rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,127 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/cluster_analyzer'
|
5
|
-
require 'rumale/pairwise_metric'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module Clustering
|
9
|
-
# PowerIteration is a class that implements power iteration clustering.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# analyzer = Rumale::Clustering::PowerIteration.new(n_clusters: 10, gamma: 8.0, max_iter: 1000)
|
13
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - Lin, F., and Cohen, W W., "Power Iteration Clustering," Proc. ICML'10, pp. 655--662, 2010.
|
17
|
-
class PowerIteration
|
18
|
-
include Base::BaseEstimator
|
19
|
-
include Base::ClusterAnalyzer
|
20
|
-
|
21
|
-
# Return the data in embedded space.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_samples])
|
23
|
-
attr_reader :embedding
|
24
|
-
|
25
|
-
# Return the cluster labels.
|
26
|
-
# @return [Numo::Int32] (shape: [n_samples])
|
27
|
-
attr_reader :labels
|
28
|
-
|
29
|
-
# Return the number of iterations run for optimization
|
30
|
-
# @return [Integer]
|
31
|
-
attr_reader :n_iter
|
32
|
-
|
33
|
-
# Create a new cluster analyzer with power iteration clustering.
|
34
|
-
#
|
35
|
-
# @param n_clusters [Integer] The number of clusters.
|
36
|
-
# @param affinity [String] The representation of affinity matrix ('rbf' or 'precomputed').
|
37
|
-
# @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
|
38
|
-
# If affinity = 'precomputed', this parameter is ignored.
|
39
|
-
# @param init [String] The initialization method for centroids of K-Means clustering ('random' or 'k-means++').
|
40
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
41
|
-
# @param tol [Float] The tolerance of termination criterion.
|
42
|
-
# @param eps [Float] A small value close to zero to avoid zero division error.
|
43
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
-
def initialize(n_clusters: 8, affinity: 'rbf', gamma: nil, init: 'k-means++', max_iter: 1000, tol: 1.0e-8, eps: 1.0e-5, random_seed: nil)
|
45
|
-
check_params_numeric(n_clusters: n_clusters, max_iter: max_iter, tol: tol, eps: eps)
|
46
|
-
check_params_numeric_or_nil(gamma: gamma, random_seed: random_seed)
|
47
|
-
check_params_string(affinity: affinity, init: init)
|
48
|
-
check_params_positive(n_clusters: n_clusters, max_iter: max_iter, tol: tol, eps: eps)
|
49
|
-
@params = {}
|
50
|
-
@params[:n_clusters] = n_clusters
|
51
|
-
@params[:affinity] = affinity
|
52
|
-
@params[:gamma] = gamma
|
53
|
-
@params[:init] = init == 'random' ? 'random' : 'k-means++'
|
54
|
-
@params[:max_iter] = max_iter
|
55
|
-
@params[:tol] = tol
|
56
|
-
@params[:eps] = eps
|
57
|
-
@params[:random_seed] = random_seed
|
58
|
-
@params[:random_seed] ||= srand
|
59
|
-
@embedding = nil
|
60
|
-
@labels = nil
|
61
|
-
@n_iter = nil
|
62
|
-
end
|
63
|
-
|
64
|
-
# Analysis clusters with given training data.
|
65
|
-
#
|
66
|
-
# @overload fit(x) -> PowerIteration
|
67
|
-
#
|
68
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
69
|
-
# If the metric is 'precomputed', x must be a square affinity matrix (shape: [n_samples, n_samples]).
|
70
|
-
# @return [PowerIteration] The learned cluster analyzer itself.
|
71
|
-
def fit(x, _y = nil)
|
72
|
-
x = check_convert_sample_array(x)
|
73
|
-
raise ArgumentError, 'Expect the input affinity matrix to be square.' if @params[:affinity] == 'precomputed' && x.shape[0] != x.shape[1]
|
74
|
-
|
75
|
-
fit_predict(x)
