rumale 0.23.3 → 0.24.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (142) hide show
  1. checksums.yaml +4 -4
  2. data/LICENSE.txt +5 -1
  3. data/README.md +3 -288
  4. data/lib/rumale/version.rb +1 -1
  5. data/lib/rumale.rb +20 -131
  6. metadata +252 -150
  7. data/CHANGELOG.md +0 -643
  8. data/CODE_OF_CONDUCT.md +0 -74
  9. data/ext/rumale/extconf.rb +0 -37
  10. data/ext/rumale/rumaleext.c +0 -545
  11. data/ext/rumale/rumaleext.h +0 -12
  12. data/lib/rumale/base/base_estimator.rb +0 -49
  13. data/lib/rumale/base/classifier.rb +0 -36
  14. data/lib/rumale/base/cluster_analyzer.rb +0 -31
  15. data/lib/rumale/base/evaluator.rb +0 -17
  16. data/lib/rumale/base/regressor.rb +0 -36
  17. data/lib/rumale/base/splitter.rb +0 -21
  18. data/lib/rumale/base/transformer.rb +0 -22
  19. data/lib/rumale/clustering/dbscan.rb +0 -123
  20. data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
  21. data/lib/rumale/clustering/hdbscan.rb +0 -291
  22. data/lib/rumale/clustering/k_means.rb +0 -122
  23. data/lib/rumale/clustering/k_medoids.rb +0 -141
  24. data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
  25. data/lib/rumale/clustering/power_iteration.rb +0 -127
  26. data/lib/rumale/clustering/single_linkage.rb +0 -203
  27. data/lib/rumale/clustering/snn.rb +0 -76
  28. data/lib/rumale/clustering/spectral_clustering.rb +0 -115
  29. data/lib/rumale/dataset.rb +0 -246
  30. data/lib/rumale/decomposition/factor_analysis.rb +0 -150
  31. data/lib/rumale/decomposition/fast_ica.rb +0 -188
  32. data/lib/rumale/decomposition/nmf.rb +0 -124
  33. data/lib/rumale/decomposition/pca.rb +0 -159
  34. data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
  35. data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
  36. data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
  37. data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
  38. data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
  39. data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
  40. data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
  41. data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
  42. data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
  43. data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
  44. data/lib/rumale/ensemble/voting_classifier.rb +0 -126
  45. data/lib/rumale/ensemble/voting_regressor.rb +0 -82
  46. data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
  47. data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
  48. data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
  49. data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
  50. data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
  51. data/lib/rumale/evaluation_measure/f_score.rb +0 -50
  52. data/lib/rumale/evaluation_measure/function.rb +0 -147
  53. data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
  54. data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
  55. data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
  56. data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
  57. data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
  58. data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
  59. data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
  60. data/lib/rumale/evaluation_measure/precision.rb +0 -50
  61. data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
  62. data/lib/rumale/evaluation_measure/purity.rb +0 -40
  63. data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
  64. data/lib/rumale/evaluation_measure/recall.rb +0 -50
  65. data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
  66. data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
  67. data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
  68. data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
  69. data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
  70. data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
  71. data/lib/rumale/kernel_approximation/rbf.rb +0 -102
  72. data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
  73. data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
  74. data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
  75. data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
  76. data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
  77. data/lib/rumale/linear_model/base_sgd.rb +0 -285
  78. data/lib/rumale/linear_model/elastic_net.rb +0 -119
  79. data/lib/rumale/linear_model/lasso.rb +0 -115
  80. data/lib/rumale/linear_model/linear_regression.rb +0 -201
  81. data/lib/rumale/linear_model/logistic_regression.rb +0 -275
  82. data/lib/rumale/linear_model/nnls.rb +0 -137
  83. data/lib/rumale/linear_model/ridge.rb +0 -209
  84. data/lib/rumale/linear_model/svc.rb +0 -213
  85. data/lib/rumale/linear_model/svr.rb +0 -132
  86. data/lib/rumale/manifold/mds.rb +0 -155
  87. data/lib/rumale/manifold/tsne.rb +0 -222
  88. data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
  89. data/lib/rumale/metric_learning/mlkr.rb +0 -161
  90. data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
  91. data/lib/rumale/model_selection/cross_validation.rb +0 -125
  92. data/lib/rumale/model_selection/function.rb +0 -42
  93. data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
