multipers 2.2.3__cp310-cp310-win_amd64.whl → 2.3.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp310-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
@@ -1,118 +1,118 @@
1
- /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
- * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
- * Author(s): Clément Maria
4
- *
5
- * Copyright (C) 2014 Inria
6
- *
7
- * Modification(s):
8
- * - YYYY/MM Author: Description of the modification
9
- */
10
-
11
- #ifndef PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
12
- #define PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
13
-
14
- #include <utility>
15
- #include <vector>
16
- #include <stdexcept>
17
-
18
- namespace Gudhi {
19
-
20
- namespace persistent_cohomology {
21
-
22
- /** \brief Structure representing the coefficient field \f$\mathbb{Z}/p\mathbb{Z}\f$
23
- *
24
- * \implements CoefficientField
25
- * \ingroup persistent_cohomology
26
- */
27
- class Field_Zp {
28
- public:
29
- typedef int Element;
30
-
31
- Field_Zp()
32
- : Prime(0),
33
- inverse_() {
34
- }
35
-
36
- void init(int charac) {
37
- Prime = charac;
38
-
39
- // Check that the provided prime is less than the maximum allowed as int, calculation below, and 'plus_times_equal' function : 46337 ; i.e (max_prime-1)*max_prime <= INT_MAX
40
- if(Prime > 46337)
41
- throw std::invalid_argument("Maximum homology_coeff_field allowed value is 46337");
42
-
43
- // Check for primality
44
- if (Prime <= 1)
45
- throw std::invalid_argument("homology_coeff_field must be a prime number");
46
-
47
- inverse_.clear();
48
- inverse_.reserve(charac);
49
- inverse_.push_back(0);
50
- for (int i = 1; i < Prime; ++i) {
51
- int inv = 1;
52
- int mult = inv * i;
53
- while ( (mult % Prime) != 1) {
54
- ++inv;
55
- if(mult == Prime)
56
- throw std::invalid_argument("homology_coeff_field must be a prime number");
57
- mult = inv * i;
58
- }
59
- inverse_.push_back(inv);
60
- }
61
- }
62
-
63
- /** Set x <- x + w * y*/
64
- Element plus_times_equal(const Element& x, const Element& y, const Element& w) {
65
- assert(Prime > 0); // division by zero + non negative values
66
- Element result = (x + w * y) % Prime;
67
- if (result < 0)
68
- result += Prime;
69
- return result;
70
- }
71
-
72
- // operator= defined on Element
73
-
74
- /** Returns y * w */
75
- Element times(const Element& y, const Element& w) {
76
- return plus_times_equal(0, y, (Element)w);
77
- }
78
-
79
- Element plus_equal(const Element& x, const Element& y) {
80
- return plus_times_equal(x, y, (Element)1);
81
- }
82
-
83
- /** \brief Returns the additive idendity \f$0_{\Bbbk}\f$ of the field.*/
84
- Element additive_identity() const {
85
- return 0;
86
- }
87
- /** \brief Returns the multiplicative identity \f$1_{\Bbbk}\f$ of the field.*/
88
- Element multiplicative_identity(Element = 0) const {
89
- return 1;
90
- }
91
- /** Returns the inverse in the field. Modifies P. ??? */
92
- std::pair<Element, Element> inverse(Element x, Element P) {
93
- return std::pair<Element, Element>(inverse_[x], P);
94
- } // <------ return the product of field characteristic for which x is invertible
95
-
96
- /** Returns -x * y.*/
97
- Element times_minus(Element x, Element y) {
98
- assert(Prime > 0); // division by zero + non negative values
99
- Element out = (-x * y) % Prime;
100
- return (out < 0) ? out + Prime : out;
101
- }
102
-
103
- /** \brief Returns the characteristic \f$p\f$ of the field.*/
104
- int characteristic() const {
105
- return Prime;
106
- }
107
-
108
- private:
109
- int Prime;
110
- /** Property map Element -> Element, which associate to an element its inverse in the field.*/
111
- std::vector<Element> inverse_;
112
- };
113
-
114
- } // namespace persistent_cohomology
115
-
116
- } // namespace Gudhi
117
-
118
- #endif // PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
1
+ /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
+ * Author(s): Clément Maria
4
+ *
5
+ * Copyright (C) 2014 Inria
6
+ *
7
+ * Modification(s):
8
+ * - YYYY/MM Author: Description of the modification
9
+ */
10
+
11
