multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -31
- multipers/_signed_measure_meta.py +430 -430
- multipers/_slicer_meta.py +211 -212
- multipers/data/MOL2.py +458 -458
- multipers/data/UCR.py +18 -18
- multipers/data/graphs.py +466 -466
- multipers/data/immuno_regions.py +27 -27
- multipers/data/pytorch2simplextree.py +90 -90
- multipers/data/shape3d.py +101 -101
- multipers/data/synthetic.py +113 -111
- multipers/distances.py +198 -198
- multipers/filtration_conversions.pxd.tp +84 -84
- multipers/filtrations/__init__.py +18 -0
- multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
- multipers/filtrations/filtrations.py +289 -0
- multipers/filtrations.pxd +224 -224
- multipers/function_rips.cp310-win_amd64.pyd +0 -0
- multipers/function_rips.pyx +105 -105
- multipers/grids.cp310-win_amd64.pyd +0 -0
- multipers/grids.pyx +350 -350
- multipers/gudhi/Persistence_slices_interface.h +132 -132
- multipers/gudhi/Simplex_tree_interface.h +239 -245
- multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
- multipers/gudhi/cubical_to_boundary.h +59 -59
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
- multipers/gudhi/gudhi/Debug_utils.h +45 -45
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
- multipers/gudhi/gudhi/Matrix.h +2107 -2107
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
- multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
- multipers/gudhi/gudhi/Off_reader.h +173 -173
- multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
- multipers/gudhi/gudhi/Points_off_io.h +171 -171
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
- multipers/gudhi/gudhi/distance_functions.h +62 -62
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
- multipers/gudhi/gudhi/persistence_interval.h +253 -253
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
- multipers/gudhi/gudhi/reader_utils.h +367 -367
- multipers/gudhi/mma_interface_coh.h +256 -255
- multipers/gudhi/mma_interface_h0.h +223 -231
- multipers/gudhi/mma_interface_matrix.h +291 -282
- multipers/gudhi/naive_merge_tree.h +536 -575
- multipers/gudhi/scc_io.h +310 -289
- multipers/gudhi/truc.h +957 -888
- multipers/io.cp310-win_amd64.pyd +0 -0
- multipers/io.pyx +714 -711
- multipers/ml/accuracies.py +90 -90
- multipers/ml/invariants_with_persistable.py +79 -79
- multipers/ml/kernels.py +176 -176
- multipers/ml/mma.py +713 -714
- multipers/ml/one.py +472 -472
- multipers/ml/point_clouds.py +352 -346
- multipers/ml/signed_measures.py +1589 -1589
- multipers/ml/sliced_wasserstein.py +461 -461
- multipers/ml/tools.py +113 -113
- multipers/mma_structures.cp310-win_amd64.pyd +0 -0
- multipers/mma_structures.pxd +127 -127
- multipers/mma_structures.pyx +4 -8
- multipers/mma_structures.pyx.tp +1083 -1085
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
- multipers/multiparameter_edge_collapse.py +41 -41
- multipers/multiparameter_module_approximation/approximation.h +2298 -2295
- multipers/multiparameter_module_approximation/combinatory.h +129 -129
- multipers/multiparameter_module_approximation/debug.h +107 -107
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
- multipers/multiparameter_module_approximation/heap_column.h +238 -238
- multipers/multiparameter_module_approximation/images.h +79 -79
- multipers/multiparameter_module_approximation/list_column.h +174 -174
- multipers/multiparameter_module_approximation/list_column_2.h +232 -232
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
- multipers/multiparameter_module_approximation/set_column.h +135 -135
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
- multipers/multiparameter_module_approximation/utilities.h +403 -419
- multipers/multiparameter_module_approximation/vector_column.h +223 -223
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
- multipers/multiparameter_module_approximation/vineyards.h +464 -464
