multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/distances.py CHANGED
@@ -1,198 +1,198 @@
1
- import numpy as np
2
- import ot
3
-
4
- from multipers.mma_structures import PyMultiDiagrams_type
5
- from multipers.multiparameter_module_approximation import PyModule_type
6
- from multipers.simplex_tree_multi import SimplexTreeMulti_type
7
-
8
-
9
- def sm2diff(sm1, sm2):
10
- pts = sm1[0]
11
- dtype = pts.dtype
12
- if isinstance(pts, np.ndarray):
13
-
14
- def backend_concatenate(a, b):
15
- return np.concatenate([a, b], axis=0, dtype=dtype)
16
-
17
- def backend_tensor(x):
18
- return np.asarray(x, dtype=int)
19
-
20
- else:
21
- import torch
22
-
23
- assert isinstance(pts, torch.Tensor), "Invalid backend. Numpy or torch."
24
-
25
- def backend_concatenate(a, b):
26
- return torch.concatenate([a, b], dim=0)
27
-
28
- def backend_tensor(x):
29
- return torch.tensor(x).type(torch.int)
30
-
31
- pts1, w1 = sm1
32
- pts2, w2 = sm2
33
- ## TODO: optimize this
34
- pos_indices1 = backend_tensor(
35
- [i for i, w in enumerate(w1) for _ in range(w) if w > 0]
36
- )
37
- pos_indices2 = backend_tensor(
38
- [i for i, w in enumerate(w2) for _ in range(w) if w > 0]
39
- )
40
- neg_indices1 = backend_tensor(
41
- [i for i, w in enumerate(w1) for _ in range(-w) if w < 0]
42
- )
43
- neg_indices2 = backend_tensor(
44
- [i for i, w in enumerate(w2) for _ in range(-w) if w < 0]
45
- )
46
- x = backend_concatenate(pts1[pos_indices1], pts2[neg_indices2])
47
- y = backend_concatenate(pts1[neg_indices1], pts2[pos_indices2])
48
- return x, y
49
-
50
-
51
- def sm_distance(
52
- sm1: tuple,
53
- sm2: tuple,
54
- reg: float = 0,
55
- reg_m: float = 0,
56
- numItermax: int = 10000,
57
- p: float = 1,
58
- ):
59
- """
60
- Computes the wasserstein distances between two signed measures,
61
- of the form
62
- - (pts,weights)
63
- with
64
- - pts : (num_pts, dim) float array
65
- - weights : (num_pts,) int array
66
-
67
- Regularisation:
68
- - sinkhorn if reg != 0
69
- - sinkhorn unbalanced if reg_m != 0
70
- """
71
- x, y = sm2diff(sm1, sm2)
72
- loss = ot.dist(
73
- x, y, metric="sqeuclidean", p=p
74
- ) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
75
- if isinstance(x, np.ndarray):
76
- empty_tensor = np.array([]) # uniform weights
77
- else:
78
- import torch
79
-
80
- assert isinstance(x, torch.Tensor), "Unimplemented backend."