+ #ifndef PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
12
+ #define PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
13
+
14
+ #include <utility>
15
+ #include <vector>
16
+ #include <stdexcept>
17
+
18
+ namespace Gudhi {
19
+
20
+ namespace persistent_cohomology {
21
+
22
+ /** \brief Structure representing the coefficient field \f$\mathbb{Z}/p\mathbb{Z}\f$
23
+ *
24
+ * \implements CoefficientField
25
+ * \ingroup persistent_cohomology
26
+ */
27
+ class Field_Zp {
28
+ public:
29
+ typedef int Element;
30
+
31
+ Field_Zp()
32
+ : Prime(0),
33
+ inverse_() {
34
+ }
35
+
36
+ void init(int charac) {
37
+ Prime = charac;
38
+
39
+ // Check that the provided prime is less than the maximum allowed as int, calculation below, and 'plus_times_equal' function : 46337 ; i.e (max_prime-1)*max_prime <= INT_MAX
40
+ if(Prime > 46337)
41
+ throw std::invalid_argument("Maximum homology_coeff_field allowed value is 46337");
42
+
43
+ // Check for primality
44
+ if (Prime <= 1)
45
+ throw std::invalid_argument("homology_coeff_field must be a prime number");
46
+
47
+ inverse_.clear();
48
+ inverse_.reserve(charac);
49
+ inverse_.push_back(0);
50
+ for (int i = 1; i < Prime; ++i) {
51
+ int inv = 1;
52
+ int mult = inv * i;
53
+ while ( (mult % Prime) != 1) {
54
+ ++inv;
55
+ if(mult == Prime)
56
+ throw std::invalid_argument("homology_coeff_field must be a prime number");
57
+ mult = inv * i;
58
+ }
59
+ inverse_.push_back(inv);
60
+ }
61
+ }
62
+
63
+ /** Set x <- x + w * y*/
64
+ Element plus_times_equal(const Element& x, const Element& y, const Element& w) {
65
+ assert(Prime > 0); // division by zero + non negative values
66
+ Element result = (x + w * y) % Prime;
67
+ if (result < 0)
68
+ result += Prime;
69
+ return result;
70
+ }
71
+
72
+ // operator= defined on Element
73
+
74
+ /** Returns y * w */
75
+ Element times(const Element& y, const Element& w) {
76
+ return plus_times_equal(0, y, (Element)w);
77
+ }
78
+
79
+ Element plus_equal(const Element& x, const Element& y) {
80
+ return plus_times_equal(x, y, (Element)1);
81
+ }
82
+
83
+ /** \brief Returns the additive idendity \f$0_{\Bbbk}\f$ of the field.*/
84
+ Element additive_identity() const {
85
+ return 0;
86
+ }
87
+ /** \brief Returns the multiplicative identity \f$1_{\Bbbk}\f$ of the field.*/
88
+ Element multiplicative_identity(Element = 0) const {
89
+ return 1;
90
+ }
91
+ /** Returns the inverse in the field. Modifies P. ??? */
92
+ std::pair<Element, Element> inverse(Element x, Element P) {
93
+ return std::pair<Element, Element>(inverse_[x], P);
94
+ } // <------ return the product of field characteristic for which x is invertible
95
+
96
+ /** Returns -x * y.*/
97
+ Element times_minus(Element x, Element y) {
98
+ assert(Prime > 0); // division by zero + non negative values
99
+ Element out = (-x * y) % Prime;
100
+ return (out < 0) ? out + Prime : out;
101
+ }
102
+
103
+ /** \brief Returns the characteristic \f$p\f$ of the field.*/
104
+ int characteristic() const {
105
+ return Prime;
106
+ }
107
+
108
+ private:
109
+ int Prime;
110
+ /** Property map Element -> Element, which associate to an element its inverse in the field.*/
111
+ std::vector<Element> inverse_;
112
+ };
113
+
114
+ } // namespace persistent_cohomology
115
+
116
+ } // namespace Gudhi
117
+
118
+ #endif // PERSISTENT_COHOMOLOGY_FIELD_ZP_H_
@@ -1,173 +1,173 @@
1
- /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
- * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
- * Author(s): Clément Maria
4
- *
5
- * Copyright (C) 2014 Inria
6
- *
7
- * Modification(s):
8
- * - YYYY/MM Author: Description of the modification
9
- */
10
-
11
- #ifndef PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
12
- #define PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
13
-
14
- #include <gmpxx.h>
15
-
16
- #include <vector>
17
- #include <utility>
18
-
19
- namespace Gudhi {
20
-
21
- namespace persistent_cohomology {
22
-
23
- /** \brief Structure representing coefficients in a set of finite fields simultaneously
24
- * using the chinese remainder theorem.
