rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
data/lib/rumale/manifold/mds.rb
DELETED
@@ -1,155 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/transformer'
|
5
|
-
require 'rumale/utils'
|
6
|
-
require 'rumale/pairwise_metric'
|
7
|
-
require 'rumale/decomposition/pca'
|
8
|
-
|
9
|
-
module Rumale
|
10
|
-
module Manifold
|
11
|
-
# MDS is a class that implements Metric Multidimensional Scaling (MDS)
|
12
|
-
# with Scaling by MAjorizing a COmplicated Function (SMACOF) algorithm.
|
13
|
-
#
|
14
|
-
# @example
|
15
|
-
# mds = Rumale::Manifold::MDS.new(init: 'pca', max_iter: 500, random_seed: 1)
|
16
|
-
# representations = mds.fit_transform(samples)
|
17
|
-
#
|
18
|
-
# *Reference*
|
19
|
-
# - Groenen, P J. F. and van de Velden, M., "Multidimensional Scaling by Majorization: A Review," J. of Statistical Software, Vol. 73 (8), 2016.
|
20
|
-
class MDS
|
21
|
-
include Base::BaseEstimator
|
22
|
-
include Base::Transformer
|
23
|
-
|
24
|
-
# Return the data in representation space.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components])
|
26
|
-
attr_reader :embedding
|
27
|
-
|
28
|
-
# Return the stress function value after optimization.
|
29
|
-
# @return [Float]
|
30
|
-
attr_reader :stress
|
31
|
-
|
32
|
-
# Return the number of iterations run for optimization
|
33
|
-
# @return [Integer]
|
34
|
-
attr_reader :n_iter
|
35
|
-
|
36
|
-
# Return the random generator.
|
37
|
-
# @return [Random]
|
38
|
-
attr_reader :rng
|
39
|
-
|
40
|
-
# Create a new transformer with MDS.
|
41
|
-
#
|
42
|
-
# @param n_components [Integer] The number of dimensions on representation space.
|
43
|
-
# @param metric [String] The metric to calculate the distances in original space.
|
44
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance in original space.
|
45
|
-
# If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix.
|
46
|
-
# @param init [String] The init is a method to initialize the representaion space.
|
47
|
-
# If init is 'random', the representaion space is initialized with normal random variables.
|
48
|
-
# If init is 'pca', the result of principal component analysis as the initial value of the representation space.
|
49
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
50
|
-
# @param tol [Float] The tolerance of stress value for terminating optimization.
|
51
|
-
# If tol is nil, it does not use stress value as a criterion for terminating the optimization.
|
52
|
-
# @param verbose [Boolean] The flag indicating whether to output stress value during iteration.
|
53
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
54
|
-
def initialize(n_components: 2, metric: 'euclidean', init: 'random',
|
55
|
-
max_iter: 300, tol: nil, verbose: false, random_seed: nil)
|
56
|
-
check_params_numeric(n_components: n_components, max_iter: max_iter)
|
57
|
-
check_params_string(metric: metric, init: init)
|
58
|
-
check_params_boolean(verbose: verbose)
|
59
|
-
check_params_numeric_or_nil(tol: tol, random_seed: random_seed)
|
60
|
-
check_params_positive(n_components: n_components, max_iter: max_iter)
|
61
|
-
@params = {}
|
62
|
-
@params[:n_components] = n_components
|
63
|
-
@params[:max_iter] = max_iter
|
64
|
-
@params[:tol] = tol
|
65
|
-
@params[:metric] = metric
|
66
|
-
@params[:init] = init
|
67
|
-
@params[:verbose] = verbose
|
68
|
-
@params[:random_seed] = random_seed
|
69
|
-
@params[:random_seed] ||= srand
|
70
|
-
@rng = Random.new(@params[:random_seed])
