalar(self):
|
|
543
|
+
for f in self.nanfuncs:
|
|
544
|
+
assert_(f(0.) == 0.)
|
|
545
|
+
|
|
546
|
+
def test_subclass(self):
|
|
547
|
+
class MyNDArray(np.ndarray):
|
|
548
|
+
pass
|
|
549
|
+
|
|
550
|
+
# Check that it works and that type and
|
|
551
|
+
# shape are preserved
|
|
552
|
+
array = np.eye(3)
|
|
553
|
+
mine = array.view(MyNDArray)
|
|
554
|
+
for f in self.nanfuncs:
|
|
555
|
+
expected_shape = f(array, axis=0).shape
|
|
556
|
+
res = f(mine, axis=0)
|
|
557
|
+
assert_(isinstance(res, MyNDArray))
|
|
558
|
+
assert_(res.shape == expected_shape)
|
|
559
|
+
expected_shape = f(array, axis=1).shape
|
|
560
|
+
res = f(mine, axis=1)
|
|
561
|
+
assert_(isinstance(res, MyNDArray))
|
|
562
|
+
assert_(res.shape == expected_shape)
|
|
563
|
+
expected_shape = f(array).shape
|
|
564
|
+
res = f(mine)
|
|
565
|
+
assert_(isinstance(res, MyNDArray))
|
|
566
|
+
assert_(res.shape == expected_shape)
|
|
567
|
+
|
|
568
|
+
|
|
569
|
+
class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin):
|
|
570
|
+
|
|
571
|
+
nanfuncs = [np.nansum, np.nanprod]
|
|
572
|
+
stdfuncs = [np.sum, np.prod]
|
|
573
|
+
|
|
574
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
575
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
576
|
+
@pytest.mark.parametrize("array", [
|
|
577
|
+
np.array(np.nan),
|
|
578
|
+
np.full((3, 3), np.nan),
|
|
579
|
+
], ids=["0d", "2d"])
|
|
580
|
+
def test_allnans(self, axis, dtype, array):
|
|
581
|
+
if axis is not None and array.ndim == 0:
|
|
582
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
583
|
+
|
|
584
|
+
array = array.astype(dtype)
|
|
585
|
+
for func, identity in zip(self.nanfuncs, [0, 1]):
|
|
586
|
+
out = func(array, axis=axis)
|
|
587
|
+
assert np.all(out == identity)
|
|
588
|
+
assert out.dtype == array.dtype
|
|
589
|
+
|
|
590
|
+
def test_empty(self):
|
|
591
|
+
for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]):
|
|
592
|
+
mat = np.zeros((0, 3))
|
|
593
|
+
tgt = [tgt_value] * 3
|
|
594
|
+
res = f(mat, axis=0)
|
|
595
|
+
assert_equal(res, tgt)
|
|
596
|
+
tgt = []
|
|
597
|
+
res = f(mat, axis=1)
|
|
598
|
+
assert_equal(res, tgt)
|
|
599
|
+
tgt = tgt_value
|
|
600
|
+
res = f(mat, axis=None)
|
|
601
|
+
assert_equal(res, tgt)
|
|
602
|
+
|
|
603
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
604
|
+
def test_initial(self, dtype):
|
|
605
|
+
ar = np.arange(9).astype(dtype)
|
|
606
|
+
ar[:5] = np.nan
|
|
607
|
+
|
|
608
|
+
for f in self.nanfuncs:
|
|
609
|
+
reference = 28 if f is np.nansum else 3360
|
|
610
|
+
ret = f(ar, initial=2)
|
|
611
|
+
assert ret.dtype == dtype
|
|
612
|
+
assert ret == reference
|
|
613
|
+
|
|
614
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
615
|
+
def test_where(self, dtype):
|
|
616
|
+
ar = np.arange(9).reshape(3, 3).astype(dtype)
|
|
617
|
+
ar[0, :] = np.nan
|
|
618
|
+
where = np.ones_like(ar, dtype=np.bool)
|
|
619
|
+
where[:, 0] = False
|
|
620
|
+
|
|
621
|
+
for f in self.nanfuncs:
|
|
622
|
+
reference = 26 if f is np.nansum else 2240
|
|
623
|
+
ret = f(ar, where=where, initial=2)
|
|
624
|
+
assert ret.dtype == dtype
|
|
625
|
+
assert ret == reference
|
|
626
|
+
|
|
627
|
+
|
|
628
|
+
class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin):
|
|
629
|
+
|
|
630
|
+
nanfuncs = [np.nancumsum, np.nancumprod]
|
|
631
|
+
stdfuncs = [np.cumsum, np.cumprod]
|
|
632
|
+
|
|
633
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
634
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
635
|
+
@pytest.mark.parametrize("array", [
|
|
636
|
+
np.array(np.nan),
|
|
637
|
+
np.full((3, 3), np.nan)
|
|
638
|
+
], ids=["0d", "2d"])
|
|
639
|
+
def test_allnans(self, axis, dtype, array):
|
|
640
|
+
if axis is not None and array.ndim == 0:
|
|
641
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
642
|
+
|
|
643
|
+
array = array.astype(dtype)
|
|
644
|
+
for func, identity in zip(self.nanfuncs, [0, 1]):
|
|
645
|
+
out = func(array)
|
|
646
|
+
assert np.all(out == identity)
|
|
647
|
+
assert out.dtype == array.dtype
|
|
648
|
+
|
|
649
|
+
def test_empty(self):
|
|
650
|
+
for f, tgt_value in zip(self.nanfuncs, [0, 1]):
|
|
651
|
+
mat = np.zeros((0, 3))
|
|
652
|
+
tgt = tgt_value * np.ones((0, 3))
|
|
653
|
+
res = f(mat, axis=0)
|
|
654
|
+
assert_equal(res, tgt)
|
|
655
|
+
tgt = mat
|
|
656
|
+
res = f(mat, axis=1)
|
|
657
|
+
assert_equal(res, tgt)
|
|
658
|
+
tgt = np.zeros(0)
|
|
659
|
+
res = f(mat, axis=None)
|
|
660
|
+
assert_equal(res, tgt)
|
|
661
|
+
|
|
662
|
+
def test_keepdims(self):
|
|
663
|
+
for f, g in zip(self.nanfuncs, self.stdfuncs):
|
|
664
|
+
mat = np.eye(3)
|
|
665
|
+
for axis in [None, 0, 1]:
|
|
666
|
+
tgt = f(mat, axis=axis, out=None)
|
|
667
|
+
res = g(mat, axis=axis, out=None)
|
|
668
|
+