25
- *
26
- * \implements CoefficientField
27
- * \ingroup persistent_cohomology
28
-
29
- * Details on the algorithms may be found in \cite boissonnat:hal-00922572
30
- */
31
- class Multi_field {
32
- public:
33
- typedef mpz_class Element;
34
-
35
- Multi_field()
36
- : prod_characteristics_(0),
37
- mult_id_all(0),
38
- add_id_all(0) {
39
- }
40
-
41
- /* Initialize the multi-field. The generation of prime numbers might fail with
42
- * a very small probability.*/
43
- void init(int min_prime, int max_prime) {
44
- if (max_prime < 2) {
45
- std::cerr << "There is no prime less than " << max_prime << std::endl;
46
- }
47
- if (min_prime > max_prime) {
48
- std::cerr << "No prime in [" << min_prime << ":" << max_prime << "]"
49
- << std::endl;
50
- }
51
- // fill the list of prime numbers
52
- int curr_prime = min_prime;
53
- mpz_t tmp_prime;
54
- mpz_init_set_ui(tmp_prime, min_prime);
55
- // test if min_prime is prime
56
- int is_prime = mpz_probab_prime_p(tmp_prime, 25); // probabilistic primality test
57
-
58
- if (is_prime == 0) { // min_prime is composite
59
- mpz_nextprime(tmp_prime, tmp_prime);
60
- curr_prime = mpz_get_ui(tmp_prime);
61
- }
62
-
63
- while (curr_prime <= max_prime) {
64
- primes_.push_back(curr_prime);
65
- mpz_nextprime(tmp_prime, tmp_prime);
66
- curr_prime = mpz_get_ui(tmp_prime);
67
- }
68
- mpz_clear(tmp_prime);
69
- // set m to primorial(bound_prime)
70
- prod_characteristics_ = 1;
71
- for (auto p : primes_) {
72
- prod_characteristics_ *= p;
73
- }
74
-
75
- // Uvect_
76
- Element Ui;
77
- Element tmp_elem;
78
- for (auto p : primes_) {
79
- assert(p > 0); // division by zero + non negative values
80
- tmp_elem = prod_characteristics_ / p;
81
- // Element tmp_elem_bis = 10;
82
- mpz_powm_ui(tmp_elem.get_mpz_t(), tmp_elem.get_mpz_t(), p - 1,
83
- prod_characteristics_.get_mpz_t());
84
- Uvect_.push_back(tmp_elem);
85
- }
86
- mult_id_all = 0;
87
- for (auto uvect : Uvect_) {
88
- assert(prod_characteristics_ > 0); // division by zero + non negative values
89
- mult_id_all = (mult_id_all + uvect) % prod_characteristics_;
90
- }
91
- }
92
-
93
- /** \brief Returns the additive idendity \f$0_{\Bbbk}\f$ of the field.*/
94
- const Element& additive_identity() const {
95
- return add_id_all;
96
- }
97
- /** \brief Returns the multiplicative identity \f$1_{\Bbbk}\f$ of the field.*/
98
- const Element& multiplicative_identity() const {
99
- return mult_id_all;
100
- } // 1 everywhere
101
-
102
- Element multiplicative_identity(Element Q) {
103
- if (Q == prod_characteristics_) {
104
- return multiplicative_identity();
105
- }
106
-
107
- assert(prod_characteristics_ > 0); // division by zero + non negative values
108
- Element mult_id = 0;
109
- for (unsigned int idx = 0; idx < primes_.size(); ++idx) {
110
- assert(primes_[idx] > 0); // division by zero + non negative values
111
- if ((Q % primes_[idx]) == 0) {
112
- mult_id = (mult_id + Uvect_[idx]) % prod_characteristics_;
113
- }
114
- }
115
- return mult_id;
116
- }
117
-
118
- /** Returns y * w */
119
- Element times(const Element& y, const Element& w) {
120
- return plus_times_equal(0, y, w);
121
- }
122
-
123
- Element plus_equal(const Element& x, const Element& y) {
124
- return plus_times_equal(x, y, (Element)1);
125
- }
126
-
127
- /** \brief Returns the characteristic \f$p\f$ of the field.*/
128
- const Element& characteristic() const {
129
- return prod_characteristics_;
130
- }
131
-
132
- /** Returns the inverse in the field. Modifies P. ??? */
133
- std::pair<Element, Element> inverse(Element x, Element QS) {
134
- Element QR;
135
- mpz_gcd(QR.get_mpz_t(), x.get_mpz_t(), QS.get_mpz_t()); // QR <- gcd(x,QS)
136
- if (QR == QS)
137