|
71
|
-
@embedding = nil
|
72
|
-
@stress = nil
|
73
|
-
@n_iter = nil
|
74
|
-
end
|
75
|
-
|
76
|
-
# Fit the model with given training data.
|
77
|
-
#
|
78
|
-
# @overload fit(x) -> MDS
|
79
|
-
#
|
80
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
81
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
82
|
-
# @return [MDS] The learned transformer itself.
|
83
|
-
def fit(x, _not_used = nil)
|
84
|
-
x = check_convert_sample_array(x)
|
85
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
86
|
-
|
87
|
-
# initialize some varibales.
|
88
|
-
n_samples = x.shape[0]
|
89
|
-
hi_distance_mat = @params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.euclidean_distance(x)
|
90
|
-
@embedding = init_embedding(x)
|
91
|
-
lo_distance_mat = Rumale::PairwiseMetric.euclidean_distance(@embedding)
|
92
|
-
@stress = calc_stress(hi_distance_mat, lo_distance_mat)
|
93
|
-
@n_iter = 0
|
94
|
-
# perform optimization.
|
95
|
-
@params[:max_iter].times do |t|
|
96
|
-
# guttman tarnsform.
|
97
|
-
ratio = hi_distance_mat / lo_distance_mat
|
98
|
-
ratio[ratio.diag_indices] = 0.0
|
99
|
-
ratio[lo_distance_mat.eq(0)] = 0.0
|
100
|
-
tmp_mat = -ratio
|
101
|
-
tmp_mat[tmp_mat.diag_indices] += ratio.sum(axis: 1)
|
102
|
-
@embedding = 1.fdiv(n_samples) * tmp_mat.dot(@embedding)
|
103
|
-
lo_distance_mat = Rumale::PairwiseMetric.euclidean_distance(@embedding)
|
104
|
-
# check convergence.
|
105
|
-
new_stress = calc_stress(hi_distance_mat, lo_distance_mat)
|
106
|
-
if terminate?(@stress, new_stress)
|
107
|
-
@stress = new_stress
|
108
|
-
break
|
109
|
-
end
|
110
|
-
# next step.
|
111
|
-
@n_iter = t + 1
|
112
|
-
@stress = new_stress
|
113
|
-
puts "[MDS] stress function after #{@n_iter} iterations: #{@stress}" if @params[:verbose] && (@n_iter % 100).zero?
|
114
|
-
end
|
115
|
-
self
|
116
|
-
end
|
117
|
-
|
118
|
-
# Fit the model with training data, and then transform them with the learned model.
|
119
|
-
#
|
120
|
-
# @overload fit_transform(x) -> Numo::DFloat
|
121
|
-
#
|
122
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
123
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
124
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
125
|
-
def fit_transform(x, _not_used = nil)
|
126
|
-
fit(x)
|
127
|
-
@embedding.dup
|
128
|
-
end
|
129
|
-
|
130
|
-
private
|
131
|
-
|
132
|
-
def init_embedding(x)
|
133
|
-
if @params[:init] == 'pca' && @params[:metric] == 'euclidean'
|
134
|
-
pca = Rumale::Decomposition::PCA.new(n_components: @params[:n_components], random_seed: @params[:random_seed])
|
135
|
-
pca.fit_transform(x)
|
136
|
-
else
|
137
|
-
n_samples = x.shape[0]
|
138
|
-
sub_rng = @rng.dup
|
139
|
-
Rumale::Utils.rand_uniform([n_samples, @params[:n_components]], sub_rng) - 0.5
|
140
|
-
end
|
141
|
-
end
|
142
|
-
|
143
|
-
def terminate?(old_stress, new_stress)
|
144
|
-
return false if @params[:tol].nil?
|
145
|
-
return false if old_stress.nil?
|
146
|
-
|
147
|
-
(old_stress - new_stress).abs <= @params[:tol]
|
148
|
-
end
|
149
|
-
|
150
|
-
def calc_stress(hi_distance_mat, lo_distance_mat)
|
151
|
-
((hi_distance_mat - lo_distance_mat)**2).sum.fdiv(2)
|
152
|
-
end
|
153
|
-
end
|
154
|
-
end
|
155
|
-
end
|
data/lib/rumale/manifold/tsne.rb
DELETED
@@ -1,222 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/transformer'
|
5
|
-
require 'rumale/utils'
|
6
|
-
require 'rumale/pairwise_metric'
|
7
|
-
require 'rumale/decomposition/pca'