assert_(res.ndim == tgt.ndim)
|
|
669
|
+
|
|
670
|
+
for f in self.nanfuncs:
|
|
671
|
+
d = np.ones((3, 5, 7, 11))
|
|
672
|
+
# Randomly set some elements to NaN:
|
|
673
|
+
rs = np.random.RandomState(0)
|
|
674
|
+
d[rs.rand(*d.shape) < 0.5] = np.nan
|
|
675
|
+
res = f(d, axis=None)
|
|
676
|
+
assert_equal(res.shape, (1155,))
|
|
677
|
+
for axis in np.arange(4):
|
|
678
|
+
res = f(d, axis=axis)
|
|
679
|
+
assert_equal(res.shape, (3, 5, 7, 11))
|
|
680
|
+
|
|
681
|
+
def test_result_values(self):
|
|
682
|
+
for axis in (-2, -1, 0, 1, None):
|
|
683
|
+
tgt = np.cumprod(_ndat_ones, axis=axis)
|
|
684
|
+
res = np.nancumprod(_ndat, axis=axis)
|
|
685
|
+
assert_almost_equal(res, tgt)
|
|
686
|
+
tgt = np.cumsum(_ndat_zeros, axis=axis)
|
|
687
|
+
res = np.nancumsum(_ndat, axis=axis)
|
|
688
|
+
assert_almost_equal(res, tgt)
|
|
689
|
+
|
|
690
|
+
def test_out(self):
|
|
691
|
+
mat = np.eye(3)
|
|
692
|
+
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
|
693
|
+
resout = np.eye(3)
|
|
694
|
+
for axis in (-2, -1, 0, 1):
|
|
695
|
+
tgt = rf(mat, axis=axis)
|
|
696
|
+
res = nf(mat, axis=axis, out=resout)
|
|
697
|
+
assert_almost_equal(res, resout)
|
|
698
|
+
assert_almost_equal(res, tgt)
|
|
699
|
+
|
|
700
|
+
|
|
701
|
+
class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):
|
|
702
|
+
|
|
703
|
+
nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
|
|
704
|
+
stdfuncs = [np.mean, np.var, np.std]
|
|
705
|
+
|
|
706
|
+
def test_dtype_error(self):
|
|
707
|
+
for f in self.nanfuncs:
|
|
708
|
+
for dtype in [np.bool, np.int_, np.object_]:
|
|
709
|
+
assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
|
|
710
|
+
|
|
711
|
+
def test_out_dtype_error(self):
|
|
712
|
+
for f in self.nanfuncs:
|
|
713
|
+
for dtype in [np.bool, np.int_, np.object_]:
|
|
714
|
+
out = np.empty(_ndat.shape[0], dtype=dtype)
|
|
715
|
+
assert_raises(TypeError, f, _ndat, axis=1, out=out)
|
|
716
|
+
|
|
717
|
+
def test_ddof(self):
|
|
718
|
+
nanfuncs = [np.nanvar, np.nanstd]
|
|
719
|
+
stdfuncs = [np.var, np.std]
|
|
720
|
+
for nf, rf in zip(nanfuncs, stdfuncs):
|
|
721
|
+
for ddof in [0, 1]:
|
|
722
|
+
tgt = [rf(d, ddof=ddof) for d in _rdat]
|
|
723
|
+
res = nf(_ndat, axis=1, ddof=ddof)
|
|
724
|
+
assert_almost_equal(res, tgt)
|
|
725
|
+
|
|
726
|
+
def test_ddof_too_big(self):
|
|
727
|
+
nanfuncs = [np.nanvar, np.nanstd]
|
|
728
|
+
stdfuncs = [np.var, np.std]
|
|
729
|
+
dsize = [len(d) for d in _rdat]
|
|
730
|
+
for nf, rf in zip(nanfuncs, stdfuncs):
|
|
731
|
+
for ddof in range(5):
|
|
732
|
+
with warnings.catch_warnings(record=True) as w:
|
|
733
|
+
warnings.simplefilter('always')
|
|
734
|
+
warnings.simplefilter('ignore', ComplexWarning)
|
|
735
|
+
tgt = [ddof >= d for d in dsize]
|
|
736
|
+
res = nf(_ndat, axis=1, ddof=ddof)
|
|
737
|
+
assert_equal(np.isnan(res), tgt)
|
|
738
|
+
if any(tgt):
|
|
739
|
+
assert_(len(w) == 1)
|
|
740
|
+
else:
|
|
741
|
+
assert_(len(w) == 0)
|
|
742
|
+
|
|
743
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
744
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
745
|
+
@pytest.mark.parametrize("array", [
|
|
746
|
+
np.array(np.nan),
|
|
747
|
+
np.full((3, 3), np.nan),
|
|
748
|
+
], ids=["0d", "2d"])
|
|
749
|
+
def test_allnans(self, axis, dtype, array):
|
|
750
|
+
if axis is not None and array.ndim == 0:
|
|
751
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
752
|
+
|
|
753
|
+
array = array.astype(dtype)
|
|
754
|
+
match = "(Degrees of freedom <= 0 for slice.)|(Mean of empty slice)"
|
|
755
|
+
for func in self.nanfuncs:
|
|
756
|
+
with pytest.warns(RuntimeWarning, match=match):
|
|
757
|
+
out = func(array, axis=axis)
|
|
758
|
+
assert np.isnan(out).all()
|
|
759
|
+
|
|
760
|
+
# `nanvar` and `nanstd` convert complex inputs to their
|
|
761
|
+
# corresponding floating dtype
|
|
762
|
+
if func is np.nanmean:
|
|
763
|
+
assert out.dtype == array.dtype
|
|
764
|
+
else:
|
|
765
|
+
assert out.dtype == np.abs(array).dtype
|
|
766
|
+
|
|
767
|
+
def test_empty(self):
|
|
768
|
+
mat = np.zeros((0, 3))
|
|
769
|
+
for f in self.nanfuncs:
|
|
770
|
+
for axis in [0, None]:
|
|
771
|
+
with warnings.catch_warnings(record=True) as w:
|
|
772
|
+
warnings.simplefilter('always')
|
|
773
|
+
assert_(np.isnan(f(mat, axis=axis)).all())
|
|
774
|
+
assert_(len(w) == 1)
|
|
775
|
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
776
|
+
for axis in [1]:
|
|
777
|
+
with warnings.catch_warnings(record=True) as w:
|
|
778
|
+
warnings.simplefilter('always')
|
|
779
|
+
assert_equal(f(mat, axis=axis), np.zeros([]))
|
|
780
|
+
assert_(len(w) == 0)
|
|
781
|
+
|
|
782
|
+
@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
|
|
783
|
+
def test_where(self, dtype):
|
|
784
|
+
ar = np.arange(9).reshape(3, 3).astype(dtype)
