rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
data/CHANGELOG.md
DELETED
@@ -1,643 +0,0 @@
|
|
1
|
-
# 0.23.3
|
2
|
-
- Fix build failure with Xcode 14 and Ruby 3.1.x.
|
3
|
-
|
4
|
-
# 0.23.2
|
5
|
-
Rumale project will be rebooted on version 0.24.0.
|
6
|
-
This version is probably the last release of the series starting with version 0.8.0.
|
7
|
-
|
8
|
-
- Refactor some codes and configs.
|
9
|
-
- Deprecate VPTree class.
|
10
|
-
|
11
|
-
# 0.23.1
|
12
|
-
- Fix all estimators to return inference results in a contiguous narray.
|
13
|
-
- Fix to use until statement instead of recursive call on apply methods of tree estimators.
|
14
|
-
- Rename native extension files.
|
15
|
-
- Introduce clang-format for native extension codes.
|
16
|
-
|
17
|
-
# 0.23.0
|
18
|
-
## Breaking change
|
19
|
-
- Change automalically selected solver from sgd to lbfgs in
|
20
|
-
[LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html) and
|
21
|
-
[Ridge](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html).
|
22
|
-
- When given 'auto' to solver parameter, these estimator select the 'svd' solver if Numo::Linalg is loaded.
|
23
|
-
Otherwise, they select the 'lbfgs' solver.
|
24
|
-
|
25
|
-
# 0.22.5
|
26
|
-
- Add transformer class for calculating kernel matrix.
|
27
|
-
- [KernelCalculator](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/KernelCalculator.html)
|
28
|
-
- Add classifier class based on Ridge regression.
|
29
|
-
- [KernelRidgeClassifier](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelRidgeClassifier.html)
|
30
|
-
- Add supported kernel functions to [Nystroem](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation/Nystroem.html).
|
31
|
-
- Add parameter for specifying the number of features to [load_libsvm_file](https://yoshoku.github.io/rumale/doc/Rumale/Dataset.html#load_libsvm_file-class_method).
|
32
|
-
|
33
|
-
# 0.22.4
|
34
|
-
- Add classifier and regressor classes for voting ensemble method.
|
35
|
-
- [VotingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingClassifier.html)
|
36
|
-
- [VotingRegressor](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingRegressor.html)
|
37
|
-
- Refactor some codes.
|
38
|
-
- Fix some typos on API documentation.
|
39
|
-
|
40
|
-
# 0.22.3
|
41
|
-
- Add regressor class for non-negative least square method.
|
42
|
-
- [NNLS](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/NNLS.html)
|
43
|
-
- Add lbfgs solver to [Ridge](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html) and [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html).
|
44
|
-
- In version 0.23.0, these classes will be changed to attempt to optimize with 'svd' or 'lbfgs' solver if 'auto' is given to
|
45
|
-
the solver parameter. If you use 'sgd' solver, you need specify it explicitly.
|
46
|
-
- Add GC guard to native extension codes.
|
47
|
-
- Update API documentation.
|
48
|
-
|
49
|
-
# 0.22.2
|
50
|
-
- Add classifier and regressor classes for stacking method.
|
51
|
-
- [StackingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/StackingClassifier.html)
|
52
|
-
- [StackingRegressor](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/StackingRegressor.html)
|
53
|
-
- Refactor some codes with Rubocop.
|
54
|
-
|
55
|
-
# 0.22.1
|
56
|
-
- Add transfomer class for [MLKR](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/MLKR.html), that implements Metric Learning for Kernel Regression.
|
57
|
-
- Refactor NeighbourhoodComponentAnalysis.
|
58
|
-
- Update API documentation.
|
59
|
-
|
60
|
-
# 0.22.0
|
61
|
-
## Breaking change
|
62
|
-
- Add lbfgsb.rb gem to runtime dependencies. Rumale uses lbfgsb gem for optimization.
|
63
|
-
This eliminates the need to require the mopti gem when using [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
|
64
|
-
- Add lbfgs solver to [LogisticRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LogisticRegression.html) and make it the default solver.
|
65
|
-
|
66
|
-
# 0.21.0
|
67
|
-
## Breaking change
|
68
|
-
- Change the default value of max_iter argument on LinearModel estimators to 1000.
|
69
|
-
|
70
|
-
# 0.20.3
|
71
|
-
- Fix to use automatic solver of PCA in NeighbourhoodComponentAnalysis.
|
72
|
-
- Refactor some codes with Rubocop.
|
73
|
-
- Update README.
|
74
|
-
|
75
|
-
# 0.20.2
|
76
|
-
- Add cross-validator class for time-series data.
|
77
|
-
- [TimeSeriesSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/TimeSeriesSplit.html)
|
78
|
-
|
79
|
-
# 0.20.1
|
80
|
-
- Add cross-validator classes that split data according group labels.
