rumale 0.23.3 → 0.24.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (142) hide show
  1. checksums.yaml +4 -4
  2. data/LICENSE.txt +5 -1
  3. data/README.md +3 -288
  4. data/lib/rumale/version.rb +1 -1
  5. data/lib/rumale.rb +20 -131
  6. metadata +252 -150
  7. data/CHANGELOG.md +0 -643
  8. data/CODE_OF_CONDUCT.md +0 -74
  9. data/ext/rumale/extconf.rb +0 -37
  10. data/ext/rumale/rumaleext.c +0 -545
  11. data/ext/rumale/rumaleext.h +0 -12
  12. data/lib/rumale/base/base_estimator.rb +0 -49
  13. data/lib/rumale/base/classifier.rb +0 -36
  14. data/lib/rumale/base/cluster_analyzer.rb +0 -31
  15. data/lib/rumale/base/evaluator.rb +0 -17
  16. data/lib/rumale/base/regressor.rb +0 -36
  17. data/lib/rumale/base/splitter.rb +0 -21
  18. data/lib/rumale/base/transformer.rb +0 -22
  19. data/lib/rumale/clustering/dbscan.rb +0 -123
  20. data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
  21. data/lib/rumale/clustering/hdbscan.rb +0 -291
  22. data/lib/rumale/clustering/k_means.rb +0 -122
  23. data/lib/rumale/clustering/k_medoids.rb +0 -141
  24. data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
  25. data/lib/rumale/clustering/power_iteration.rb +0 -127
  26. data/lib/rumale/clustering/single_linkage.rb +0 -203
  27. data/lib/rumale/clustering/snn.rb +0 -76
  28. data/lib/rumale/clustering/spectral_clustering.rb +0 -115
  29. data/lib/rumale/dataset.rb +0 -246
  30. data/lib/rumale/decomposition/factor_analysis.rb +0 -150
  31. data/lib/rumale/decomposition/fast_ica.rb +0 -188
  32. data/lib/rumale/decomposition/nmf.rb +0 -124
  33. data/lib/rumale/decomposition/pca.rb +0 -159
  34. data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
  35. data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
  36. data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
  37. data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
  38. data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
  39. data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
  40. data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
  41. data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
  42. data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
  43. data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
  44. data/lib/rumale/ensemble/voting_classifier.rb +0 -126
  45. data/lib/rumale/ensemble/voting_regressor.rb +0 -82
  46. data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
  47. data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
  48. data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
  49. data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
  50. data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
  51. data/lib/rumale/evaluation_measure/f_score.rb +0 -50
  52. data/lib/rumale/evaluation_measure/function.rb +0 -147
  53. data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
  54. data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
  55. data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
  56. data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
  57. data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
  58. data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
  59. data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
  60. data/lib/rumale/evaluation_measure/precision.rb +0 -50
  61. data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
  62. data/lib/rumale/evaluation_measure/purity.rb +0 -40
  63. data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
  64. data/lib/rumale/evaluation_measure/recall.rb +0 -50
  65. data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
  66. data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
  67. data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
  68. data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
  69. data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
  70. data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
  71. data/lib/rumale/kernel_approximation/rbf.rb +0 -102
  72. data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
  73. data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
  74. data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
  75. data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
  76. data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
  77. data/lib/rumale/linear_model/base_sgd.rb +0 -285
  78. data/lib/rumale/linear_model/elastic_net.rb +0 -119
  79. data/lib/rumale/linear_model/lasso.rb +0 -115
  80. data/lib/rumale/linear_model/linear_regression.rb +0 -201
  81. data/lib/rumale/linear_model/logistic_regression.rb +0 -275
  82. data/lib/rumale/linear_model/nnls.rb +0 -137
  83. data/lib/rumale/linear_model/ridge.rb +0 -209
  84. data/lib/rumale/linear_model/svc.rb +0 -213
  85. data/lib/rumale/linear_model/svr.rb +0 -132
  86. data/lib/rumale/manifold/mds.rb +0 -155
  87. data/lib/rumale/manifold/tsne.rb +0 -222
  88. data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
  89. data/lib/rumale/metric_learning/mlkr.rb +0 -161
  90. data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
  91. data/lib/rumale/model_selection/cross_validation.rb +0 -125
  92. data/lib/rumale/model_selection/function.rb +0 -42
  93. data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
  94. data/lib/rumale/model_selection/group_k_fold.rb +0 -93
  95. data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
  96. data/lib/rumale/model_selection/k_fold.rb +0 -81
  97. data/lib/rumale/model_selection/shuffle_split.rb +0 -90
  98. data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
  99. data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
  100. data/lib/rumale/model_selection/time_series_split.rb +0 -91
  101. data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
  102. data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
  103. data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
  104. data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
