multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
@@ -1,337 +1,337 @@
1
- /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
- * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
- * Author(s): Siddharth Pritam, Marc Glisse
4
- *
5
- * Copyright (C) 2020 Inria
6
- *
7
- * Modification(s):
8
- * - 2020/03 Vincent Rouvreau: integration to the gudhi library
9
- * - 2021 Marc Glisse: complete rewrite
10
- * - YYYY/MM Author: Description of the modification
11
- */
12
-
13
- #ifndef FLAG_COMPLEX_EDGE_COLLAPSER_H_
14
- #define FLAG_COMPLEX_EDGE_COLLAPSER_H_
15
-
16
- #include <gudhi/Debug_utils.h>
17
-
18
- #include <boost/container/flat_map.hpp>
19
- #include <boost/container/flat_set.hpp>
20
-
21
- #ifdef GUDHI_USE_TBB
22
- #include <tbb/parallel_sort.h>
23
- #endif
24
-
25
- #include <utility>
26
- #include <vector>
27
- #include <tuple>
28
- #include <algorithm>
29
- #include <limits>
30
-
31
- namespace Gudhi {
32
-
33
- namespace collapse {
34
-
35
- /** \private
36
- *
37
- * \brief Flag complex sparse matrix data structure.
38
- *
39
- * \tparam Vertex type must be an integer type.
40
- * \tparam Filtration type for the value of the filtration function.
41
- */
42
- template<typename Vertex, typename Filtration_value>
43
- struct Flag_complex_edge_collapser {
44
- using Filtered_edge = std::tuple<Vertex, Vertex, Filtration_value>;
45
- typedef std::pair<Vertex,Vertex> Edge;
46
- struct Cmpi { template<class T, class U> bool operator()(T const&a, U const&b)const{return b<a; } };
47
- typedef boost::container::flat_map<Vertex, Filtration_value> Ngb_list;
48
- typedef std::vector<Ngb_list> Neighbors;
49
- Neighbors neighbors; // closed neighborhood
50
- std::size_t num_vertices;
51
- std::vector<std::tuple<Vertex, Vertex, Filtration_value>> res;
52
-
53
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
54
- // Minimal matrix interface
55
- // Using this matrix generally helps performance, but the memory use may be excessive for a very sparse graph
56
- // (and in extreme cases the constant initialization of the matrix may start to dominate the running time).
57
- // Are there cases where the matrix is too big but a hash table would help?
58
- std::vector<Filtration_value> neighbors_data;
59
- void init_neighbors_dense(){
60
- neighbors_data.clear();
61
- neighbors_data.resize(num_vertices*num_vertices, std::numeric_limits<Filtration_value>::infinity());
62
- }
63
- Filtration_value& neighbors_dense(Vertex i, Vertex j){return neighbors_data[num_vertices*j+i];}
64
- #endif
65
-
66
- // This does not touch the events list, only the adjacency matrix(es)
67
- void delay_neighbor(Vertex u, Vertex v, Filtration_value f) {
68
- neighbors[u][v]=f;
69
- neighbors[v][u]=f;
70
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
71
- neighbors_dense(u,v)=f;
72
- neighbors_dense(v,u)=f;
73
- #endif
74
- }
75
- void remove_neighbor(Vertex u, Vertex v) {
76
- neighbors[u].erase(v);
77
- neighbors[v].erase(u);
78
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
79
- neighbors_dense(u,v)=std::numeric_limits<Filtration_value>::infinity();
80
- neighbors_dense(v,u)=std::numeric_limits<Filtration_value>::infinity();
81
- #endif
82
- }
83
-
84
- template<class FilteredEdgeRange>
85
- void read_edges(FilteredEdgeRange const&r){
86
- neighbors.resize(num_vertices);
87
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
88
- init_neighbors_dense();
89
- #endif
90
- // Use the raw sequence to avoid maintaining the order
91
- std::vector<typename Ngb_list::sequence_type> neighbors_seq(num_vertices);
92
- for(auto&&e : r){
93
- using std::get;
94
- Vertex u = get<0>(e);
95
- Vertex v = get<1>(e);
96
- Filtration_value f = get<2>(e);
97
- neighbors_seq[u].emplace_back(v, f);
98
- neighbors_seq[v].emplace_back(u, f);
99
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
100
- neighbors_dense(u,v)=f;
101
- neighbors_dense(v,u)=f;
102
- #endif
103
- }
104
- for(std::size_t i=0;i<neighbors_seq.size();++i){
105
- neighbors_seq[i].emplace_back(i, -std::numeric_limits<Filtration_value>::infinity());
106
- neighbors[i].adopt_sequence(std::move(neighbors_seq[i])); // calls sort
107
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
108
- neighbors_dense(i,i)=-std::numeric_limits<Filtration_value>::infinity();
109
- #endif
110
- }
111
- }
112
-
113
- // Open neighborhood
114
- // At some point it helped gcc to add __attribute__((noinline)) here, otherwise we had +50% on the running time
115
- // on one example. It looks ok now, or I forgot which example that was.