  94. data/lib/rumale/model_selection/group_k_fold.rb +0 -93
  95. data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
  96. data/lib/rumale/model_selection/k_fold.rb +0 -81
  97. data/lib/rumale/model_selection/shuffle_split.rb +0 -90
  98. data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
  99. data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
  100. data/lib/rumale/model_selection/time_series_split.rb +0 -91
  101. data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
  102. data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
  103. data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
  104. data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
  105. data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
  106. data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
  107. data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
  108. data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
  109. data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
  110. data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
  111. data/lib/rumale/neural_network/adam.rb +0 -56
  112. data/lib/rumale/neural_network/base_mlp.rb +0 -248
  113. data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
  114. data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
  115. data/lib/rumale/pairwise_metric.rb +0 -152
  116. data/lib/rumale/pipeline/feature_union.rb +0 -69
  117. data/lib/rumale/pipeline/pipeline.rb +0 -175
  118. data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
  119. data/lib/rumale/preprocessing/binarizer.rb +0 -60
  120. data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
  121. data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
  122. data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
  123. data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
  124. data/lib/rumale/preprocessing/label_encoder.rb +0 -79
  125. data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
  126. data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
  127. data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
  128. data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
  129. data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
  130. data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
  131. data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
  132. data/lib/rumale/probabilistic_output.rb +0 -114
  133. data/lib/rumale/tree/base_decision_tree.rb +0 -150
  134. data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
  135. data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
  136. data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
  137. data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
  138. data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
  139. data/lib/rumale/tree/node.rb +0 -39
  140. data/lib/rumale/utils.rb +0 -42
  141. data/lib/rumale/validation.rb +0 -128
  142. data/lib/rumale/values.rb +0 -13
@@ -1,124 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/utils'
4
- require 'rumale/base/base_estimator'
5
- require 'rumale/base/transformer'
6
-
7
- module Rumale
8
- module Decomposition
9
- # NMF is a class that implements Non-negative Matrix Factorization.
10
- #
11
- # @example
12
- # decomposer = Rumale::Decomposition::NMF.new(n_components: 2)
13
- # representaion = decomposer.fit_transform(samples)
14
- #
15
- # *Reference*
16
- # - Xu, W., Liu, X., and Gong, Y., "Document Clustering Based On Non-negative Matrix Factorization," Proc. SIGIR' 03 , pp. 267--273, 2003.
17
- class NMF
18
- include Base::BaseEstimator
19
- include Base::Transformer
20
-
21
- # Returns the factorization matrix.
22
- # @return [Numo::DFloat] (shape: [n_components, n_features])
23
- attr_reader :components
24
-
25
- # Return the random generator.
26
- # @return [Random]
27
- attr_reader :rng
28
-
29
- # Create a new transformer with NMF.
30
- #
31
- # @param n_components [Integer] The number of components.
32
- # @param max_iter [Integer] The maximum number of iterations.
33
- # @param tol [Float] The tolerance of termination criterion.
34
- # @param eps [Float] A small value close to zero to avoid zero division error.
35
- # @param random_seed [Integer] The seed value using to initialize the random generator.
36
- def initialize(n_components: 2, max_iter: 500, tol: 1.0e-4, eps: 1.0e-16, random_seed: nil)
37
- check_params_numeric(n_components: n_components, max_iter: max_iter, tol: tol, eps: eps)
38
- check_params_numeric_or_nil(random_seed: random_seed)
39
- check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol, eps: eps)
40
- @params = {}
41
- @params[:n_components] = n_components
42
- @params[:max_iter] = max_iter
43
- @params[:tol] = tol
44
- @params[:eps] = eps
45
- @params[:random_seed] = random_seed
46
- @params[:random_seed] ||= srand
47
- @components = nil
48
- @rng = Random.new(@params[:random_seed])
49
- end
50
-
51
- # Fit the model with given training data.
52
- #
53
- # @overload fit(x) -> NMF
54
- #
55
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
56
- # @return [NMF] The learned transformer itself.
57
- def fit(x, _y = nil)
58
- x = check_convert_sample_array(x)
59
- partial_fit(x)
60
- self
61
- end
62
-
63
- # Fit the model with training data, and then transform them with the learned model.