  105. data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
  106. data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
  107. data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
  108. data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
  109. data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
  110. data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
  111. data/lib/rumale/neural_network/adam.rb +0 -56
  112. data/lib/rumale/neural_network/base_mlp.rb +0 -248
  113. data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
  114. data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
  115. data/lib/rumale/pairwise_metric.rb +0 -152
  116. data/lib/rumale/pipeline/feature_union.rb +0 -69
  117. data/lib/rumale/pipeline/pipeline.rb +0 -175
  118. data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
  119. data/lib/rumale/preprocessing/binarizer.rb +0 -60
  120. data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
  121. data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
  122. data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
  123. data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
  124. data/lib/rumale/preprocessing/label_encoder.rb +0 -79
  125. data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
  126. data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
  127. data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
  128. data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
  129. data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
  130. data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
  131. data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
  132. data/lib/rumale/probabilistic_output.rb +0 -114
  133. data/lib/rumale/tree/base_decision_tree.rb +0 -150
  134. data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
  135. data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
  136. data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
  137. data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
  138. data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
  139. data/lib/rumale/tree/node.rb +0 -39
  140. data/lib/rumale/utils.rb +0 -42
  141. data/lib/rumale/validation.rb +0 -128
  142. data/lib/rumale/values.rb +0 -13
data/CHANGELOG.md DELETED
@@ -1,643 +0,0 @@
1
- # 0.23.3
2
- - Fix build failure with Xcode 14 and Ruby 3.1.x.
3
-
4
- # 0.23.2
5
- Rumale project will be rebooted on version 0.24.0.
6
- This version is probably the last release of the series starting with version 0.8.0.
7
-
8
- - Refactor some codes and configs.
9
- - Deprecate VPTree class.
10
-
11
- # 0.23.1
12
- - Fix all estimators to return inference results in a contiguous narray.
13
- - Fix to use until statement instead of recursive call on apply methods of tree estimators.
14
- - Rename native extension files.
15
- - Introduce clang-format for native extension codes.
16
-
17
- # 0.23.0
18
- ## Breaking change
19
- - Change automalically selected solver from sgd to lbfgs in
20
- [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html) and
21
- [Ridge](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html).
22
- - When given 'auto' to solver parameter, these estimator select the 'svd' solver if Numo::Linalg is loaded.
23
- Otherwise, they select the 'lbfgs' solver.
24
-
25
- # 0.22.5
26
- - Add transformer class for calculating kernel matrix.
27
- - [KernelCalculator](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/KernelCalculator.html)
28
- - Add classifier class based on Ridge regression.
29
- - [KernelRidgeClassifier](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelRidgeClassifier.html)
30
- - Add supported kernel functions to [Nystroem](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation/Nystroem.html).
31
- - Add parameter for specifying the number of features to [load_libsvm_file](https://yoshoku.github.io/rumale/doc/Rumale/Dataset.html#load_libsvm_file-class_method).
32
-
33
- # 0.22.4
34
- - Add classifier and regressor classes for voting ensemble method.
35
- - [VotingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingClassifier.html)
36
- - [VotingRegressor](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingRegressor.html)
37
- - Refactor some codes.
38
- - Fix some typos on API documentation.
39
-
40
- # 0.22.3
41
- - Add regressor class for non-negative least square method.
42
- - [NNLS](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/NNLS.html)
43
- - Add lbfgs solver to [Ridge](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html) and [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html).
44
- - In version 0.23.0, these classes will be changed to attempt to optimize with 'svd' or 'lbfgs' solver if 'auto' is given to
45
- the solver parameter. If you use 'sgd' solver, you need specify it explicitly.
46
- - Add GC guard to native extension codes.
47
- - Update API documentation.
48
-
49
- # 0.22.2
50
- - Add classifier and regressor classes for stacking method.
51
- - [StackingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/StackingClassifier.html)
52
- - [StackingRegressor](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/StackingRegressor.html)
53
- - Refactor some codes with Rubocop.
54
-
55
- # 0.22.1
56
- - Add transfomer class for [MLKR](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/MLKR.html), that implements Metric Learning for Kernel Regression.
57
- - Refactor NeighbourhoodComponentAnalysis.
58
- - Update API documentation.
59
-
60
- # 0.22.0
61
- ## Breaking change
62
- - Add lbfgsb.rb gem to runtime dependencies. Rumale uses lbfgsb gem for optimization.
63
- This eliminates the need to require the mopti gem when using [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
64
- - Add lbfgs solver to [LogisticRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LogisticRegression.html) and make it the default solver.
65
-
66
- # 0.21.0
67
- ## Breaking change
68
- - Change the default value of max_iter argument on LinearModel estimators to 1000.