|
|
785
|
+
ar[0, :] = np.nan
|
|
786
|
+
where = np.ones_like(ar, dtype=np.bool)
|
|
787
|
+
where[:, 0] = False
|
|
788
|
+
|
|
789
|
+
for f, f_std in zip(self.nanfuncs, self.stdfuncs):
|
|
790
|
+
reference = f_std(ar[where][2:])
|
|
791
|
+
dtype_reference = dtype if f is np.nanmean else ar.real.dtype
|
|
792
|
+
|
|
793
|
+
ret = f(ar, where=where)
|
|
794
|
+
assert ret.dtype == dtype_reference
|
|
795
|
+
np.testing.assert_allclose(ret, reference)
|
|
796
|
+
|
|
797
|
+
def test_nanstd_with_mean_keyword(self):
|
|
798
|
+
# Setting the seed to make the test reproducible
|
|
799
|
+
rng = np.random.RandomState(1234)
|
|
800
|
+
A = rng.randn(10, 20, 5) + 0.5
|
|
801
|
+
A[:, 5, :] = np.nan
|
|
802
|
+
|
|
803
|
+
mean_out = np.zeros((10, 1, 5))
|
|
804
|
+
std_out = np.zeros((10, 1, 5))
|
|
805
|
+
|
|
806
|
+
mean = np.nanmean(A,
|
|
807
|
+
out=mean_out,
|
|
808
|
+
axis=1,
|
|
809
|
+
keepdims=True)
|
|
810
|
+
|
|
811
|
+
# The returned object should be the object specified during calling
|
|
812
|
+
assert mean_out is mean
|
|
813
|
+
|
|
814
|
+
std = np.nanstd(A,
|
|
815
|
+
out=std_out,
|
|
816
|
+
axis=1,
|
|
817
|
+
keepdims=True,
|
|
818
|
+
mean=mean)
|
|
819
|
+
|
|
820
|
+
# The returned object should be the object specified during calling
|
|
821
|
+
assert std_out is std
|
|
822
|
+
|
|
823
|
+
# Shape of returned mean and std should be same
|
|
824
|
+
assert std.shape == mean.shape
|
|
825
|
+
assert std.shape == (10, 1, 5)
|
|
826
|
+
|
|
827
|
+
# Output should be the same as from the individual algorithms
|
|
828
|
+
std_old = np.nanstd(A, axis=1, keepdims=True)
|
|
829
|
+
|
|
830
|
+
assert std_old.shape == mean.shape
|
|
831
|
+
assert_almost_equal(std, std_old)
|
|
832
|
+
|
|
833
|
+
|
|
834
|
+
_TIME_UNITS = (
|
|
835
|
+
"Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"
|
|
836
|
+
)
|
|
837
|
+
|
|
838
|
+
# All `inexact` + `timdelta64` type codes
|
|
839
|
+
_TYPE_CODES = list(np.typecodes["AllFloat"])
|
|
840
|
+
_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS]
|
|
841
|
+
|
|
842
|
+
|
|
843
|
+
class TestNanFunctions_Median:
|
|
844
|
+
|
|
845
|
+
def test_mutation(self):
|
|
846
|
+
# Check that passed array is not modified.
|
|
847
|
+
ndat = _ndat.copy()
|
|
848
|
+
np.nanmedian(ndat)
|
|
849
|
+
assert_equal(ndat, _ndat)
|
|
850
|
+
|
|
851
|
+
def test_keepdims(self):
|
|
852
|
+
mat = np.eye(3)
|
|
853
|
+
for axis in [None, 0, 1]:
|
|
854
|
+
tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
|
|
855
|
+
res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
|
|
856
|
+
assert_(res.ndim == tgt.ndim)
|
|
857
|
+
|
|
858
|
+
d = np.ones((3, 5, 7, 11))
|
|
859
|
+
# Randomly set some elements to NaN:
|
|
860
|
+
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
|
861
|
+
w = w.astype(np.intp)
|
|
862
|
+
d[tuple(w)] = np.nan
|
|
863
|
+
with warnings.catch_warnings():
|
|
864
|
+
warnings.simplefilter('ignore', RuntimeWarning)
|
|
865
|
+
res = np.nanmedian(d, axis=None, keepdims=True)
|
|
866
|
+
assert_equal(res.shape, (1, 1, 1, 1))
|
|
867
|
+
res = np.nanmedian(d, axis=(0, 1), keepdims=True)
|
|
868
|
+
assert_equal(res.shape, (1, 1, 7, 11))
|
|
869
|
+
res = np.nanmedian(d, axis=(0, 3), keepdims=True)
|
|
870
|
+
assert_equal(res.shape, (1, 5, 7, 1))
|
|
871
|
+
res = np.nanmedian(d, axis=(1,), keepdims=True)
|
|
872
|
+
assert_equal(res.shape, (3, 1, 7, 11))
|
|
873
|
+
res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
|
|
874
|
+
assert_equal(res.shape, (1, 1, 1, 1))
|
|
875
|
+
res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
|
|
876
|
+
assert_equal(res.shape, (1, 1, 7, 1))
|
|
877
|
+
|
|
878
|
+
@pytest.mark.parametrize(
|
|
879
|
+
argnames='axis',
|
|
880
|
+
argvalues=[
|
|
881
|
+
None,
|
|
882
|
+
1,
|
|
883
|
+
(1, ),
|
|
884
|
+
(0, 1),
|
|
885
|
+
(-3, -1),
|
|
886
|
+
]
|
|
887
|
+
)
|
|
888
|
+
@pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
|
|
889
|
+
def test_keepdims_out(self, axis):
|
|
890
|
+
d = np.ones((3, 5, 7, 11))
|
|
891
|
+
# Randomly set some elements to NaN:
|
|
892
|
+
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
|
893
|
+
w = w.astype(np.intp)
|
|
894
|
+
d[tuple(w)] = np.nan
|
|
895
|
+
if axis is None:
|
|
896
|
+
shape_out = (1,) * d.ndim
|
|
897
|
+
else:
|
|
898
|
+
axis_norm = normalize_axis_tuple(axis, d.ndim)
|
|
899
|
+
shape_out = tuple(
|
|
900
|
+
1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
|
|
901
|
+
out = np.empty(shape_out)
|
|
902
|
+
result = np.nanmedian(d, axis=axis, keepdims=True, out=out)
|
|
903
|
+
assert result is out
|
|
904
|
+
assert_equal(result.shape, shape_out)
|
|
905
|
+
|
|
906
|
+
def test_out(self):
|
|
907
|
+
mat = np.random.rand(3, 3)
|
|
908
|
+
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
