multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/_slicer_meta.py CHANGED
@@ -1,212 +1,211 @@
1
- from copy import deepcopy
2
- from typing import Literal, Optional
3
-
4
- import numpy as np
5
-
6
- import multipers.io as mio
7
- import multipers.slicer as mps
8
- from multipers.simplex_tree_multi import is_simplextree_multi
9
- from multipers.slicer import _column_type, _valid_dtype, _valid_pers_backend, is_slicer
10
-
11
-
12
- ## TODO : maybe optimize this with cython
13
- def _blocks2boundary_dimension_grades(
14
- blocks,
15
- filtration_type=np.float64,
16
- num_parameters: int = -1,
17
- inplace: bool = False,
18
- is_kcritical: bool = False,
19
- ):
20
- """
21
- Turns blocks, aka scc, into the input of non-simplicial slicers.
22
- """
23
- if num_parameters < 0:
24
- for b in blocks:
25
- if len(b[0]) > 0:
26
- if is_kcritical:
27
- num_parameters = np.asarray(b[0][0]).shape[1]
28
- else:
29
- num_parameters = np.asarray(b[0]).shape[1]
30
- break
31
- if num_parameters < 0:
32
- raise ValueError("Empty Filtration")
33
- rblocks = blocks if inplace else deepcopy(blocks)
34
- rblocks.reverse()
35
- block_sizes = [len(b[0]) for b in rblocks]
36
- S = np.cumsum([0, 0] + block_sizes)
37
- if is_kcritical:
38
- multifiltration = tuple(
39
- stuff
40
- for b in rblocks
41
- for stuff in (b[0] if len(b[0]) > 0 else [np.empty((0, num_parameters))])
42
- )
43
-
44
- else:
45
- multifiltration = np.concatenate(
46
- tuple(
47
- b[0] if len(b[0]) > 0 else np.empty((0, num_parameters))
48
- for b in rblocks
49
- ),
50
- dtype=filtration_type,
51
- )
52
- boundary = tuple(x + S[i] for i, b in enumerate(rblocks) for x in b[1])
53
- dimensions = np.fromiter(
54
- (i for i, b in enumerate(rblocks) for _ in range(len(b[0]))), dtype=int
55
- )
56
- return boundary, dimensions, multifiltration
57
-
58
-
59
- def _slicer_from_simplextree(st, backend, vineyard):
60
- if vineyard:
61
- if backend == "matrix":
62
- slicer = mps._SlicerVineSimplicial(st)
63
- elif backend == "clement":
64
- raise ValueError("This one takes a minpres")
65
- elif backend == "graph":
66
- slicer = mps._SlicerVineGraph(st)
67
- else:
68
- raise ValueError(f"Inimplemented backend {backend}.")
69
- else:
70
- if backend == "matrix":
71
- slicer = mps._SlicerNoVineSimplicial(st)
72
- elif backend == "clement":
73
- raise ValueError("Clement is Vineyard")
74
- elif backend == "graph":
75
- raise ValueError("Graph is Vineyard")
76
- else:
77
- raise ValueError(f"Inimplemented backend {backend}.")
78
- return slicer
79
-
80
-
81
- def _slicer_from_blocks(
82
- blocks,
83
- pers_backend: _valid_pers_backend,
84
- vineyard: bool,
85
- is_kcritical: bool,
86
- dtype: type,
87
- col: _column_type,
88
- ):
89
- boundary, dimensions, multifiltrations = _blocks2boundary_dimension_grades(
90
- blocks,
91
- inplace=False,
92
- is_kcritical=is_kcritical,
93
- )
94
- slicer = mps.get_matrix_slicer(vineyard, is_kcritical, dtype, col, pers_backend)(
95
- boundary, dimensions, multifiltrations
96
- )
97
- return slicer
98
-
99
-
100
- def Slicer(
101
- st=None,
102
- vineyard: Optional[bool] = None,
103
- reduce: bool = False,
104
- reduce_backend: Optional[str] = None,
105
- dtype: Optional[_valid_dtype] = None,
106
- kcritical: Optional[bool] = None,
107
- column_type: Optional[_column_type] = None,
108
- backend: Optional[_valid_pers_backend] = None,
109
- max_dim: Optional[int] = None,
110
- return_type_only: bool = False,
111
- ) -> mps.Slicer_type:
112
- """
113
- Given a simplextree or blocks (a.k.a scc for python),
114
- returns a structure that can compute persistence on line (or more)
115
- slices, eventually vineyard update, etc.
