multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/ml/kernels.py CHANGED
@@ -1,176 +1,176 @@
1
- from sklearn.base import BaseEstimator, TransformerMixin, clone
2
- import numpy as np
3
- from typing import Iterable
4
-
5
-
6
- # To do k folds with a distance matrix, we need to slice it into list of distances.
7
- # k-fold usually shuffles the lists, so we need to add an identifier to each entry,
8
- #
9
- class DistanceMatrix2DistanceList(BaseEstimator, TransformerMixin):
10
- def __init__(self) -> None:
11
- super().__init__()
12
-
13
- def fit(self, X, y=None):
14
- return self
15
-
16
- def transform(self, X):
17
- X = np.asarray(X)
18
- assert X.ndim == 2 # Its a matrix
19
- return np.asarray([[i, *distance_to_pt] for i, distance_to_pt in enumerate(X)])
20
-
21
-
22
- class DistanceList2DistanceMatrix(BaseEstimator, TransformerMixin):
23
- def __init__(self) -> None:
24
- super().__init__()
25
-
26
- def fit(self, X, y=None):
27
- return self
28
-
29
- def transform(self, X):
30
- index_list = (
31
- np.asarray(X[:, 0], dtype=int) + 1
32
- ) # shift of 1, because the first index is for indexing the pts
33
- return X[:, index_list] # The distance matrix of the index_list
34
-
35
-
36
- class DistanceMatrices2DistancesList(BaseEstimator, TransformerMixin):
37
- """
38
- Input (degree) x (distance matrix) or (axis) x (degree) x (distance matrix D)
39
- Output _ (D1) x opt (axis) x (degree) x (D2, , with indices first)
40
- """
41
-
42
- def __init__(self) -> None:
43
- super().__init__()
44
- self._axes = None
45
-
46
- def fit(self, X, y=None):
47
- X = np.asarray(X)
48
- self._axes = X.ndim == 4
49
- assert (
50
- self._axes or X.ndim == 3
51
- ), " Bad input shape. Input is either (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) "
52
-
53
- return self
54
-
55
- def transform(self, X):
56
- X = np.asarray(X)
57
- assert (X.ndim == 3 and not self._axes) or (
58
- X.ndim == 4 and self._axes
59
- ), f"X shape ({X.shape}) is not valid"
60
- if self._axes:
61
- out = np.asarray(
62
- [
63
- [
64
- DistanceMatrix2DistanceList().fit_transform(M)
65
- for M in matrices_in_axes
66
- ]
67
- for matrices_in_axes in X
68
- ]
69
- )
70
- return np.moveaxis(out, [2, 0, 1, 3], [0, 1, 2, 3])
71
- else:
72
- out = np.array(
73
- [DistanceMatrix2DistanceList().fit_transform(M) for M in X]
74
- ) # indices are at [:,0,Any_coord]
75
- # return np.moveaxis(out, 0, -1) ## indices are at [:,0,any_coord], degree axis is the last
76
- return np.moveaxis(out, [1, 0, 2], [0, 1, 2])
77
-
78
- def predict(self, X):
79
- return self.transform(X)
80
-
81
-
82
- class DistancesLists2DistanceMatrices(BaseEstimator, TransformerMixin):
83
- """
84
- Input (D1) x opt (axis) x (degree) x (D2 with indices first)
85
- Output opt (axis) x (degree) x (distance matrix (D1,D2))
86
- """
87
-
88
- def __init__(self) -> None:
89
- super().__init__()
90
- self.train_indices = None
91
- self._axes = None
92
-
93
- def fit(self, X: np.ndarray, y=None):
94
- X = np.asarray(X)
95
- assert X.ndim in [3, 4]
96
- self._axes = X.ndim == 4
97
- if self._axes:
98
- self.train_indices = np.asarray(X[:, 0, 0, 0], dtype=int)
99
- else:
100
- self.train_indices = np.asarray(X[:, 0, 0], dtype=int)
101
- return self
102
-
103
- def transform(self, X):
104
- X = np.asarray(X)
105
- assert X.ndim in [3, 4]
106
- # test_indices = np.asarray(X[:,0,0], dtype=int)
107
- # print(X.shape, self.train_indices, test_indices, flush=1)
108
- # First coord of X is test indices by design, train indices have to be selected in the second coord, last one is the degree
109
- if self._axes:
110
- Y = X[:, :, :, self.train_indices + 1]
111
- return np.moveaxis(Y, [0, 1, 2, 3], [2, 0, 1, 3])
112
- else:
113
- Y = X[
114
- :, :, self.train_indices + 1
115
- ] # we only keep the good indices # shift of 1, because the first index is for indexing the pts
116
- return np.moveaxis(
117
- Y, [0, 1, 2], [1, 0, 2]
118
- ) # we put back the degree axis first
119
-
120
- # # out = np.moveaxis(Y,-1,0) ## we put back the degree axis first
121
- # return out
122
-
123
-
124
- class DistanceMatrix2Kernel(BaseEstimator, TransformerMixin):
125
- """
126
- Input : (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) in the second case, axis HAS to be specified (meant for cross validation)
127
- Output : kernel of the same shape of distance matrix
128
- """
129
-
130
- def __init__(
131
- self,
132
- sigma: float | Iterable[float] = 1,
133
- axis: int | None = None,
134
- weights: Iterable[float] | float = 1,
135
- ) -> None:
136
- super().__init__()
137
- self.sigma = sigma
138
- self.axis = axis
139
- self.weights = weights
140
- # self._num_axes=None
141
- self._num_degrees = None
142
-
143
- def fit(self, X, y=None):
144
- if len(X) == 0:
145
- return self
146
- assert X.ndim in [3, 4], "Bad input."