116
- void common_neighbors(boost::container::flat_set<Vertex>& e_ngb,
117
- std::vector<std::pair<Filtration_value, Vertex>>& e_ngb_later,
118
- Vertex u, Vertex v, Filtration_value f_event){
119
- // Using neighbors_dense here seems to hurt, even if we loop on the smaller of nu and nv.
120
- Ngb_list const&nu = neighbors[u];
121
- Ngb_list const&nv = neighbors[v];
122
- auto ui = nu.begin();
123
- auto ue = nu.end();
124
- auto vi = nv.begin();
125
- auto ve = nv.end();
126
- assert(ui != ue && vi != ve);
127
- while(ui != ue && vi != ve){
128
- Vertex w = ui->first;
129
- if(w < vi->first) { ++ui; continue; }
130
- if(w > vi->first) { ++vi; continue; }
131
- // nu and nv are closed, so we need to exclude e here.
132
- if(w != u && w != v) {
133
- Filtration_value f = std::max(ui->second, vi->second);
134
- if(f > f_event)
135
- e_ngb_later.emplace_back(f, w);
136
- else
137
- e_ngb.insert(e_ngb.end(), w);
138
- }
139
- ++ui; ++vi;
140
- }
141
- }
142
-
143
- // Test if the neighborhood of e is included in the closed neighborhood of c
144
- template<class Ngb>
145
- bool is_dominated_by(Ngb const& e_ngb, Vertex c, Filtration_value f){
146
- // The best strategy probably depends on the distribution, how sparse / dense the adjacency matrix is,
147
- // how (un)balanced the sizes of e_ngb and nc are.
148
- // Some efficient operations on sets work best with bitsets, although the need for a map complicates things.
149
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
150
- for(auto v : e_ngb) {
151
- // if(v==c)continue;
152
- if(neighbors_dense(v,c) > f) return false;
153
- }
154
- return true;
155
- #else
156
- auto&&nc = neighbors[c];
157
- // if few neighbors, use dichotomy? Seems slower.
158
- // I tried storing a copy of neighbors as a vector<absl::flat_hash_map> and using it for nc, but it was
159
- // a bit slower here. It did help with neighbors[dominator].find(w) in the main function though,
160
- // sometimes enough, sometimes not.