|
76
|
-
self
|
77
|
-
end
|
78
|
-
|
79
|
-
# Analysis clusters and assign samples to clusters.
|
80
|
-
#
|
81
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
82
|
-
# If the metric is 'precomputed', x must be a square affinity matrix (shape: [n_samples, n_samples]).
|
83
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
84
|
-
def fit_predict(x)
|
85
|
-
x = check_convert_sample_array(x)
|
86
|
-
raise ArgumentError, 'Expect the input affinity matrix to be square.' if @params[:affinity] == 'precomputed' && x.shape[0] != x.shape[1]
|
87
|
-
|
88
|
-
affinity_mat = @params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.rbf_kernel(x, nil, @params[:gamma])
|
89
|
-
@embedding, @n_iter = embedded_space(affinity_mat, @params[:max_iter], @params[:tol].fdiv(affinity_mat.shape[0]))
|
90
|
-
@labels = line_kmeans_clustering(@embedding)
|
91
|
-
end
|
92
|
-
|
93
|
-
private
|
94
|
-
|
95
|
-
def embedded_space(affinity_mat, max_iter, tol)
|
96
|
-
affinity_mat[affinity_mat.diag_indices] = 0.0
|
97
|
-
|
98
|
-
degrees = affinity_mat.sum(axis: 1)
|
99
|
-
normalized_affinity_mat = (1.0 / degrees).diag.dot(affinity_mat)
|
100
|
-
|
101
|
-
iters = 0
|
102
|
-
embedded_line = degrees / degrees.sum
|
103
|
-
n_samples = embedded_line.shape[0]
|
104
|
-
error = Numo::DFloat.ones(n_samples)
|
105
|
-
max_iter.times do |t|
|
106
|
-
iters = t + 1
|
107
|
-
new_embedded_line = normalized_affinity_mat.dot(embedded_line)
|
108
|
-
new_embedded_line /= new_embedded_line.abs.sum
|
109
|
-
new_error = (new_embedded_line - embedded_line).abs
|
110
|
-
break if (new_error - error).abs.max <= tol
|
111
|
-
|
112
|
-
embedded_line = new_embedded_line
|
113
|
-
error = new_error
|
114
|
-
end
|
115
|
-
|
116
|
-
[embedded_line, iters]
|
117
|
-
end
|
118
|
-
|
119
|
-
def line_kmeans_clustering(vec)
|
120
|
-
Rumale::Clustering::KMeans.new(
|
121
|
-
n_clusters: @params[:n_clusters], init: @params[:init],
|
122
|
-
max_iter: @params[:max_iter], tol: @params[:tol], random_seed: @params[:random_seed]
|
123
|
-
).fit_predict(vec.expand_dims(1))
|
124
|
-
end
|
125
|
-
end
|
126
|
-
end
|
127
|
-
end
|
@@ -1,203 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/cluster_analyzer'
|
5
|
-
require 'rumale/pairwise_metric'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module Clustering
|
9
|
-
# SingleLinkage is a class that implements hierarchical cluster analysis with single linakge method.
|
10
|
-
# This class is used internally for HDBSCAN.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# analyzer = Rumale::Clustering::SingleLinkage.new(n_clusters: 2)
|
14
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
15
|
-
#
|
16
|
-
# *Reference*
|
17
|
-
# - Mullner, D., "Modern hierarchical, agglomerative clustering algorithms," arXiv:1109.2378, 2011.
|
18
|
-
class SingleLinkage
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Base::ClusterAnalyzer
|
21
|
-
|
22
|
-
# Return the cluster labels.
|
23
|
-
# @return [Numo::Int32] (shape: [n_samples])
|
24
|
-
attr_reader :labels
|
25
|
-
|
26
|
-
# Return the hierarchical structure.
|
27
|
-
# @return [Array<SingleLinkage::Node>] (shape: [n_samples - 1])
|
28
|
-
attr_reader :hierarchy
|
29
|
-
|
30
|
-
# Create a new cluster analyzer with single linkage algorithm.
|
31
|
-
#
|
32
|
-
# @param n_clusters [Integer] The number of clusters.
|
33
|
-
# @param metric [String] The metric to calculate the distances.
|
34
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance between points.
|
35
|
-
# If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix.
|
36
|
-
def initialize(n_clusters: 2, metric: 'euclidean')
|
37
|
-
check_params_numeric(n_clusters: n_clusters)
|
38
|
-
check_params_string(metric: metric)
|
39
|
-
@params = {}
|
40
|
-
@params[:n_clusters] = n_clusters
|
41
|
-
@params[:metric] = metric == 'precomputed' ? 'precomputed' : 'euclidean'
|
42
|
-
@labels = nil
|
43
|
-
@hierarchy = nil
|
44
|
-
end
|
45
|
-
|
46
|
-
# Analysis clusters with given training data.
|
47
|
-
#
|
48
|
-
# @overload fit(x) -> SingleLinkage
|
49
|
-
#
|
50
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
51
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
52
|
-
# @return [SingleLinkage] The learned cluster analyzer itself.
|
53
|
-
def fit(x, _y = nil)
|
54
|
-
x = check_convert_sample_array(x)
|
55
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
56
|
-
|
57
|
-
fit_predict(x)
|
58
|
-
self
|
59
|
-
end
|
60
|
-
|
61
|
-
# Analysis clusters and assign samples to clusters.
|
62
|
-
#
|
63
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for cluster analysis.
