multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
@@ -1,90 +1,90 @@
1
- import pandas as pd
2
- from warnings import warn
3
- import numpy as np
4
- from tqdm import tqdm
5
- from os.path import exists
6
-
7
-
8
- def accuracy_to_csv(
9
- X,
10
- Y,
11
- cl,
12
- k: float = 10,
13
- dataset: str = "",
14
- shuffle=True,
15
- verbose: bool = True,
16
- **more_columns,
17
- ):
18
- assert k > 0, "k is either the number of kfold > 1 or the test size > 0."
19
- if k > 1:
20
- k = int(k)
21
- from sklearn.model_selection import StratifiedKFold as KFold
22
-
23
- kfold = KFold(k, shuffle=shuffle).split(X, Y)
24
- accuracies = np.zeros(k)
25
- for i, (train_idx, test_idx) in enumerate(
26
- tqdm(kfold, total=k, desc="Computing kfold")
27
- ):
28
- xtrain = [X[i] for i in train_idx]
29
- ytrain = [Y[i] for i in train_idx]
30
- cl.fit(xtrain, ytrain)
31
- xtest = [X[i] for i in test_idx]
32
- ytest = [Y[i] for i in test_idx]
33
- accuracies[i] = cl.score(xtest, ytest)
34
- if verbose:
35
- print(f"step {i+1}, {dataset} : {accuracies[i]}", flush=True)
36
- try:
37
- print("Best classification parameters : ", cl.best_params_)
38
- except:
39
- None
40
-
41
- print(
42
- f"""Accuracy {dataset} : {np.mean(accuracies).round(decimals=3)}±{np.std(accuracies).round(decimals=3)}"""
43
- )
44
- elif k > 0:
45
- from sklearn.model_selection import train_test_split
46
-
47
- print("Computing accuracy, with train test split", flush=True)
48
- xtrain, xtest, ytrain, ytest = train_test_split(
49
- X, Y, shuffle=shuffle, test_size=k
50
- )
51
- print("Fitting...", end="", flush=True)
52
- cl.fit(xtrain, ytrain)
53
- print("Computing score...", end="", flush=True)
54
- accuracies = cl.score(xtest, ytest)
55
- try:
56
- print("Best classification parameters : ", cl.best_params_)
57
- except:
58
- None
59
- print("Done.")
60
- if verbose:
61
- print(f"Accuracy {dataset} : {accuracies} ")
62
- file_path: str = f"result_{dataset}.csv".replace("/", "_").replace(".off", "")
63
- columns: list[str] = ["dataset", "cv", "mean", "std"]
64
- if exists(file_path):
65
- df: pd.DataFrame = pd.read_csv(file_path)
66
- else:
67
- df: pd.DataFrame = pd.DataFrame(columns=columns)
68
- more_names = []
69
- more_values = []
70
- for key, value in more_columns.items():
71
- if key not in columns:
72
- more_names.append(key)
73
- more_values.append(value)
74
- else:
75
- warn(f"Duplicate key {key} ! with value {value}")
76
- new_line: pd.DataFrame = pd.DataFrame(
77
- [
78
- [
79
- dataset,
80
- k,
81
- np.mean(accuracies).round(decimals=3),
82
- np.std(accuracies).round(decimals=3),
83
- ]
84
- + more_values
85
- ],
86
- columns=columns + more_names,
87
- )
88
- print(new_line)
89
- df = pd.concat([df, new_line])
90
- df.to_csv(file_path, index=False)
1
+ import pandas as pd
2
+ from warnings import warn
3
+ import numpy as np
4
+ from tqdm import tqdm
5
+ from os.path import exists
6
+
7
+
8
+ def accuracy_to_csv(
9
+ X,
10
+ Y,
11
+ cl,
12
+ k: float = 10,
13
+ dataset: str = "",
14
+ shuffle=True,
15
+ verbose: bool = True,
16
+ **more_columns,
17
+ ):
18
+ assert k > 0, "k is either the number of kfold > 1 or the test size > 0."
19
+ if k > 1:
20
+ k = int(k)
21
+ from sklearn.model_selection import StratifiedKFold as KFold
22
+
23
+ kfold = KFold(k, shuffle=shuffle).split(X, Y)
24
+ accuracies = np.zeros(k)
25
+ for i, (train_idx, test_idx) in enumerate(
26
+ tqdm(kfold, total=k, desc="Computing kfold")
27
+ ):
28
+ xtrain = [X[i] for i in train_idx]
29
+ ytrain = [Y[i] for i in train_idx]
30
+ cl.fit(xtrain, ytrain)
31
+ xtest = [X[i] for i in test_idx]
32
+ ytest = [Y[i] for i in test_idx]
33
+ accuracies[i] = cl.score(xtest, ytest)
34
+ if verbose:
35
+ print(f"step {i+1}, {dataset} : {accuracies[i]}", flush=True)
36
+ try:
37
+ print("Best classification parameters : ", cl.best_params_)
38
+ except:
39
+ None
40
+
41
+ print(
42
+ f"""Accuracy {dataset} : {np.mean(accuracies).round(decimals=3)}±{np.std(accuracies).round(decimals=3)}"""
43
+ )
44
+ elif k > 0:
45
+ from sklearn.model_selection import train_test_split
46
+
47
+ print("Computing accuracy, with train test split", flush=True)
48
+ xtrain, xtest, ytrain, ytest = train_test_split(
49
+ X, Y, shuffle=shuffle, test_size=k
50
+ )
51
+ print("Fitting...", end="", flush=True)
52
+ cl.fit(xtrain, ytrain)
53
+ print("Computing score...", end="", flush=True)
54
+ accuracies = cl.score(xtest, ytest)
55
+ try:
56
+ print("Best classification parameters : ", cl.best_params_)
57
+ except:
58
+ None
59
+ print("Done.")