69
-
70
- # 0.20.3
71
- - Fix to use automatic solver of PCA in NeighbourhoodComponentAnalysis.
72
- - Refactor some codes with Rubocop.
73
- - Update README.
74
-
75
- # 0.20.2
76
- - Add cross-validator class for time-series data.
77
- - [TimeSeriesSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/TimeSeriesSplit.html)
78
-
79
- # 0.20.1
80
- - Add cross-validator classes that split data according group labels.
81
- - [GroupKFold](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GroupKFold.html)
82
- - [GroupShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GroupShuffleSplit.html)
83
- - Fix fraction treating of the number of samples on shuffle split cross-validator classes.
84
- - [ShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/ShuffleSplit.html)
85
- - [StratifiedShuffleSplit](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/StratifiedShuffleSplit.html)
86
- - Refactor some codes with Rubocop.
87
-
88
- # 0.20.0
89
- ## Breaking changes
90
- - Delete deprecated estimators such as PolynomialModel, Optimizer, and BaseLinearModel.
91
-
92
- # 0.19.3
93
- - Add preprocessing class for [Binarizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/Binarizer.html)
94
- - Add preprocessing class for [MaxNormalizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/MaxNormalizer.html)
95
- - Refactor some codes with Rubocop.
96
-
97
- # 0.19.2
98
- - Fix L2Normalizer to avoid zero divide.
99
- - Add preprocssing class for [L1Normalizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/L1Normalizer.html).
100
- - Add transformer class for [TfidfTransformer](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/TfidfTransformer.html).
101
-
102
- # 0.19.1
103
- - Add cluster analysis class for [mini-batch K-Means](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/MiniBatchKMeans.html).
104
- - Fix some typos.
105
-
106
- # 0.19.0
107
- ## Breaking changes
108
- - Change mmh3 and mopti gem to non-runtime dependent library.
109
- - The mmh3 gem is used in [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html).
110
- You only need to require mmh3 gem when using FeatureHasher.
111
- ```ruby
112
- require 'mmh3'
113
- require 'rumale'
114
-
115
- encoder = Rumale::FeatureExtraction::FeatureHasher.new
116
- ```
117
- - The mopti gem is used in [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
118
- You only need to require mopti gem when using NeighbourhoodComponentAnalysis.
119
- ```ruby
120
- require 'mopti'
121
- require 'rumale'
122
-
123
- transformer = Rumale::MetricLearning::NeighbourhoodComponentAnalysis.new
124
- ```
125
- - Change the default value of solver parameter on [PCA](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/PCA.html) to 'auto'.
126
- If Numo::Linalg is loaded, 'evd' is selected for the solver, otherwise 'fpt' is selected.
127
- - Deprecate [PolynomialModel](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel.html), [Optimizer](https://yoshoku.github.io/rumale/doc/Rumale/Optimizer.html), and the estimators contained in them. They will be deleted in version 0.20.0.
128
- - Many machine learning libraries do not contain factorization machine algorithms, they are provided by another compatible library.
129
- In addition, there are no plans to implement estimators in PolynomialModel.
130
- Thus, the author decided to deprecate PolynomialModel.
131
- - Currently, the Optimizer classes are only used by PolynomialModel estimators.
132
- Therefore, they have been deprecated together with PolynomialModel.
133
-
134
- # 0.18.7
135
- - Fix to convert target_name to string array in [classification_report method](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#classification_report-class_method).
136
- - Refactor some codes with Rubocop.
137
-
138
- # 0.18.6
139
- - Fix some configuration files.
140
- - Update API documentation.
141
-
142
- # 0.18.5
143
- - Add functions for calculation of cosine similarity and distance to [Rumale::PairwiseMetric](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html).
144
- - Refactor some codes with Rubocop.
145
-
146
- # 0.18.4
147
- - Add transformer class for [KernelFDA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelFDA.html).
148
- - Refactor [KernelPCA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelPCA.html).
149
- - Fix API documentation.
150
-
151
- # 0.18.3
152
- - Fix API documentation on [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html)
153
- - Refector [rbf_kernel](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html#rbf_kernel-class_method) method.
154
- - Delete unneeded marshal dump and load methods. The deletion work is complete.
155
- - [Tree](https://yoshoku.github.io/rumale/doc/Rumale/Tree.html),
156
- [Ensemble](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble.html),
157
- [Optimizer](https://yoshoku.github.io/rumale/doc/Rumale/Optimizer.html),
158
- [OneVsRestClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Multiclass/OneVsRestClassifier.html),
159
- [GridSearchCV](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GridSearchCV.html).