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
- multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
- multipers/multiparameter_module_approximation.pyx +218 -217
- multipers/pickle.py +90 -53
- multipers/plots.py +342 -334
- multipers/point_measure.cp310-win_amd64.pyd +0 -0
- multipers/point_measure.pyx +322 -320
- multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
- multipers/simplex_tree_multi.pxd +133 -133
- multipers/simplex_tree_multi.pyx +115 -48
- multipers/simplex_tree_multi.pyx.tp +1947 -1935
- multipers/slicer.cp310-win_amd64.pyd +0 -0
- multipers/slicer.pxd +301 -120
- multipers/slicer.pxd.tp +218 -214
- multipers/slicer.pyx +1570 -507
- multipers/slicer.pyx.tp +931 -914
- multipers/tensor/tensor.h +672 -672
- multipers/tensor.pxd +13 -13
- multipers/test.pyx +44 -44
- multipers/tests/__init__.py +57 -57
- multipers/torch/diff_grids.py +217 -217
- multipers/torch/rips_density.py +310 -304
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
- multipers-2.3.1.dist-info/RECORD +182 -0
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
- multipers/tests/test_diff_helper.py +0 -73
- multipers/tests/test_hilbert_function.py +0 -82
- multipers/tests/test_mma.py +0 -83
- multipers/tests/test_point_clouds.py +0 -49
- multipers/tests/test_python-cpp_conversion.py +0 -82
- multipers/tests/test_signed_betti.py +0 -181
- multipers/tests/test_signed_measure.py +0 -89
- multipers/tests/test_simplextreemulti.py +0 -221
- multipers/tests/test_slicer.py +0 -221
- multipers-2.2.3.dist-info/RECORD +0 -189
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/ml/accuracies.py
CHANGED
|
@@ -1,90 +1,90 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from warnings import warn
|
|
3
|
-
import numpy as np
|
|
4
|
-
from tqdm import tqdm
|
|
5
|
-
from os.path import exists
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
def accuracy_to_csv(
|
|
9
|
-
X,
|
|
10
|
-
Y,
|
|
11
|
-
cl,
|
|
12
|
-
k: float = 10,
|
|
13
|
-
dataset: str = "",
|
|
14
|
-
shuffle=True,
|
|
15
|
-
verbose: bool = True,
|
|
16
|
-
**more_columns,
|
|
17
|
-
):
|
|
18
|
-
assert k > 0, "k is either the number of kfold > 1 or the test size > 0."
|
|
19
|
-
if k > 1:
|
|
20
|
-
k = int(k)
|
|
21
|
-
from sklearn.model_selection import StratifiedKFold as KFold
|
|
22
|
-
|
|
23
|
-
kfold = KFold(k, shuffle=shuffle).split(X, Y)
|
|
24
|
-
accuracies = np.zeros(k)
|
|
25
|
-
for i, (train_idx, test_idx) in enumerate(
|
|
26
|
-
tqdm(kfold, total=k, desc="Computing kfold")
|
|
27
|
-
):
|
|
28
|
-
xtrain = [X[i] for i in train_idx]
|
|
29
|
-
ytrain = [Y[i] for i in train_idx]
|
|
30
|
-
cl.fit(xtrain, ytrain)
|
|
31
|
-
xtest = [X[i] for i in test_idx]
|
|
32
|
-
ytest = [Y[i] for i in test_idx]
|
|
33
|
-
accuracies[i] = cl.score(xtest, ytest)
|
|
34
|
-
if verbose:
|
|
35
|
-
print(f"step {i+1}, {dataset} : {accuracies[i]}", flush=True)
|
|
36
|
-
try:
|
|
37
|
-
print("Best classification parameters : ", cl.best_params_)
|
|
38
|
-
except:
|
|
39
|
-
None
|
|
40
|
-
|
|
41
|
-
print(
|
|
42
|
-
f"""Accuracy {dataset} : {np.mean(accuracies).round(decimals=3)}±{np.std(accuracies).round(decimals=3)}"""
|
|
43
|
-
)
|
|
44
|
-
elif k > 0:
|
|
45
|
-
from sklearn.model_selection import train_test_split
|
|
46
|
-
|
|
47
|
-
print("Computing accuracy, with train test split", flush=True)
|
|
48
|
-
xtrain, xtest, ytrain, ytest = train_test_split(
|
|
49
|
-
X, Y, shuffle=shuffle, test_size=k
|
|
50
|
-
)
|
|
51
|
-
print("Fitting...", end="", flush=True)
|
|
52
|
-
cl.fit(xtrain, ytrain)
|
|
53
|
-
print("Computing score...", end="", flush=True)
|
|
54
|
-
accuracies = cl.score(xtest, ytest)
|
|
55
|
-
try:
|
|
56
|
-
print("Best classification parameters : ", cl.best_params_)
|
|
57
|
-
except:
|
|
58
|
-
None
|
|
59
|
-
print("Done.")