|
|
909
|
+
resout = np.zeros(3)
|
|
910
|
+
tgt = np.median(mat, axis=1)
|
|
911
|
+
res = np.nanmedian(nan_mat, axis=1, out=resout)
|
|
912
|
+
assert_almost_equal(res, resout)
|
|
913
|
+
assert_almost_equal(res, tgt)
|
|
914
|
+
# 0-d output:
|
|
915
|
+
resout = np.zeros(())
|
|
916
|
+
tgt = np.median(mat, axis=None)
|
|
917
|
+
res = np.nanmedian(nan_mat, axis=None, out=resout)
|
|
918
|
+
assert_almost_equal(res, resout)
|
|
919
|
+
assert_almost_equal(res, tgt)
|
|
920
|
+
res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
|
|
921
|
+
assert_almost_equal(res, resout)
|
|
922
|
+
assert_almost_equal(res, tgt)
|
|
923
|
+
|
|
924
|
+
def test_small_large(self):
|
|
925
|
+
# test the small and large code paths, current cutoff 400 elements
|
|
926
|
+
for s in [5, 20, 51, 200, 1000]:
|
|
927
|
+
d = np.random.randn(4, s)
|
|
928
|
+
# Randomly set some elements to NaN:
|
|
929
|
+
w = np.random.randint(0, d.size, size=d.size // 5)
|
|
930
|
+
d.ravel()[w] = np.nan
|
|
931
|
+
d[:, 0] = 1. # ensure at least one good value
|
|
932
|
+
# use normal median without nans to compare
|
|
933
|
+
tgt = []
|
|
934
|
+
for x in d:
|
|
935
|
+
nonan = np.compress(~np.isnan(x), x)
|
|
936
|
+
tgt.append(np.median(nonan, overwrite_input=True))
|
|
937
|
+
|
|
938
|
+
assert_array_equal(np.nanmedian(d, axis=-1), tgt)
|
|
939
|
+
|
|
940
|
+
def test_result_values(self):
|
|
941
|
+
tgt = [np.median(d) for d in _rdat]
|
|
942
|
+
res = np.nanmedian(_ndat, axis=1)
|
|
943
|
+
assert_almost_equal(res, tgt)
|
|
944
|
+
|
|
945
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
946
|
+
@pytest.mark.parametrize("dtype", _TYPE_CODES)
|
|
947
|
+
def test_allnans(self, dtype, axis):
|
|
948
|
+
mat = np.full((3, 3), np.nan).astype(dtype)
|
|
949
|
+
with pytest.warns(RuntimeWarning) as r:
|
|
950
|
+
output = np.nanmedian(mat, axis=axis)
|
|
951
|
+
assert output.dtype == mat.dtype
|
|
952
|
+
assert np.isnan(output).all()
|
|
953
|
+
|
|
954
|
+
if axis is None:
|
|
955
|
+
assert_(len(r) == 1)
|
|
956
|
+
else:
|
|
957
|
+
assert_(len(r) == 3)
|
|
958
|
+
|
|
959
|
+
# Check scalar
|
|
960
|
+
scalar = np.array(np.nan).astype(dtype)[()]
|
|
961
|
+
output_scalar = np.nanmedian(scalar)
|
|
962
|
+
assert output_scalar.dtype == scalar.dtype
|
|
963
|
+
assert np.isnan(output_scalar)
|
|
964
|
+
|
|
965
|
+
if axis is None:
|
|
966
|
+
assert_(len(r) == 2)
|
|
967
|
+
else:
|
|
968
|
+
assert_(len(r) == 4)
|
|
969
|
+
|
|
970
|
+
def test_empty(self):
|
|
971
|
+
mat = np.zeros((0, 3))
|
|
972
|
+
for axis in [0, None]:
|
|
973
|
+
with warnings.catch_warnings(record=True) as w:
|
|
974
|
+
warnings.simplefilter('always')
|
|
975
|
+
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
|
|
976
|
+
assert_(len(w) == 1)
|
|
977
|
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
978
|
+
for axis in [1]:
|
|
979
|
+
with warnings.catch_warnings(record=True) as w:
|
|
980
|
+
warnings.simplefilter('always')
|
|
981
|
+
assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
|
|
982
|
+
assert_(len(w) == 0)
|
|
983
|
+
|
|
984
|
+
def test_scalar(self):
|
|
985
|
+
assert_(np.nanmedian(0.) == 0.)
|
|
986
|
+
|
|
987
|
+
def test_extended_axis_invalid(self):
|
|
988
|
+
d = np.ones((3, 5, 7, 11))
|
|
989
|
+
assert_raises(AxisError, np.nanmedian, d, axis=-5)
|
|
990
|
+
assert_raises(AxisError, np.nanmedian, d, axis=(0, -5))
|
|
991
|
+
assert_raises(AxisError, np.nanmedian, d, axis=4)
|
|
992
|
+
assert_raises(AxisError, np.nanmedian, d, axis=(0, 4))
|
|
993
|
+
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
|
|
994
|
+
|
|
995
|
+
def test_float_special(self):
|
|
996
|
+
with warnings.catch_warnings():
|
|
997
|
+
warnings.simplefilter('ignore', RuntimeWarning)
|
|
998
|
+
for inf in [np.inf, -np.inf]:
|
|
999
|
+
a = np.array([[inf, np.nan], [np.nan, np.nan]])
|
|
1000
|
+
assert_equal(np.nanmedian(a, axis=0), [inf, np.nan])
|
|
1001
|
+
assert_equal(np.nanmedian(a, axis=1), [inf, np.nan])
|
|
1002
|
+
assert_equal(np.nanmedian(a), inf)
|
|
1003
|
+
|
|
1004
|
+
# minimum fill value check
|
|
1005
|
+
a = np.array([[np.nan, np.nan, inf],
|
|
1006
|
+
[np.nan, np.nan, inf]])
|
|
1007
|
+
assert_equal(np.nanmedian(a), inf)
|
|
1008
|
+
assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf])
|
|
1009
|
+
assert_equal(np.nanmedian(a, axis=1), inf)
|
|
1010
|
+
|
|
1011
|
+
# no mask path
|
|
1012
|
+
a = np.array([[inf, inf], [inf, inf]])
|
|
1013
|
+
assert_equal(np.nanmedian(a, axis=1), inf)
|
|
1014
|
+
|
|
1015
|
+
a = np.array([[inf, 7, -inf, -9],
|
|
1016
|
+
[-10, np.nan, np.nan, 5],
|
|
1017
|
+
[4, np.nan, np.nan, inf]],
|
|
1018
|
+
dtype=np.float32)
|
|
1019
|
+
if inf > 0:
|
|
1020
|
+
assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.])