160
-
161
- # 0.18.2
162
- - Change file composition of naive bayes classifiers.
163
- - Add classifier class for [ComplementNaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes/ComplementNB.html).
164
- - Add classifier class for [NegationNaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes/NegationNB.html).
165
- - Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#confusion_matrix-class_method) for calculating confusion matrix.
166
- - Delete unneeded marshal dump and load methods.
167
- - [Clustering](https://yoshoku.github.io/rumale/doc/Rumale/Clustering.html),
168
- [KernelApproximation](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation.html),
169
- [KernelMachine](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine.html),
170
- [NearestNeighbors](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors.html),
171
- [Preprocessing](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html).
172
-
173
- # 0.18.1
174
- - Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure.html#classification_report-class_method) for generating summary of classification performance.
175
- - Delete marshal dump and load methods for documentation.
176
- The marshal methods are written in estimator classes for indicating on API documentation that the learned model can be saved with Marshal.
177
- Even without these methods, Marshal can save the learned model, so they are deleted sequentially.
178
- - [Manifold](https://yoshoku.github.io/rumale/doc/Rumale/Manifold.html),
179
- [NaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes.html),
180
- [PolynomialModel](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel.html),
181
- [Decomposition](https://yoshoku.github.io/doc/Rumale/Decomposition.html).
182
-
183
- # 0.18.0
184
- - Add transformer class for [FisherDiscriminantAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/FisherDiscriminantAnalysis.html).
185
- - Add transformer class for [NeighbourhoodComponentAnalysis](https://yoshoku.github.io/rumale/doc/Rumale/MetricLearning/NeighbourhoodComponentAnalysis.html).
186
- - Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection.html#train_test_split-class_method) for hold-out validation.
187
-
188
- # 0.17.3
189
- - Add pipeline class for [FeatureUnion](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline/FeatureUnion.html).
190
- - Fix to use mmh3 gem for generating hash value on [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html).
191
-
192
- # 0.17.2
193
- - Add transformer class for kernel approximation with [Nystroem](https://yoshoku.github.io/rumale/doc/Rumale/KernelApproximation/Nystroem.html) method.
194
- - Delete array validation on [Pipeline](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline/Pipeline.html) class considering that array of hash is given to HashVectorizer.
195
-
196
- # 0.17.1
197
- - Add transformer class for [PolynomialFeatures](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/PolynomialFeatures.html)
198
- - Add verbose and tol parameter to [FactorizationMachineClassifier](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineClassifier.html)
199
- and [FactorizationMachineRegressor](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineRegressor.html)
200
- - Fix bug that factor elements of Factorization Machines estimators are not learned caused by initializing factors to zero.
201
-
202
- # 0.17.0
203
- ## Breaking changes
204
- - Fix all linear model estimators to use the new abstract class ([BaseSGD](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/BaseSGD.html)) introduced in version 0.16.1.
205
- The major differences from the old abstract class are that
206
- the optimizer of LinearModel estimators is fixed to mini-batch SGD with momentum term,
207
- the max_iter parameter indicates the number of epochs instead of the maximum number of iterations,
208
- the fit_bias parameter is true by default, and elastic-net style regularization can be used.
209
- Note that there are additions and changes to hyperparameters.
210
- Existing trained linear models may need to re-train the model and adjust the hyperparameters.
211
- - [LogisticRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LogisticRegression.html)
212
- - [SVC](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVC.html)
213
- - [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html)
214
- - [Rdige](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html)
215
- - [Lasso](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Lasso.html)
216
- - [SVR](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVR.html)
217
- - Change the default value of solver parameter on LinearRegression and Ridge to 'auto'.
218
- If Numo::Linalg is loaded, 'svd' is selected for the solver, otherwise 'sgd' is selected.
219
- - The meaning of the `max_iter` parameter of the factorization machine estimators
220
- has been changed from the maximum number of iterations to the number of epochs.
221
- - [FactorizationMachineClassifier](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineClassifier.html)
222
- - [FactorizationMachineRegressor](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineRegressor.html)
223
-
224
- # 0.16.1
225
- - Add regressor class for [ElasticNet](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/ElasticNet.html).
226
- - Add new linear model abstract class.
227
- - In version 0.17.0, all LinearModel estimators will be changed to use this new abstract class.
228
- The major differences from the existing abstract class are that
229
- the optimizer of LinearModel estimators is fixed to mini-batch SGD with momentum term,
230
- the max_iter parameter indicates the number of epochs instead of the maximum number of iterations,
231
- the fit_bias parameter is true by default, and elastic-net style regularization can be used.
232
-
233
- # 0.16.0
234
- ## Breaking changes
235
- - The meaning of the `max_iter` parameter of the multi-layer perceptron estimators
236
- has been changed from the maximum number of iterations to the number of epochs.