|
64
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
65
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
66
|
-
def fit_predict(x)
|
67
|
-
x = check_convert_sample_array(x)
|
68
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
69
|
-
|
70
|
-
distance_mat = @params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.euclidean_distance(x)
|
71
|
-
@labels = partial_fit(distance_mat)
|
72
|
-
end
|
73
|
-
|
74
|
-
private
|
75
|
-
|
76
|
-
# @!visibility private
|
77
|
-
class UnionFind
|
78
|
-
def initialize(n)
|
79
|
-
@parent = Numo::Int32.zeros(2 * n - 1) - 1
|
80
|
-
@size = Numo::Int32.hstack([Numo::Int32.ones(n), Numo::Int32.zeros(n - 1)])
|
81
|
-
@next_label = n
|
82
|
-
end
|
83
|
-
|
84
|
-
# @!visibility private
|
85
|
-
def union(x, y)
|
86
|
-
size = @size[x] + @size[y]
|
87
|
-
@parent[x] = @next_label
|
88
|
-
@parent[y] = @next_label
|
89
|
-
@size[@next_label] = size
|
90
|
-
@next_label += 1
|
91
|
-
size
|
92
|
-
end
|
93
|
-
|
94
|
-
# @!visibility private
|
95
|
-
def find(x)
|
96
|
-
p = x
|
97
|
-
x = @parent[x] while @parent[x] != -1
|
98
|
-
while @parent[p] != x
|
99
|
-
p = @parent[p]
|
100
|
-
@parent[p] = x
|
101
|
-
end
|
102
|
-
x
|
103
|
-
end
|
104
|
-
end
|
105
|
-
|
106
|
-
# @!visibility private
|
107
|
-
class Node
|
108
|
-
# @!visibility private
|
109
|
-
attr_reader :x, :y, :weight, :n_elements
|
110
|
-
|
111
|
-
# @!visibility private
|
112
|
-
def initialize(x:, y:, weight:, n_elements: 0)
|
113
|
-
@x = x
|
114
|
-
@y = y
|
115
|
-
@weight = weight
|
116
|
-
@n_elements = n_elements
|
117
|
-
end
|
118
|
-
|
119
|
-
# @!visibility private
|
120
|
-
def ==(other)
|
121
|
-
x == other.x && y == other.y && weight == other.weight && n_elements == other.n_elements
|
122
|
-
end
|
123
|
-
end
|
124
|
-
|
125
|
-
private_constant :UnionFind, :Node
|
126
|
-
|
127
|
-
def partial_fit(distance_mat)
|
128
|
-
mst = minimum_spanning_tree(distance_mat)
|
129
|
-
@hierarchy = single_linkage_hierarchy(mst)
|
130
|
-
flatten(@hierarchy, @params[:n_clusters])
|
131
|
-
end
|
132
|
-
|
133
|
-
def minimum_spanning_tree(complete_graph)
|
134
|
-
n_samples = complete_graph.shape[0]
|
135
|
-
n_edges = n_samples - 1
|
136
|
-
curr_weights = Numo::DFloat.zeros(n_samples) + Float::INFINITY
|
137
|
-
curr_labels = Numo::Int32.new(n_samples).seq
|
138
|
-
next_node = 0
|
139
|
-
mst = Array.new(n_edges) do
|
140
|
-
curr_node = next_node
|
141
|
-
target = curr_labels.ne(curr_node)
|
142
|
-
curr_labels = curr_labels[target]
|
143
|
-
curr_weights = Numo::DFloat.minimum(curr_weights[target], complete_graph[curr_node, curr_labels])
|
144
|
-
next_node = curr_labels[curr_weights.min_index]
|
145
|
-
weight = curr_weights.min
|
146
|
-
Node.new(x: curr_node, y: next_node, weight: weight)
|
147
|
-
end
|
148
|
-
mst.sort! { |a, b| a.weight <=> b.weight }
|
149
|
-
end
|
150
|
-
|
151
|
-
def single_linkage_hierarchy(mst)
|
152
|
-
n_edges = mst.size
|
153
|
-
n_nodes = n_edges + 1
|
154
|
-
uf = UnionFind.new(n_nodes)
|
155
|
-
Array.new(n_edges) do |n|
|
156
|
-
x_root = uf.find(mst[n].x)
|
157
|
-
y_root = uf.find(mst[n].y)
|
158
|
-
x_root, y_root = [y_root, x_root] unless x_root < y_root
|
159
|
-
weight = mst[n].weight
|
160
|
-
n_samples = uf.union(x_root, y_root)
|
161
|
-
Node.new(x: x_root, y: y_root, weight: weight, n_elements: n_samples)
|
162
|
-
end
|
163
|
-
end
|
164
|
-
|
165
|
-
def descedent_ids(hierarchy_, start_node)
|
166
|
-
n_samples = hierarchy_.size + 1
|
167
|
-
return [start_node] if start_node < n_samples
|
168
|
-
|
169
|
-
res = []
|
170
|
-
indices = [start_node]
|
171
|
-
n_indices = 1
|
172
|
-
while n_indices.positive?