|
8
|
-
|
9
|
-
module Rumale
|
10
|
-
# Module for data embedding algorithms.
|
11
|
-
module Manifold
|
12
|
-
# TSNE is a class that implements t-Distributed Stochastic Neighbor Embedding (t-SNE)
|
13
|
-
# with fixed-point optimization algorithm.
|
14
|
-
# Fixed-point algorithm usually converges faster than gradient descent method and
|
15
|
-
# do not need the learning parameters such as the learning rate and momentum.
|
16
|
-
#
|
17
|
-
# @example
|
18
|
-
# tsne = Rumale::Manifold::TSNE.new(perplexity: 40.0, init: 'pca', max_iter: 500, random_seed: 1)
|
19
|
-
# representations = tsne.fit_transform(samples)
|
20
|
-
#
|
21
|
-
# *Reference*
|
22
|
-
# - van der Maaten, L., and Hinton, G., "Visualizing data using t-SNE," J. of Machine Learning Research, vol. 9, pp. 2579--2605, 2008.
|
23
|
-
# - Yang, Z., King, I., Xu, Z., and Oja, E., "Heavy-Tailed Symmetric Stochastic Neighbor Embedding," Proc. NIPS'09, pp. 2169--2177, 2009.
|
24
|
-
class TSNE
|
25
|
-
include Base::BaseEstimator
|
26
|
-
include Base::Transformer
|
27
|
-
|
28
|
-
# Return the data in representation space.
|
29
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components])
|
30
|
-
attr_reader :embedding
|
31
|
-
|
32
|
-
# Return the Kullback-Leibler divergence after optimization.
|
33
|
-
# @return [Float]
|
34
|
-
attr_reader :kl_divergence
|
35
|
-
|
36
|
-
# Return the number of iterations run for optimization
|
37
|
-
# @return [Integer]
|
38
|
-
attr_reader :n_iter
|
39
|
-
|
40
|
-
# Return the random generator.
|
41
|
-
# @return [Random]
|
42
|
-
attr_reader :rng
|
43
|
-
|
44
|
-
# Create a new transformer with t-SNE.
|
45
|
-
#
|
46
|
-
# @param n_components [Integer] The number of dimensions on representation space.
|
47
|
-
# @param perplexity [Float] The effective number of neighbors for each point. Perplexity are typically set from 5 to 50.
|
48
|
-
# @param metric [String] The metric to calculate the distances in original space.
|
49
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance in original space.
|
50
|
-
# If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix.
|
51
|
-
# @param init [String] The init is a method to initialize the representaion space.
|
52
|
-
# If init is 'random', the representaion space is initialized with normal random variables.
|
53
|
-
# If init is 'pca', the result of principal component analysis as the initial value of the representation space.
|
54
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
55
|
-
# @param tol [Float] The tolerance of KL-divergence for terminating optimization.
|
56
|
-
# If tol is nil, it does not use KL divergence as a criterion for terminating the optimization.
|
57
|
-
# @param verbose [Boolean] The flag indicating whether to output KL divergence during iteration.
|
58
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
59
|
-
def initialize(n_components: 2, perplexity: 30.0, metric: 'euclidean', init: 'random',
|
60
|
-
max_iter: 500, tol: nil, verbose: false, random_seed: nil)
|
61
|
-
check_params_numeric(n_components: n_components, max_iter: max_iter, perplexity: perplexity)
|
62
|
-
check_params_string(metric: metric, init: init)
|
63
|
-
check_params_boolean(verbose: verbose)
|
64
|
-
check_params_numeric_or_nil(tol: tol, random_seed: random_seed)
|
65
|
-
check_params_positive(n_components: n_components, perplexity: perplexity, max_iter: max_iter)
|
66
|
-
@params = {}
|
67
|
-
@params[:n_components] = n_components
|
68
|
-
@params[:perplexity] = perplexity
|
69
|
-
@params[:max_iter] = max_iter
|
70
|
-
@params[:tol] = tol
|
71
|
-
@params[:metric] = metric
|
72
|
-
@params[:init] = init
|
73
|
-
@params[:verbose] = verbose
|
74
|
-
@params[:random_seed] = random_seed
|
75
|
-
@params[:random_seed] ||= srand
|
76
|
-
@rng = Random.new(@params[:random_seed])