|
|
60
|
-
if verbose:
|
|
61
|
-
print(f"Accuracy {dataset} : {accuracies} ")
|
|
62
|
-
file_path: str = f"result_{dataset}.csv".replace("/", "_").replace(".off", "")
|
|
63
|
-
columns: list[str] = ["dataset", "cv", "mean", "std"]
|
|
64
|
-
if exists(file_path):
|
|
65
|
-
df: pd.DataFrame = pd.read_csv(file_path)
|
|
66
|
-
else:
|
|
67
|
-
df: pd.DataFrame = pd.DataFrame(columns=columns)
|
|
68
|
-
more_names = []
|
|
69
|
-
more_values = []
|
|
70
|
-
for key, value in more_columns.items():
|
|
71
|
-
if key not in columns:
|
|
72
|
-
more_names.append(key)
|
|
73
|
-
more_values.append(value)
|
|
74
|
-
else:
|
|
75
|
-
warn(f"Duplicate key {key} ! with value {value}")
|
|
76
|
-
new_line: pd.DataFrame = pd.DataFrame(
|
|
77
|
-
[
|
|
78
|
-
[
|
|
79
|
-
dataset,
|
|
80
|
-
k,
|
|
81
|
-
np.mean(accuracies).round(decimals=3),
|
|
82
|
-
np.std(accuracies).round(decimals=3),
|
|
83
|
-
]
|
|
84
|
-
+ more_values
|
|
85
|
-
],
|
|
86
|
-
columns=columns + more_names,
|
|
87
|
-
)
|
|
88
|
-
print(new_line)
|
|
89
|
-
df = pd.concat([df, new_line])
|
|
90
|
-
df.to_csv(file_path, index=False)
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from warnings import warn
|
|
3
|
+
import numpy as np
|
|
4
|
+
from tqdm import tqdm
|
|
5
|
+
from os.path import exists
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def accuracy_to_csv(
|
|
9
|
+
X,
|
|
10
|
+
Y,
|
|
11
|
+
cl,
|
|
12
|
+
k: float = 10,
|
|
13
|
+
dataset: str = "",
|
|
14
|
+
shuffle=True,
|
|
15
|
+
verbose: bool = True,
|
|
16
|
+
**more_columns,
|
|
17
|
+
):
|
|
18
|
+
assert k > 0, "k is either the number of kfold > 1 or the test size > 0."
|
|
19
|
+
if k > 1:
|
|
20
|
+
k = int(k)
|
|
21
|
+
from sklearn.model_selection import StratifiedKFold as KFold
|
|
22
|
+
|
|
23
|
+
kfold = KFold(k, shuffle=shuffle).split(X, Y)
|
|
24
|
+
accuracies = np.zeros(k)
|
|
25
|
+
for i, (train_idx, test_idx) in enumerate(
|
|
26
|
+
tqdm(kfold, total=k, desc="Computing kfold")
|
|
27
|
+
):
|
|
28
|
+
xtrain = [X[i] for i in train_idx]
|
|
29
|
+
ytrain = [Y[i] for i in train_idx]
|
|
30
|
+
cl.fit(xtrain, ytrain)
|
|
31
|
+
xtest = [X[i] for i in test_idx]
|
|
32
|
+
ytest = [Y[i] for i in test_idx]
|
|
33
|
+
accuracies[i] = cl.score(xtest, ytest)
|
|
34
|
+
if verbose:
|
|
35
|
+
print(f"step {i+1}, {dataset} : {accuracies[i]}", flush=True)
|
|
36
|
+
try:
|
|
37
|
+
print("Best classification parameters : ", cl.best_params_)
|
|
38
|
+
except:
|
|
39
|
+
None
|
|
40
|
+
|
|
41
|
+
print(
|
|
42
|
+
f"""Accuracy {dataset} : {np.mean(accuracies).round(decimals=3)}±{np.std(accuracies).round(decimals=3)}"""
|
|
43
|
+
)
|
|
44
|
+
elif k > 0:
|
|
45
|
+
from sklearn.model_selection import train_test_split
|
|
46
|
+
|
|
47
|
+
print("Computing accuracy, with train test split", flush=True)
|
|
48
|
+
xtrain, xtest, ytrain, ytest = train_test_split(
|
|
49
|
+
X, Y, shuffle=shuffle, test_size=k
|
|
50
|
+
)
|
|
51
|
+
print("Fitting...", end="", flush=True)
|
|
52
|
+
cl.fit(xtrain, ytrain)
|
|
53
|
+
print("Computing score...", end="", flush=True)
|
|
54
|
+
accuracies = cl.score(xtest, ytest)
|
|
55
|
+
try:
|
|
56
|
+
print("Best classification parameters : ", cl.best_params_)
|
|
57
|
+
except:
|
|
58
|
+
None
|
|
59
|
+
print("Done.")