116
-
117
- This can be used to compute interval-decomposable module approximations
118
- or signed measures, using, e.g.
119
- - `multipers.module_approximation(this, *args)`
120
- - `multipers.signed_measure(this, *args)`
121
-
122
- Note : it is recommended and sometime required to apply
123
- a minimal presentation before computing these functions !
124
- `mp.slicer.minimal_presentation(slicer, *args, **kwargs)`
125
-
126
- Input
127
- -----
128
- - st : SimplexTreeMulti or scc-like blocks or path to scc file
129
- - backend: slicer backend, e.g, "matrix", "clement", "graph"
130
- - vineyard: vineyard capable (may slow down computations if true)
131
- Output
132
- ------
133
- The corresponding slicer.
134
- """
135
-
136
- if is_slicer(st, allow_minpres=False) or is_simplextree_multi(st):
137
- dtype = st.dtype if dtype is None else dtype
138
- is_kcritical = st.is_kcritical if kcritical is None else kcritical
139
- else:
140
- dtype = np.float64 if dtype is None else dtype
141
- is_kcritical = False if kcritical is None else kcritical
142
-
143
- if is_slicer(st, allow_minpres=False):
144
- vineyard = st.is_vine if vineyard is None else vineyard
145
- column_type = st.col_type if column_type is None else column_type
146
- backend = st.pers_backend if backend is None else backend
147
- else:
148
- vineyard = False if vineyard is None else vineyard
149
- column_type = "INTRUSIVE_SET" if column_type is None else column_type
150
- backend = "Matrix" if backend is None else backend
151
-
152
- _Slicer = mps.get_matrix_slicer(
153
- is_vineyard=vineyard,
154
- is_k_critical=is_kcritical,
155
- dtype=dtype,
156
- col=column_type,
157
- pers_backend=backend,
158
- )
159
- if return_type_only:
160
- return _Slicer
161
- if st is None:
162
- return _Slicer()
163
- elif mps.is_slicer(st):
164
- max_dim_idx = (
165
- None
166
- if max_dim is None
167
- else np.searchsorted(st.get_dimensions(), max_dim + 1)
168
- )
169
- slicer = _Slicer(
170
- st.get_boundaries()[slice(None, max_dim_idx)],
171
- st.get_dimensions()[slice(None, max_dim_idx)],
172
- st.get_filtrations()[slice(None, max_dim_idx)],
173
- )
174
- if st.is_squeezed:
175
- slicer.filtration_grid = st.filtration_grid
176
- slicer.minpres_degree = st.minpres_degree
177
- elif is_simplextree_multi(st) and backend == "Graph":
178
- slicer = _slicer_from_simplextree(st, backend, vineyard)
179
- if st.is_squeezed:
180
- slicer.filtration_grid = st.filtration_grid
181
- elif backend == "Graph":
182
- raise ValueError(
183
- """
184
- Graph is simplicial, incompatible with minpres.
185
- You can try using `multipers.slicer.to_simplextree`."""
186
- )
187
- else:
188
- filtration_grid = None
189
- if max_dim is not None: # no test for simplex tree?
190
- st.prune_above_dimension(max_dim)
191
- if isinstance(st, str): # is_kcritical should be false
192
- slicer = _Slicer()._build_from_scc_file(st)
193
- else:
194
- if is_simplextree_multi(st):
195
- blocks = st._to_scc()
196
- if st.is_squeezed:
197
- filtration_grid = st.filtration_grid
198
- else:
199
- blocks = st
200
- slicer = _slicer_from_blocks(
201
- blocks, backend, vineyard, is_kcritical, dtype, column_type
202
- )
203
- if filtration_grid is not None:
204
- slicer.filtration_grid = filtration_grid
205
- if reduce:
206
- slicer = mps.minimal_presentation(
207
- slicer,
208
- backend=reduce_backend,
209
- slicer_backend=backend,
210
- vineyard=vineyard,
211
- )
212
- return slicer
1
+ from copy import deepcopy
2
+ from typing import Optional
3
+
4
+ import numpy as np
5
+
6
+ import multipers.slicer as mps
7
+ from multipers.simplex_tree_multi import is_simplextree_multi
8
+ from multipers.slicer import _column_type, _valid_dtype, _valid_pers_backend, is_slicer
9
+
10
+
11
+ ## TODO : maybe optimize this with cython
12
+ def _blocks2boundary_dimension_grades(
13
+ blocks,
14
+ filtration_type=np.float64,
15
+ num_parameters: int = -1,
16
+ inplace: bool = False,
17
+ is_kcritical: bool = False,
18
+ ):
19
+ """
20
+ Turns blocks, aka scc, into the input of non-simplicial slicers.