|
173
|
-
idx = indices.pop
|
174
|
-
if idx < n_samples
|
175
|
-
res.push(idx)
|
176
|
-
n_indices -= 1
|
177
|
-
else
|
178
|
-
indices.push(hierarchy_[idx - n_samples].x)
|
179
|
-
indices.push(hierarchy_[idx - n_samples].y)
|
180
|
-
n_indices += 1
|
181
|
-
end
|
182
|
-
end
|
183
|
-
res
|
184
|
-
end
|
185
|
-
|
186
|
-
def flatten(hierarchy_, n_clusters)
|
187
|
-
n_samples = hierarchy_.size + 1
|
188
|
-
return Numo::Int32.zeros(n_samples) if n_clusters < 2
|
189
|
-
|
190
|
-
nodes = [-([hierarchy_[-1].x, hierarchy_[-1].y].max + 1)]
|
191
|
-
(n_clusters - 1).times do
|
192
|
-
children = hierarchy_[-nodes[0] - n_samples]
|
193
|
-
nodes.push(-children.x)
|
194
|
-
nodes.push(-children.y)
|
195
|
-
nodes.sort!.shift
|
196
|
-
end
|
197
|
-
res = Numo::Int32.zeros(n_samples)
|
198
|
-
nodes.each_with_index { |sid, cluster_id| res[descedent_ids(hierarchy_, -sid)] = cluster_id }
|
199
|
-
res
|
200
|
-
end
|
201
|
-
end
|
202
|
-
end
|
203
|
-
end
|
@@ -1,76 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/pairwise_metric'
|
4
|
-
require 'rumale/clustering/dbscan'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Clustering
|
8
|
-
# SNN is a class that implements Shared Nearest Neighbor cluster analysis.
|
9
|
-
# The SNN method is a variation of DBSCAN that uses similarity based on k-nearest neighbors as a metric.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# analyzer = Rumale::Clustering::SNN.new(n_neighbros: 10, eps: 5, min_samples: 5)
|
13
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - Ertoz, L., Steinbach, M., and Kumar, V., "Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data," Proc. SDM'03, pp. 47--58, 2003.
|
17
|
-
# - Houle, M E., Kriegel, H-P., Kroger, P., Schubert, E., and Zimek, A., "Can Shared-Neighbor Distances Defeat the Curse of Dimensionality?," Proc. SSDBM'10, pp. 482--500, 2010.
|
18
|
-
class SNN < DBSCAN
|
19
|
-
# Create a new cluster analyzer with Shared Neareset Neighbor method.
|
20
|
-
#
|
21
|
-
# @param n_neighbors [Integer] The number of neighbors to be used for finding k-nearest neighbors.
|
22
|
-
# @param eps [Integer] The threshold value for finding connected components based on similarity.
|
23
|
-
# @param min_samples [Integer] The number of neighbor samples to be used for the criterion whether a point is a core point.
|
24
|
-
# @param metric [String] The metric to calculate the distances.
|
25
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance between points.