|
|
60
|
+
if verbose:
|
|
61
|
+
print(f"Accuracy {dataset} : {accuracies} ")
|
|
62
|
+
file_path: str = f"result_{dataset}.csv".replace("/", "_").replace(".off", "")
|
|
63
|
+
columns: list[str] = ["dataset", "cv", "mean", "std"]
|
|
64
|
+
if exists(file_path):
|
|
65
|
+
df: pd.DataFrame = pd.read_csv(file_path)
|
|
66
|
+
else:
|
|
67
|
+
df: pd.DataFrame = pd.DataFrame(columns=columns)
|
|
68
|
+
more_names = []
|
|
69
|
+
more_values = []
|
|
70
|
+
for key, value in more_columns.items():
|
|
71
|
+
if key not in columns:
|
|
72
|
+
more_names.append(key)
|
|
73
|
+
more_values.append(value)
|
|
74
|
+
else:
|
|
75
|
+
warn(f"Duplicate key {key} ! with value {value}")
|
|
76
|
+
new_line: pd.DataFrame = pd.DataFrame(
|
|
77
|
+
[
|
|
78
|
+
[
|
|
79
|
+
dataset,
|
|
80
|
+
k,
|
|
81
|
+
np.mean(accuracies).round(decimals=3),
|
|
82
|
+
np.std(accuracies).round(decimals=3),
|
|
83
|
+
]
|
|
84
|
+
+ more_values
|
|
85
|
+
],
|
|
86
|
+
columns=columns + more_names,
|
|
87
|
+
)
|
|
88
|
+
print(new_line)
|
|
89
|
+
df = pd.concat([df, new_line])
|
|
90
|
+
df.to_csv(file_path, index=False)
|
|
@@ -1,79 +1,79 @@
|
|
|
1
|
-
import persistable
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
# requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
|
|
5
|
-
# which can be done as follows:
|
|
6
|
-
# pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
|
|
7
|
-
# NOTE: only accepts as input a distance matrix
|
|
8
|
-
def hf_degree_rips(
|
|
9
|
-
distance_matrix,
|
|
10
|
-
min_rips_value,
|
|
11
|
-
max_rips_value,
|
|
12
|
-
max_normalized_degree,
|
|
13
|
-
min_normalized_degree,
|
|
14
|
-
grid_granularity,
|
|
15
|
-
max_homological_dimension,
|
|
16
|
-
subsample_size = None,
|
|
17
|
-
):
|
|
18
|
-
if subsample_size == None:
|
|
19
|
-
p = persistable.Persistable(distance_matrix, metric="precomputed")
|
|
20
|
-
else:
|
|
21
|
-
p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
|
|
22
|
-
|
|
23
|
-
rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
|
|
24
|
-
min_rips_value,
|
|
25
|
-
max_rips_value,
|
|
26
|
-
max_normalized_degree,
|
|
27
|
-
min_normalized_degree,
|
|
28
|
-
grid_granularity,
|
|
29
|
-
homological_dimension=max_homological_dimension,
|
|
30
|
-
)
|
|
31
|
-
|
|
32
|
-
return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
def hf_h0_degree_rips(
|
|
37
|
-
point_cloud,
|
|
38
|
-
min_rips_value,
|
|
39
|
-
max_rips_value,
|
|
40
|
-
max_normalized_degree,
|
|
41
|
-
min_normalized_degree,
|
|
42
|
-
grid_granularity,
|
|
43
|
-
):
|
|
44
|
-
p = persistable.Persistable(point_cloud, n_neighbors="all")
|
|
45
|
-
|
|
46
|
-
rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
|
|
47
|
-
min_rips_value,
|
|
48
|
-
max_rips_value,
|
|
49
|
-
max_normalized_degree,
|
|
50
|
-
min_normalized_degree,
|
|
51
|
-
grid_granularity,
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
def ri_h0_degree_rips(
|
|
58
|
-
point_cloud,
|
|
59
|
-
min_rips_value,
|
|
60
|
-
max_rips_value,
|
|
61
|
-
max_normalized_degree,
|
|
62
|
-
min_normalized_degree,
|
|
63
|
-
grid_granularity,
|
|
64
|
-
):
|
|
65
|
-
p = persistable.Persistable(point_cloud, n_neighbors="all")