21
+ """
22
+ if num_parameters < 0:
23
+ for b in blocks:
24
+ if len(b[0]) > 0:
25
+ if is_kcritical:
26
+ num_parameters = np.asarray(b[0][0]).shape[1]
27
+ else:
28
+ num_parameters = np.asarray(b[0]).shape[1]
29
+ break
30
+ if num_parameters < 0:
31
+ raise ValueError("Empty Filtration")
32
+ rblocks = blocks if inplace else deepcopy(blocks)
33
+ rblocks.reverse()
34
+ block_sizes = [len(b[0]) for b in rblocks]
35
+ S = np.cumsum([0, 0] + block_sizes)
36
+ if is_kcritical:
37
+ multifiltration = tuple(
38
+ stuff
39
+ for b in rblocks
40
+ for stuff in (b[0] if len(b[0]) > 0 else [np.empty((0, num_parameters))])
41
+ )
42
+
43
+ else:
44
+ multifiltration = np.concatenate(
45
+ tuple(
46
+ b[0] if len(b[0]) > 0 else np.empty((0, num_parameters))
47
+ for b in rblocks
48
+ ),
49
+ dtype=filtration_type,
50
+ )
51
+ boundary = tuple(x + S[i] for i, b in enumerate(rblocks) for x in b[1])
52
+ dimensions = np.fromiter(
53
+ (i for i, b in enumerate(rblocks) for _ in range(len(b[0]))), dtype=int
54
+ )
55
+ return boundary, dimensions, multifiltration
56
+
57
+
58
+ def _slicer_from_simplextree(st, backend, vineyard):
59
+ if vineyard:
60
+ if backend == "matrix":
61
+ slicer = mps._SlicerVineSimplicial(st)
62
+ elif backend == "clement":
63
+ raise ValueError("This one takes a minpres")
64
+ elif backend == "graph":
65
+ slicer = mps._SlicerVineGraph(st)
66
+ else:
67
+ raise ValueError(f"Inimplemented backend {backend}.")
68
+ else:
69
+ if backend == "matrix":
70
+ slicer = mps._SlicerNoVineSimplicial(st)
71
+ elif backend == "clement":
72
+ raise ValueError("Clement is Vineyard")
73
+ elif backend == "graph":
74
+ raise ValueError("Graph is Vineyard")
75
+ else:
76
+ raise ValueError(f"Inimplemented backend {backend}.")
77
+ return slicer
78
+
79
+
80
+ def _slicer_from_blocks(
81
+ blocks,
82
+ pers_backend: _valid_pers_backend,
83
+ vineyard: bool,
84
+ is_kcritical: bool,
85
+ dtype: type,
86
+ col: _column_type,
87
+ ):
88
+ boundary, dimensions, multifiltrations = _blocks2boundary_dimension_grades(
89
+ blocks,
90
+ inplace=False,
91
+ is_kcritical=is_kcritical,
92
+ )
93
+ slicer = mps.get_matrix_slicer(vineyard, is_kcritical, dtype, col, pers_backend)(
94
+ boundary, dimensions, multifiltrations
95
+ )
96
+ return slicer
97
+
98
+
99
+ def Slicer(
100
+ st=None,
101
+ vineyard: Optional[bool] = None,
102
+ reduce: bool = False,
103
+ reduce_backend: Optional[str] = None,
104
+ dtype: Optional[_valid_dtype] = None,
105
+ kcritical: Optional[bool] = None,
106
+ column_type: Optional[_column_type] = None,
107
+ backend: Optional[_valid_pers_backend] = None,
108
+ max_dim: Optional[int] = None,
109
+ return_type_only: bool = False,
110
+ ) -> mps.Slicer_type:
111
+ """
112
+ Given a simplextree or blocks (a.k.a scc for python),
113
+ returns a structure that can compute persistence on line (or more)
114
+ slices, eventually vineyard update, etc.