|
|
1021
|
+
assert_equal(np.nanmedian(a), 4.5)
|
|
1022
|
+
else:
|
|
1023
|
+
assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.])
|
|
1024
|
+
assert_equal(np.nanmedian(a), -2.5)
|
|
1025
|
+
assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf])
|
|
1026
|
+
|
|
1027
|
+
for i in range(10):
|
|
1028
|
+
for j in range(1, 10):
|
|
1029
|
+
a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
|
|
1030
|
+
assert_equal(np.nanmedian(a), inf)
|
|
1031
|
+
assert_equal(np.nanmedian(a, axis=1), inf)
|
|
1032
|
+
assert_equal(np.nanmedian(a, axis=0),
|
|
1033
|
+
([np.nan] * i) + [inf] * j)
|
|
1034
|
+
|
|
1035
|
+
a = np.array([([np.nan] * i) + ([-inf] * j)] * 2)
|
|
1036
|
+
assert_equal(np.nanmedian(a), -inf)
|
|
1037
|
+
assert_equal(np.nanmedian(a, axis=1), -inf)
|
|
1038
|
+
assert_equal(np.nanmedian(a, axis=0),
|
|
1039
|
+
([np.nan] * i) + [-inf] * j)
|
|
1040
|
+
|
|
1041
|
+
|
|
1042
|
+
class TestNanFunctions_Percentile:
|
|
1043
|
+
|
|
1044
|
+
def test_mutation(self):
|
|
1045
|
+
# Check that passed array is not modified.
|
|
1046
|
+
ndat = _ndat.copy()
|
|
1047
|
+
np.nanpercentile(ndat, 30)
|
|
1048
|
+
assert_equal(ndat, _ndat)
|
|
1049
|
+
|
|
1050
|
+
def test_keepdims(self):
|
|
1051
|
+
mat = np.eye(3)
|
|
1052
|
+
for axis in [None, 0, 1]:
|
|
1053
|
+
tgt = np.percentile(mat, 70, axis=axis, out=None,
|
|
1054
|
+
overwrite_input=False)
|
|
1055
|
+
res = np.nanpercentile(mat, 70, axis=axis, out=None,
|
|
1056
|
+
overwrite_input=False)
|
|
1057
|
+
assert_(res.ndim == tgt.ndim)
|
|
1058
|
+
|
|
1059
|
+
d = np.ones((3, 5, 7, 11))
|
|
1060
|
+
# Randomly set some elements to NaN:
|
|
1061
|
+
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
|
1062
|
+
w = w.astype(np.intp)
|
|
1063
|
+
d[tuple(w)] = np.nan
|
|
1064
|
+
with warnings.catch_warnings():
|
|
1065
|
+
warnings.simplefilter('ignore', RuntimeWarning)
|
|
1066
|
+
res = np.nanpercentile(d, 90, axis=None, keepdims=True)
|
|
1067
|
+
assert_equal(res.shape, (1, 1, 1, 1))
|
|
1068
|
+
res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
|
|
1069
|
+
assert_equal(res.shape, (1, 1, 7, 11))
|
|
1070
|
+
res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
|
|
1071
|
+
assert_equal(res.shape, (1, 5, 7, 1))
|
|
1072
|
+
res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
|
|
1073
|
+
assert_equal(res.shape, (3, 1, 7, 11))
|
|
1074
|
+
res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
|
|
1075
|
+
assert_equal(res.shape, (1, 1, 1, 1))
|
|
1076
|
+
res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
|
|
1077
|
+
assert_equal(res.shape, (1, 1, 7, 1))
|
|
1078
|
+
|
|
1079
|
+
@pytest.mark.parametrize('q', [7, [1, 7]])
|
|
1080
|
+
@pytest.mark.parametrize(
|
|
1081
|
+
argnames='axis',
|
|
1082
|
+
argvalues=[
|
|
1083
|
+
None,
|
|
1084
|
+
1,
|
|
1085
|
+
(1,),
|
|
1086
|
+
(0, 1),
|
|
1087
|
+
(-3, -1),
|
|
1088
|
+
]
|
|
1089
|
+
)
|
|
1090
|
+
@pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
|
|
1091
|
+
def test_keepdims_out(self, q, axis):
|
|
1092
|
+
d = np.ones((3, 5, 7, 11))
|
|
1093
|
+
# Randomly set some elements to NaN:
|
|
1094
|
+
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
|
1095
|
+
w = w.astype(np.intp)
|
|
1096
|
+
d[tuple(w)] = np.nan
|
|
1097
|
+
if axis is None:
|
|
1098
|
+
shape_out = (1,) * d.ndim
|
|
1099
|
+
else:
|
|
1100
|
+
axis_norm = normalize_axis_tuple(axis, d.ndim)
|
|
1101
|
+
shape_out = tuple(
|
|
1102
|
+
1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
|
|
1103
|
+
shape_out = np.shape(q) + shape_out
|
|
1104
|
+
|
|
1105
|
+
out = np.empty(shape_out)
|
|
1106
|
+
result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out)
|
|
1107
|
+
assert result is out
|
|
1108
|
+
assert_equal(result.shape, shape_out)
|
|
1109
|
+
|
|
1110
|
+
@pytest.mark.parametrize("weighted", [False, True])
|
|
1111
|
+
def test_out(self, weighted):
|
|
1112
|
+
mat = np.random.rand(3, 3)
|
|
1113
|
+
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
|
|
1114
|
+
resout = np.zeros(3)
|
|
1115
|
+
if weighted:
|
|
1116
|
+
w_args = {"weights": np.ones_like(mat), "method": "inverted_cdf"}
|
|
1117
|
+
nan_w_args = {
|
|
1118
|
+
"weights": np.ones_like(nan_mat), "method": "inverted_cdf"
|
|
1119
|
+
}
|
|
1120
|
+
else:
|
|
1121
|
+
w_args = {}
|
|
1122
|
+
nan_w_args = {}
|
|
1123
|
+
tgt = np.percentile(mat, 42, axis=1, **w_args)
|
|
1124
|
+
res = np.nanpercentile(nan_mat, 42, axis=1, out=resout, **nan_w_args)
|
|
1125
|
+
assert_almost_equal(res, resout)
|
|
1126
|
+
assert_almost_equal(res, tgt)
|
|
1127
|
+
# 0-d output:
|
|
1128
|
+
resout = np.zeros(())
|
|
1129
|
+
tgt = np.percentile(mat, 42, axis=None, **w_args)
|
|
1130
|
+
res = np.nanpercentile(
|
|
1131
|
+
nan_mat, 42, axis=None, out=resout, **nan_w_args
|
|
1132
|
+
)
|
|
1133
|
+
assert_almost_equal(res, resout)
|
|
1134
|
+
assert_almost_equal(res, tgt)
|
|
1135
|
+
res = np.nanpercentile(
|
|
1136
|
+
nan_mat, 42, axis=(0, 1), out=resout, **nan_w_args
|
|
1137
|
+
)
|
|
1138
|
+
assert_almost_equal(res, resout)
|
|
1139
|
+
assert_almost_equal(res, tgt)
|
|
1140
|
+
|
|
1141
|
+
def test_complex(self):
|
|
1142
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G')
|
|
1143
|
+
assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)
|
|