|
81
|
-
- [GroupKFold](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GroupKFold.html)
|
82
|
-
- [GroupShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GroupShuffleSplit.html)
|
83
|
-
- Fix fraction treating of the number of samples on shuffle split cross-validator classes.
|
84
|
-
- [ShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/ShuffleSplit.html)
|
85
|
-
- [StratifiedShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/StratifiedShuffleSplit.html)
|
86
|
-
- Refactor some codes with Rubocop.
|
87
|
-
|
88
|
-
# 0.20.0
|
89
|
-
## Breaking changes
|
90
|
-
- Delete deprecated estimators such as PolynomialModel, Optimizer, and BaseLinearModel.
|
91
|
-
|
92
|
-
# 0.19.3
|
93
|
-
- Add preprocessing class for [Binarizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/Binarizer.html)
|
94
|
-
- Add preprocessing class for [MaxNormalizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/MaxNormalizer.html)
|
95
|
-
- Refactor some codes with Rubocop.
|
96
|
-
|
97
|
-
# 0.19.2
|
98
|
-
- Fix L2Normalizer to avoid zero divide.
|
99
|
-
- Add preprocssing class for [L1Normalizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/L1Normalizer.html).
|
100
|
-
- Add transformer class for [TfidfTransformer](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/TfidfTransformer.html).
|
101
|
-
|
102
|
-
# 0.19.1
|
103
|
-
- Add cluster analysis class for [mini-batch K-Means](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/MiniBatchKMeans.html).
|
104
|
-
- Fix some typos.
|
105
|
-
|
106
|
-
# 0.19.0
|
107
|
-
## Breaking changes
|
108
|
-
- Change mmh3 and mopti gem to non-runtime dependent library.
|
109
|
-
- The mmh3 gem is used in [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html).
|
110
|
-
You only need to require mmh3 gem when using FeatureHasher.
|
111
|
-
```ruby
|
112
|
-
require 'mmh3'
|
113
|
-
require 'rumale'
|
114
|
-
|
115
|
-
encoder = Rumale::FeatureExtraction::FeatureHasher.new
|
116
|
-
```
|
117
|
-
- The mopti gem is used in [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
|
118
|
-
You only need to require mopti gem when using NeighbourhoodComponentAnalysis.
|
119
|
-
```ruby
|
120
|
-
require 'mopti'
|
121
|
-
require 'rumale'
|
122
|
-
|
123
|
-
transformer = Rumale::MetricLearning::NeighbourhoodComponentAnalysis.new
|
124
|
-
```
|
125
|
-
- Change the default value of solver parameter on [PCA](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/PCA.html) to 'auto'.
|
126
|
-
If Numo::Linalg is loaded, 'evd' is selected for the solver, otherwise 'fpt' is selected.
|
127
|
-
- Deprecate [PolynomialModel](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel.html), [Optimizer](https://yoshoku.github.io/rumale/doc/Rumale/Optimizer.html), and the estimators contained in them. They will be deleted in version 0.20.0.
|
128
|
-
- Many machine learning libraries do not contain factorization machine algorithms, they are provided by another compatible library.
|
129
|
-
In addition, there are no plans to implement estimators in PolynomialModel.
|
130
|
-
Thus, the author decided to deprecate PolynomialModel.
|
131
|
-
- Currently, the Optimizer classes are only used by PolynomialModel estimators.
|
132
|
-
Therefore, they have been deprecated together with PolynomialModel.
|
133
|
-
|
134
|
-
# 0.18.7
|
135
|
-
- Fix to convert target_name to string array in [classification_report method](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#classification_report-class_method).
|
136
|
-
- Refactor some codes with Rubocop.
|
137
|
-
|
138
|
-
# 0.18.6
|
139
|
-
- Fix some configuration files.
|
140
|
-
- Update API documentation.
|
141
|
-
|
142
|
-
# 0.18.5
|
143
|
-
- Add functions for calculation of cosine similarity and distance to [Rumale::PairwiseMetric](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html).
|
144
|
-
- Refactor some codes with Rubocop.
|
145
|
-
|
146
|
-
# 0.18.4
|
147
|
-
- Add transformer class for [KernelFDA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelFDA.html).
|
148
|
-
- Refactor [KernelPCA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelPCA.html).
|
149
|
-
- Fix API documentation.
|
150
|
-
|
151
|
-
# 0.18.3
|
152
|
-
- Fix API documentation on [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html)
|
153
|
-
- Refector [rbf_kernel](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html#rbf_kernel-class_method) method.
|
154
|
-
- Delete unneeded marshal dump and load methods. The deletion work is complete.