|
26
|
-
# If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix.
|
27
|
-
def initialize(n_neighbors: 10, eps: 5, min_samples: 5, metric: 'euclidean')
|
28
|
-
check_params_numeric(n_neighbors: n_neighbors, min_samples: min_samples)
|
29
|
-
check_params_string(metric: metric)
|
30
|
-
@params = {}
|
31
|
-
@params[:n_neighbors] = n_neighbors
|
32
|
-
@params[:eps] = eps
|
33
|
-
@params[:min_samples] = min_samples
|
34
|
-
@params[:metric] = metric == 'precomputed' ? 'precomputed' : 'euclidean'
|
35
|
-
@core_sample_ids = nil
|
36
|
-
@labels = nil
|
37
|
-
end
|
38
|
-
|
39
|
-
# Analysis clusters with given training data.
|
40
|
-
#
|
41
|
-
# @overload fit(x) -> SNN
|
42
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
43
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
44
|
-
# @return [SNN] The learned cluster analyzer itself.
|
45
|
-
def fit(x, _y = nil)
|
46
|
-
super
|
47
|
-
end
|
48
|
-
|
49
|
-
# Analysis clusters and assign samples to clusters.
|
50
|
-
#
|
51
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for cluster analysis.
|
52
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
53
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
54
|
-
def fit_predict(x) # rubocop:disable Lint/UselessMethodDefinition
|
55
|
-
super
|
56
|
-
end
|
57
|
-
|
58
|
-
private
|
59
|
-
|
60
|
-
def calc_pairwise_metrics(x)
|
61
|
-
distance_mat = @params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.euclidean_distance(x)
|
62
|
-
n_samples = distance_mat.shape[0]
|
63
|
-
adjacency_mat = Numo::DFloat.zeros(n_samples, n_samples)
|
64
|
-
n_samples.times do |n|
|
65
|
-
neighbor_ids = distance_mat[n, true].sort_index[0...@params[:n_neighbors]]
|
66
|
-
adjacency_mat[n, neighbor_ids] = 1
|
67
|
-
end
|
68
|
-
adjacency_mat.dot(adjacency_mat.transpose)
|
69
|
-
end
|
70
|
-
|
71
|
-
def region_query(similarity_arr)
|
72
|
-
similarity_arr.gt(@params[:eps]).where.to_a
|
73
|
-
end
|
74
|
-
end
|
75
|
-
end
|
76
|
-
end
|
@@ -1,115 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/cluster_analyzer'
|
5
|
-
require 'rumale/pairwise_metric'
|
6
|
-
require 'rumale/preprocessing/l2_normalizer'
|
7
|
-
|
8
|
-
module Rumale
|
9
|
-
module Clustering
|
10
|
-
# SpectralClustering is a class that implements the normalized spectral clustering.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# require 'numo/linalg/autoloader'
|
14
|
-
#
|
15
|
-
# analyzer = Rumale::Clustering::SpectralClustering.new(n_clusters: 10, gamma: 8.0)
|
16
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
17
|
-
#
|
18
|
-
# *Reference*
|
19
|
-
# - Ng, A Y., Jordan, M I., and Weiss, Y., "On Spectral Clustering: Analyssi and an algorithm," Proc. NIPS'01, pp. 849--856, 2001.
|
20
|
-
# - von Luxburg, U., "A tutorial on spectral clustering," Statistics and Computing, Vol. 17 (4), pp. 395--416, 2007.
|
21
|
-
class SpectralClustering
|
22
|
-
include Base::BaseEstimator
|
23
|
-
include Base::ClusterAnalyzer
|
24
|
-
|
25
|
-
# Return the data in embedded space.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_clusters])
|
27
|
-
attr_reader :embedding
|
28
|
-
|
29
|
-
# Return the cluster labels.
|
30
|
-
# @return [Numo::Int32] (shape: [n_samples])
|
31
|
-
attr_reader :labels
|
32
|
-
|
33
|
-
# Create a new cluster analyzer with normalized spectral clustering.
|
34
|
-
#
|
35
|
-
# @param n_clusters [Integer] The number of clusters.
|
36
|
-
# @param affinity [String] The representation of affinity matrix ('rbf' or 'precomputed').
|
37
|
-
# If affinity = 'rbf', the class performs the normalized spectral clustering with the fully connected graph weighted by rbf kernel.