1144
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D')
|
|
1145
|
+
assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)
|
|
1146
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F')
|
|
1147
|
+
assert_raises(TypeError, np.nanpercentile, arr_c, 0.5)
|
|
1148
|
+
|
|
1149
|
+
@pytest.mark.parametrize("weighted", [False, True])
|
|
1150
|
+
@pytest.mark.parametrize("use_out", [False, True])
|
|
1151
|
+
def test_result_values(self, weighted, use_out):
|
|
1152
|
+
if weighted:
|
|
1153
|
+
percentile = partial(np.percentile, method="inverted_cdf")
|
|
1154
|
+
nanpercentile = partial(np.nanpercentile, method="inverted_cdf")
|
|
1155
|
+
|
|
1156
|
+
def gen_weights(d):
|
|
1157
|
+
return np.ones_like(d)
|
|
1158
|
+
|
|
1159
|
+
else:
|
|
1160
|
+
percentile = np.percentile
|
|
1161
|
+
nanpercentile = np.nanpercentile
|
|
1162
|
+
|
|
1163
|
+
def gen_weights(d):
|
|
1164
|
+
return None
|
|
1165
|
+
|
|
1166
|
+
tgt = [percentile(d, 28, weights=gen_weights(d)) for d in _rdat]
|
|
1167
|
+
out = np.empty_like(tgt) if use_out else None
|
|
1168
|
+
res = nanpercentile(_ndat, 28, axis=1,
|
|
1169
|
+
weights=gen_weights(_ndat), out=out)
|
|
1170
|
+
assert_almost_equal(res, tgt)
|
|
1171
|
+
# Transpose the array to fit the output convention of numpy.percentile
|
|
1172
|
+
tgt = np.transpose([percentile(d, (28, 98), weights=gen_weights(d))
|
|
1173
|
+
for d in _rdat])
|
|
1174
|
+
out = np.empty_like(tgt) if use_out else None
|
|
1175
|
+
res = nanpercentile(_ndat, (28, 98), axis=1,
|
|
1176
|
+
weights=gen_weights(_ndat), out=out)
|
|
1177
|
+
assert_almost_equal(res, tgt)
|
|
1178
|
+
|
|
1179
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
1180
|
+
@pytest.mark.parametrize("dtype", np.typecodes["Float"])
|
|
1181
|
+
@pytest.mark.parametrize("array", [
|
|
1182
|
+
np.array(np.nan),
|
|
1183
|
+
np.full((3, 3), np.nan),
|
|
1184
|
+
], ids=["0d", "2d"])
|
|
1185
|
+
def test_allnans(self, axis, dtype, array):
|
|
1186
|
+
if axis is not None and array.ndim == 0:
|
|
1187
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
1188
|
+
|
|
1189
|
+
array = array.astype(dtype)
|
|
1190
|
+
with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
|
|
1191
|
+
out = np.nanpercentile(array, 60, axis=axis)
|
|
1192
|
+
assert np.isnan(out).all()
|
|
1193
|
+
assert out.dtype == array.dtype
|
|
1194
|
+
|
|
1195
|
+
def test_empty(self):
|
|
1196
|
+
mat = np.zeros((0, 3))
|
|
1197
|
+
for axis in [0, None]:
|
|
1198
|
+
with warnings.catch_warnings(record=True) as w:
|
|
1199
|
+
warnings.simplefilter('always')
|
|
1200
|
+
assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
|
|
1201
|
+
assert_(len(w) == 1)
|
|
1202
|
+
assert_(issubclass(w[0].category, RuntimeWarning))
|
|
1203
|
+
for axis in [1]:
|
|
1204
|
+
with warnings.catch_warnings(record=True) as w:
|
|
1205
|
+
warnings.simplefilter('always')
|
|
1206
|
+
assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
|
|
1207
|
+
assert_(len(w) == 0)
|
|
1208
|
+
|
|
1209
|
+
def test_scalar(self):
|
|
1210
|
+
assert_equal(np.nanpercentile(0., 100), 0.)
|
|
1211
|
+
a = np.arange(6)
|
|
1212
|
+
r = np.nanpercentile(a, 50, axis=0)
|
|
1213
|
+
assert_equal(r, 2.5)
|
|
1214
|
+
assert_(np.isscalar(r))
|
|
1215
|
+
|
|
1216
|
+
def test_extended_axis_invalid(self):
|
|
1217
|
+
d = np.ones((3, 5, 7, 11))
|
|
1218
|
+
assert_raises(AxisError, np.nanpercentile, d, q=5, axis=-5)
|
|
1219
|
+
assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
|
|
1220
|
+
assert_raises(AxisError, np.nanpercentile, d, q=5, axis=4)
|
|
1221
|
+
assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, 4))
|
|
1222
|
+
assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
|
|
1223
|
+
|
|
1224
|
+
def test_multiple_percentiles(self):
|
|
1225
|
+
perc = [50, 100]
|
|
1226
|
+
mat = np.ones((4, 3))
|
|
1227
|
+
nan_mat = np.nan * mat
|
|
1228
|
+
# For checking consistency in higher dimensional case
|
|
1229
|
+
large_mat = np.ones((3, 4, 5))
|
|
1230
|
+
large_mat[:, 0:2:4, :] = 0
|
|
1231
|
+
large_mat[:, :, 3:] *= 2
|
|
1232
|
+
for axis in [None, 0, 1]:
|
|
1233
|
+
for keepdim in [False, True]:
|
|
1234
|
+
with warnings.catch_warnings():
|
|
1235
|
+
warnings.filterwarnings(
|
|
1236
|
+
'ignore', "All-NaN slice encountered", RuntimeWarning)
|
|
1237
|
+
val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
|
|
1238
|
+
nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
|
|
1239
|
+
keepdims=keepdim)
|
|
1240
|
+
assert_equal(nan_val.shape, val.shape)
|
|
1241
|
+
|
|
1242
|
+
val = np.percentile(large_mat, perc, axis=axis,
|
|
1243
|
+
keepdims=keepdim)
|
|
1244
|
+
nan_val = np.nanpercentile(large_mat, perc, axis=axis,
|
|
1245
|
+
keepdims=keepdim)
|
|
1246
|
+
assert_equal(nan_val, val)
|
|
1247
|
+
|
|
1248
|
+
megamat = np.ones((3, 4, 5, 6))
|
|
1249
|
+
assert_equal(
|
|
1250
|
+
np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6)
|
|
1251
|
+
)
|
|
1252
|
+
|
|
1253
|
+
@pytest.mark.parametrize("nan_weight", [0, 1, 2, 3, 1e200])
|
|
1254
|
+
def test_nan_value_with_weight(self, nan_weight):
|
|
1255
|
+
x = [1, np.nan, 2, 3]
|
|
1256
|
+
result = np.float64(2.0)
|
|
1257
|
+
q_unweighted = np.nanpercentile(x, 50, method="inverted_cdf")
|
|
1258
|
+
assert_equal(q_unweighted, result)