|
|
66
|
-
|
|
67
|
-
rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
|
|
68
|
-
min_rips_value,
|
|
69
|
-
max_rips_value,
|
|
70
|
-
max_normalized_degree,
|
|
71
|
-
min_normalized_degree,
|
|
72
|
-
grid_granularity,
|
|
73
|
-
)
|
|
74
|
-
|
|
75
|
-
return rips_values, normalized_degree_values, rank_invariant
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
1
|
+
import persistable
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
# requires installing ripser (pip install ripser) as well as persistable from the higher-homology branch,
|
|
5
|
+
# which can be done as follows:
|
|
6
|
+
# pip install git+https://github.com/LuisScoccola/persistable.git@higher-homology
|
|
7
|
+
# NOTE: only accepts as input a distance matrix
|
|
8
|
+
def hf_degree_rips(
|
|
9
|
+
distance_matrix,
|
|
10
|
+
min_rips_value,
|
|
11
|
+
max_rips_value,
|
|
12
|
+
max_normalized_degree,
|
|
13
|
+
min_normalized_degree,
|
|
14
|
+
grid_granularity,
|
|
15
|
+
max_homological_dimension,
|
|
16
|
+
subsample_size = None,
|
|
17
|
+
):
|
|
18
|
+
if subsample_size == None:
|
|
19
|
+
p = persistable.Persistable(distance_matrix, metric="precomputed")
|
|
20
|
+
else:
|
|
21
|
+
p = persistable.Persistable(distance_matrix, metric="precomputed", subsample=subsample_size)
|
|
22
|
+
|
|
23
|
+
rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
|
|
24
|
+
min_rips_value,
|
|
25
|
+
max_rips_value,
|
|
26
|
+
max_normalized_degree,
|
|
27
|
+
min_normalized_degree,
|
|
28
|
+
grid_granularity,
|
|
29
|
+
homological_dimension=max_homological_dimension,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
return rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def hf_h0_degree_rips(
|
|
37
|
+
point_cloud,
|
|
38
|
+
min_rips_value,
|
|
39
|
+
max_rips_value,
|
|
40
|
+
max_normalized_degree,
|
|
41
|
+
min_normalized_degree,
|
|
42
|
+
grid_granularity,
|
|
43
|
+
):
|
|
44
|
+
p = persistable.Persistable(point_cloud, n_neighbors="all")
|
|
45
|
+
|
|
46
|
+
rips_values, normalized_degree_values, hilbert_functions, minimal_hilbert_decompositions = p._hilbert_function(
|
|
47
|
+
min_rips_value,
|
|
48
|
+
max_rips_value,
|
|
49
|
+
max_normalized_degree,
|
|
50
|
+
min_normalized_degree,
|
|
51
|
+
grid_granularity,
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
return rips_values, normalized_degree_values, hilbert_functions[0], minimal_hilbert_decompositions[0]
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def ri_h0_degree_rips(
|
|
58
|
+
point_cloud,
|
|
59
|
+
min_rips_value,
|
|
60
|
+
max_rips_value,
|
|
61
|
+
max_normalized_degree,
|
|
62
|
+
min_normalized_degree,
|
|
63
|
+
grid_granularity,
|
|
64
|
+
):
|
|
65
|
+
p = persistable.Persistable(point_cloud, n_neighbors="all")
|
|
66
|
+
|
|
67
|
+
rips_values, normalized_degree_values, rank_invariant, _, _ = p._rank_invariant(
|
|
68
|
+
min_rips_value,
|
|
69
|
+
max_rips_value,
|
|
70
|
+
max_normalized_degree,
|
|
71
|
+
min_normalized_degree,
|
|
72
|
+
grid_granularity,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
return rips_values, normalized_degree_values, rank_invariant
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
|