161
- auto ci = nc.begin();
162
- auto ce = nc.end();
163
- auto eni = e_ngb.begin();
164
- auto ene = e_ngb.end();
165
- assert(eni != ene);
166
- assert(ci != ce);
167
- // if(*eni == c && ++eni == ene) return true;
168
- for(;;){
169
- Vertex ve = *eni;
170
- Vertex vc = ci->first;
171
- while(ve > vc) {
172
- // try a gallop strategy (exponential search)? Seems slower
173
- if(++ci == ce) return false;
174
- vc = ci->first;
175
- }
176
- if(ve < vc) return false;
177
- // ve == vc
178
- if(ci->second > f) return false;
179
- if(++eni == ene)return true;
180
- // If we stored an open neighborhood of c (excluding c), we would need to test for c here and before the loop
181
- // if(*eni == c && ++eni == ene)return true;
182
- if(++ci == ce) return false;
183
- }
184
- #endif
185
- }
186
-
187
- template<class FilteredEdgeRange, class Delay>
188
- void process_edges(FilteredEdgeRange const& edges, Delay&& delay) {
189
- {
190
- Vertex maxi = 0, maxj = 0;
191
- for(auto& fe : edges) {
192
- Vertex i = std::get<0>(fe);
193
- Vertex j = std::get<1>(fe);
194
- if (i > maxi) maxi = i;
195
- if (j > maxj) maxj = j;
196
- }
197
- num_vertices = std::max(maxi, maxj) + 1;
198
- }
199
-
200
- read_edges(edges);
201
-
202
- boost::container::flat_set<Vertex> e_ngb;
203
- e_ngb.reserve(num_vertices);
204
- std::vector<std::pair<Filtration_value, Vertex>> e_ngb_later;
205
- for(auto&e:edges) {
206
- {
207
- Vertex u = std::get<0>(e);
208
- Vertex v = std::get<1>(e);
209
- Filtration_value input_time = std::get<2>(e);
210
- auto time = delay(input_time);
211
- auto start_time = time;
212
- e_ngb.clear();
213
- e_ngb_later.clear();
214
- common_neighbors(e_ngb, e_ngb_later, u, v, time);
215
- // If we identify a good candidate (the first common neighbor) for being a dominator of e until infinity,
216
- // we could check that a bit more cheaply. It does not seem to help though.
217
- auto cmp1=[](auto const&a, auto const&b){return a.first > b.first;};
218
- auto e_ngb_later_begin=e_ngb_later.begin();
219
- auto e_ngb_later_end=e_ngb_later.end();
220
- bool heapified = false;
221
-
222
- bool dead = false;
223
- while(true) {
224
- Vertex dominator = -1;
225
- // special case for size 1
226
- // if(e_ngb.size()==1){dominator=*e_ngb.begin();}else
227
- // It is tempting to test the dominators in increasing order of filtration value, which is likely to reduce
228
- // the number of calls to is_dominated_by before finding a dominator, but sorting, even partially / lazily,
229
- // is very expensive.
230
- for(auto c : e_ngb){
231
- if(is_dominated_by(e_ngb, c, time)){
232
- dominator = c;
233
- break;
234
- }
235
- }
236
- if(dominator==-1) break;
237
- // Push as long as dominator remains a dominator.
238
- // Iterate on times where at least one neighbor appears.
239
- for (bool still_dominated = true; still_dominated; ) {
240
- if(e_ngb_later_begin == e_ngb_later_end) {
241
- dead = true; goto end_move;
242
- }
243
- if(!heapified) {
244
- // Eagerly sorting can be slow
245
- std::make_heap(e_ngb_later_begin, e_ngb_later_end, cmp1);
246
- heapified=true;
247
- }
248
- time = e_ngb_later_begin->first; // first place it may become critical
249
- // Update the neighborhood for this new time, while checking if any of the new neighbors break domination.
250
- while (e_ngb_later_begin != e_ngb_later_end && e_ngb_later_begin->first <= time) {
251
- Vertex w = e_ngb_later_begin->second;
252
- #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
253
- if (neighbors_dense(dominator,w) > e_ngb_later_begin->first)
254
- still_dominated = false;
255
- #else
256
- auto& ngb_dom = neighbors[dominator];
257
- auto wit = ngb_dom.find(w); // neighborhood may be open or closed, it does not matter
258
- if (wit == ngb_dom.end() || wit->second > e_ngb_later_begin->first)
259
- still_dominated = false;
260
- #endif
261
- e_ngb.insert(w);
262
- std::pop_heap(e_ngb_later_begin, e_ngb_later_end--, cmp1);
263
- }
264
- } // this doesn't seem to help that much...