|
|
1259
|
+
|
|
1260
|
+
# The weight value at the nan position should not matter.
|
|
1261
|
+
w = [1.0, nan_weight, 1.0, 1.0]
|
|
1262
|
+
q_weighted = np.nanpercentile(x, 50, weights=w, method="inverted_cdf")
|
|
1263
|
+
assert_equal(q_weighted, result)
|
|
1264
|
+
|
|
1265
|
+
@pytest.mark.parametrize("axis", [0, 1, 2])
|
|
1266
|
+
def test_nan_value_with_weight_ndim(self, axis):
|
|
1267
|
+
# Create a multi-dimensional array to test
|
|
1268
|
+
np.random.seed(1)
|
|
1269
|
+
x_no_nan = np.random.random(size=(100, 99, 2))
|
|
1270
|
+
# Set some places to NaN (not particularly smart) so there is always
|
|
1271
|
+
# some non-Nan.
|
|
1272
|
+
x = x_no_nan.copy()
|
|
1273
|
+
x[np.arange(99), np.arange(99), 0] = np.nan
|
|
1274
|
+
|
|
1275
|
+
p = np.array([[20., 50., 30], [70, 33, 80]])
|
|
1276
|
+
|
|
1277
|
+
# We just use ones as weights, but replace it with 0 or 1e200 at the
|
|
1278
|
+
# NaN positions below.
|
|
1279
|
+
weights = np.ones_like(x)
|
|
1280
|
+
|
|
1281
|
+
# For comparison use weighted normal percentile with nan weights at
|
|
1282
|
+
# 0 (and no NaNs); not sure this is strictly identical but should be
|
|
1283
|
+
# sufficiently so (if a percentile lies exactly on a 0 value).
|
|
1284
|
+
weights[np.isnan(x)] = 0
|
|
1285
|
+
p_expected = np.percentile(
|
|
1286
|
+
x_no_nan, p, axis=axis, weights=weights, method="inverted_cdf")
|
|
1287
|
+
|
|
1288
|
+
p_unweighted = np.nanpercentile(
|
|
1289
|
+
x, p, axis=axis, method="inverted_cdf")
|
|
1290
|
+
# The normal and unweighted versions should be identical:
|
|
1291
|
+
assert_equal(p_unweighted, p_expected)
|
|
1292
|
+
|
|
1293
|
+
weights[np.isnan(x)] = 1e200 # huge value, shouldn't matter
|
|
1294
|
+
p_weighted = np.nanpercentile(
|
|
1295
|
+
x, p, axis=axis, weights=weights, method="inverted_cdf")
|
|
1296
|
+
assert_equal(p_weighted, p_expected)
|
|
1297
|
+
# Also check with out passed:
|
|
1298
|
+
out = np.empty_like(p_weighted)
|
|
1299
|
+
res = np.nanpercentile(
|
|
1300
|
+
x, p, axis=axis, weights=weights, out=out, method="inverted_cdf")
|
|
1301
|
+
|
|
1302
|
+
assert res is out
|
|
1303
|
+
assert_equal(out, p_expected)
|
|
1304
|
+
|
|
1305
|
+
|
|
1306
|
+
class TestNanFunctions_Quantile:
|
|
1307
|
+
# most of this is already tested by TestPercentile
|
|
1308
|
+
|
|
1309
|
+
@pytest.mark.parametrize("weighted", [False, True])
|
|
1310
|
+
def test_regression(self, weighted):
|
|
1311
|
+
ar = np.arange(24).reshape(2, 3, 4).astype(float)
|
|
1312
|
+
ar[0][1] = np.nan
|
|
1313
|
+
if weighted:
|
|
1314
|
+
w_args = {"weights": np.ones_like(ar), "method": "inverted_cdf"}
|
|
1315
|
+
else:
|
|
1316
|
+
w_args = {}
|
|
1317
|
+
|
|
1318
|
+
assert_equal(np.nanquantile(ar, q=0.5, **w_args),
|
|
1319
|
+
np.nanpercentile(ar, q=50, **w_args))
|
|
1320
|
+
assert_equal(np.nanquantile(ar, q=0.5, axis=0, **w_args),
|
|
1321
|
+
np.nanpercentile(ar, q=50, axis=0, **w_args))
|
|
1322
|
+
assert_equal(np.nanquantile(ar, q=0.5, axis=1, **w_args),
|
|
1323
|
+
np.nanpercentile(ar, q=50, axis=1, **w_args))
|
|
1324
|
+
assert_equal(np.nanquantile(ar, q=[0.5], axis=1, **w_args),
|
|
1325
|
+
np.nanpercentile(ar, q=[50], axis=1, **w_args))
|
|
1326
|
+
assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1, **w_args),
|
|
1327
|
+
np.nanpercentile(ar, q=[25, 50, 75], axis=1, **w_args))
|
|
1328
|
+
|
|
1329
|
+
def test_basic(self):
|
|
1330
|
+
x = np.arange(8) * 0.5
|
|
1331
|
+
assert_equal(np.nanquantile(x, 0), 0.)