81
- empty_tensor = torch.tensor([]) # uniform weights
82
-
83
- if reg == 0:
84
- return ot.lp.emd2(empty_tensor, empty_tensor, M=loss) * len(x)
85
- if reg_m == 0:
86
- return ot.sinkhorn2(
87
- a=empty_tensor, b=empty_tensor, M=loss, reg=reg, numItermax=numItermax
88
- )
89
- return ot.sinkhorn_unbalanced2(
90
- a=empty_tensor,
91
- b=empty_tensor,
92
- M=loss,
93
- reg=reg,
94
- reg_m=reg_m,
95
- numItermax=numItermax,
96
- )
97
- # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
98
- # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
99
-
100
-
101
- def estimate_matching(b1: PyMultiDiagrams_type, b2: PyMultiDiagrams_type):
102
- assert len(b1) == len(b2)
103
- from gudhi.bottleneck import bottleneck_distance
104
-
105
- def get_bc(b: PyMultiDiagrams_type, i: int) -> np.ndarray:
106
- temp = b[i].get_points()
107
- out = (
108
- np.array(temp)[:, :, 0] if len(temp) > 0 else np.empty((0, 2))
109
- ) # GUDHI FIX
110
- return out
111
-
112
- return max(
113
- (bottleneck_distance(get_bc(b1, i), get_bc(b2, i)) for i in range(len(b1)))
114
- )
115
-
116
-
117
- # Functions to estimate precision
118
- def estimate_error(
119
- st: SimplexTreeMulti_type,
120
- module: PyModule_type,
121
- degree: int,
122
- nlines: int = 100,
123
- verbose: bool = False,
124
- ):
125
- """
126
- Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
127
-
128
- Parameters
129
- ----------
130
- - st:SimplexTree
131
- The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
132
- - module:PyModule
133
- The module on which to estimate approximation error, w.r.t. the original simplextree st.
134
- - degree:int
135
- The homology degree to consider
136
-
137
- Returns
138
- -------
139
- - float:The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
140
-
141
- """
142
- from time import perf_counter
143
-
144
- parameter = 0
145
-
146
- def _get_bc_ST(st, basepoint, degree: int):
147
- """
148
- Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
149
- """
150
- gst = st.project_on_line(
151
- basepoint=basepoint, parameter=parameter
152
- ) # we consider only the 1rst coordinate (as )
153
- gst.compute_persistence()
154
- return gst.persistence_intervals_in_dimension(degree)
155
-
156
- from gudhi.bottleneck import bottleneck_distance
157
-
158
- low, high = module.get_box()
159
- nfiltration = len(low)
160
- basepoints = np.random.uniform(low=low, high=high, size=(nlines, nfiltration))
161
- # barcodes from module
162
- print("Computing mma barcodes...", flush=1, end="") if verbose else None
163
- time = perf_counter()
164
- bcs_from_mod = module.barcodes(degree=degree, basepoints=basepoints).get_points()
165
- print(f"Done. {perf_counter() - time}s.") if verbose else None
166
-
167
- def clean(dgm):
168
- return np.array(
169
- [
170
- [birth[parameter], death[parameter]]
171
- for birth, death in dgm
172
- if len(birth) > 0 and birth[parameter] != np.inf
173
- ]
174
- )
175
-
176
- bcs_from_mod = [
177
- clean(dgm) for dgm in bcs_from_mod
178
- ] # we only consider the 1st coordinate of the barcode
179
- # Computes gudhi barcodes
180
- from tqdm import tqdm
181
-
182
- bcs_from_gudhi = [
183
- _get_bc_ST(st, basepoint=basepoint, degree=degree)
184
- for basepoint in tqdm(
185
- basepoints, disable=not verbose, desc="Computing gudhi barcodes"
186
- )
187
- ]
188
- return max(
189
- (
190
- bottleneck_distance(a, b)
191
- for a, b in tqdm(
192
- zip(bcs_from_mod, bcs_from_gudhi),
193
- disable=not verbose,
194
- total=nlines,
195
- desc="Computing bottleneck distances",
196
- )
197
- )
198
- )
1
+ import numpy as np
2
+ import ot
3
+
4
+ from multipers.mma_structures import PyMultiDiagrams_type
5
+ from multipers.multiparameter_module_approximation import PyModule_type
6
+ from multipers.simplex_tree_multi import SimplexTreeMulti_type
7
+
8
+
9
+ def sm2diff(sm1, sm2):
10
+ pts = sm1[0]
11
+ dtype = pts.dtype
12
+ if isinstance(pts, np.ndarray):
13
+
14
+ def backend_concatenate(a, b):
15
+ return np.concatenate([a, b], axis=0, dtype=dtype)
16
+
17
+ def backend_tensor(x):
18
+ return np.asarray(x, dtype=int)
19
+
20
+ else:
21
+ import torch
22
+
23
+ assert isinstance(pts, torch.Tensor), "Invalid backend. Numpy or torch."