237
- The number of epochs is how many times the whole data is given to the training process.
238
- As a future plan, similar changes will be applied to other estimators used stochastic gradient descent such as SVC and Lasso.
239
- - [MLPClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPClassifier.html)
240
- - [MLPRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPRegressor.html)
241
-
242
- # 0.15.0
243
- - Add feature extractor classes:
244
- - [HashVectorizer](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/HashVectorizer.html)
245
- - [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html)
246
-
247
- # 0.14.5
248
- - Fix to suppress deprecation warning about keyword argument in Ruby 2.7.
249
-
250
- # 0.14.4
251
- - Add metric parameter that specifies distance metric to
252
- [KNeighborsClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsClassifier.html) and
253
- [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html).
254
- - Add algorithm parameter that specifies nearest neighbor search algorithm to
255
- [KNeighborsClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsClassifier.html) and
256
- [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html).
257
- - Add nearest neighbor search class with [vantage point tree](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/VPTree.html).
258
-
259
- # 0.14.3
260
- - Fix documents of GradientBoosting, RandomForest, and ExtraTrees.
261
- - Refactor gaussian mixture clustering with Rubocop.
262
- - Refactor specs.
263
-
264
- # 0.14.2
265
- - Refactor extension codes of decision tree estimators.
266
- - Refactor specs.
267
-
268
- # 0.14.1
269
- - Fix bug where MDS optimization is not performed when tol paremeter is given.
270
- - Refactor specs.
271
-
272
- # 0.14.0
273
- - Add classifier and regressor class with multi-layer perceptron.
274
- - [MLPClassifier](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPClassifier.html)
275
- - [MLPRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NeuralNetwork/MLPRegressor.html)
276
- - Refactor specs.
277
-
278
- ## Breaking changes
279
- - Change predict method of SVC, LogisticRegression, and FactorizationMachineClassifier classes to return the original label instead of -1 or 1 labels when binary classification problem.
280
- - Fix hyperparameter validation to check if the type of given value is Numeric type.
281
- - Fix array validation for samples, labels, and target values to accept Ruby Array.
282
-
283
- ```ruby
284
- require 'rumale'
285
-
286
- samples = [[-1, 1], [1, 1], [1, -1], [-1, -1]]
287
- labels = [0, 1, 1, 0]
288
-
289
- svc = Rumale::LinearModel::SVC.new(reg_param: 1, batch_size: 1, random_seed: 1)
290
- svc.fit(samples, labels)
291
- svc.predict([[-1, 0], [1, 0]])
292
- # => Numo::Int32#shape=[2]
293
- # [0, 1]
294
- ```
295
-
296
- # 0.13.8
297
- - Add [module function](https://yoshoku.github.io/rumale/doc/Rumale/Dataset.html#make_blobs-class_method) for generating artificial dataset with gaussian blobs.
298
- - Add documents about Rumale::SVM.
299
- - Refactor specs.
300
-
301
- # 0.13.7
302
- - Add some evaluator classes for clustering.
303
- - [SilhouetteScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/SilhouetteScore.html)
304
- - [CalinskiHarabaszScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/CalinskiHarabaszScore.html)
305
- - [DaviesBouldinScore](https://yoshoku.github.io/rumale/doc/Rumale/EvaluationMeasure/DaviesBouldinScore.html)
306
-
307
- # 0.13.6
308
- - Add transformer class for [FastICA](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/FastICA.html).
309
- - Fix a typo on README ([#13](https://github.com/yoshoku/rumale/pull/13)).
310
-
311
- # 0.13.5
312
- - Add transformer class for [Factor Analysis](https://yoshoku.github.io/rumale/doc/Rumale/Decomposition/FactorAnalysis.html).
313
- - Add covariance_type parameter to [Rumale::Clustering::GaussianMixture](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/GaussianMixture.html).
314
-
315
- # 0.13.4
316
- - Add cluster analysis class for [HDBSCAN](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/HDBSCAN.html).
317
- - Add cluster analysis class for [spectral clustering](https://yoshoku.github.io/rumale/doc/Rumale/Clustering/SpectralClustering.html).
318
- - Refactor power iteration clustering.
319
- - Several documentation improvements.
320
-
321
- # 0.13.3
322
- - Add transformer class for [Kernel PCA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelPCA.html).
323
- - Add regressor class for [Kernel Ridge](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelRidge.html).
324
-
325
- # 0.13.2
326
- - Add preprocessing class for label binarization.
327
- - Fix to use LabelBinarizer instead of OneHotEncoder.
328
- - Fix bug that OneHotEncoder leaves elements related to values that do not occur in training data.