265
- }
266
- end_move:
267
- if(dead) {
268
- remove_neighbor(u, v);
269
- } else if(start_time != time) {
270
- delay_neighbor(u, v, time);
271
- res.emplace_back(u, v, time);
272
- } else {
273
- res.emplace_back(u, v, input_time);
274
- }
275
- }
276
- }
277
- }
278
-
279
- std::vector<Filtered_edge> output() {
280
- return std::move(res);
281
- }
282
-
283
- };
284
-
285
- template<class R> R to_range(R&& r) { return std::move(r); }
286
- template<class R, class T> R to_range(T const& t) { R r; r.insert(r.end(), t.begin(), t.end()); return r; }
287
-
288
- template<class FilteredEdgeRange, class Delay>
289
- auto flag_complex_collapse_edges(FilteredEdgeRange&& edges, Delay&&delay) {
290
- // Would it help to label the points according to some spatial sorting?
291
- auto first_edge_itr = std::begin(edges);
292
- using Vertex = std::decay_t<decltype(std::get<0>(*first_edge_itr))>;
293
- using Filtration_value = std::decay_t<decltype(std::get<2>(*first_edge_itr))>;
294
- using Edge_collapser = Flag_complex_edge_collapser<Vertex, Filtration_value>;
295
- if (first_edge_itr != std::end(edges)) {
296
- auto edges2 = to_range<std::vector<typename Edge_collapser::Filtered_edge>>(std::forward<FilteredEdgeRange>(edges));
297
- #ifdef GUDHI_USE_TBB
298
- // I think this sorting is always negligible compared to the collapse, but parallelizing it shouldn't hurt.
299
- tbb::parallel_sort(edges2.begin(), edges2.end(),
300
- [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
301
- #else
302
- std::sort(edges2.begin(), edges2.end(), [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
303
- #endif
304
- Edge_collapser edge_collapser;
305
- edge_collapser.process_edges(edges2, std::forward<Delay>(delay));
306
- return edge_collapser.output();
307
- }
308
- return std::vector<typename Edge_collapser::Filtered_edge>();
309
- }
310
-
311
- /** \brief Implicitly constructs a flag complex from edges as an input, collapses edges while preserving the persistent
312
- * homology and returns the remaining edges as a range. The filtration value of vertices is irrelevant to this function.
313
- *
314
- * \param[in] edges Range of Filtered edges. There is no need for the range to be sorted, as it will be done internally.
315
- *
316
- * \tparam FilteredEdgeRange Range of `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`
317
- * where `Vertex_handle` is the type of a vertex index.
318
- *
319
- * \return Remaining edges after collapse as a range of
320
- * `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`.
321
- *
322
- * \ingroup edge_collapse
323
- *
324
- * \note
325
- * Advanced: Defining the macro GUDHI_COLLAPSE_USE_DENSE_ARRAY tells gudhi to allocate a square table of size the
326
- * maximum vertex index. This usually speeds up the computation for dense graphs. However, for sparse graphs, the memory
327
- * use may be problematic and initializing this large table may be slow.