24
+
25
+ def backend_concatenate(a, b):
26
+ return torch.concatenate([a, b], dim=0)
27
+
28
+ def backend_tensor(x):
29
+ return torch.tensor(x).type(torch.int)
30
+
31
+ pts1, w1 = sm1
32
+ pts2, w2 = sm2
33
+ ## TODO: optimize this
34
+ pos_indices1 = backend_tensor(
35
+ [i for i, w in enumerate(w1) for _ in range(w) if w > 0]
36
+ )
37
+ pos_indices2 = backend_tensor(
38
+ [i for i, w in enumerate(w2) for _ in range(w) if w > 0]
39
+ )
40
+ neg_indices1 = backend_tensor(
41
+ [i for i, w in enumerate(w1) for _ in range(-w) if w < 0]
42
+ )
43
+ neg_indices2 = backend_tensor(
44
+ [i for i, w in enumerate(w2) for _ in range(-w) if w < 0]
45
+ )
46
+ x = backend_concatenate(pts1[pos_indices1], pts2[neg_indices2])
47
+ y = backend_concatenate(pts1[neg_indices1], pts2[pos_indices2])
48
+ return x, y
49
+
50
+
51
+ def sm_distance(
52
+ sm1: tuple,
53
+ sm2: tuple,
54
+ reg: float = 0,
55
+ reg_m: float = 0,
56
+ numItermax: int = 10000,
57
+ p: float = 1,
58
+ ):
59
+ """
60
+ Computes the wasserstein distances between two signed measures,
61
+ of the form
62
+ - (pts,weights)
63
+ with
64
+ - pts : (num_pts, dim) float array
65
+ - weights : (num_pts,) int array
66
+
67
+ Regularisation:
68
+ - sinkhorn if reg != 0
69
+ - sinkhorn unbalanced if reg_m != 0
70
+ """
71
+ x, y = sm2diff(sm1, sm2)
72
+ loss = ot.dist(
73
+ x, y, metric="sqeuclidean", p=p
74
+ ) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
75
+ if isinstance(x, np.ndarray):
76
+ empty_tensor = np.array([]) # uniform weights
77
+ else:
78
+ import torch
79
+
80
+ assert isinstance(x, torch.Tensor), "Unimplemented backend."
81
+ empty_tensor = torch.tensor([]) # uniform weights
82
+
83
+ if reg == 0:
84
+ return ot.lp.emd2(empty_tensor, empty_tensor, M=loss) * len(x)
85
+ if reg_m == 0:
86
+ return ot.sinkhorn2(
87
+ a=empty_tensor, b=empty_tensor, M=loss, reg=reg, numItermax=numItermax
88
+ )
89
+ return ot.sinkhorn_unbalanced2(
90
+ a=empty_tensor,
91
+ b=empty_tensor,
92
+ M=loss,
93
+ reg=reg,
94
+ reg_m=reg_m,
95
+ numItermax=numItermax,
96
+ )
97
+ # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
98
+ # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
99
+
100
+
101
+ def estimate_matching(b1: PyMultiDiagrams_type, b2: PyMultiDiagrams_type):
102
+ assert len(b1) == len(b2)
103
+ from gudhi.bottleneck import bottleneck_distance
104
+
105
+ def get_bc(b: PyMultiDiagrams_type, i: int) -> np.ndarray:
106
+ temp = b[i].get_points()
107
+ out = (
108
+ np.array(temp)[:, :, 0] if len(temp) > 0 else np.empty((0, 2))
109
+ ) # GUDHI FIX
110
+ return out
111
+
112
+ return max(
113
+ (bottleneck_distance(get_bc(b1, i), get_bc(b2, i)) for i in range(len(b1)))
114
+ )
115
+
116
+
117
+ # Functions to estimate precision
118
+ def estimate_error(
119
+ st: SimplexTreeMulti_type,
120
+ module: PyModule_type,
121
+ degree: int,
122
+ nlines: int = 100,
123
+ verbose: bool = False,
124
+ ):
125
+ """
126
+ Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
127
+
128
+ Parameters
129
+ ----------
130
+ - st:SimplexTree
131
+ The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
132
+ - module:PyModule
133
+ The module on which to estimate approximation error, w.r.t. the original simplextree st.