|
155
|
-
- [Tree](https://yoshoku.github.io/rumale/doc/Rumale/Tree.html),
|
156
|
-
[Ensemble](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble.html),
|
157
|
-
[Optimizer](https://yoshoku.github.io/rumale/doc/Rumale/Optimizer.html),
|
158
|
-
[OneVsRestClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Multiclass/OneVsRestClassifier.html),
|
159
|
-
[GridSearchCV](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GridSearchCV.html).
|
160
|
-
|
161
|
-
# 0.18.2
|
162
|
-
- Change file composition of naive bayes classifiers.
|
163
|
-
- Add classifier class for [ComplementNaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes/ComplementNB.html).
|
164
|
-
- Add classifier class for [NegationNaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes/NegationNB.html).
|
165
|
-
- Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#confusion_matrix-class_method) for calculating confusion matrix.
|
166
|
-
- Delete unneeded marshal dump and load methods.
|
167
|
-
- [Clustering](https://yoshoku.github.io/rumale/doc/Rumale/Clustering.html),
|
168
|
-
[KernelApproximation](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation.html),
|
169
|
-
[KernelMachine](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine.html),
|
170
|
-
[NearestNeighbors](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors.html),
|
171
|
-
[Preprocessing](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html).
|
172
|
-
|
173
|
-
# 0.18.1
|
174
|
-
- Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#classification_report-class_method) for generating summary of classification performance.
|
175
|
-
- Delete marshal dump and load methods for documentation.
|
176
|
-
The marshal methods are written in estimator classes for indicating on API documentation that the learned model can be saved with Marshal.
|
177
|
-
Even without these methods, Marshal can save the learned model, so they are deleted sequentially.
|
178
|
-
- [Manifold](https://yoshoku.github.io/rumale/doc/Rumale/Manifold.html),
|
179
|
-
[NaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes.html),
|
180
|
-
[PolynomialModel](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel.html),
|
181
|
-
[Decomposition](https://yoshoku.github.io/doc/Rumale/Decomposition.html).
|
182
|
-
|
183
|
-
# 0.18.0
|
184
|
-
- Add transformer class for [FisherDiscriminantAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/FisherDiscriminantAnalysis.html).
|
185
|
-
- Add transformer class for [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
|
186
|
-
- Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection.html#train_test_split-class_method) for hold-out validation.
|
187
|
-
|
188
|
-
# 0.17.3
|
189
|
-
- Add pipeline class for [FeatureUnion](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline/FeatureUnion.html).
|
190
|
-
- Fix to use mmh3 gem for generating hash value on [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html).
|
191
|
-
|
192
|
-
# 0.17.2
|
193
|
-
- Add transformer class for kernel approximation with [Nystroem](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation/Nystroem.html) method.
|
194
|
-
- Delete array validation on [Pipeline](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline/Pipeline.html) class considering that array of hash is given to HashVectorizer.
|
195
|
-
|
196
|
-
# 0.17.1
|
197
|
-
- Add transformer class for [PolynomialFeatures](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/PolynomialFeatures.html)
|
198
|
-
- Add verbose and tol parameter to [FactorizationMachineClassifier](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineClassifier.html)
|
199
|
-
and [FactorizationMachineRegressor](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineRegressor.html)
|
200
|
-
- Fix bug that factor elements of Factorization Machines estimators are not learned caused by initializing factors to zero.
|
201
|
-
|
202
|
-
# 0.17.0
|
203
|
-
## Breaking changes
|
204
|
-
- Fix all linear model estimators to use the new abstract class ([BaseSGD](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/BaseSGD.html)) introduced in version 0.16.1.
|
205
|
-
The major differences from the old abstract class are that
|
206
|
-
the optimizer of LinearModel estimators is fixed to mini-batch SGD with momentum term,
|
207
|
-
the max_iter parameter indicates the number of epochs instead of the maximum number of iterations,
|
208
|
-
the fit_bias parameter is true by default, and elastic-net style regularization can be used.
|
209
|
-
Note that there are additions and changes to hyperparameters.
|
210
|
-
Existing trained linear models may need to re-train the model and adjust the hyperparameters.
|
211
|
-
- [LogisticRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LogisticRegression.html)
|
212
|
-
- [SVC](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVC.html)
|
213
|
-
- [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html)
|
214
|
-
- [Rdige](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html)
|
215
|
-
- [Lasso](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Lasso.html)
|
216
|
-
- [SVR](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVR.html)
|
217
|
-
- Change the default value of solver parameter on LinearRegression and Ridge to 'auto'.
|
218
|
-
If Numo::Linalg is loaded, 'svd' is selected for the solver, otherwise 'sgd' is selected.
|
219
|
-
- The meaning of the `max_iter` parameter of the factorization machine estimators
|
220
|
-
has been changed from the maximum number of iterations to the number of epochs.
|
221
|
-
- [FactorizationMachineClassifier](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineClassifier.html)
|
222
|
-
- [FactorizationMachineRegressor](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineRegressor.html)
|
223
|
-
|
224
|
-
# 0.16.1
|
225
|
-
- Add regressor class for [ElasticNet](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/ElasticNet.html).