- return std::pair<Element, Element>(additive_identity(), multiplicative_identity()); // partial inverse is 0
138
- Element QT = QS / QR;
139
- Element inv_qt;
140
- mpz_invert(inv_qt.get_mpz_t(), x.get_mpz_t(), QT.get_mpz_t());
141
-
142
- assert(prod_characteristics_ > 0); // division by zero + non negative values
143
- return { (inv_qt * multiplicative_identity(QT)) % prod_characteristics_, QT };
144
- }
145
- /** Returns -x * y.*/
146
- Element times_minus(const Element& x, const Element& y) {
147
- assert(prod_characteristics_ > 0); // division by zero + non negative values
148
- /* This assumes that (x*y)%pc cannot be zero, but Field_Zp has specific code for the 0 case ??? */
149
- return prod_characteristics_ - ((x * y) % prod_characteristics_);
150
- }
151
-
152
- /** Set x <- x + w * y*/
153
- Element plus_times_equal(const Element& x, const Element& y, const Element& w) {
154
- assert(prod_characteristics_ > 0); // division by zero + non negative values
155
- Element result = (x + w * y) % prod_characteristics_;
156
- if (result < 0)
157
- result += prod_characteristics_;
158
- return result;
159
- }
160
-
161
- Element prod_characteristics_; // product of characteristics of the fields
162
- // represented by the multi-field class
163
- std::vector<int> primes_; // all the characteristics of the fields
164
- std::vector<Element> Uvect_;
165
- Element mult_id_all;
166
- const Element add_id_all;
167
- };
168
-
169
- } // namespace persistent_cohomology
170
-
171
- } // namespace Gudhi
172
-
173
- #endif // PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
1
+ /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3
+ * Author(s): Clément Maria
4
+ *
5
+ * Copyright (C) 2014 Inria
6
+ *
7
+ * Modification(s):
8
+ * - YYYY/MM Author: Description of the modification
9
+ */
10
+
11
+ #ifndef PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
12
+ #define PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_
13
+
14
+ #include <gmpxx.h>
15
+
16
+ #include <vector>
17
+ #include <utility>
18
+
19
+ namespace Gudhi {
20
+
21
+ namespace persistent_cohomology {
22
+
23
+ /** \brief Structure representing coefficients in a set of finite fields simultaneously
24
+ * using the chinese remainder theorem.
25
+ *
26
+ * \implements CoefficientField
27
+ * \ingroup persistent_cohomology
28
+
29
+ * Details on the algorithms may be found in \cite boissonnat:hal-00922572
30
+ */
31
+ class Multi_field {
32
+ public:
33
+ typedef mpz_class Element;
34
+
35
+ Multi_field()
36
+ : prod_characteristics_(0),
37
+ mult_id_all(0),
38
+ add_id_all(0) {
39
+ }
40
+
41
+ /* Initialize the multi-field. The generation of prime numbers might fail with
42
+ * a very small probability.*/
43
+ void init(int min_prime, int max_prime) {
44
+ if (max_prime < 2) {
45
+ std::cerr << "There is no prime less than " << max_prime << std::endl;
46
+ }
47
+ if (min_prime > max_prime) {
48
+ std::cerr << "No prime in [" << min_prime << ":" << max_prime << "]"
49
+ << std::endl;
50
+ }
51
+ // fill the list of prime numbers
52
+ int curr_prime = min_prime;
53
+ mpz_t tmp_prime;
54
+ mpz_init_set_ui(tmp_prime, min_prime);
55
+ // test if min_prime is prime
56
+ int is_prime = mpz_probab_prime_p(tmp_prime, 25); // probabilistic primality test
57
+
58
+ if (is_prime == 0) { // min_prime is composite
59
+ mpz_nextprime(tmp_prime, tmp_prime);
60
+ curr_prime = mpz_get_ui(tmp_prime);
61
+ }
62
+
63
+ while (curr_prime <= max_prime) {
64
+ primes_.push_back(curr_prime);
65
+ mpz_nextprime(tmp_prime, tmp_prime);
66
+ curr_prime = mpz_get_ui(tmp_prime);
67
+ }
68
+ mpz_clear(tmp_prime);
69
+ // set m to primorial(bound_prime)
70
+ prod_characteristics_ = 1;
71
+ for (auto p : primes_) {
72
+ prod_characteristics_ *= p;
73
+ }
74
+
75
+ // Uvect_
76