147
- if self.axis is None:
148
- assert X.ndim == 3 or X.shape[0] == 1, "Set an axis for data with axis !"
149
- if X.shape[0] == 1 and X.ndim == 4:
150
- self.axis = 0
151
- self._num_degrees = len(X[0])
152
- else:
153
- self._num_degrees = len(X)
154
- else:
155
- assert X.ndim == 4, "Cannot choose axis from data with no axis !"
156
- self._num_degrees = len(X[self.axis])
157
- if isinstance(self.weights, float) or isinstance(self.weights, int):
158
- self.weights = [self.weights] * self._num_degrees
159
- assert (
160
- len(self.weights) == self._num_degrees
161
- ), f"Number of weights ({len(self.weights)}) has to be the same as the number of degrees ({self._num_degrees})"
162
- return self
163
-
164
- def transform(self, X) -> np.ndarray:
165
- if self.axis is not None:
166
- X = X[self.axis]
167
- # TODO : pykeops, and full pipeline w/ pykeops
168
- kernels = np.asarray(
169
- [
170
- np.exp(-distance_matrix / (2 * self.sigma**2)) * weight
171
- for distance_matrix, weight in zip(X, self.weights)
172
- ]
173
- )
174
- out = np.mean(kernels, axis=0)
175
-
176
- return out
1
+ from sklearn.base import BaseEstimator, TransformerMixin, clone
2
+ import numpy as np
3
+ from typing import Iterable
4
+
5
+
6
+ # To do k folds with a distance matrix, we need to slice it into list of distances.
7
+ # k-fold usually shuffles the lists, so we need to add an identifier to each entry,
8
+ #
9
+ class DistanceMatrix2DistanceList(BaseEstimator, TransformerMixin):
10
+ def __init__(self) -> None:
11
+ super().__init__()
12
+
13
+ def fit(self, X, y=None):
14
+ return self
15
+
16
+ def transform(self, X):
17
+ X = np.asarray(X)
18
+ assert X.ndim == 2 # Its a matrix
19
+ return np.asarray([[i, *distance_to_pt] for i, distance_to_pt in enumerate(X)])
20
+
21
+
22
+ class DistanceList2DistanceMatrix(BaseEstimator, TransformerMixin):
23
+ def __init__(self) -> None:
24
+ super().__init__()
25
+
26
+ def fit(self, X, y=None):
27
+ return self
28
+
29
+ def transform(self, X):
30
+ index_list = (
31
+ np.asarray(X[:, 0], dtype=int) + 1
32
+ ) # shift of 1, because the first index is for indexing the pts
33
+ return X[:, index_list] # The distance matrix of the index_list
34
+
35
+
36
+ class DistanceMatrices2DistancesList(BaseEstimator, TransformerMixin):
37
+ """
38
+ Input (degree) x (distance matrix) or (axis) x (degree) x (distance matrix D)
39
+ Output _ (D1) x opt (axis) x (degree) x (D2, , with indices first)
40
+ """
41
+
42
+ def __init__(self) -> None:
43
+ super().__init__()
44
+ self._axes = None
45
+
46
+ def fit(self, X, y=None):
47
+ X = np.asarray(X)
48
+ self._axes = X.ndim == 4
49
+ assert (
50
+ self._axes or X.ndim == 3
51
+ ), " Bad input shape. Input is either (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) "
52
+
53
+ return self
54
+
55
+ def transform(self, X):
56
+ X = np.asarray(X)
57
+ assert (X.ndim == 3 and not self._axes) or (
58
+ X.ndim == 4 and self._axes
59
+ ), f"X shape ({X.shape}) is not valid"
60
+ if self._axes:
61
+ out = np.asarray(
62
+ [
63
+ [
64
+ DistanceMatrix2DistanceList().fit_transform(M)
65
+ for M in matrices_in_axes
66
+ ]
67
+ for matrices_in_axes in X
68
+ ]
69
+ )
70
+ return np.moveaxis(out, [2, 0, 1, 3], [0, 1, 2, 3])
71
+ else:
72
+ out = np.array(
73
+ [DistanceMatrix2DistanceList().fit_transform(M) for M in X]
74
+ ) # indices are at [:,0,Any_coord]
75
+ # return np.moveaxis(out, 0, -1) ## indices are at [:,0,any_coord], degree axis is the last