|
77
|
-
@embedding = nil
|
78
|
-
@kl_divergence = nil
|
79
|
-
@n_iter = nil
|
80
|
-
end
|
81
|
-
|
82
|
-
# Fit the model with given training data.
|
83
|
-
#
|
84
|
-
# @overload fit(x) -> TSNE
|
85
|
-
#
|
86
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
87
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
88
|
-
# @return [TSNE] The learned transformer itself.
|
89
|
-
def fit(x, _not_used = nil)
|
90
|
-
x = check_convert_sample_array(x)
|
91
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
92
|
-
|
93
|
-
# initialize some varibales.
|
94
|
-
@n_iter = 0
|
95
|
-
distance_mat = @params[:metric] == 'precomputed' ? x**2 : Rumale::PairwiseMetric.squared_error(x)
|
96
|
-
hi_prob_mat = gaussian_distributed_probability_matrix(distance_mat)
|
97
|
-
y = init_embedding(x)
|
98
|
-
lo_prob_mat = t_distributed_probability_matrix(y)
|
99
|
-
# perform fixed-point optimization.
|
100
|
-
one_vec = Numo::DFloat.ones(x.shape[0]).expand_dims(1)
|
101
|
-
@params[:max_iter].times do |t|
|
102
|
-
break if terminate?(hi_prob_mat, lo_prob_mat)
|
103
|
-
|
104
|
-
a = hi_prob_mat * lo_prob_mat
|
105
|
-
b = lo_prob_mat**2
|
106
|
-
y = (b.dot(one_vec) * y + (a - b).dot(y)) / a.dot(one_vec)
|
107
|
-
lo_prob_mat = t_distributed_probability_matrix(y)
|
108
|
-
@n_iter = t + 1
|
109
|
-
if @params[:verbose] && (@n_iter % 100).zero?
|
110
|
-
puts "[t-SNE] KL divergence after #{@n_iter} iterations: #{cost(hi_prob_mat, lo_prob_mat)}"
|
111
|
-
end
|
112
|
-
end
|
113
|
-
# store results.
|
114
|
-
@embedding = y
|
115
|
-
@kl_divergence = cost(hi_prob_mat, lo_prob_mat)
|
116
|
-
self
|
117
|
-
end
|
118
|
-
|
119
|
-
# Fit the model with training data, and then transform them with the learned model.
|
120
|
-
#
|
121
|
-
# @overload fit_transform(x) -> Numo::DFloat
|
122
|
-
#
|
123
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
124
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
125
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
126
|
-
def fit_transform(x, _not_used = nil)
|
127
|
-
fit(x)
|
128
|
-
@embedding.dup
|
129
|
-
end
|
130
|
-
|
131
|
-
private
|
132
|
-
|
133
|
-
def init_embedding(x)
|
134
|
-
if @params[:init] == 'pca' && @params[:metric] == 'euclidean'
|
135
|
-
pca = Rumale::Decomposition::PCA.new(n_components: @params[:n_components], random_seed: @params[:random_seed])
|
136
|
-
pca.fit_transform(x)
|
137
|
-
else
|
138
|
-
n_samples = x.shape[0]
|
139
|
-
sub_rng = @rng.dup
|
140
|
-
Rumale::Utils.rand_normal([n_samples, @params[:n_components]], sub_rng, 0, 0.0001)
|
141
|
-
end
|
142
|
-
end
|
143
|
-
|
144
|
-
def gaussian_distributed_probability_matrix(distance_mat)
|
145
|
-
# initialize some variables.
|
146
|
-
n_samples = distance_mat.shape[0]
|
147
|
-
prob_mat = Numo::DFloat.zeros(n_samples, n_samples)
|
148
|
-
sum_beta = 0.0
|
149
|
-
# calculate conditional probabilities.
|
150
|
-
n_samples.times do |n|
|
151
|
-
beta, probs = optimal_probabilities(n, distance_mat[n, true])
|
152
|
-
prob_mat[n, true] = probs
|
153
|
-
sum_beta += beta
|
154
|
-
puts "[t-SNE] Computed conditional probabilities for sample #{n + 1} / #{n_samples}" if @params[:verbose] && ((n + 1) % 1000).zero?