329
-
330
- # 0.13.1
331
- - Add class for Shared Neareset Neighbor clustering.
332
- - Add function for calculation of manhattan distance to Rumale::PairwiseMetric.
333
- - Add metric parameter that specifies distance metric to Rumale::Clustering::DBSCAN.
334
- - Add the solver parameter that specifies the optimization algorithm to Rumale::LinearModel::LinearRegression.
335
- - Add the solver parameter that specifies the optimization algorithm to Rumale::LinearModel::Ridge.
336
- - Fix bug that the ndim of NArray of 1-dimensional principal components is not 1.
337
-
338
- # 0.13.0
339
- - Introduce [Numo::Linalg](https://github.com/ruby-numo/numo-linalg) to use linear algebra algorithms on the optimization.
340
- - Add the solver parameter that specifies the optimization algorithm to Rumale::Decomposition::PCA.
341
-
342
- ```ruby
343
- require 'rumale'
344
-
345
- # Loading Numo::Linalg enables features based on linear algebra algorithms.
346
- require 'numo/linalg/autoloader'
347
-
348
- decomposer = Rumale::Decomposition::PCA.new(n_components: 2, solver: 'evd')
349
- low_dimensional_samples = decomposer.fit_transform(samples)
350
- ```
351
-
352
- # 0.12.9
353
- - Add class for K-Medoids clustering.
354
- - Fix extension codes of decision tree regressor for using Numo::NArray.
355
-
356
- # 0.12.8
357
- - Fix bug that fails to build and install on Windows again. Fix extconf to add Numo::NArray libraries to $lib.
358
-
359
- # 0.12.7
360
- - Fix bug that fails to build and install on Windows. Add search for Numo::NArray static library path to extconf.
361
-
362
- # 0.12.6
363
- - Fix extension codes of decision tree classifier and gradient tree regressor for using Numo::NArray.
364
-
365
- # 0.12.5
366
- - Fix random number generator initialization on gradient boosting estimators
367
- to obtain the same result with and without parallel option.
368
-
369
- # 0.12.4
370
- - Add class for multidimensional scaling.
371
- - Fix parameter description on artificial dataset generation method.
372
-
373
- # 0.12.3
374
- - Add class for Power Iteration clustering.
375
- - Add classes for artificial dataset generation.
376
-
377
- # 0.12.2
378
- - Add class for cluster analysis with Gaussian Mixture Model.
379
- - Add encoder class for categorical features.
380
-
381
- # 0.12.1
382
- - Refactor kernel support vector classifier.
383
- - Refactor random sampling on tree estimators.
384
-
385
- # 0.12.0
386
- ## Breaking changes
387
- - For reproductivity, Rumale changes to not repeatedly use the same random number generator in the same estimator.
388
- In the training phase, estimators use a copy of the random number generator created in the initialize method.
389
- Even with the same algorithm and the same data, the order of random number generation
390
- may make slight differences in learning results.
391
- By this change, even if the fit method is executed multiple times,
392
- the same learning result can be obtained if the same data is given.
393
-
394
- ```ruby
395
- svc = Rumale::LinearModel::SVC.new(random_seed: 0)
396
- svc.fit(x, y)
397
- a = svc.weight_vec
398
- svc.fit(x, y)
399
- b = svc.weight_vec
400
- err = ((a - b)**2).mean
401
-
402
- # In version 0.11.0 or earlier, false may be output,
403
- # but from this version, true is always output.
404
- puts(err < 1e-4)
405
- ```
406
-
407
- # 0.11.0
408
- - Introduce [Parallel gem](https://github.com/grosser/parallel) to improve execution speed for one-vs-the-rest and bagging methods.
409
- - Add the n_jobs parameter that specifies the number of jobs for parallel processing in some estimators belong to the Rumale::LinearModel, Rumale::PolynomialModel, and Rumale::Ensemble.
410
- - The n_jobs parameter is valid only when parallel gem is loaded.
411
-
412
- ```ruby
413
- require 'rumale'
414
- require 'parallel'
415
-
416
- svc = Rumale::LinearModel::SVC.new(n_jobs: -1)
417
- ```
418
-
419
- # 0.10.0
420
- - Add class for t-distributed Stochastic Neighborhood Embedding.
421
- - Fix bug of zero division on min-max scaling class.
422
-
423
- # 0.9.2
424
- - Add class for Gradient tree boosting classifier.
425
- - Add class for Gradient tree boosting regressor.
426
- - Add class for discretizing feature values.
427
- - Refactor extra-trees estimators.
428
- - Refactor decision tree base class.
429
- - Fix some typos on document ([#6](https://github.com/yoshoku/rumale/pull/6)).
