rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,47 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/classifier'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement naive bayes models.
|
8
|
-
module NaiveBayes
|
9
|
-
# BaseNaiveBayes is a class that has methods for common processes of naive bayes classifier.
|
10
|
-
# This class is used internally.
|
11
|
-
class BaseNaiveBayes
|
12
|
-
include Base::BaseEstimator
|
13
|
-
include Base::Classifier
|
14
|
-
|
15
|
-
# Predict class labels for samples.
|
16
|
-
#
|
17
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
18
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
19
|
-
def predict(x)
|
20
|
-
x = check_convert_sample_array(x)
|
21
|
-
n_samples = x.shape.first
|
22
|
-
decision_values = decision_function(x)
|
23
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
24
|
-
end
|
25
|
-
|
26
|
-
# Predict log-probability for samples.
|
27
|
-
#
|
28
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
29
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
30
|
-
def predict_log_proba(x)
|
31
|
-
x = check_convert_sample_array(x)
|
32
|
-
n_samples, = x.shape
|
33
|
-
log_likelihoods = decision_function(x)
|
34
|
-
log_likelihoods - Numo::NMath.log(Numo::NMath.exp(log_likelihoods).sum(1)).reshape(n_samples, 1)
|
35
|
-
end
|
36
|
-
|
37
|
-
# Predict probability for samples.
|
38
|
-
#
|
39
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
41
|
-
def predict_proba(x)
|
42
|
-
x = check_convert_sample_array(x)
|
43
|
-
Numo::NMath.exp(predict_log_proba(x)).abs
|
44
|
-
end
|
45
|
-
end
|
46
|
-
end
|
47
|
-
end
|
@@ -1,82 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NaiveBayes
|
7
|
-
# BernoulliNB is a class that implements Bernoulli Naive Bayes classifier.
|
8
|
-
#
|
9
|
-
# @example
|
10
|
-
# estimator = Rumale::NaiveBayes::BernoulliNB.new(smoothing_param: 1.0, bin_threshold: 0.0)
|
11
|
-
# estimator.fit(training_samples, training_labels)
|
12
|
-
# results = estimator.predict(testing_samples)
|
13
|
-
#
|
14
|
-
# *Reference*
|
15
|
-
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
16
|
-
class BernoulliNB < BaseNaiveBayes
|
17
|
-
# Return the class labels.
|
18
|
-
# @return [Numo::Int32] (size: n_classes)
|
19
|
-
attr_reader :classes
|
20
|
-
|
21
|
-
# Return the prior probabilities of the classes.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
23
|
-
attr_reader :class_priors
|
24
|
-
|
25
|
-
# Return the conditional probabilities for features of each class.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
-
attr_reader :feature_probs
|
28
|
-
|
29
|
-
# Create a new classifier with Bernoulli Naive Bayes.
|
30
|
-
#
|
31
|
-
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
32
|
-
# @param bin_threshold [Float] The threshold for binarizing of features.
|
33
|
-
def initialize(smoothing_param: 1.0, bin_threshold: 0.0)
|
34
|
-
check_params_numeric(smoothing_param: smoothing_param, bin_threshold: bin_threshold)
|
35
|
-
check_params_positive(smoothing_param: smoothing_param)
|
36
|
-
@params = {}
|
37
|
-
@params[:smoothing_param] = smoothing_param
|
38
|
-
@params[:bin_threshold] = bin_threshold
|
39
|
-
end
|
40
|
-
|
41
|
-
# Fit the model with given training data.
|
42
|
-
#
|
43
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
44
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
45
|
-
# to be used for fitting the model.
|
46
|
-
# @return [BernoulliNB] The learned classifier itself.
|
47
|
-
def fit(x, y)
|
48
|
-
x = check_convert_sample_array(x)
|
49
|
-
y = check_convert_label_array(y)
|
50
|
-
check_sample_label_size(x, y)
|
51
|
-
n_samples, = x.shape
|
52
|
-
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
53
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
54
|
-
n_samples_each_class = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.to_f }]
|
55
|
-
@class_priors = n_samples_each_class / n_samples
|
56
|
-
count_features = Numo::DFloat[*@classes.to_a.map { |l| bin_x[y.eq(l).where, true].sum(0) }]
|
57
|
-
count_features += @params[:smoothing_param]
|
58
|
-
n_samples_each_class += 2.0 * @params[:smoothing_param]
|
59
|
-
n_classes = @classes.size
|
60
|
-
@feature_probs = count_features / n_samples_each_class.reshape(n_classes, 1)
|
61
|
-
self
|
62
|
-
end
|
63
|
-
|
64
|
-
# Calculate confidence scores for samples.
|
65
|
-
#
|
66
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
67
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
68
|
-
def decision_function(x)
|
69
|
-
x = check_convert_sample_array(x)
|
70
|
-
n_classes = @classes.size
|
71
|
-
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
72
|
-
not_bin_x = Numo::DFloat[*x.le(@params[:bin_threshold])]
|
73
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
74
|
-
Math.log(@class_priors[l]) + (
|
75
|
-
(Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
76
|
-
(Numo::DFloat[*not_bin_x] * Numo::NMath.log(1.0 - @feature_probs[l, true])).sum(1))
|
77
|
-
end
|
78
|
-
Numo::DFloat[*log_likelihoods].transpose.dup
|
79
|
-
end
|
80
|
-
end
|
81
|
-
end
|
82
|
-
end
|
@@ -1,85 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NaiveBayes
|
7
|
-
# ComplementNB is a class that implements Complement Naive Bayes classifier.
|
8
|
-
#
|
9
|
-
# @example
|
10
|
-
# estimator = Rumale::NaiveBayes::ComplementNB.new(smoothing_param: 1.0)
|
11
|
-
# estimator.fit(training_samples, training_labels)
|
12
|
-
# results = estimator.predict(testing_samples)
|
13
|
-
#
|
14
|
-
# *Reference*
|
15
|
-
# - Rennie, J. D. M., Shih, L., Teevan, J., and Karger, D. R., "Tackling the Poor Assumptions of Naive Bayes Text Classifiers," ICML' 03, pp. 616--623, 2013.