|
226
|
-
- Add new linear model abstract class.
|
227
|
-
- In version 0.17.0, all LinearModel estimators will be changed to use this new abstract class.
|
228
|
-
The major differences from the existing abstract class are that
|
229
|
-
the optimizer of LinearModel estimators is fixed to mini-batch SGD with momentum term,
|
230
|
-
the max_iter parameter indicates the number of epochs instead of the maximum number of iterations,
|
231
|
-
the fit_bias parameter is true by default, and elastic-net style regularization can be used.
|
232
|
-
|
233
|
-
# 0.16.0
|
234
|
-
## Breaking changes
|
235
|
-
- The meaning of the `max_iter` parameter of the multi-layer perceptron estimators
|
236
|
-
has been changed from the maximum number of iterations to the number of epochs.
|
237
|
-
The number of epochs is how many times the whole data is given to the training process.
|
238
|
-
As a future plan, similar changes will be applied to other estimators used stochastic gradient descent such as SVC and Lasso.
|
239
|
-
- [MLPClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPClassifier.html)
|
240
|
-
- [MLPRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPRegressor.html)
|
241
|
-
|
242
|
-
# 0.15.0
|
243
|
-
- Add feature extractor classes:
|
244
|
-
- [HashVectorizer](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/HashVectorizer.html)
|
245
|
-
- [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html)
|
246
|
-
|
247
|
-
# 0.14.5
|
248
|
-
- Fix to suppress deprecation warning about keyword argument in Ruby 2.7.
|
249
|
-
|
250
|
-
# 0.14.4
|
251
|
-
- Add metric parameter that specifies distance metric to
|
252
|
-
[KNeighborsClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsClassifier.html) and
|
253
|
-
[KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html).
|
254
|
-
- Add algorithm parameter that specifies nearest neighbor search algorithm to
|
255
|
-
[KNeighborsClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsClassifier.html) and
|
256
|
-
[KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html).
|
257
|
-
- Add nearest neighbor search class with [vantage point tree](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/VPTree.html).
|
258
|
-
|
259
|
-
# 0.14.3
|
260
|
-
- Fix documents of GradientBoosting, RandomForest, and ExtraTrees.
|
261
|
-
- Refactor gaussian mixture clustering with Rubocop.
|
262
|
-
- Refactor specs.
|
263
|
-
|
264
|
-
# 0.14.2
|
265
|
-
- Refactor extension codes of decision tree estimators.
|
266
|
-
- Refactor specs.
|
267
|
-
|
268
|
-
# 0.14.1
|
269
|
-
- Fix bug where MDS optimization is not performed when tol paremeter is given.
|
270
|
-
- Refactor specs.
|
271
|
-
|
272
|
-
# 0.14.0
|
273
|
-
- Add classifier and regressor class with multi-layer perceptron.
|
274
|
-
- [MLPClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPClassifier.html)
|
275
|
-
- [MLPRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPRegressor.html)
|
276
|
-
- Refactor specs.
|
277
|
-
|
278
|
-
## Breaking changes
|
279
|
-
- Change predict method of SVC, LogisticRegression, and FactorizationMachineClassifier classes to return the original label instead of -1 or 1 labels when binary classification problem.
|
280
|
-
- Fix hyperparameter validation to check if the type of given value is Numeric type.
|
281
|
-
- Fix array validation for samples, labels, and target values to accept Ruby Array.
|
282
|
-
|
283
|
-
```ruby
|
284
|
-
require 'rumale'
|
285
|
-
|
286
|
-
samples = [[-1, 1], [1, 1], [1, -1], [-1, -1]]
|
287
|
-
labels = [0, 1, 1, 0]
|
288
|
-
|
289
|
-
svc = Rumale::LinearModel::SVC.new(reg_param: 1, batch_size: 1, random_seed: 1)
|
290
|
-
svc.fit(samples, labels)
|
291
|
-
svc.predict([[-1, 0], [1, 0]])
|
292
|
-
# => Numo::Int32#shape=[2]
|
293
|
-
# [0, 1]
|
294
|
-
```
|
295
|
-
|
296
|
-
# 0.13.8
|
297
|
-
- Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/Dataset.html#make_blobs-class_method) for generating artificial dataset with gaussian blobs.
|
298
|
-
- Add documents about Rumale::SVM.
|
299
|
-
- Refactor specs.
|
300
|
-
|
301
|
-
# 0.13.7
|
302
|
-
- Add some evaluator classes for clustering.
|
303
|
-
- [SilhouetteScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/SilhouetteScore.html)
|
304
|
-
- [CalinskiHarabaszScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/CalinskiHarabaszScore.html)
|
305
|
-
- [DaviesBouldinScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/DaviesBouldinScore.html)
|
306
|
-
|
307
|
-
# 0.13.6
|
308
|
-
- Add transformer class for [FastICA](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/FastICA.html).