64
- #
65
- # @overload fit_transform(x) -> Numo::DFloat
66
- #
67
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
68
- # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
69
- def fit_transform(x, _y = nil)
70
- x = check_convert_sample_array(x)
71
- partial_fit(x)
72
- end
73
-
74
- # Transform the given data with the learned model.
75
- #
76
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
77
- # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
78
- def transform(x)
79
- x = check_convert_sample_array(x)
80
- partial_fit(x, update_comps: false)
81
- end
82
-
83
- # Inverse transform the given transformed data with the learned model.
84
- #
85
- # @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
86
- # @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
87
- def inverse_transform(z)
88
- z = check_convert_sample_array(z)
89
- z.dot(@components)
90
- end
91
-
92
- private
93
-
94
- def partial_fit(x, update_comps: true)
95
- # initialize some variables.
96
- n_samples, n_features = x.shape
97
- scale = Math.sqrt(x.mean / @params[:n_components])
98
- sub_rng = @rng.dup
99
- @components = Rumale::Utils.rand_uniform([@params[:n_components], n_features], sub_rng) * scale if update_comps
100
- coefficients = Rumale::Utils.rand_uniform([n_samples, @params[:n_components]], sub_rng) * scale
101
- # optimization.
102
- @params[:max_iter].times do
103
- # update
104
- if update_comps
105
- nume = coefficients.transpose.dot(x)
106
- deno = coefficients.transpose.dot(coefficients).dot(@components) + @params[:eps]
107
- @components *= (nume / deno)
108
- end
109
- nume = x.dot(@components.transpose)
110
- deno = coefficients.dot(@components).dot(@components.transpose) + @params[:eps]
111
- coefficients *= (nume / deno)
112
- # normalize
113
- norm = Numo::NMath.sqrt((@components**2).sum(1)) + @params[:eps]
114
- @components /= norm.expand_dims(1) if update_comps
115
- coefficients *= norm
116
- # check convergence
117
- err = ((x - coefficients.dot(@components))**2).sum(1).mean
118
- break if err < @params[:tol]
119
- end
120
- coefficients
121
- end
122
- end
123
- end
124
- end
@@ -1,159 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/base/base_estimator'
4
- require 'rumale/base/transformer'
5
-
6
- module Rumale
7
- # Module for matrix decomposition algorithms.
8
- module Decomposition
9
- # PCA is a class that implements Principal Component Analysis.
10
- #
11
- # @example
12
- # decomposer = Rumale::Decomposition::PCA.new(n_components: 2, solver: 'fpt')
13
- # representaion = decomposer.fit_transform(samples)
14
- #
15
- # # If Numo::Linalg is installed, you can specify 'evd' for the solver option.
16
- # require 'numo/linalg/autoloader'
17
- # decomposer = Rumale::Decomposition::PCA.new(n_components: 2, solver: 'evd')
18
- # representaion = decomposer.fit_transform(samples)
19
- #
20
- # # If Numo::Linalg is loaded and the solver option is not given,
21
- # # the solver option is choosen 'evd' automatically.
22
- # decomposer = Rumale::Decomposition::PCA.new(n_components: 2)
23
- # representaion = decomposer.fit_transform(samples)
24
- #
25
- # *Reference*
26
- # - Sharma, A., and Paliwal, K K., "Fast principal component analysis using fixed-point algorithm," Pattern Recognition Letters, 28, pp. 1151--1155, 2007.
27
- class PCA
28
- include Base::BaseEstimator
29
- include Base::Transformer
30
-
31
- # Returns the principal components.
32
- # @return [Numo::DFloat] (shape: [n_components, n_features])
33
- attr_reader :components
34
-
35
- # Returns the mean vector.
36
- # @return [Numo::DFloat] (shape: [n_features])
37
- attr_reader :mean
38
-
39
- # Return the random generator.
40
- # @return [Random]
41
- attr_reader :rng
42
-
43
- # Create a new transformer with PCA.
44
- #
45
- # @param n_components [Integer] The number of principal components.
46
- # @param solver [String] The algorithm for the optimization ('auto', 'fpt' or 'evd').
47
- # 'auto' chooses the 'evd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'fpt' solver.
48
- # 'fpt' uses the fixed-point algorithm.
49
- # 'evd' performs eigen value decomposition of the covariance matrix of samples.
50
- # @param max_iter [Integer] The maximum number of iterations. If solver = 'evd', this parameter is ignored.