134
+ - degree:int
135
+ The homology degree to consider
136
+
137
+ Returns
138
+ -------
139
+ - float:The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
140
+
141
+ """
142
+ from time import perf_counter
143
+
144
+ parameter = 0
145
+
146
+ def _get_bc_ST(st, basepoint, degree: int):
147
+ """
148
+ Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
149
+ """
150
+ gst = st.project_on_line(
151
+ basepoint=basepoint, parameter=parameter
152
+ ) # we consider only the 1rst coordinate (as )
153
+ gst.compute_persistence()
154
+ return gst.persistence_intervals_in_dimension(degree)
155
+
156
+ from gudhi.bottleneck import bottleneck_distance
157
+
158
+ low, high = module.get_box()
159
+ nfiltration = len(low)
160
+ basepoints = np.random.uniform(low=low, high=high, size=(nlines, nfiltration))
161
+ # barcodes from module
162
+ print("Computing mma barcodes...", flush=1, end="") if verbose else None
163
+ time = perf_counter()
164
+ bcs_from_mod = module.barcodes(degree=degree, basepoints=basepoints).get_points()
165
+ print(f"Done. {perf_counter() - time}s.") if verbose else None
166
+
167
+ def clean(dgm):
168
+ return np.array(
169
+ [
170
+ [birth[parameter], death[parameter]]
171
+ for birth, death in dgm
172
+ if len(birth) > 0 and birth[parameter] != np.inf
173
+ ]
174
+ )
175
+
176
+ bcs_from_mod = [
177
+ clean(dgm) for dgm in bcs_from_mod
178
+ ] # we only consider the 1st coordinate of the barcode
179
+ # Computes gudhi barcodes
180
+ from tqdm import tqdm
181
+
182
+ bcs_from_gudhi = [
183
+ _get_bc_ST(st, basepoint=basepoint, degree=degree)
184
+ for basepoint in tqdm(
185
+ basepoints, disable=not verbose, desc="Computing gudhi barcodes"
186
+ )
187
+ ]
188
+ return max(
189
+ (
190
+ bottleneck_distance(a, b)
191
+ for a, b in tqdm(
192
+ zip(bcs_from_mod, bcs_from_gudhi),
193
+ disable=not verbose,
194
+ total=nlines,
195
+ desc="Computing bottleneck distances",
196
+ )
197
+ )
198
+ )
@@ -1,84 +1,84 @@
1
- {{py:
2
-
3
- """
4
- Filtrations conversions between python and C++
5
- """
6
-
7
- ## Value types : CTYPE, PYTHON_TYPE, short
8
- value_types = [
9
- ("int32_t", "np.int32", "i32"),
10
- ("int64_t", "np.int64", "i64"),
11
- ("float", "np.float32", "f32"),
12
- ("double", "np.float64", "f64"),
13
- ]
14
-
15
- }}
16
-
17
- # Python to C++ conversions
18
- from multipers.filtrations cimport One_critical_filtration,Multi_critical_filtration
19
- from libcpp.vector cimport vector
20
- from libcpp cimport bool
21
- cimport numpy as cnp
22
- import numpy as np
23
- from libc.stdint cimport int32_t, int64_t
24
- from cython.operator cimport dereference
25
-
26
- {{for CTYPE, PYTYPE, SHORT in value_types}}
27
- ###### ------------------- PY TO CPP
28
- #### ----------
29
-
30
- cdef inline Multi_critical_filtration[{{CTYPE}}] _py2kc_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
31
- # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
32
- cdef Multi_critical_filtration[{{CTYPE}}] out
33
- out.set_num_generators(filtrations.shape[0])
34
- for i in range(filtrations.shape[0]):