|
309
|
-
- Fix a typo on README ([#13](https://github.com/yoshoku/rumale/pull/13)).
|
310
|
-
|
311
|
-
# 0.13.5
|
312
|
-
- Add transformer class for [Factor Analysis](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/FactorAnalysis.html).
|
313
|
-
- Add covariance_type parameter to [Rumale::Clustering::GaussianMixture](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/GaussianMixture.html).
|
314
|
-
|
315
|
-
# 0.13.4
|
316
|
-
- Add cluster analysis class for [HDBSCAN](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/HDBSCAN.html).
|
317
|
-
- Add cluster analysis class for [spectral clustering](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/SpectralClustering.html).
|
318
|
-
- Refactor power iteration clustering.
|
319
|
-
- Several documentation improvements.
|
320
|
-
|
321
|
-
# 0.13.3
|
322
|
-
- Add transformer class for [Kernel PCA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelPCA.html).
|
323
|
-
- Add regressor class for [Kernel Ridge](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelRidge.html).
|
324
|
-
|
325
|
-
# 0.13.2
|
326
|
-
- Add preprocessing class for label binarization.
|
327
|
-
- Fix to use LabelBinarizer instead of OneHotEncoder.
|
328
|
-
- Fix bug that OneHotEncoder leaves elements related to values that do not occur in training data.
|
329
|
-
|
330
|
-
# 0.13.1
|
331
|
-
- Add class for Shared Neareset Neighbor clustering.
|
332
|
-
- Add function for calculation of manhattan distance to Rumale::PairwiseMetric.
|
333
|
-
- Add metric parameter that specifies distance metric to Rumale::Clustering::DBSCAN.
|
334
|
-
- Add the solver parameter that specifies the optimization algorithm to Rumale::LinearModel::LinearRegression.
|
335
|
-
- Add the solver parameter that specifies the optimization algorithm to Rumale::LinearModel::Ridge.
|
336
|
-
- Fix bug that the ndim of NArray of 1-dimensional principal components is not 1.
|
337
|
-
|
338
|
-
# 0.13.0
|
339
|
-
- Introduce [Numo::Linalg](https://github.com/ruby-numo/numo-linalg) to use linear algebra algorithms on the optimization.
|
340
|
-
- Add the solver parameter that specifies the optimization algorithm to Rumale::Decomposition::PCA.
|
341
|
-
|
342
|
-
```ruby
|
343
|
-
require 'rumale'
|
344
|
-
|
345
|
-
# Loading Numo::Linalg enables features based on linear algebra algorithms.
|
346
|
-
require 'numo/linalg/autoloader'
|
347
|
-
|
348
|
-
decomposer = Rumale::Decomposition::PCA.new(n_components: 2, solver: 'evd')
|
349
|
-
low_dimensional_samples = decomposer.fit_transform(samples)
|
350
|
-
```
|
351
|
-
|
352
|
-
# 0.12.9
|
353
|
-
- Add class for K-Medoids clustering.
|
354
|
-
- Fix extension codes of decision tree regressor for using Numo::NArray.
|
355
|
-
|
356
|
-
# 0.12.8
|
357
|
-
- Fix bug that fails to build and install on Windows again. Fix extconf to add Numo::NArray libraries to $lib.
|
358
|
-
|
359
|
-
# 0.12.7
|
360
|
-
- Fix bug that fails to build and install on Windows. Add search for Numo::NArray static library path to extconf.
|
361
|
-
|
362
|
-
# 0.12.6
|
363
|
-
- Fix extension codes of decision tree classifier and gradient tree regressor for using Numo::NArray.
|
364
|
-
|
365
|
-
# 0.12.5
|
366
|
-
- Fix random number generator initialization on gradient boosting estimators
|
367
|
-
to obtain the same result with and without parallel option.
|
368
|
-
|
369
|
-
# 0.12.4
|
370
|
-
- Add class for multidimensional scaling.
|
371
|
-
- Fix parameter description on artificial dataset generation method.
|
372
|
-
|
373
|
-
# 0.12.3
|
374
|
-
- Add class for Power Iteration clustering.
|
375
|
-
- Add classes for artificial dataset generation.
|
376
|
-
|
377
|
-
# 0.12.2
|
378
|
-
- Add class for cluster analysis with Gaussian Mixture Model.
|
379
|
-
- Add encoder class for categorical features.
|
380
|
-
|
381
|
-
# 0.12.1
|
382
|
-
- Refactor kernel support vector classifier.
|
383
|
-
- Refactor random sampling on tree estimators.
|
384
|
-
|
385
|
-
# 0.12.0
|
386
|
-
## Breaking changes
|
387
|
-
- For reproductivity, Rumale changes to not repeatedly use the same random number generator in the same estimator.