51
- # @param tol [Float] The tolerance of termination criterion. If solver = 'evd', this parameter is ignored.
52
- # @param random_seed [Integer] The seed value using to initialize the random generator.
53
- def initialize(n_components: 2, solver: 'auto', max_iter: 100, tol: 1.0e-4, random_seed: nil)
54
- check_params_numeric(n_components: n_components, max_iter: max_iter, tol: tol)
55
- check_params_string(solver: solver)
56
- check_params_numeric_or_nil(random_seed: random_seed)
57
- check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol)
58
- @params = {}
59
- @params[:solver] = if solver == 'auto'
60
- load_linalg? ? 'evd' : 'fpt'
61
- else
62
- solver != 'evd' ? 'fpt' : 'evd' # rubocop:disable Style/NegatedIfElseCondition
63
- end
64
- @params[:n_components] = n_components
65
- @params[:max_iter] = max_iter
66
- @params[:tol] = tol
67
- @params[:random_seed] = random_seed
68
- @params[:random_seed] ||= srand
69
- @components = nil
70
- @mean = nil
71
- @rng = Random.new(@params[:random_seed])
72
- end
73
-
74
- # Fit the model with given training data.
75
- #
76
- # @overload fit(x) -> PCA
77
- #
78
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
79
- # @return [PCA] The learned transformer itself.
80
- def fit(x, _y = nil)
81
- x = check_convert_sample_array(x)
82
- # initialize some variables.
83
- @components = nil
84
- n_samples, n_features = x.shape
85
- sub_rng = @rng.dup
86
- # centering.
87
- @mean = x.mean(0)
88
- centered_x = x - @mean
89
- # optimization.
90
- covariance_mat = centered_x.transpose.dot(centered_x) / (n_samples - 1)
91
- if @params[:solver] == 'evd' && enable_linalg?
92
- _, evecs = Numo::Linalg.eigh(covariance_mat, vals_range: (n_features - @params[:n_components])...n_features)
93
- comps = evecs.reverse(1).transpose
94
- @components = @params[:n_components] == 1 ? comps[0, true].dup : comps.dup
95
- else
96
- @params[:n_components].times do
97
- comp_vec = Rumale::Utils.rand_uniform(n_features, sub_rng)
98
- @params[:max_iter].times do
99
- updated = orthogonalize(covariance_mat.dot(comp_vec))
100
- break if (updated.dot(comp_vec) - 1).abs < @params[:tol]
101
-
102
- comp_vec = updated
103
- end
104
- @components = @components.nil? ? comp_vec : Numo::NArray.vstack([@components, comp_vec])
105
- end
106
- end
107
- self
108
- end
109
-
110
- # Fit the model with training data, and then transform them with the learned model.
111
- #
112
- # @overload fit_transform(x) -> Numo::DFloat
113
- #
114
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
115
- # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
116
- def fit_transform(x, _y = nil)
117
- x = check_convert_sample_array(x)
118
- fit(x).transform(x)
119
- end
120
-
121
- # Transform the given data with the learned model.
122
- #
123
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
124
- # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
125
- def transform(x)
126
- x = check_convert_sample_array(x)
127
- (x - @mean).dot(@components.transpose)
128
- end
129
-
130
- # Inverse transform the given transformed data with the learned model.
131
- #
132
- # @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
133
- # @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
134
- def inverse_transform(z)
135
- z = check_convert_sample_array(z)
136
- c = @components.shape[1].nil? ? @components.expand_dims(0) : @components
137
- z.dot(c) + @mean
138
- end
139
-
140
- private
141
-
142
- def load_linalg?
143
- return false if defined?(Numo::Linalg).nil?
144
- return false if Numo::Linalg::VERSION < '0.1.4'
145
-
146
- true
147
- end
148
-
149
- def orthogonalize(pcvec)
150
- unless @components.nil?
151
- delta = @components.dot(pcvec) * @components.transpose
152
- delta = delta.sum(1) unless delta.shape[1].nil?
153
- pcvec -= delta
154
- end
155
- pcvec / Math.sqrt((pcvec**2).sum.abs) + 1.0e-12
156
- end
157
- end
158
- end
159
- end
@@ -1,179 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/values'
4
- require 'rumale/utils'
5
- require 'rumale/base/base_estimator'
6
- require 'rumale/base/classifier'
7
- require 'rumale/tree/decision_tree_classifier'
8
-
9
- module Rumale
10
- module Ensemble
11
- # AdaBoostClassifier is a class that implements AdaBoost (SAMME.R) for classification.