|
|
1332
|
+
assert_equal(np.nanquantile(x, 1), 3.5)
|
|
1333
|
+
assert_equal(np.nanquantile(x, 0.5), 1.75)
|
|
1334
|
+
|
|
1335
|
+
def test_complex(self):
|
|
1336
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G')
|
|
1337
|
+
assert_raises(TypeError, np.nanquantile, arr_c, 0.5)
|
|
1338
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D')
|
|
1339
|
+
assert_raises(TypeError, np.nanquantile, arr_c, 0.5)
|
|
1340
|
+
arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F')
|
|
1341
|
+
assert_raises(TypeError, np.nanquantile, arr_c, 0.5)
|
|
1342
|
+
|
|
1343
|
+
def test_no_p_overwrite(self):
|
|
1344
|
+
# this is worth retesting, because quantile does not make a copy
|
|
1345
|
+
p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
|
|
1346
|
+
p = p0.copy()
|
|
1347
|
+
np.nanquantile(np.arange(100.), p, method="midpoint")
|
|
1348
|
+
assert_array_equal(p, p0)
|
|
1349
|
+
|
|
1350
|
+
p0 = p0.tolist()
|
|
1351
|
+
p = p.tolist()
|
|
1352
|
+
np.nanquantile(np.arange(100.), p, method="midpoint")
|
|
1353
|
+
assert_array_equal(p, p0)
|
|
1354
|
+
|
|
1355
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
1356
|
+
@pytest.mark.parametrize("dtype", np.typecodes["Float"])
|
|
1357
|
+
@pytest.mark.parametrize("array", [
|
|
1358
|
+
np.array(np.nan),
|
|
1359
|
+
np.full((3, 3), np.nan),
|
|
1360
|
+
], ids=["0d", "2d"])
|
|
1361
|
+
def test_allnans(self, axis, dtype, array):
|
|
1362
|
+
if axis is not None and array.ndim == 0:
|
|
1363
|
+
pytest.skip("`axis != None` not supported for 0d arrays")
|
|
1364
|
+
|
|
1365
|
+
array = array.astype(dtype)
|
|
1366
|
+
with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
|
|
1367
|
+
out = np.nanquantile(array, 1, axis=axis)
|
|
1368
|
+
assert np.isnan(out).all()
|
|
1369
|
+
assert out.dtype == array.dtype
|
|
1370
|
+
|
|
1371
|
+
@pytest.mark.parametrize("arr, expected", [
|
|
1372
|
+
# array of floats with some nans
|
|
1373
|
+
(np.array([np.nan, 5.0, np.nan, np.inf]),
|
|
1374
|
+
np.array([False, True, False, True])),
|
|
1375
|
+
# int64 array that can't possibly have nans
|
|
1376
|
+
(np.array([1, 5, 7, 9], dtype=np.int64),
|
|
1377
|
+
True),
|
|
1378
|
+
# bool array that can't possibly have nans
|
|
1379
|
+
(np.array([False, True, False, True]),
|
|
1380
|
+
True),
|
|
1381
|
+
# 2-D complex array with nans
|
|
1382
|
+
(np.array([[np.nan, 5.0],
|
|
1383
|
+
[np.nan, np.inf]], dtype=np.complex64),
|
|
1384
|
+
np.array([[False, True],
|
|
1385
|
+
[False, True]])),
|
|
1386
|
+
])
|
|
1387
|
+
def test__nan_mask(arr, expected):
|
|
1388
|
+
for out in [None, np.empty(arr.shape, dtype=np.bool)]:
|
|
1389
|
+
actual = _nan_mask(arr, out=out)
|
|
1390
|
+
assert_equal(actual, expected)
|
|
1391
|
+
# the above won't distinguish between True proper
|
|
1392
|
+
# and an array of True values; we want True proper
|
|
1393
|
+
# for types that can't possibly contain NaN
|
|
1394
|
+
if type(expected) is not np.ndarray:
|
|
1395
|
+
assert actual is True
|
|
1396
|
+
|
|
1397
|
+
|
|
1398
|
+
def test__replace_nan():
|
|
1399
|
+
""" Test that _replace_nan returns the original array if there are no
|
|
1400
|
+
NaNs, not a copy.
|
|
1401
|
+
"""
|
|
1402
|
+
for dtype in [np.bool, np.int32, np.int64]:
|
|
1403
|
+
arr = np.array([0, 1], dtype=dtype)
|
|
1404
|
+
result, mask = _replace_nan(arr, 0)
|
|
1405
|
+
assert mask is None
|
|
1406
|
+
# do not make a copy if there are no nans
|
|
1407
|
+
assert result is arr
|
|
1408
|
+
|
|
1409
|
+
for dtype in [np.float32, np.float64]:
|
|
1410
|
+
arr = np.array([0, 1], dtype=dtype)
|
|
1411
|
+
result, mask = _replace_nan(arr, 2)
|
|
1412
|
+
assert (mask == False).all()
|
|
1413
|
+
# mask is not None, so we make a copy
|
|
1414
|
+
assert result is not arr
|
|
1415
|
+
assert_equal(result, arr)
|
|
1416
|
+
|
|
1417
|
+
arr_nan = np.array([0, 1, np.nan], dtype=dtype)
|
|
1418
|
+
result_nan, mask_nan = _replace_nan(arr_nan, 2)
|
|
1419
|
+
assert_equal(mask_nan, np.array([False, False, True]))
|
|
1420
|
+
assert result_nan is not arr_nan
|
|
1421
|
+
assert_equal(result_nan, np.array([0, 1, 2]))
|
|
1422
|
+
assert np.isnan(arr_nan[-1])
|
|
1423
|
+
|
|
1424
|
+
|
|
1425
|
+
@pytest.mark.thread_unsafe(reason="memmap is thread-unsafe (gh-29126)")
|
|
1426
|
+
def test_memmap_takes_fast_route(tmpdir):
|
|
1427
|
+
# We want memory mapped arrays to take the fast route through nanmax,
|
|
1428
|
+
# which avoids creating a mask by using fmax.reduce (see gh-28721). So we
|
|
1429
|
+
# check that on bad input, the error is from fmax (rather than maximum).
|
|
1430
|
+
a = np.arange(10., dtype=float)
|
|
1431
|
+
with open(tmpdir.join("data.bin"), "w+b") as fh:
|
|
1432
|
+
fh.write(a.tobytes())
|
|
1433
|
+
mm = np.memmap(fh, dtype=a.dtype, shape=a.shape)
|
|
1434
|
+
with pytest.raises(ValueError, match="reduction operation fmax"):
|
|
1435
|
+
np.nanmax(mm, out=np.zeros(2))
|
|
1436
|
+
# For completeness, same for nanmin.
|
|
1437
|
+
with pytest.raises(ValueError, match="reduction operation fmin"):
|
|
1438
|
+
np.nanmin(mm, out=np.zeros(2))
|