328
- */
329
- template<class FilteredEdgeRange> auto flag_complex_collapse_edges(const FilteredEdgeRange& edges) {
330
- return flag_complex_collapse_edges(edges, [](auto const&d){return d;});
331
- }
332
-
333
- } // namespace collapse
334
-
335
- } // namespace Gudhi
336
-
337
- #endif // FLAG_COMPLEX_EDGE_COLLAPSER_H_
1
+ /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
+ * Author(s): Siddharth Pritam, Marc Glisse
4
+ *
5
+ * Copyright (C) 2020 Inria
6
+ *
7
+ * Modification(s):
8
+ * - 2020/03 Vincent Rouvreau: integration to the gudhi library
9
+ * - 2021 Marc Glisse: complete rewrite
10
+ * - YYYY/MM Author: Description of the modification
11
+ */
12
+
13
+ #ifndef FLAG_COMPLEX_EDGE_COLLAPSER_H_
14
+ #define FLAG_COMPLEX_EDGE_COLLAPSER_H_
15
+
16
+ #include <gudhi/Debug_utils.h>
17
+
18
+ #include <boost/container/flat_map.hpp>
19
+ #include <boost/container/flat_set.hpp>
20
+
21
+ #ifdef GUDHI_USE_TBB
22
+ #include <tbb/parallel_sort.h>
23
+ #endif
24
+
25
+ #include <utility>
26
+ #include <vector>
27
+ #include <tuple>
28
+ #include <algorithm>
29
+ #include <limits>
30
+
31
+ namespace Gudhi {
32
+
33
+ namespace collapse {
34
+
35
+ /** \private
36
+ *
37
+ * \brief Flag complex sparse matrix data structure.
38
+ *
39
+ * \tparam Vertex type must be an integer type.
40
+ * \tparam Filtration type for the value of the filtration function.
41
+ */
42
+ template<typename Vertex, typename Filtration_value>
43
+ struct Flag_complex_edge_collapser {
44
+ using Filtered_edge = std::tuple<Vertex, Vertex, Filtration_value>;
45
+ typedef std::pair<Vertex,Vertex> Edge;
46
+ struct Cmpi { template<class T, class U> bool operator()(T const&a, U const&b)const{return b<a; } };
47
+ typedef boost::container::flat_map<Vertex, Filtration_value> Ngb_list;
48
+ typedef std::vector<Ngb_list> Neighbors;
49
+ Neighbors neighbors; // closed neighborhood
50
+ std::size_t num_vertices;
51
+ std::vector<std::tuple<Vertex, Vertex, Filtration_value>> res;
52
+
53
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
54
+ // Minimal matrix interface
55
+ // Using this matrix generally helps performance, but the memory use may be excessive for a very sparse graph
56
+ // (and in extreme cases the constant initialization of the matrix may start to dominate the running time).
57
+ // Are there cases where the matrix is too big but a hash table would help?
58
+ std::vector<Filtration_value> neighbors_data;
59
+ void init_neighbors_dense(){
60
+ neighbors_data.clear();
61
+ neighbors_data.resize(num_vertices*num_vertices, std::numeric_limits<Filtration_value>::infinity());
62
+ }
63
+ Filtration_value& neighbors_dense(Vertex i, Vertex j){return neighbors_data[num_vertices*j+i];}
64
+ #endif
65
+
66
+ // This does not touch the events list, only the adjacency matrix(es)
67
+ void delay_neighbor(Vertex u, Vertex v, Filtration_value f) {
68
+ neighbors[u][v]=f;
69
+ neighbors[v][u]=f;
70
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
71
+ neighbors_dense(u,v)=f;
72
+ neighbors_dense(v,u)=f;
73
+ #endif
74
+ }
75
+ void remove_neighbor(Vertex u, Vertex v) {
76
+ neighbors[u].erase(v);
77
+ neighbors[v].erase(u);
78
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
79
+ neighbors_dense(u,v)=std::numeric_limits<Filtration_value>::infinity();
80
+ neighbors_dense(v,u)=std::numeric_limits<Filtration_value>::infinity();
81
+ #endif
82
+ }
83
+
84
+ template<class FilteredEdgeRange>
85
+ void read_edges(FilteredEdgeRange const&r){
86
+ neighbors.resize(num_vertices);
87
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
88
+ init_neighbors_dense();
89
+ #endif
90
+ // Use the raw sequence to avoid maintaining the order
91
+ std::vector<typename Ngb_list::sequence_type> neighbors_seq(num_vertices);
92
+ for(auto&&e : r){
93
+ using std::get;
94
+ Vertex u = get<0>(e);
95
+ Vertex v = get<1>(e);
96
+ Filtration_value f = get<2>(e);
97
+ neighbors_seq[u].emplace_back(v, f);
98
+ neighbors_seq[v].emplace_back(u, f);
99
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
100
+ neighbors_dense(u,v)=f;
101
+ neighbors_dense(v,u)=f;
102
+ #endif
103
+ }
104
+ for(std::size_t i=0;i<neighbors_seq.size();++i){
105
+ neighbors_seq[i].emplace_back(i, -std::numeric_limits<Filtration_value>::infinity());
106
+ neighbors[i].adopt_sequence(std::move(neighbors_seq[i])); // calls sort
107
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
108
+ neighbors_dense(i,i)=-std::numeric_limits<Filtration_value>::infinity();
109
+ #endif
110
+ }
111
+ }
112
+
113
+ // Open neighborhood
114
+ // At some point it helped gcc to add __attribute__((noinline)) here, otherwise we had +50% on the running time
115
+ // on one example. It looks ok now, or I forgot which example that was.