76
+ return np.moveaxis(out, [1, 0, 2], [0, 1, 2])
77
+
78
+ def predict(self, X):
79
+ return self.transform(X)
80
+
81
+
82
+ class DistancesLists2DistanceMatrices(BaseEstimator, TransformerMixin):
83
+ """
84
+ Input (D1) x opt (axis) x (degree) x (D2 with indices first)
85
+ Output opt (axis) x (degree) x (distance matrix (D1,D2))
86
+ """
87
+
88
+ def __init__(self) -> None:
89
+ super().__init__()
90
+ self.train_indices = None
91
+ self._axes = None
92
+
93
+ def fit(self, X: np.ndarray, y=None):
94
+ X = np.asarray(X)
95
+ assert X.ndim in [3, 4]
96
+ self._axes = X.ndim == 4
97
+ if self._axes:
98
+ self.train_indices = np.asarray(X[:, 0, 0, 0], dtype=int)
99
+ else:
100
+ self.train_indices = np.asarray(X[:, 0, 0], dtype=int)
101
+ return self
102
+
103
+ def transform(self, X):
104
+ X = np.asarray(X)
105
+ assert X.ndim in [3, 4]
106
+ # test_indices = np.asarray(X[:,0,0], dtype=int)
107
+ # print(X.shape, self.train_indices, test_indices, flush=1)
108
+ # First coord of X is test indices by design, train indices have to be selected in the second coord, last one is the degree
109
+ if self._axes:
110
+ Y = X[:, :, :, self.train_indices + 1]
111
+ return np.moveaxis(Y, [0, 1, 2, 3], [2, 0, 1, 3])
112
+ else:
113
+ Y = X[
114
+ :, :, self.train_indices + 1
115
+ ] # we only keep the good indices # shift of 1, because the first index is for indexing the pts
116
+ return np.moveaxis(
117
+ Y, [0, 1, 2], [1, 0, 2]
118
+ ) # we put back the degree axis first
119
+
120
+ # # out = np.moveaxis(Y,-1,0) ## we put back the degree axis first
121
+ # return out
122
+
123
+
124
+ class DistanceMatrix2Kernel(BaseEstimator, TransformerMixin):
125
+ """
126
+ Input : (degree) x (distance matrix) or (axis) x (degree) x (distance matrix) in the second case, axis HAS to be specified (meant for cross validation)
127
+ Output : kernel of the same shape of distance matrix
128
+ """
129
+
130
+ def __init__(
131
+ self,
132
+ sigma: float | Iterable[float] = 1,
133
+ axis: int | None = None,
134
+ weights: Iterable[float] | float = 1,
135
+ ) -> None:
136
+ super().__init__()
137
+ self.sigma = sigma
138
+ self.axis = axis
139
+ self.weights = weights
140
+ # self._num_axes=None
141
+ self._num_degrees = None
142
+
143
+ def fit(self, X, y=None):
144
+ if len(X) == 0:
145
+ return self
146
+ assert X.ndim in [3, 4], "Bad input."
147
+ if self.axis is None:
148
+ assert X.ndim == 3 or X.shape[0] == 1, "Set an axis for data with axis !"
149
+ if X.shape[0] == 1 and X.ndim == 4:
150
+ self.axis = 0
151
+ self._num_degrees = len(X[0])
152
+ else:
153
+ self._num_degrees = len(X)
154
+ else:
155
+ assert X.ndim == 4, "Cannot choose axis from data with no axis !"
156
+ self._num_degrees = len(X[self.axis])
157
+ if isinstance(self.weights, float) or isinstance(self.weights, int):
158
+ self.weights = [self.weights] * self._num_degrees
159
+ assert (
160
+ len(self.weights) == self._num_degrees
161
+ ), f"Number of weights ({len(self.weights)}) has to be the same as the number of degrees ({self._num_degrees})"
162
+ return self
163
+
164
+ def transform(self, X) -> np.ndarray:
165
+ if self.axis is not None:
166
+ X = X[self.axis]
167
+ # TODO : pykeops, and full pipeline w/ pykeops
168
+ kernels = np.asarray(
169
+ [
170
+ np.exp(-distance_matrix / (2 * self.sigma**2)) * weight
171
+ for distance_matrix, weight in zip(X, self.weights)
172
+ ]
173
+ )
174
+ out = np.mean(kernels, axis=0)
175
+
176
+ return out