12
- # This class uses decision tree for a weak learner.
13
- #
14
- # @example
15
- # estimator =
16
- # Rumale::Ensemble::AdaBoostClassifier.new(
17
- # n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
18
- # estimator.fit(training_samples, traininig_labels)
19
- # results = estimator.predict(testing_samples)
20
- #
21
- # *Reference*
22
- # - Zhu, J., Rosset, S., Zou, H., and Hashie, T., "Multi-class AdaBoost," Technical Report No. 430, Department of Statistics, University of Michigan, 2005.
23
- class AdaBoostClassifier
24
- include Base::BaseEstimator
25
- include Base::Classifier
26
-
27
- # Return the set of estimators.
28
- # @return [Array<DecisionTreeClassifier>]
29
- attr_reader :estimators
30
-
31
- # Return the class labels.
32
- # @return [Numo::Int32] (size: n_classes)
33
- attr_reader :classes
34
-
35
- # Return the importance for each feature.
36
- # @return [Numo::DFloat] (size: n_features)
37
- attr_reader :feature_importances
38
-
39
- # Return the random generator for random selection of feature index.
40
- # @return [Random]
41
- attr_reader :rng
42
-
43
- # Create a new classifier with AdaBoost.
44
- #
45
- # @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost classifier.
46
- # @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
47
- # @param max_depth [Integer] The maximum depth of the tree.
48
- # If nil is given, decision tree grows without concern for depth.
49
- # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
50
- # If nil is given, number of leaves is not limited.
51
- # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
52
- # @param max_features [Integer] The number of features to consider when searching optimal split point.
53
- # If nil is given, split process considers all features.
54
- # @param random_seed [Integer] The seed value using to initialize the random generator.
55
- # It is used to randomly determine the order of features when deciding spliting point.
56
- def initialize(n_estimators: 50,
57
- criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
58
- max_features: nil, random_seed: nil)
59
- check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
60
- max_features: max_features, random_seed: random_seed)
61
- check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
62
- check_params_string(criterion: criterion)
63
- check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
64
- max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
65
- max_features: max_features)
66
- @params = {}
67
- @params[:n_estimators] = n_estimators
68
- @params[:criterion] = criterion
69
- @params[:max_depth] = max_depth
70
- @params[:max_leaf_nodes] = max_leaf_nodes
71
- @params[:min_samples_leaf] = min_samples_leaf
72
- @params[:max_features] = max_features
73
- @params[:random_seed] = random_seed
74
- @params[:random_seed] ||= srand
75
- @estimators = nil
76
- @classes = nil
77
- @feature_importances = nil
78
- @rng = Random.new(@params[:random_seed])
79
- end
80
-
81
- # Fit the model with given training data.
82
- #
83
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
84
- # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
85
- # @return [AdaBoostClassifier] The learned classifier itself.
86
- def fit(x, y) # rubocop:disable Metrics/AbcSize
87
- x = check_convert_sample_array(x)
88
- y = check_convert_label_array(y)
89
- check_sample_label_size(x, y)
90
- ## Initialize some variables.
91
- n_samples, n_features = x.shape
92
- @estimators = []
93
- @feature_importances = Numo::DFloat.zeros(n_features)
94
- @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
95
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
96
- @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
97
- n_classes = @classes.shape[0]
98
- sub_rng = @rng.dup
99
- ## Boosting.
100
- classes_arr = @classes.to_a
101
- y_codes = Numo::DFloat.zeros(n_samples, n_classes) - 1.fdiv(n_classes - 1)
102
- n_samples.times { |n| y_codes[n, classes_arr.index(y[n])] = 1.0 }
103
- observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
104
- @params[:n_estimators].times do |_t|
105
- # Fit classfier.
106
- ids = Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng)
107
- break if y[ids].to_a.uniq.size != n_classes
108
-
109
- tree = Tree::DecisionTreeClassifier.new(
110
- criterion: @params[:criterion], max_depth: @params[:max_depth],
111
- max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
112
- max_features: @params[:max_features], random_seed: sub_rng.rand(Rumale::Values.int_max)
113
- )
114
- tree.fit(x[ids, true], y[ids])
115
- # Calculate estimator error.