430
-
431
- # 0.9.1
432
- - Add class for Extra-Trees classifier.
433
- - Add class for Extra-Trees regressor.
434
- - Refactor extension modules of decision tree estimators for improving performance.
435
-
436
- # 0.9.0
437
- ## Breaking changes
438
- - Decide to introduce Ruby extensions for improving performance.
439
- - Fix to find split point on decision tree estimators using extension modules.
440
-
441
- # 0.8.4
442
- - Remove unused parameter on Nadam.
443
- - Fix condition to stop growing tree about decision tree.
444
-
445
- # 0.8.3
446
- - Add optimizer class for AdaGrad.
447
- - Add evaluator class for ROC AUC.
448
- - Add class for scaling with maximum absolute value.
449
-
450
- # 0.8.2
451
- - Add class for Adam optimizer.
452
- - Add data splitter classes for random permutation cross validation.
453
- - Add accessor method for number of splits to K-fold splitter classes.
454
- - Add execution result of example script on README ([#3](https://github.com/yoshoku/rumale/pull/3)).
455
-
456
- # 0.8.1
457
- - Add some evaluator classes.
458
- - MeanSquaredLogError
459
- - MedianAbsoluteError
460
- - ExplainedVarianceScore
461
- - AdjustedRandScore
462
- - MutualInformation
463
- - Refactor normalized mutual infomation evaluator.
464
- - Fix typo on document ([#2](https://github.com/yoshoku/rumale/pull/2)).
465
-
466
- # 0.8.0
467
- ## Breaking changes
468
- - Rename SVMKit to Rumale.
469
- - Rename SGDLienareEstimator class to BaseLienarModel class.
470
- - Add data type option to load_libsvm_file method. By default, the method represents the feature with Numo::DFloat.
471
-
472
- ## Refactoring
473
- - Refactor factorization machine estimators.
474
- - Refactor decision tree estimators.
475
-
476
- # 0.7.3
477
- - Add class for grid search performing hyperparameter optimization.
478
- - Add argument validations to Pipeline.
479
-
480
- # 0.7.2
481
- - Add class for Pipeline that constructs chain of transformers and estimators.
482
- - Fix some typos on document ([#1](https://github.com/yoshoku/SVMKit/pull/1)).
483
-
484
- # 0.7.1
485
- - Fix to use CSV class in parsing libsvm format file.
486
- - Refactor ensemble estimators.
487
-
488
- # 0.7.0
489
- - Add class for AdaBoost classifier.
490
- - Add class for AdaBoost regressor.
491
-
492
- # 0.6.3
493
- - Fix bug on setting random seed and max_features parameter of Random Forest estimators.
494
-
495
- # 0.6.2
496
- - Refactor decision tree classes for improving performance.
497
-
498
- # 0.6.1
499
- - Add abstract class for linear estimator with stochastic gradient descent.
500
- - Refactor linear estimators to use linear esitmator abstract class.
501
- - Refactor decision tree classes to avoid unneeded type conversion.
502
-
503
- # 0.6.0
504
- - Add class for Principal Component Analysis.
505
- - Add class for Non-negative Matrix Factorization.
506
-
507
- # 0.5.2
508
- - Add class for DBSCAN clustering.
509
-
510
- # 0.5.1
511
- - Fix bug on class probability calculation of DecisionTreeClassifier.
512
-
513
- # 0.5.0
514
- - Add class for K-Means clustering.
515
- - Add class for evaluating purity.
516
- - Add class for evaluating normalized mutual information.
517
-
518
- # 0.4.1
519
- - Add class for linear regressor.
520
- - Add class for SGD optimizer.
521
- - Add class for RMSProp optimizer.
522
- - Add class for YellowFin optimizer.
523
- - Fix to be able to select optimizer on estimators of LineaModel and PolynomialModel.
524
-
525
- # 0.4.0
526
- ## Breaking changes
527
-
528
- SVMKit introduces optimizer algorithm that calculates learning rates adaptively
529
- on each iteration of stochastic gradient descent (SGD).
530
- While Pegasos SGD runs fast, it sometimes fails to optimize complicated models
531
- like Factorization Machine.
532
- To solve this problem, in version 0.3.3, SVMKit introduced optimization with RMSProp on
533
- FactorizationMachineRegressor, Ridge and Lasso.
534
- This attempt realized stable optimization of those estimators.
535
- Following the success of the attempt, author decided to use modern optimizer algorithms
536
- with all SGD optimizations in SVMKit.
537
- Through some preliminary experiments, author implemented Nadam as the default optimizer.
538
- SVMKit plans to add other optimizer algorithms sequentially, so that users can select them.
539
-
540
- - Fix to use Nadam for optimization on SVC, SVR, LogisticRegression, Ridge, Lasso, and Factorization Machine estimators.