|
155
|
-
end
|
156
|
-
puts "[t-SNE] Mean sigma: #{Math.sqrt(n_samples.fdiv(sum_beta))}" if @params[:verbose]
|
157
|
-
# symmetrize and normalize probability matrix.
|
158
|
-
prob_mat[prob_mat.diag_indices(0)] = 0.0
|
159
|
-
prob_mat = 0.5 * (prob_mat + prob_mat.transpose)
|
160
|
-
prob_mat / prob_mat.sum
|
161
|
-
end
|
162
|
-
|
163
|
-
def optimal_probabilities(sample_id, distance_vec, max_iter = 100)
|
164
|
-
# initialize some variables.
|
165
|
-
probs = nil
|
166
|
-
beta = 1.0
|
167
|
-
betamin = Float::MIN
|
168
|
-
betamax = Float::MAX
|
169
|
-
init_entropy = Math.log(@params[:perplexity])
|
170
|
-
# calculate optimal beta and conditional probabilities with binary search.
|
171
|
-
max_iter.times do
|
172
|
-
entropy, probs = gaussian_distributed_probability_vector(sample_id, distance_vec, beta)
|
173
|
-
diff_entropy = entropy - init_entropy
|
174
|
-
break if diff_entropy.abs <= 1e-5
|
175
|
-
|
176
|
-
if diff_entropy.positive?
|
177
|
-
betamin = beta
|
178
|
-
if betamax == Float::MAX
|
179
|
-
beta *= 2.0
|
180
|
-
else
|
181
|
-
beta = 0.5 * (beta + betamax)
|
182
|
-
end
|
183
|
-
else
|
184
|
-
betamax = beta
|
185
|
-
if betamin == Float::MIN
|
186
|
-
beta /= 2.0
|
187
|
-
else
|
188
|
-
beta = 0.5 * (beta + betamin)
|
189
|
-
end
|
190
|
-
end
|
191
|
-
end
|
192
|
-
[beta, probs]
|
193
|
-
end
|
194
|
-
|
195
|
-
def gaussian_distributed_probability_vector(n, distance_vec, beta)
|
196
|
-
probs = Numo::NMath.exp(-beta * distance_vec)
|
197
|
-
probs[n] = 0.0
|
198
|
-
sum_probs = probs.sum
|
199
|
-
probs /= sum_probs
|
200
|
-
entropy = Math.log(sum_probs) + beta * (distance_vec * probs).sum
|
201
|
-
[entropy, probs]
|
202
|
-
end
|
203
|
-
|
204
|
-
def t_distributed_probability_matrix(y)
|
205
|
-
distance_mat = Rumale::PairwiseMetric.squared_error(y)
|
206
|
-
prob_mat = 1.0 / (1.0 + distance_mat)
|
207
|
-
prob_mat[prob_mat.diag_indices(0)] = 0.0
|
208
|
-
prob_mat / prob_mat.sum
|
209
|
-
end
|
210
|
-
|
211
|
-
def cost(p, q)
|
212
|
-
(p * Numo::NMath.log(Numo::DFloat.maximum(1e-20, p) / Numo::DFloat.maximum(1e-20, q))).sum
|
213
|
-
end
|
214
|
-
|
215
|
-
def terminate?(p, q)
|
216
|
-
return false if @params[:tol].nil?
|
217
|
-
|
218
|
-
cost(p, q) <= @params[:tol]
|
219
|
-
end
|
220
|
-
end
|
221
|
-
end
|
222
|
-
end
|
@@ -1,113 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/transformer'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# Module for metric learning algorithms.
|
8
|
-
module MetricLearning
|
9
|
-
# FisherDiscriminantAnalysis is a class that implements Fisher Discriminant Analysis.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# transformer = Rumale::MetricLearning::FisherDiscriminantAnalysis.new
|
13
|
-
# transformer.fit(training_samples, traininig_labels)
|
14
|
-
# low_samples = transformer.transform(testing_samples)
|
15
|
-
#
|
16
|
-
# *Reference*
|
17
|
-
# - Fisher, R. A., "The use of multiple measurements in taxonomic problems," Annals of Eugenics, vol. 7, pp. 179--188, 1936.