116
- proba = tree.predict_proba(x).clip(1.0e-15, nil)
117
- p = Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[proba[n, true].max_index] })
118
- inds = p.ne(y)
119
- error = (observation_weights * inds).sum / observation_weights.sum
120
- # Store model.
121
- @estimators.push(tree)
122
- @feature_importances += tree.feature_importances
123
- break if error.zero?
124
-
125
- # Update observation weights.
126
- log_proba = Numo::NMath.log(proba)
127
- observation_weights *= Numo::NMath.exp(-1.0 * (n_classes - 1).fdiv(n_classes) * (y_codes * log_proba).sum(1))
128
- observation_weights = observation_weights.clip(1.0e-15, nil)
129
- sum_observation_weights = observation_weights.sum
130
- break if sum_observation_weights.zero?
131
-
132
- observation_weights /= sum_observation_weights
133
- end
134
- @feature_importances /= @feature_importances.sum
135
- self
136
- end
137
-
138
- # Calculate confidence scores for samples.
139
- #
140
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
141
- # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
142
- def decision_function(x)
143
- x = check_convert_sample_array(x)
144
- n_samples, = x.shape
145
- n_classes = @classes.size
146
- sum_probs = Numo::DFloat.zeros(n_samples, n_classes)
147
- @estimators.each do |tree|
148
- log_proba = Numo::NMath.log(tree.predict_proba(x).clip(1.0e-15, nil))
149
- sum_probs += (n_classes - 1) * (log_proba - 1.fdiv(n_classes) * Numo::DFloat[log_proba.sum(1)].transpose)
150
- end
151
- sum_probs /= @estimators.size
152
- end
153
-
154
- # Predict class labels for samples.
155
- #
156
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
157
- # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
158
- def predict(x)
159
- x = check_convert_sample_array(x)
160
- n_samples, = x.shape
161
- probs = decision_function(x)
162
- Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
163
- end
164
-
165
- # Predict probability for samples.
166
- #
167
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
168
- # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
169
- def predict_proba(x)
170
- x = check_convert_sample_array(x)
171
- n_classes = @classes.size
172
- probs = Numo::NMath.exp(1.fdiv(n_classes - 1) * decision_function(x))
173
- sum_probs = probs.sum(1)
174
- probs /= Numo::DFloat[sum_probs].transpose
175
- probs
176
- end
177
- end
178
- end
179
- end
@@ -1,160 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/values'
4
- require 'rumale/base/base_estimator'
5
- require 'rumale/base/regressor'
6
- require 'rumale/tree/decision_tree_regressor'
7
-
8
- module Rumale
9
- module Ensemble
10
- # AdaBoostRegressor is a class that implements random forest for regression.
11
- # This class uses decision tree for a weak learner.
12
- #
13
- # @example
14
- # estimator =
15
- # Rumale::Ensemble::AdaBoostRegressor.new(
16
- # n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
17
- # estimator.fit(training_samples, traininig_values)
18
- # results = estimator.predict(testing_samples)
19
- #
20
- # *Reference*
21
- # - Shrestha, D. L., and Solomatine, D. P., "Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression," Neural Computation 18 (7), pp. 1678--1710, 2006.
22
- class AdaBoostRegressor
23
- include Base::BaseEstimator
24
- include Base::Regressor
25
-
26
- # Return the set of estimators.
27
- # @return [Array<DecisionTreeRegressor>]
28
- attr_reader :estimators
29
-
30
- # Return the weight for each weak learner.
31
- # @return [Numo::DFloat] (size: n_estimates)
32
- attr_reader :estimator_weights
33
-
34
- # Return the importance for each feature.
35
- # @return [Numo::DFloat] (size: n_features)
36
- attr_reader :feature_importances
37
-
38
- # Return the random generator for random selection of feature index.
39
- # @return [Random]
40
- attr_reader :rng
41
-
42
- # Create a new regressor with random forest.
43
- #
44
- # @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost regressor.
45
- # @param threshold [Float] The threshold for delimiting correct and incorrect predictions. That is constrained to [0, 1]
46
- # @param exponent [Float] The exponent for the weight of each weak learner.
47
- # @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
48
- # @param max_depth [Integer] The maximum depth of the tree.
49
- # If nil is given, decision tree grows without concern for depth.