541
- - Combine reg_param_weight and reg_param_bias parameters on Factorization Machine estimators into the unified parameter named reg_param_linear.
542
- - Remove init_std paramter on Factorization Machine estimators.
543
- - Remove learning_rate, decay, and momentum parameters on Ridge, Lasso, and FactorizationMachineRegressor.
544
- - Remove normalize parameter on SVC, SVR, and LogisticRegression.
545
-
546
- # 0.3.3
547
- - Add class for Ridge regressor.
548
- - Add class for Lasso regressor.
549
- - Fix bug on gradient calculation of FactorizationMachineRegressor.
550
- - Fix some documents.
551
-
552
- # 0.3.2
553
- - Add class for Factorization Machine regressor.
554
- - Add class for Decision Tree regressor.
555
- - Add class for Random Forest regressor.
556
- - Fix to support loading and dumping libsvm file with multi-target variables.
557
- - Fix to require DecisionTreeClassifier on RandomForestClassifier.
558
- - Fix some mistakes on document.
559
-
560
- # 0.3.1
561
- - Fix bug on decision function calculation of FactorizationMachineClassifier.
562
- - Fix bug on weight updating process of KernelSVC.
563
-
564
- # 0.3.0
565
- - Add class for Support Vector Regression.
566
- - Add class for K-Nearest Neighbor Regression.
567
- - Add class for evaluating coefficient of determination.
568
- - Add class for evaluating mean squared error.
569
- - Add class for evaluating mean absolute error.
570
- - Fix to use min method instead of sort and first methods.
571
- - Fix cross validation class to be able to use for regression problem.
572
- - Fix some typos on document.
573
- - Rename spec filename for Factorization Machine classifier.
574
-
575
- # 0.2.9
576
- - Add predict_proba method to SVC and KernelSVC.
577
- - Add class for evaluating logarithmic loss.
578
- - Add classes for Label- and One-Hot- encoding.
579
- - Add some validator.
580
- - Fix bug on training data score calculation of cross validation.
581
- - Fix fit method of SVC for performance.
582
- - Fix criterion calculation on Decision Tree for performance.
583
- - Fix data structure of Decision Tree for performance.
584
-
585
- # 0.2.8
586
- - Fix bug on gradient calculation of Logistic Regression.
587
- - Fix to change accessor of params of estimators to read only.
588
- - Add parameter validation.
589
-
590
- # 0.2.7
591
- - Fix to support multiclass classifiction into LinearSVC, LogisticRegression, KernelSVC, and FactorizationMachineClassifier
592
-
593
- # 0.2.6
594
- - Add class for Decision Tree classifier.
595
- - Add class for Random Forest classifier.
596
- - Fix to use frozen string literal.
597
- - Refactor marshal dump method on some classes.
598
- - Introduce Coveralls to confirm test coverage.
599
-
600
- # 0.2.5
601
- - Add classes for Naive Bayes classifier.
602
- - Fix decision function method on Logistic Regression class.
603
- - Fix method visibility on RBF kernel approximation class.
604
-
605
- # 0.2.4
606
- - Add class for Factorization Machine classifier.
607
- - Add classes for evaluation measures.
608
- - Fix the method for prediction of class probability in Logistic Regression.
609
-
610
- # 0.2.3
611
- - Add class for cross validation.
612
- - Add specs for base modules.
613
- - Fix validation of the number of splits when a negative label is given.
614
-
615
- # 0.2.2
616
- - Add data splitter classes for K-fold cross validation.
617
-
618
- # 0.2.1
619
- - Add class for K-nearest neighbors classifier.
620
-
621
- # 0.2.0
622
- - Migrated the linear algebra library to Numo::NArray.
623
- - Add module for loading and saving libsvm format file.
624
-
625
- # 0.1.3
626
- - Add class for Kernel Support Vector Machine with Pegasos algorithm.
627
- - Add module for calculating pairwise kernel fuctions and euclidean distances.
628
-
629
- # 0.1.2
630
- - Add the function learning a model with bias term to the PegasosSVC and LogisticRegression classes.
631
- - Rewrite the document with yard notation.
632
-
633
- # 0.1.1
634
- - Add class for Logistic Regression with SGD optimization.
635
- - Fix some mistakes on the document.
636
-
637
- # 0.1.0
638
- - Add basic classes.
639
- - Add an utility module.
640
- - Add class for RBF kernel approximation.
641
- - Add class for Support Vector Machine with Pegasos alogrithm.
642
- - Add class that performs mutlclass classification with one-vs.-rest strategy.
643
- - Add classes for preprocessing such as min-max scaling, standardization, and L2 normalization.