|
18
|
-
# - Sugiyama, M., "Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction," Proc. ICML'06, pp. 905--912, 2006.
|
19
|
-
class FisherDiscriminantAnalysis
|
20
|
-
include Base::BaseEstimator
|
21
|
-
include Base::Transformer
|
22
|
-
|
23
|
-
# Returns the transform matrix.
|
24
|
-
# @return [Numo::DFloat] (shape: [n_components, n_features])
|
25
|
-
attr_reader :components
|
26
|
-
|
27
|
-
# Returns the mean vector.
|
28
|
-
# @return [Numo::DFloat] (shape: [n_features])
|
29
|
-
attr_reader :mean
|
30
|
-
|
31
|
-
# Returns the class mean vectors.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
33
|
-
attr_reader :class_means
|
34
|
-
|
35
|
-
# Return the class labels.
|
36
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
37
|
-
attr_reader :classes
|
38
|
-
|
39
|
-
# Create a new transformer with FisherDiscriminantAnalysis.
|
40
|
-
#
|
41
|
-
# @param n_components [Integer] The number of components.
|
42
|
-
# If nil is given, the number of components will be set to [n_features, n_classes - 1].min
|
43
|
-
def initialize(n_components: nil)
|
44
|
-
check_params_numeric_or_nil(n_components: n_components)
|
45
|
-
@params = {}
|
46
|
-
@params[:n_components] = n_components
|
47
|
-
end
|
48
|
-
|
49
|
-
# Fit the model with given training data.
|
50
|
-
#
|
51
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
52
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
53
|
-
# @return [FisherDiscriminantAnalysis] The learned classifier itself.
|
54
|
-
def fit(x, y)
|
55
|
-
x = check_convert_sample_array(x)
|
56
|
-
y = check_convert_label_array(y)
|
57
|
-
check_sample_label_size(x, y)
|
58
|
-
raise 'FisherDiscriminatAnalysis#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
59
|
-
|
60
|
-
# initialize some variables.
|
61
|
-
n_features = x.shape[1]
|
62
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
63
|
-
n_classes = @classes.size
|
64
|
-
n_components = if @params[:n_components].nil?
|
65
|
-
[n_features, n_classes - 1].min
|
66
|
-
else
|
67
|
-
[n_features, @params[:n_components]].min
|
68
|
-
end
|
69
|
-
|
70
|
-
# calculate within and between scatter matricies.
|
71
|
-
within_mat = Numo::DFloat.zeros(n_features, n_features)
|
72
|
-
between_mat = Numo::DFloat.zeros(n_features, n_features)
|
73
|
-
@class_means = Numo::DFloat.zeros(n_classes, n_features)
|
74
|
-
@mean = x.mean(0)
|
75
|
-
@classes.each_with_index do |label, i|
|
76
|
-
mask_vec = y.eq(label)
|
77
|
-
sz_class = mask_vec.count
|
78
|
-
class_samples = x[mask_vec, true]
|
79
|
-
class_mean = class_samples.mean(0)
|
80
|
-
within_mat += (class_samples - class_mean).transpose.dot(class_samples - class_mean)
|
81
|
-
between_mat += sz_class * (class_mean - @mean).expand_dims(1) * (class_mean - @mean)
|
82
|
-
@class_means[i, true] = class_mean
|
83
|
-
end
|
84
|
-
|
85
|
-
# calculate components.
|
86
|
-
_, evecs = Numo::Linalg.eigh(between_mat, within_mat, vals_range: (n_features - n_components)...n_features)