116
+ void common_neighbors(boost::container::flat_set<Vertex>& e_ngb,
117
+ std::vector<std::pair<Filtration_value, Vertex>>& e_ngb_later,
118
+ Vertex u, Vertex v, Filtration_value f_event){
119
+ // Using neighbors_dense here seems to hurt, even if we loop on the smaller of nu and nv.
120
+ Ngb_list const&nu = neighbors[u];
121
+ Ngb_list const&nv = neighbors[v];
122
+ auto ui = nu.begin();
123
+ auto ue = nu.end();
124
+ auto vi = nv.begin();
125
+ auto ve = nv.end();
126
+ assert(ui != ue && vi != ve);
127
+ while(ui != ue && vi != ve){
128
+ Vertex w = ui->first;
129
+ if(w < vi->first) { ++ui; continue; }
130
+ if(w > vi->first) { ++vi; continue; }
131
+ // nu and nv are closed, so we need to exclude e here.
132
+ if(w != u && w != v) {
133
+ Filtration_value f = std::max(ui->second, vi->second);
134
+ if(f > f_event)
135
+ e_ngb_later.emplace_back(f, w);
136
+ else
137
+ e_ngb.insert(e_ngb.end(), w);
138
+ }
139
+ ++ui; ++vi;
140
+ }
141
+ }
142
+
143
+ // Test if the neighborhood of e is included in the closed neighborhood of c
144
+ template<class Ngb>
145
+ bool is_dominated_by(Ngb const& e_ngb, Vertex c, Filtration_value f){
146
+ // The best strategy probably depends on the distribution, how sparse / dense the adjacency matrix is,
147
+ // how (un)balanced the sizes of e_ngb and nc are.
148
+ // Some efficient operations on sets work best with bitsets, although the need for a map complicates things.
149
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
150
+ for(auto v : e_ngb) {
151
+ // if(v==c)continue;
152
+ if(neighbors_dense(v,c) > f) return false;
153
+ }
154
+ return true;
155
+ #else
156
+ auto&&nc = neighbors[c];
157
+ // if few neighbors, use dichotomy? Seems slower.
158
+ // I tried storing a copy of neighbors as a vector<absl::flat_hash_map> and using it for nc, but it was
159
+ // a bit slower here. It did help with neighbors[dominator].find(w) in the main function though,
160
+ // sometimes enough, sometimes not.