|
388
|
-
In the training phase, estimators use a copy of the random number generator created in the initialize method.
|
389
|
-
Even with the same algorithm and the same data, the order of random number generation
|
390
|
-
may make slight differences in learning results.
|
391
|
-
By this change, even if the fit method is executed multiple times,
|
392
|
-
the same learning result can be obtained if the same data is given.
|
393
|
-
|
394
|
-
```ruby
|
395
|
-
svc = Rumale::LinearModel::SVC.new(random_seed: 0)
|
396
|
-
svc.fit(x, y)
|
397
|
-
a = svc.weight_vec
|
398
|
-
svc.fit(x, y)
|
399
|
-
b = svc.weight_vec
|
400
|
-
err = ((a - b)**2).mean
|
401
|
-
|
402
|
-
# In version 0.11.0 or earlier, false may be output,
|
403
|
-
# but from this version, true is always output.
|
404
|
-
puts(err < 1e-4)
|
405
|
-
```
|
406
|
-
|
407
|
-
# 0.11.0
|
408
|
-
- Introduce [Parallel gem](https://github.com/grosser/parallel) to improve execution speed for one-vs-the-rest and bagging methods.
|
409
|
-
- Add the n_jobs parameter that specifies the number of jobs for parallel processing in some estimators belong to the Rumale::LinearModel, Rumale::PolynomialModel, and Rumale::Ensemble.
|
410
|
-
- The n_jobs parameter is valid only when parallel gem is loaded.
|
411
|
-
|
412
|
-
```ruby
|
413
|
-
require 'rumale'
|
414
|
-
require 'parallel'
|
415
|
-
|
416
|
-
svc = Rumale::LinearModel::SVC.new(n_jobs: -1)
|
417
|
-
```
|
418
|
-
|
419
|
-
# 0.10.0
|
420
|
-
- Add class for t-distributed Stochastic Neighborhood Embedding.
|
421
|
-
- Fix bug of zero division on min-max scaling class.
|
422
|
-
|
423
|
-
# 0.9.2
|
424
|
-
- Add class for Gradient tree boosting classifier.
|
425
|
-
- Add class for Gradient tree boosting regressor.
|
426
|
-
- Add class for discretizing feature values.
|
427
|
-
- Refactor extra-trees estimators.
|
428
|
-
- Refactor decision tree base class.
|
429
|
-
- Fix some typos on document ([#6](https://github.com/yoshoku/rumale/pull/6)).
|
430
|
-
|
431
|
-
# 0.9.1
|
432
|
-
- Add class for Extra-Trees classifier.
|
433
|
-
- Add class for Extra-Trees regressor.
|
434
|
-
- Refactor extension modules of decision tree estimators for improving performance.
|
435
|
-
|
436
|
-
# 0.9.0
|
437
|
-
## Breaking changes
|
438
|
-
- Decide to introduce Ruby extensions for improving performance.
|
439
|
-
- Fix to find split point on decision tree estimators using extension modules.
|
440
|
-
|
441
|
-
# 0.8.4
|
442
|
-
- Remove unused parameter on Nadam.
|
443
|
-
- Fix condition to stop growing tree about decision tree.
|
444
|
-
|
445
|
-
# 0.8.3
|
446
|
-
- Add optimizer class for AdaGrad.
|
447
|
-
- Add evaluator class for ROC AUC.
|
448
|
-
- Add class for scaling with maximum absolute value.
|
449
|
-
|
450
|
-
# 0.8.2
|
451
|
-
- Add class for Adam optimizer.
|
452
|
-
- Add data splitter classes for random permutation cross validation.
|
453
|
-
- Add accessor method for number of splits to K-fold splitter classes.
|
454
|
-
- Add execution result of example script on README ([#3](https://github.com/yoshoku/rumale/pull/3)).
|
455
|
-
|
456
|
-
# 0.8.1
|
457
|
-
- Add some evaluator classes.
|
458
|
-
- MeanSquaredLogError
|
459
|
-
- MedianAbsoluteError
|
460
|
-
- ExplainedVarianceScore
|
461
|
-
- AdjustedRandScore
|
462
|
-
- MutualInformation
|
463
|
-
- Refactor normalized mutual infomation evaluator.
|
464
|
-
- Fix typo on document ([#2](https://github.com/yoshoku/rumale/pull/2)).
|
465
|
-
|
466
|
-
# 0.8.0
|
467
|
-
## Breaking changes
|
468
|
-
- Rename SVMKit to Rumale.
|
469
|
-
- Rename SGDLienareEstimator class to BaseLienarModel class.
|
470
|
-
- Add data type option to load_libsvm_file method. By default, the method represents the feature with Numo::DFloat.
|
471
|
-
|
472
|
-
## Refactoring
|
473
|
-
- Refactor factorization machine estimators.