|
87
|
-
comps = evecs.reverse(1).transpose.dup
|
88
|
-
@components = n_components == 1 ? comps[0, true].dup : comps.dup
|
89
|
-
self
|
90
|
-
end
|
91
|
-
|
92
|
-
# Fit the model with training data, and then transform them with the learned model.
|
93
|
-
#
|
94
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
95
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
96
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
97
|
-
def fit_transform(x, y)
|
98
|
-
x = check_convert_sample_array(x)
|
99
|
-
y = check_convert_label_array(y)
|
100
|
-
fit(x, y).transform(x)
|
101
|
-
end
|
102
|
-
|
103
|
-
# Transform the given data with the learned model.
|
104
|
-
#
|
105
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
106
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
107
|
-
def transform(x)
|
108
|
-
x = check_convert_sample_array(x)
|
109
|
-
x.dot(@components.transpose)
|
110
|
-
end
|
111
|
-
end
|
112
|
-
end
|
113
|
-
end
|
@@ -1,161 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/transformer'
|
5
|
-
require 'rumale/decomposition/pca'
|
6
|
-
require 'rumale/pairwise_metric'
|
7
|
-
require 'rumale/utils'
|
8
|
-
require 'lbfgsb'
|
9
|
-
|
10
|
-
module Rumale
|
11
|
-
module MetricLearning
|
12
|
-
# MLKR is a class that implements Metric Learning for Kernel Regression.
|
13
|
-
#
|
14
|
-
# @example
|
15
|
-
# transformer = Rumale::MetricLearning::MLKR.new
|
16
|
-
# transformer.fit(training_samples, traininig_target_values)
|
17
|
-
# low_samples = transformer.transform(testing_samples)
|
18
|
-
#
|
19
|
-
# *Reference*
|
20
|
-
# - Weinberger, K. Q. and Tesauro, G., "Metric Learning for Kernel Regression," Proc. AISTATS'07, pp. 612--629, 2007.
|
21
|
-
class MLKR
|
22
|
-
include Base::BaseEstimator
|
23
|
-
include Base::Transformer
|
24
|
-
|
25
|
-
# Returns the metric components.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_components, n_features])
|
27
|
-
attr_reader :components
|
28
|
-
|
29
|
-
# Return the number of iterations run for optimization
|
30
|
-
# @return [Integer]
|
31
|
-
attr_reader :n_iter
|
32
|
-
|
33
|
-
# Return the random generator.
|
34
|
-
# @return [Random]
|
35
|
-
attr_reader :rng
|
36
|
-
|
37
|
-
# Create a new transformer with MLKR.
|
38
|
-
#
|
39
|
-
# @param n_components [Integer] The number of components.
|
40
|
-
# @param init [String] The initialization method for components ('random' or 'pca').
|
41
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
42
|
-
# @param tol [Float] The tolerance of termination criterion.
|
43
|
-
# This value is given as tol / Lbfgsb::DBL_EPSILON to the factr argument of Lbfgsb.minimize method.
|
44
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
45
|
-
# If true is given, 'iterate.dat' file is generated by lbfgsb.rb.
|
46
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
47
|
-
def initialize(n_components: nil, init: 'random', max_iter: 100, tol: 1e-6, verbose: false, random_seed: nil)
|
48
|
-
check_params_numeric_or_nil(n_components: n_components, random_seed: random_seed)
|
49
|
-
check_params_numeric(max_iter: max_iter, tol: tol)
|
50
|
-
check_params_string(init: init)
|
51
|
-
check_params_boolean(verbose: verbose)
|
52
|
-
@params = {}
|
53
|
-
@params[:n_components] = n_components
|
54
|
-
@params[:init] = init
|
55
|
-
@params[:max_iter] = max_iter
|
56
|
-
@params[:tol] = tol
|
57
|
-
@params[:verbose] = verbose
|
58
|
-
@params[:random_seed] = random_seed
|
59
|
-
@params[:random_seed] ||= srand
|
60
|
-
@components = nil
|
61
|
-
@n_iter = nil
|
62
|
-
@rng = Random.new(@params[:random_seed])
|
63
|
-
end
|
64
|
-
|
65
|
-
# Fit the model with given training data.
|
66
|
-
#
|
67
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
68
|
-
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
69
|
-
# @return [MLKR] The learned classifier itself.
|
70
|
-
def fit(x, y)
|
71
|
-
x = check_convert_sample_array(x)
|
72
|
-
y = check_convert_tvalue_array(y)
|
73
|
-
check_sample_tvalue_size(x, y)
|
74
|
-
n_features = x.shape[1]
|
75
|
-
n_components = if @params[:n_components].nil?