+ Element Ui;
77
+ Element tmp_elem;
78
+ for (auto p : primes_) {
79
+ assert(p > 0); // division by zero + non negative values
80
+ tmp_elem = prod_characteristics_ / p;
81
+ // Element tmp_elem_bis = 10;
82
+ mpz_powm_ui(tmp_elem.get_mpz_t(), tmp_elem.get_mpz_t(), p - 1,
83
+ prod_characteristics_.get_mpz_t());
84
+ Uvect_.push_back(tmp_elem);
85
+ }
86
+ mult_id_all = 0;
87
+ for (auto uvect : Uvect_) {
88
+ assert(prod_characteristics_ > 0); // division by zero + non negative values
89
+ mult_id_all = (mult_id_all + uvect) % prod_characteristics_;
90
+ }
91
+ }
92
+
93
+ /** \brief Returns the additive idendity \f$0_{\Bbbk}\f$ of the field.*/
94
+ const Element& additive_identity() const {
95
+ return add_id_all;
96
+ }
97
+ /** \brief Returns the multiplicative identity \f$1_{\Bbbk}\f$ of the field.*/
98
+ const Element& multiplicative_identity() const {
99
+ return mult_id_all;
100
+ } // 1 everywhere
101
+
102
+ Element multiplicative_identity(Element Q) {
103
+ if (Q == prod_characteristics_) {
104
+ return multiplicative_identity();
105
+ }
106
+
107
+ assert(prod_characteristics_ > 0); // division by zero + non negative values
108
+ Element mult_id = 0;
109
+ for (unsigned int idx = 0; idx < primes_.size(); ++idx) {
110
+ assert(primes_[idx] > 0); // division by zero + non negative values
111
+ if ((Q % primes_[idx]) == 0) {
112
+ mult_id = (mult_id + Uvect_[idx]) % prod_characteristics_;
113
+ }
114
+ }
115
+ return mult_id;
116
+ }
117
+
118
+ /** Returns y * w */
119
+ Element times(const Element& y, const Element& w) {
120
+ return plus_times_equal(0, y, w);
121
+ }
122
+
123
+ Element plus_equal(const Element& x, const Element& y) {
124
+ return plus_times_equal(x, y, (Element)1);
125
+ }
126
+
127
+ /** \brief Returns the characteristic \f$p\f$ of the field.*/
128
+ const Element& characteristic() const {
129
+ return prod_characteristics_;
130
+ }
131
+
132
+ /** Returns the inverse in the field. Modifies P. ??? */
133
+ std::pair<Element, Element> inverse(Element x, Element QS) {
134
+ Element QR;
135
+ mpz_gcd(QR.get_mpz_t(), x.get_mpz_t(), QS.get_mpz_t()); // QR <- gcd(x,QS)
136
+ if (QR == QS)
137
+ return std::pair<Element, Element>(additive_identity(), multiplicative_identity()); // partial inverse is 0
138
+ Element QT = QS / QR;
139
+ Element inv_qt;
140
+ mpz_invert(inv_qt.get_mpz_t(), x.get_mpz_t(), QT.get_mpz_t());
141
+
142
+ assert(prod_characteristics_ > 0); // division by zero + non negative values
143
+ return { (inv_qt * multiplicative_identity(QT)) % prod_characteristics_, QT };
144
+ }
145
+ /** Returns -x * y.*/
146
+ Element times_minus(const Element& x, const Element& y) {
147
+ assert(prod_characteristics_ > 0); // division by zero + non negative values
148
+ /* This assumes that (x*y)%pc cannot be zero, but Field_Zp has specific code for the 0 case ??? */
149
+ return prod_characteristics_ - ((x * y) % prod_characteristics_);
150
+ }
151
+
152
+ /** Set x <- x + w * y*/
153
+ Element plus_times_equal(const Element& x, const Element& y, const Element& w) {
154
+ assert(prod_characteristics_ > 0); // division by zero + non negative values
155
+ Element result = (x + w * y) % prod_characteristics_;
156
+ if (result < 0)
157
+ result += prod_characteristics_;
158
+ return result;
159
+ }
160
+
161
+ Element prod_characteristics_; // product of characteristics of the fields
162
+ // represented by the multi-field class
163
+ std::vector<int> primes_; // all the characteristics of the fields
164
+ std::vector<Element> Uvect_;
165
+ Element mult_id_all;
166
+ const Element add_id_all;
167
+ };
168
+
169
+ } // namespace persistent_cohomology
170
+
171
+ } // namespace Gudhi
172
+
173
+ #endif // PERSISTENT_COHOMOLOGY_MULTI_FIELD_H_