35
- out[i].resize(filtrations.shape[1])
36
- for j in range(filtrations.shape[1]):
37
- out[i][j] = filtrations[i,j]
38
- out.simplify()
39
- return out
40
-
41
- cdef inline One_critical_filtration[{{CTYPE}}] _py21c_{{SHORT}}({{CTYPE}}[:] filtration) noexcept nogil:
42
- # cdef {{CTYPE}}[:] filtration = np.asarray(filtration_, dtype={{PYTYPE}})
43
- cdef One_critical_filtration[{{CTYPE}}] out = One_critical_filtration[{{CTYPE}}](0)
44
- out.reserve(len(filtration))
45
- for i in range(len(filtration)):
46
- out.push_back(filtration[i])
47
- return out
48
-
49
-
50
- cdef inline vector[One_critical_filtration[{{CTYPE}}]] _py2v1c_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
51
- # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
52
- cdef vector[One_critical_filtration[{{CTYPE}}]] out
53
- out.reserve(filtrations.shape[0])
54
- for i in range(filtrations.shape[0]):
55
- out.push_back(_py21c_{{SHORT}}(filtrations[i,:]))
56
- return out
57
-
58
-
59
- ###### ------------------- CPP to PY
60
-
61
-
62
- ## CYTHON BUG: using tuples here will cause some weird issues.
63
- cdef inline _ff21cview_{{SHORT}}(One_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
64
- cdef Py_ssize_t num_parameters = dereference(x).num_parameters()
65
- if copy and duplicate and not dereference(x).is_finite():
66
- return np.full(shape=duplicate, fill_value=dereference(x)[0])
67
- cdef {{CTYPE}}[:] x_view = <{{CTYPE}}[:num_parameters]>(&(dereference(x)[0]))
68
- return np.array(x_view) if copy else np.asarray(x_view)
69
-
70
- cdef inline _ff2kcview_{{SHORT}}(Multi_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
71
- cdef Py_ssize_t k = dereference(x).num_generators()
72
- return [_ff21cview_{{SHORT}}(&(dereference(x)[i]), copy=copy, duplicate=duplicate) for i in range(k)]
73
-
74
-
75
- cdef inline _vff21cview_{{SHORT}}(vector[One_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
76
- cdef Py_ssize_t num_stuff = x.size()
77
- return [_ff21cview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
78
-
79
- cdef inline _vff2kcview_{{SHORT}}(vector[Multi_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
80
- cdef Py_ssize_t num_stuff = x.size()
81
- return [_ff2kcview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
82
-
83
- {{endfor}}
84
-
1
+ {{py:
2
+
3
+ """
4
+ Filtrations conversions between python and C++
5
+ """
6
+
7
+ ## Value types : CTYPE, PYTHON_TYPE, short
8
+ value_types = [
9
+ ("int32_t", "np.int32", "i32"),
10
+ ("int64_t", "np.int64", "i64"),
11
+ ("float", "np.float32", "f32"),
12
+ ("double", "np.float64", "f64"),
13
+ ]
14
+
15
+ }}
16
+
17
+ # Python to C++ conversions
18
+ from multipers.filtrations cimport One_critical_filtration,Multi_critical_filtration
19
+ from libcpp.vector cimport vector
20
+ from libcpp cimport bool
21
+ cimport numpy as cnp
22
+ import numpy as np
23
+ from libc.stdint cimport int32_t, int64_t
24
+ from cython.operator cimport dereference
25
+
26
+ {{for CTYPE, PYTYPE, SHORT in value_types}}
27
+ ###### ------------------- PY TO CPP
28
+ #### ----------