|
474
|
-
- Refactor decision tree estimators.
|
475
|
-
|
476
|
-
# 0.7.3
|
477
|
-
- Add class for grid search performing hyperparameter optimization.
|
478
|
-
- Add argument validations to Pipeline.
|
479
|
-
|
480
|
-
# 0.7.2
|
481
|
-
- Add class for Pipeline that constructs chain of transformers and estimators.
|
482
|
-
- Fix some typos on document ([#1](https://github.com/yoshoku/SVMKit/pull/1)).
|
483
|
-
|
484
|
-
# 0.7.1
|
485
|
-
- Fix to use CSV class in parsing libsvm format file.
|
486
|
-
- Refactor ensemble estimators.
|
487
|
-
|
488
|
-
# 0.7.0
|
489
|
-
- Add class for AdaBoost classifier.
|
490
|
-
- Add class for AdaBoost regressor.
|
491
|
-
|
492
|
-
# 0.6.3
|
493
|
-
- Fix bug on setting random seed and max_features parameter of Random Forest estimators.
|
494
|
-
|
495
|
-
# 0.6.2
|
496
|
-
- Refactor decision tree classes for improving performance.
|
497
|
-
|
498
|
-
# 0.6.1
|
499
|
-
- Add abstract class for linear estimator with stochastic gradient descent.
|
500
|
-
- Refactor linear estimators to use linear esitmator abstract class.
|
501
|
-
- Refactor decision tree classes to avoid unneeded type conversion.
|
502
|
-
|
503
|
-
# 0.6.0
|
504
|
-
- Add class for Principal Component Analysis.
|
505
|
-
- Add class for Non-negative Matrix Factorization.
|
506
|
-
|
507
|
-
# 0.5.2
|
508
|
-
- Add class for DBSCAN clustering.
|
509
|
-
|
510
|
-
# 0.5.1
|
511
|
-
- Fix bug on class probability calculation of DecisionTreeClassifier.
|
512
|
-
|
513
|
-
# 0.5.0
|
514
|
-
- Add class for K-Means clustering.
|
515
|
-
- Add class for evaluating purity.
|
516
|
-
- Add class for evaluating normalized mutual information.
|
517
|
-
|
518
|
-
# 0.4.1
|
519
|
-
- Add class for linear regressor.
|
520
|
-
- Add class for SGD optimizer.
|
521
|
-
- Add class for RMSProp optimizer.
|
522
|
-
- Add class for YellowFin optimizer.
|
523
|
-
- Fix to be able to select optimizer on estimators of LineaModel and PolynomialModel.
|
524
|
-
|
525
|
-
# 0.4.0
|
526
|
-
## Breaking changes
|
527
|
-
|
528
|
-
SVMKit introduces optimizer algorithm that calculates learning rates adaptively
|
529
|
-
on each iteration of stochastic gradient descent (SGD).
|
530
|
-
While Pegasos SGD runs fast, it sometimes fails to optimize complicated models
|
531
|
-
like Factorization Machine.
|
532
|
-
To solve this problem, in version 0.3.3, SVMKit introduced optimization with RMSProp on
|
533
|
-
FactorizationMachineRegressor, Ridge and Lasso.
|
534
|
-
This attempt realized stable optimization of those estimators.
|
535
|
-
Following the success of the attempt, author decided to use modern optimizer algorithms
|
536
|
-
with all SGD optimizations in SVMKit.
|
537
|
-
Through some preliminary experiments, author implemented Nadam as the default optimizer.
|
538
|
-
SVMKit plans to add other optimizer algorithms sequentially, so that users can select them.
|
539
|
-
|
540
|
-
- Fix to use Nadam for optimization on SVC, SVR, LogisticRegression, Ridge, Lasso, and Factorization Machine estimators.
|
541
|
-
- Combine reg_param_weight and reg_param_bias parameters on Factorization Machine estimators into the unified parameter named reg_param_linear.
|
542
|
-
- Remove init_std paramter on Factorization Machine estimators.
|
543
|
-
- Remove learning_rate, decay, and momentum parameters on Ridge, Lasso, and FactorizationMachineRegressor.
|
544
|
-
- Remove normalize parameter on SVC, SVR, and LogisticRegression.
|
545
|
-
|
546
|
-
# 0.3.3
|
547
|
-
- Add class for Ridge regressor.
|
548
|
-
- Add class for Lasso regressor.
|
549
|
-
- Fix bug on gradient calculation of FactorizationMachineRegressor.
|
550
|
-
- Fix some documents.
|
551
|
-
|
552
|
-
# 0.3.2
|
553
|
-
- Add class for Factorization Machine regressor.
|
554
|
-
- Add class for Decision Tree regressor.
|
555
|
-
- Add class for Random Forest regressor.
|
556
|
-
- Fix to support loading and dumping libsvm file with multi-target variables.