161
+ auto ci = nc.begin();
162
+ auto ce = nc.end();
163
+ auto eni = e_ngb.begin();
164
+ auto ene = e_ngb.end();
165
+ assert(eni != ene);
166
+ assert(ci != ce);
167
+ // if(*eni == c && ++eni == ene) return true;
168
+ for(;;){
169
+ Vertex ve = *eni;
170
+ Vertex vc = ci->first;
171
+ while(ve > vc) {
172
+ // try a gallop strategy (exponential search)? Seems slower
173
+ if(++ci == ce) return false;
174
+ vc = ci->first;
175
+ }
176
+ if(ve < vc) return false;
177
+ // ve == vc
178
+ if(ci->second > f) return false;
179
+ if(++eni == ene)return true;
180
+ // If we stored an open neighborhood of c (excluding c), we would need to test for c here and before the loop
181
+ // if(*eni == c && ++eni == ene)return true;
182
+ if(++ci == ce) return false;
183
+ }
184
+ #endif
185
+ }
186
+
187
+ template<class FilteredEdgeRange, class Delay>
188
+ void process_edges(FilteredEdgeRange const& edges, Delay&& delay) {
189
+ {
190
+ Vertex maxi = 0, maxj = 0;
191
+ for(auto& fe : edges) {
192
+ Vertex i = std::get<0>(fe);
193
+ Vertex j = std::get<1>(fe);
194
+ if (i > maxi) maxi = i;
195
+ if (j > maxj) maxj = j;
196
+ }
197
+ num_vertices = std::max(maxi, maxj) + 1;
198
+ }
199
+
200
+ read_edges(edges);
201
+
202
+ boost::container::flat_set<Vertex> e_ngb;
203
+ e_ngb.reserve(num_vertices);
204
+ std::vector<std::pair<Filtration_value, Vertex>> e_ngb_later;
205
+ for(auto&e:edges) {
206
+ {
207
+ Vertex u = std::get<0>(e);
208
+ Vertex v = std::get<1>(e);
209
+ Filtration_value input_time = std::get<2>(e);
210
+ auto time = delay(input_time);
211
+ auto start_time = time;
212
+ e_ngb.clear();
213
+ e_ngb_later.clear();
214
+ common_neighbors(e_ngb, e_ngb_later, u, v, time);
215
+ // If we identify a good candidate (the first common neighbor) for being a dominator of e until infinity,
216
+ // we could check that a bit more cheaply. It does not seem to help though.
217
+ auto cmp1=[](auto const&a, auto const&b){return a.first > b.first;};
218
+ auto e_ngb_later_begin=e_ngb_later.begin();
219
+ auto e_ngb_later_end=e_ngb_later.end();
220
+ bool heapified = false;
221
+
222
+ bool dead = false;
223
+ while(true) {
224
+ Vertex dominator = -1;
225
+ // special case for size 1
226
+ // if(e_ngb.size()==1){dominator=*e_ngb.begin();}else
227
+ // It is tempting to test the dominators in increasing order of filtration value, which is likely to reduce
228
+ // the number of calls to is_dominated_by before finding a dominator, but sorting, even partially / lazily,
229
+ // is very expensive.
230
+ for(auto c : e_ngb){
231
+ if(is_dominated_by(e_ngb, c, time)){
232
+ dominator = c;
233
+ break;
234
+ }
235
+ }
236
+ if(dominator==-1) break;
237
+ // Push as long as dominator remains a dominator.
238
+ // Iterate on times where at least one neighbor appears.
239
+ for (bool still_dominated = true; still_dominated; ) {
240
+ if(e_ngb_later_begin == e_ngb_later_end) {
241
+ dead = true; goto end_move;
242
+ }
243
+ if(!heapified) {
244
+ // Eagerly sorting can be slow
245
+ std::make_heap(e_ngb_later_begin, e_ngb_later_end, cmp1);
246
+ heapified=true;
247
+ }
248
+ time = e_ngb_later_begin->first; // first place it may become critical
249
+ // Update the neighborhood for this new time, while checking if any of the new neighbors break domination.
250
+ while (e_ngb_later_begin != e_ngb_later_end && e_ngb_later_begin->first <= time) {
251
+ Vertex w = e_ngb_later_begin->second;
252
+ #ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
253
+ if (neighbors_dense(dominator,w) > e_ngb_later_begin->first)
254
+ still_dominated = false;
255
+ #else
256
+ auto& ngb_dom = neighbors[dominator];
257
+ auto wit = ngb_dom.find(w); // neighborhood may be open or closed, it does not matter
258
+ if (wit == ngb_dom.end() || wit->second > e_ngb_later_begin->first)
259
+ still_dominated = false;
260
+ #endif
261
+ e_ngb.insert(w);
262
+ std::pop_heap(e_ngb_later_begin, e_ngb_later_end--, cmp1);
263
+ }
264
+ } // this doesn't seem to help that much...