50
- # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
51
- # If nil is given, number of leaves is not limited.
52
- # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
53
- # @param max_features [Integer] The number of features to consider when searching optimal split point.
54
- # If nil is given, split process considers all features.
55
- # @param random_seed [Integer] The seed value using to initialize the random generator.
56
- # It is used to randomly determine the order of features when deciding spliting point.
57
- def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0,
58
- criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
59
- max_features: nil, random_seed: nil)
60
- check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
61
- max_features: max_features, random_seed: random_seed)
62
- check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf,
63
- threshold: threshold, exponent: exponent)
64
- check_params_string(criterion: criterion)
65
- check_params_positive(n_estimators: n_estimators, threshold: threshold, exponent: exponent,
66
- max_depth: max_depth,
67
- max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
68
- max_features: max_features)
69
- @params = {}
70
- @params[:n_estimators] = n_estimators
71
- @params[:threshold] = threshold
72
- @params[:exponent] = exponent
73
- @params[:criterion] = criterion
74
- @params[:max_depth] = max_depth
75
- @params[:max_leaf_nodes] = max_leaf_nodes
76
- @params[:min_samples_leaf] = min_samples_leaf
77
- @params[:max_features] = max_features
78
- @params[:random_seed] = random_seed
79
- @params[:random_seed] ||= srand
80
- @estimators = nil
81
- @feature_importances = nil
82
- @rng = Random.new(@params[:random_seed])
83
- end
84
-
85
- # Fit the model with given training data.
86
- #
87
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
88
- # @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
89
- # @return [AdaBoostRegressor] The learned regressor itself.
90
- def fit(x, y) # rubocop:disable Metrics/AbcSize
91
- x = check_convert_sample_array(x)
92
- y = check_convert_tvalue_array(y)
93
- check_sample_tvalue_size(x, y)
94
- # Check target values
95
- raise ArgumentError, 'Expect target value vector to be 1-D arrray' unless y.shape.size == 1
96
-
97
- # Initialize some variables.
98
- n_samples, n_features = x.shape
99
- @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
100
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
101
- observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
102
- @estimators = []
103
- @estimator_weights = []
104
- @feature_importances = Numo::DFloat.zeros(n_features)
105
- sub_rng = @rng.dup
106
- # Construct forest.
107
- @params[:n_estimators].times do |_t|
108
- # Fit weak learner.
109
- ids = Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng)
110
- tree = Tree::DecisionTreeRegressor.new(
111
- criterion: @params[:criterion], max_depth: @params[:max_depth],
112
- max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
113
- max_features: @params[:max_features], random_seed: sub_rng.rand(Rumale::Values.int_max)
114
- )
115
- tree.fit(x[ids, true], y[ids])
116
- p = tree.predict(x)
117
- # Calculate errors.
118
- abs_err = ((p - y) / y).abs
119
- err = observation_weights[abs_err.gt(@params[:threshold])].sum
120
- break if err <= 0.0
121
-
122
- # Calculate weight.
123
- beta = err**@params[:exponent]
124
- weight = Math.log(1.fdiv(beta))
125
- # Store model.
126
- @estimators.push(tree)
127
- @estimator_weights.push(weight)
128
- @feature_importances += weight * tree.feature_importances
129
- # Update observation weights.
130
- update = Numo::DFloat.ones(n_samples)
131
- update[abs_err.le(@params[:threshold])] = beta
132
- observation_weights *= update
133
- observation_weights = observation_weights.clip(1.0e-15, nil)
134
- sum_observation_weights = observation_weights.sum
135
- break if sum_observation_weights.zero?
136
-
137
- observation_weights /= sum_observation_weights
138
- end
139
- @estimator_weights = Numo::DFloat.asarray(@estimator_weights)
140
- @feature_importances /= @estimator_weights.sum
141
- self
142
- end
143
-
144
- # Predict values for samples.
145
- #
146
- # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
147
- # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
148
- def predict(x)
149
- x = check_convert_sample_array(x)
150
- n_samples, = x.shape
151
- predictions = Numo::DFloat.zeros(n_samples)
152
- @estimators.size.times do |t|
153
- predictions += @estimator_weights[t] * @estimators[t].predict(x)
154
- end
155
- sum_weight = @estimator_weights.sum
156
- predictions / sum_weight
157
- end
158
- end
159
- end
160
- end