|
557
|
-
- Fix to require DecisionTreeClassifier on RandomForestClassifier.
|
558
|
-
- Fix some mistakes on document.
|
559
|
-
|
560
|
-
# 0.3.1
|
561
|
-
- Fix bug on decision function calculation of FactorizationMachineClassifier.
|
562
|
-
- Fix bug on weight updating process of KernelSVC.
|
563
|
-
|
564
|
-
# 0.3.0
|
565
|
-
- Add class for Support Vector Regression.
|
566
|
-
- Add class for K-Nearest Neighbor Regression.
|
567
|
-
- Add class for evaluating coefficient of determination.
|
568
|
-
- Add class for evaluating mean squared error.
|
569
|
-
- Add class for evaluating mean absolute error.
|
570
|
-
- Fix to use min method instead of sort and first methods.
|
571
|
-
- Fix cross validation class to be able to use for regression problem.
|
572
|
-
- Fix some typos on document.
|
573
|
-
- Rename spec filename for Factorization Machine classifier.
|
574
|
-
|
575
|
-
# 0.2.9
|
576
|
-
- Add predict_proba method to SVC and KernelSVC.
|
577
|
-
- Add class for evaluating logarithmic loss.
|
578
|
-
- Add classes for Label- and One-Hot- encoding.
|
579
|
-
- Add some validator.
|
580
|
-
- Fix bug on training data score calculation of cross validation.
|
581
|
-
- Fix fit method of SVC for performance.
|
582
|
-
- Fix criterion calculation on Decision Tree for performance.
|
583
|
-
- Fix data structure of Decision Tree for performance.
|
584
|
-
|
585
|
-
# 0.2.8
|
586
|
-
- Fix bug on gradient calculation of Logistic Regression.
|
587
|
-
- Fix to change accessor of params of estimators to read only.
|
588
|
-
- Add parameter validation.
|
589
|
-
|
590
|
-
# 0.2.7
|
591
|
-
- Fix to support multiclass classifiction into LinearSVC, LogisticRegression, KernelSVC, and FactorizationMachineClassifier
|
592
|
-
|
593
|
-
# 0.2.6
|
594
|
-
- Add class for Decision Tree classifier.
|
595
|
-
- Add class for Random Forest classifier.
|
596
|
-
- Fix to use frozen string literal.
|
597
|
-
- Refactor marshal dump method on some classes.
|
598
|
-
- Introduce Coveralls to confirm test coverage.
|
599
|
-
|
600
|
-
# 0.2.5
|
601
|
-
- Add classes for Naive Bayes classifier.
|
602
|
-
- Fix decision function method on Logistic Regression class.
|
603
|
-
- Fix method visibility on RBF kernel approximation class.
|
604
|
-
|
605
|
-
# 0.2.4
|
606
|
-
- Add class for Factorization Machine classifier.
|
607
|
-
- Add classes for evaluation measures.
|
608
|
-
- Fix the method for prediction of class probability in Logistic Regression.
|
609
|
-
|
610
|
-
# 0.2.3
|
611
|
-
- Add class for cross validation.
|
612
|
-
- Add specs for base modules.
|
613
|
-
- Fix validation of the number of splits when a negative label is given.
|
614
|
-
|
615
|
-
# 0.2.2
|
616
|
-
- Add data splitter classes for K-fold cross validation.
|
617
|
-
|
618
|
-
# 0.2.1
|
619
|
-
- Add class for K-nearest neighbors classifier.
|
620
|
-
|
621
|
-
# 0.2.0
|
622
|
-
- Migrated the linear algebra library to Numo::NArray.
|
623
|
-
- Add module for loading and saving libsvm format file.
|
624
|
-
|
625
|
-
# 0.1.3
|
626
|
-
- Add class for Kernel Support Vector Machine with Pegasos algorithm.
|
627
|
-
- Add module for calculating pairwise kernel fuctions and euclidean distances.
|
628
|
-
|
629
|
-
# 0.1.2
|
630
|
-
- Add the function learning a model with bias term to the PegasosSVC and LogisticRegression classes.
|
631
|
-
- Rewrite the document with yard notation.
|
632
|
-
|
633
|
-
# 0.1.1
|
634
|
-
- Add class for Logistic Regression with SGD optimization.
|
635
|
-
- Fix some mistakes on the document.
|
636
|
-
|
637
|
-
# 0.1.0
|
638
|
-
- Add basic classes.
|
639
|
-
- Add an utility module.
|
640
|
-
- Add class for RBF kernel approximation.
|
641
|
-
- Add class for Support Vector Machine with Pegasos alogrithm.
|
642
|
-
- Add class that performs mutlclass classification with one-vs.-rest strategy.
|
643
|
-
- Add classes for preprocessing such as min-max scaling, standardization, and L2 normalization.
|