|
38
|
-
# @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
|
39
|
-
# If affinity = 'precomputed', this parameter is ignored.
|
40
|
-
# @param init [String] The initialization method for centroids of K-Means clustering ('random' or 'k-means++').
|
41
|
-
# @param max_iter [Integer] The maximum number of iterations for K-Means clustering.
|
42
|
-
# @param tol [Float] The tolerance of termination criterion for K-Means clustering.
|
43
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
-
def initialize(n_clusters: 2, affinity: 'rbf', gamma: nil, init: 'k-means++', max_iter: 10, tol: 1.0e-8, random_seed: nil)
|
45
|
-
check_params_numeric(n_clusters: n_clusters, max_iter: max_iter, tol: tol)
|
46
|
-
check_params_numeric_or_nil(gamma: gamma, random_seed: random_seed)
|
47
|
-
check_params_string(affinity: affinity, init: init)
|
48
|
-
check_params_positive(n_clusters: n_clusters, max_iter: max_iter, tol: tol)
|
49
|
-
@params = {}
|
50
|
-
@params[:n_clusters] = n_clusters
|
51
|
-
@params[:affinity] = affinity
|
52
|
-
@params[:gamma] = gamma
|
53
|
-
@params[:init] = init == 'random' ? 'random' : 'k-means++'
|
54
|
-
@params[:max_iter] = max_iter
|
55
|
-
@params[:tol] = tol
|
56
|
-
@params[:random_seed] = random_seed
|
57
|
-
@params[:random_seed] ||= srand
|
58
|
-
@embedding = nil
|
59
|
-
@labels = nil
|
60
|
-
end
|
61
|
-
|
62
|
-
# Analysis clusters with given training data.
|
63
|
-
# To execute this method, Numo::Linalg must be loaded.
|
64
|
-
#
|
65
|
-
# @overload fit(x) -> SpectralClustering
|
66
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
67
|
-
# If the metric is 'precomputed', x must be a square affinity matrix (shape: [n_samples, n_samples]).
|
68
|
-
# @return [SpectralClustering] The learned cluster analyzer itself.
|
69
|
-
def fit(x, _y = nil)
|
70
|
-
x = check_convert_sample_array(x)
|
71
|
-
raise ArgumentError, 'Expect the input affinity matrix to be square.' if @params[:affinity] == 'precomputed' && x.shape[0] != x.shape[1]
|
72
|
-
raise 'SpectralClustering#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
73
|
-
|
74
|
-
fit_predict(x)
|
75
|
-
self
|
76
|
-
end
|
77
|
-
|
78
|
-
# Analysis clusters and assign samples to clusters.
|
79
|
-
# To execute this method, Numo::Linalg must be loaded.
|
80
|
-
#
|
81
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
82
|
-
# If the metric is 'precomputed', x must be a square affinity matrix (shape: [n_samples, n_samples]).
|
83
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
84
|
-
def fit_predict(x)
|
85
|
-
x = check_convert_sample_array(x)
|
86
|
-
raise ArgumentError, 'Expect the input affinity matrix to be square.' if @params[:affinity] == 'precomputed' && x.shape[0] != x.shape[1]
|
87
|
-
raise 'SpectralClustering#fit_predict requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
88
|
-
|
89
|
-
affinity_mat = @params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.rbf_kernel(x, nil, @params[:gamma])
|
90
|
-
@embedding = embedded_space(affinity_mat, @params[:n_clusters])
|
91
|
-
normalized_embedding = Rumale::Preprocessing::L2Normalizer.new.fit_transform(@embedding)
|
92
|
-
@labels = kmeans_clustering(normalized_embedding)
|
93
|
-
end
|
94
|
-
|
95
|
-
private
|
96
|
-
|
97
|
-
def embedded_space(affinity_mat, n_clusters)
|
98
|
-
affinity_mat[affinity_mat.diag_indices] = 0.0
|
99
|
-
degrees = 1.0 / Numo::NMath.sqrt(affinity_mat.sum(axis: 1))
|
100
|
-
laplacian_mat = degrees.diag.dot(affinity_mat).dot(degrees.diag)
|
101
|
-
|
102
|
-
n_samples = affinity_mat.shape[0]
|
103
|
-
_, eig_vecs = Numo::Linalg.eigh(laplacian_mat, vals_range: (n_samples - n_clusters)...n_samples)
|
104
|
-
eig_vecs.reverse(1).dup
|
105
|
-
end
|
106
|
-
|
107
|
-
def kmeans_clustering(x)
|
108
|
-
Rumale::Clustering::KMeans.new(
|
109
|
-
n_clusters: @params[:n_clusters], init: @params[:init],
|
110
|
-
max_iter: @params[:max_iter], tol: @params[:tol], random_seed: @params[:random_seed]
|
111
|
-
).fit_predict(x)
|
112
|
-
end
|
113
|
-
end
|
114
|
-
end
|
115
|
-
end
|