60
+ if verbose:
61
+ print(f"Accuracy {dataset} : {accuracies} ")
62
+ file_path: str = f"result_{dataset}.csv".replace("/", "_").replace(".off", "")
63
+ columns: list[str] = ["dataset", "cv", "mean", "std"]
64
+ if exists(file_path):
65
+ df: pd.DataFrame = pd.read_csv(file_path)
66
+ else:
67
+ df: pd.DataFrame = pd.DataFrame(columns=columns)
68
+ more_names = []
69
+ more_values = []
70
+ for key, value in more_columns.items():
71
+ if key not in columns:
72
+ more_names.append(key)
73
+ more_values.append(value)
74
+ else:
75
+ warn(f"Duplicate key {key} ! with value {value}")
76
+ new_line: pd.DataFrame = pd.DataFrame(
77
+ [
78
+ [
79
+ dataset,
80
+ k,
81
+ np.mean(accuracies).round(decimals=3),
82
+ np.std(accuracies).round(decimals=3),
83
+ ]
84
+ + more_values
85
+ ],
86
+ columns=columns + more_names,
87
+ )
88
+ print(new_line)
89
+ df = pd.concat([df, new_line])
90
+ df.to_csv(file_path, index=False)
@@ -1,79 +1,79 @@
1
- import persistable
2
-
3
-
4
- # requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
5
- # which can be done as follows:
6
- # pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
7
- # NOTE: only accepts as input a distance matrix
8
- def hf_degree_rips(
9
- distance_matrix,
10
- min_rips_value,
11
- max_rips_value,
12
- max_normalized_degree,
13
- min_normalized_degree,
14
- grid_granularity,
15
- max_homological_dimension,
16
- subsample_size = None,
17
- ):
18
- if subsample_size == None:
19
- p = persistable.Persistable(distance_matrix, metric="precomputed")
20
- else:
21
- p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
22
-
23
- rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
24
- min_rips_value,
25
- max_rips_value,
26
- max_normalized_degree,
27
- min_normalized_degree,
28
- grid_granularity,
29
- homological_dimension=max_homological_dimension,
30
- )
31
-
32
- return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
33
-
34
-
35
-
36
- def hf_h0_degree_rips(
37
- point_cloud,
38
- min_rips_value,
39
- max_rips_value,
40
- max_normalized_degree,
41
- min_normalized_degree,
42
- grid_granularity,
43
- ):
44
- p = persistable.Persistable(point_cloud, n_neighbors="all")
45
-
46
- rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
47
- min_rips_value,
48
- max_rips_value,
49
- max_normalized_degree,
50
- min_normalized_degree,
51
- grid_granularity,
52
- )
53
-
54
- return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
55
-
56
-
57
- def ri_h0_degree_rips(
58
- point_cloud,
59
- min_rips_value,
60
- max_rips_value,
61
- max_normalized_degree,
62
- min_normalized_degree,
63
- grid_granularity,
64
- ):
65
- p = persistable.Persistable(point_cloud, n_neighbors="all")
66
-
67
- rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
68
- min_rips_value,
69
- max_rips_value,
70
- max_normalized_degree,
71
- min_normalized_degree,
72
- grid_granularity,
73
- )
74
-
75
- return rips_values, normalized_degree_values, rank_invariant
76
-
77
-
78
-
79
-
1
+ import persistable
2
+
3
+
4
+ # requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
5
+ # which can be done as follows:
6
+ # pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
7
+ # NOTE: only accepts as input a distance matrix
8
+ def hf_degree_rips(
9
+ distance_matrix,
10
+ min_rips_value,
11
+ max_rips_value,
12
+ max_normalized_degree,
13
+ min_normalized_degree,
14
+ grid_granularity,
15
+ max_homological_dimension,
16
+ subsample_size = None,
17
+ ):
18
+ if subsample_size == None:
19
+ p = persistable.Persistable(distance_matrix, metric="precomputed")
20
+ else:
21
+ p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
22
+
23
+ rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
24
+ min_rips_value,
25
+ max_rips_value,
26
+ max_normalized_degree,
27
+ min_normalized_degree,
28
+ grid_granularity,
29
+ homological_dimension=max_homological_dimension,
30
+ )
31
+
32
+ return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
33
+
34
+
35
+
36
+ def hf_h0_degree_rips(
37
+ point_cloud,
38
+ min_rips_value,
39
+ max_rips_value,
40
+ max_normalized_degree,
41
+ min_normalized_degree,
42
+ grid_granularity,
43
+ ):
44
+ p = persistable.Persistable(point_cloud, n_neighbors="all")
45
+
46
+ rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
47
+ min_rips_value,
48
+ max_rips_value,
49
+ max_normalized_degree,
50
+ min_normalized_degree,
51
+ grid_granularity,
52
+ )
53
+
54
+ return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
55
+
56
+
57
+ def ri_h0_degree_rips(
58
+ point_cloud,
59
+ min_rips_value,
60
+ max_rips_value,
61
+ max_normalized_degree,
62
+ min_normalized_degree,
63
+ grid_granularity,
64
+ ):
65
+ p = persistable.Persistable(point_cloud, n_neighbors="all")
66
+
67
+ rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
68
+ min_rips_value,
69
+ max_rips_value,
70
+ max_normalized_degree,
71
+ min_normalized_degree,
72
+ grid_granularity,
73
+ )
74
+
75
+ return rips_values, normalized_degree_values, rank_invariant
76
+
77
+
78
+
79
+