265
+ }
266
+ end_move:
267
+ if(dead) {
268
+ remove_neighbor(u, v);
269
+ } else if(start_time != time) {
270
+ delay_neighbor(u, v, time);
271
+ res.emplace_back(u, v, time);
272
+ } else {
273
+ res.emplace_back(u, v, input_time);
274
+ }
275
+ }
276
+ }
277
+ }
278
+
279
+ std::vector<Filtered_edge> output() {
280
+ return std::move(res);
281
+ }
282
+
283
+ };
284
+
285
+ template<class R> R to_range(R&& r) { return std::move(r); }
286
+ template<class R, class T> R to_range(T const& t) { R r; r.insert(r.end(), t.begin(), t.end()); return r; }
287
+
288
+ template<class FilteredEdgeRange, class Delay>
289
+ auto flag_complex_collapse_edges(FilteredEdgeRange&& edges, Delay&&delay) {
290
+ // Would it help to label the points according to some spatial sorting?
291
+ auto first_edge_itr = std::begin(edges);
292
+ using Vertex = std::decay_t<decltype(std::get<0>(*first_edge_itr))>;
293
+ using Filtration_value = std::decay_t<decltype(std::get<2>(*first_edge_itr))>;
294
+ using Edge_collapser = Flag_complex_edge_collapser<Vertex, Filtration_value>;
295
+ if (first_edge_itr != std::end(edges)) {
296
+ auto edges2 = to_range<std::vector<typename Edge_collapser::Filtered_edge>>(std::forward<FilteredEdgeRange>(edges));
297
+ #ifdef GUDHI_USE_TBB
298
+ // I think this sorting is always negligible compared to the collapse, but parallelizing it shouldn't hurt.
299
+ tbb::parallel_sort(edges2.begin(), edges2.end(),
300
+ [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
301
+ #else
302
+ std::sort(edges2.begin(), edges2.end(), [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
303
+ #endif
304
+ Edge_collapser edge_collapser;
305
+ edge_collapser.process_edges(edges2, std::forward<Delay>(delay));
306
+ return edge_collapser.output();
307
+ }
308
+ return std::vector<typename Edge_collapser::Filtered_edge>();
309
+ }
310
+
311
+ /** \brief Implicitly constructs a flag complex from edges as an input, collapses edges while preserving the persistent
312
+ * homology and returns the remaining edges as a range. The filtration value of vertices is irrelevant to this function.
313
+ *
314
+ * \param[in] edges Range of Filtered edges. There is no need for the range to be sorted, as it will be done internally.
315
+ *
316
+ * \tparam FilteredEdgeRange Range of `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`
317
+ * where `Vertex_handle` is the type of a vertex index.
318
+ *
319
+ * \return Remaining edges after collapse as a range of
320
+ * `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`.
321
+ *
322
+ * \ingroup edge_collapse
323
+ *
324
+ * \note
325
+ * Advanced: Defining the macro GUDHI_COLLAPSE_USE_DENSE_ARRAY tells gudhi to allocate a square table of size the
326
+ * maximum vertex index. This usually speeds up the computation for dense graphs. However, for sparse graphs, the memory
327
+ * use may be problematic and initializing this large table may be slow.
328
+ */
329
+ template<class FilteredEdgeRange> auto flag_complex_collapse_edges(const FilteredEdgeRange& edges) {
330
+ return flag_complex_collapse_edges(edges, [](auto const&d){return d;});
331
+ }
332
+
333
+ } // namespace collapse
334
+
335
+ } // namespace Gudhi
336
+
337
+ #endif // FLAG_COMPLEX_EDGE_COLLAPSER_H_