|
76
|
-
n_features
|
77
|
-
else
|
78
|
-
[n_features, @params[:n_components]].min
|
79
|
-
end
|
80
|
-
@components, @n_iter = optimize_components(x, y, n_features, n_components)
|
81
|
-
@prototypes = x.dot(@components.transpose)
|
82
|
-
@values = y
|
83
|
-
self
|
84
|
-
end
|
85
|
-
|
86
|
-
# Fit the model with training data, and then transform them with the learned model.
|
87
|
-
#
|
88
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
89
|
-
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
90
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
91
|
-
def fit_transform(x, y)
|
92
|
-
x = check_convert_sample_array(x)
|
93
|
-
y = check_convert_tvalue_array(y)
|
94
|
-
check_sample_tvalue_size(x, y)
|
95
|
-
fit(x, y).transform(x)
|
96
|
-
end
|
97
|
-
|
98
|
-
# Transform the given data with the learned model.
|
99
|
-
#
|
100
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
101
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
102
|
-
def transform(x)
|
103
|
-
x = check_convert_sample_array(x)
|
104
|
-
x.dot(@components.transpose)
|
105
|
-
end
|
106
|
-
|
107
|
-
private
|
108
|
-
|
109
|
-
def init_components(x, n_features, n_components)
|
110
|
-
if @params[:init] == 'pca'
|
111
|
-
pca = Rumale::Decomposition::PCA.new(n_components: n_components)
|
112
|
-
pca.fit(x).components.flatten.dup
|
113
|
-
else
|
114
|
-
Rumale::Utils.rand_normal([n_features, n_components], @rng.dup).flatten.dup
|
115
|
-
end
|
116
|
-
end
|
117
|
-
|
118
|
-
def optimize_components(x, y, n_features, n_components)
|
119
|
-
# initialize components.
|
120
|
-
comp_init = init_components(x, n_features, n_components)
|
121
|
-
# initialize optimization results.
|
122
|
-
res = {}
|
123
|
-
res[:x] = comp_init
|
124
|
-
res[:n_iter] = 0
|
125
|
-
# perform optimization.
|
126
|
-
verbose = @params[:verbose] ? 1 : -1
|
127
|
-
res = Lbfgsb.minimize(
|
128
|
-
fnc: method(:mlkr_fnc), jcb: true, x_init: comp_init, args: [x, y],
|
129
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: verbose
|
130
|
-
)
|
131
|
-
# return the results.
|
132
|
-
n_iter = res[:n_iter]
|
133
|
-
comps = n_components == 1 ? res[:x].dup : res[:x].reshape(n_components, n_features)
|
134
|
-
[comps, n_iter]
|
135
|
-
end
|
136
|
-
|
137
|
-
def mlkr_fnc(w, x, y)
|
138
|
-
# initialize some variables.
|
139
|
-
n_features = x.shape[1]
|
140
|
-
n_components = w.size / n_features
|
141
|
-
# projection.
|
142
|
-
w = w.reshape(n_components, n_features)
|
143
|
-
z = x.dot(w.transpose)
|
144
|
-
# predict values.
|
145
|
-
kernel_mat = Numo::NMath.exp(-Rumale::PairwiseMetric.squared_error(z))
|
146
|
-
kernel_mat[kernel_mat.diag_indices] = 0.0
|
147
|
-
norm = kernel_mat.sum(1)
|
148
|
-
norm[norm.eq(0)] = 1
|
149
|
-
y_pred = kernel_mat.dot(y) / norm
|
150
|
-
# calculate loss.
|
151
|
-
y_diff = y_pred - y
|
152
|
-
loss = (y_diff**2).sum
|
153
|
-
# calculate gradient.
|
154
|
-
weight_mat = y_diff * y_diff.expand_dims(1) * kernel_mat
|
155
|
-
weight_mat = weight_mat.sum(0).diag - weight_mat
|
156
|
-
gradient = 8 * z.transpose.dot(weight_mat).dot(x)
|
157
|
-
[loss, gradient.flatten.dup]
|
158
|
-
end
|
159
|
-
end
|
160
|
-
end
|
161
|
-
end
|