29
+
30
+ cdef inline Multi_critical_filtration[{{CTYPE}}] _py2kc_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
31
+ # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
32
+ cdef Multi_critical_filtration[{{CTYPE}}] out
33
+ out.set_num_generators(filtrations.shape[0])
34
+ for i in range(filtrations.shape[0]):
35
+ out[i].resize(filtrations.shape[1])
36
+ for j in range(filtrations.shape[1]):
37
+ out[i][j] = filtrations[i,j]
38
+ out.simplify()
39
+ return out
40
+
41
+ cdef inline One_critical_filtration[{{CTYPE}}] _py21c_{{SHORT}}({{CTYPE}}[:] filtration) noexcept nogil:
42
+ # cdef {{CTYPE}}[:] filtration = np.asarray(filtration_, dtype={{PYTYPE}})
43
+ cdef One_critical_filtration[{{CTYPE}}] out = One_critical_filtration[{{CTYPE}}](0)
44
+ out.reserve(len(filtration))
45
+ for i in range(len(filtration)):
46
+ out.push_back(filtration[i])
47
+ return out
48
+
49
+
50
+ cdef inline vector[One_critical_filtration[{{CTYPE}}]] _py2v1c_{{SHORT}}({{CTYPE}}[:,:] filtrations) noexcept nogil:
51
+ # cdef {{CTYPE}}[:,:] filtrations = np.asarray(filtrations_, dtype={{PYTYPE}})
52
+ cdef vector[One_critical_filtration[{{CTYPE}}]] out
53
+ out.reserve(filtrations.shape[0])
54
+ for i in range(filtrations.shape[0]):
55
+ out.push_back(_py21c_{{SHORT}}(filtrations[i,:]))
56
+ return out
57
+
58
+
59
+ ###### ------------------- CPP to PY
60
+
61
+
62
+ ## CYTHON BUG: using tuples here will cause some weird issues.
63
+ cdef inline _ff21cview_{{SHORT}}(One_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
64
+ cdef Py_ssize_t num_parameters = dereference(x).num_parameters()
65
+ if copy and duplicate and not dereference(x).is_finite():
66
+ return np.full(shape=duplicate, fill_value=dereference(x)[0])
67
+ cdef {{CTYPE}}[:] x_view = <{{CTYPE}}[:num_parameters]>(&(dereference(x)[0]))
68
+ return np.array(x_view) if copy else np.asarray(x_view)
69
+
70
+ cdef inline _ff2kcview_{{SHORT}}(Multi_critical_filtration[{{CTYPE}}]* x, bool copy=False, int duplicate=0):
71
+ cdef Py_ssize_t k = dereference(x).num_generators()
72
+ return [_ff21cview_{{SHORT}}(&(dereference(x)[i]), copy=copy, duplicate=duplicate) for i in range(k)]
73
+
74
+
75
+ cdef inline _vff21cview_{{SHORT}}(vector[One_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
76
+ cdef Py_ssize_t num_stuff = x.size()
77
+ return [_ff21cview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
78
+
79
+ cdef inline _vff2kcview_{{SHORT}}(vector[Multi_critical_filtration[{{CTYPE}}]]& x, bool copy = False, int duplicate=0):
80
+ cdef Py_ssize_t num_stuff = x.size()
81
+ return [_ff2kcview_{{SHORT}}(&(x[i]), copy=copy, duplicate=duplicate) for i in range(num_stuff)]
82
+
83
+ {{endfor}}
84
+
@@ -0,0 +1,18 @@
1
+ from .filtrations import (
2
+ CoreDelaunay,
3
+ Cubical,
4
+ DegreeRips,
5
+ DelaunayCodensity,
6
+ DelaunayLowerstar,
7
+ RipsCodensity,
8
+ RipsLowerstar,
9
+ )
10
+ __all__ = [
11
+ "CoreDelaunay",
12
+ "Cubical",
13
+ "DegreeRips",
14
+ "DelaunayCodensity",
15
+ "DelaunayLowerstar",
16
+ "RipsCodensity",
17
+ "RipsLowerstar",
18
+ ]