115
+
116
+ This can be used to compute interval-decomposable module approximations
117
+ or signed measures, using, e.g.
118
+ - `multipers.module_approximation(this, *args)`
119
+ - `multipers.signed_measure(this, *args)`
120
+
121
+ Note : it is recommended and sometime required to apply
122
+ a minimal presentation before computing these functions !
123
+ `mp.slicer.minimal_presentation(slicer, *args, **kwargs)`
124
+
125
+ Input
126
+ -----
127
+ - st : SimplexTreeMulti or scc-like blocks or path to scc file
128
+ - backend: slicer backend, e.g, "matrix", "clement", "graph"
129
+ - vineyard: vineyard capable (may slow down computations if true)
130
+ Output
131
+ ------
132
+ The corresponding slicer.
133
+ """
134
+
135
+ if is_slicer(st, allow_minpres=False) or is_simplextree_multi(st):
136
+ dtype = st.dtype if dtype is None else dtype
137
+ is_kcritical = st.is_kcritical if kcritical is None else kcritical
138
+ else:
139
+ dtype = np.float64 if dtype is None else dtype
140
+ is_kcritical = False if kcritical is None else kcritical
141
+
142
+ if is_slicer(st, allow_minpres=False):
143
+ vineyard = st.is_vine if vineyard is None else vineyard
144
+ column_type = st.col_type if column_type is None else column_type
145
+ backend = st.pers_backend if backend is None else backend
146
+ else:
147
+ vineyard = False if vineyard is None else vineyard
148
+ column_type = "INTRUSIVE_SET" if column_type is None else column_type
149
+ backend = "Matrix" if backend is None else backend
150
+
151
+ _Slicer = mps.get_matrix_slicer(
152
+ is_vineyard=vineyard,
153
+ is_k_critical=is_kcritical,
154
+ dtype=dtype,
155
+ col=column_type,
156
+ pers_backend=backend,
157
+ )
158
+ if return_type_only:
159
+ return _Slicer
160
+ if st is None:
161
+ return _Slicer()
162
+ elif mps.is_slicer(st):
163
+ max_dim_idx = (
164
+ None
165
+ if max_dim is None
166
+ else np.searchsorted(st.get_dimensions(), max_dim + 1)
167
+ )
168
+ slicer = _Slicer(
169
+ st.get_boundaries()[slice(None, max_dim_idx)],
170
+ st.get_dimensions()[slice(None, max_dim_idx)],
171
+ st.get_filtrations()[slice(None, max_dim_idx)],
172
+ )
173
+ if st.is_squeezed:
174
+ slicer.filtration_grid = st.filtration_grid
175
+ slicer.minpres_degree = st.minpres_degree
176
+ elif is_simplextree_multi(st) and backend == "Graph":
177
+ slicer = _slicer_from_simplextree(st, backend, vineyard)
178
+ if st.is_squeezed:
179
+ slicer.filtration_grid = st.filtration_grid
180
+ elif backend == "Graph":
181
+ raise ValueError(
182
+ """
183
+ Graph is simplicial, incompatible with minpres.
184
+ You can try using `multipers.slicer.to_simplextree`."""
185
+ )
186
+ else:
187
+ filtration_grid = None
188
+ if max_dim is not None: # no test for simplex tree?
189
+ st.prune_above_dimension(max_dim)
190
+ if isinstance(st, str): # is_kcritical should be false
191
+ slicer = _Slicer()._build_from_scc_file(st)
192
+ else:
193
+ if is_simplextree_multi(st):
194
+ blocks = st._to_scc()
195
+ if st.is_squeezed:
196
+ filtration_grid = st.filtration_grid
197
+ else:
198
+ blocks = st
199
+ slicer = _slicer_from_blocks(
200
+ blocks, backend, vineyard, is_kcritical, dtype, column_type
201
+ )
202
+ if filtration_grid is not None:
203
+ slicer.filtration_grid = filtration_grid
204
+ if reduce:
205
+ slicer = mps.minimal_presentation(
206
+ slicer,
207
+ backend=reduce_backend,
208
+ slicer_backend=backend,
209
+ vineyard=vineyard,
210
+ )
211
+ return slicer