|
16
|
-
class ComplementNB < BaseNaiveBayes
|
17
|
-
# Return the class labels.
|
18
|
-
# @return [Numo::Int32] (size: n_classes)
|
19
|
-
attr_reader :classes
|
20
|
-
|
21
|
-
# Return the prior probabilities of the classes.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
23
|
-
attr_reader :class_priors
|
24
|
-
|
25
|
-
# Return the conditional probabilities for features of each class.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
-
attr_reader :feature_probs
|
28
|
-
|
29
|
-
# Create a new classifier with Complement Naive Bayes.
|
30
|
-
#
|
31
|
-
# @param smoothing_param [Float] The smoothing parameter.
|
32
|
-
# @param norm [Boolean] The flag indicating whether to normlize the weight vectors.
|
33
|
-
def initialize(smoothing_param: 1.0, norm: false)
|
34
|
-
check_params_numeric(smoothing_param: smoothing_param)
|
35
|
-
check_params_positive(smoothing_param: smoothing_param)
|
36
|
-
check_params_boolean(norm: norm)
|
37
|
-
@params = {}
|
38
|
-
@params[:smoothing_param] = smoothing_param
|
39
|
-
@params[:norm] = norm
|
40
|
-
end
|
41
|
-
|
42
|
-
# Fit the model with given training data.
|
43
|
-
#
|
44
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
45
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
46
|
-
# to be used for fitting the model.
|
47
|
-
# @return [ComplementNB] The learned classifier itself.
|
48
|
-
def fit(x, y)
|
49
|
-
x = check_convert_sample_array(x)
|
50
|
-
y = check_convert_label_array(y)
|
51
|
-
check_sample_label_size(x, y)
|
52
|
-
n_samples, = x.shape
|
53
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
54
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.fdiv(n_samples) }]
|
55
|
-
@class_log_probs = Numo::NMath.log(@class_priors)
|
56
|
-
compl_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.ne(l).where, true].sum(0) }]
|
57
|
-
compl_features += @params[:smoothing_param]
|
58
|
-
n_classes = @classes.size
|
59
|
-
@feature_probs = compl_features / compl_features.sum(1).reshape(n_classes, 1)
|
60
|
-
feature_log_probs = Numo::NMath.log(@feature_probs)
|
61
|
-
@weights = if normalize?
|
62
|
-
feature_log_probs / feature_log_probs.sum(1).reshape(n_classes, 1)
|
63
|
-
else
|
64
|
-
-feature_log_probs
|
65
|
-
end
|
66
|
-
self
|
67
|
-
end
|
68
|
-
|
69
|
-
# Calculate confidence scores for samples.
|
70
|
-
#
|
71
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
72
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
73
|
-
def decision_function(x)
|
74
|
-
x = check_convert_sample_array(x)
|
75
|
-
@class_log_probs + x.dot(@weights.transpose)
|
76
|
-
end
|
77
|
-
|
78
|
-
private
|
79
|
-
|
80
|
-
def normalize?
|
81
|
-
@params[:norm] == true
|
82
|
-
end
|
83
|
-
end
|
84
|
-
end
|
85
|
-
end
|
@@ -1,69 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NaiveBayes
|
7
|
-
# GaussianNB is a class that implements Gaussian Naive Bayes classifier.
|
8
|
-
#
|
9
|
-
# @example
|
10
|
-
# estimator = Rumale::NaiveBayes::GaussianNB.new
|
11
|
-
# estimator.fit(training_samples, training_labels)
|
12
|
-
# results = estimator.predict(testing_samples)
|
13
|
-
class GaussianNB < BaseNaiveBayes
|
14
|
-
# Return the class labels.
|
15
|
-
# @return [Numo::Int32] (size: n_classes)
|
16
|
-
attr_reader :classes
|
17
|
-
|
18
|
-
# Return the prior probabilities of the classes.
|
19
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
20
|
-
attr_reader :class_priors
|
21
|
-
|
22
|
-
# Return the mean vectors of the classes.
|
23
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
24
|
-
attr_reader :means
|
25
|
-
|
26
|
-
# Return the variance vectors of the classes.
|
27
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
28
|
-
attr_reader :variances
|
29
|
-
|
30
|
-
# Create a new classifier with Gaussian Naive Bayes.
|
31
|
-
def initialize
|
32
|
-
@params = {}
|
33
|
-
end
|
34
|
-
|
35
|
-
# Fit the model with given training data.
|
36
|
-
#
|
37
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
38
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
39
|
-
# to be used for fitting the model.
|
40
|
-
# @return [GaussianNB] The learned classifier itself.
|
41
|
-
def fit(x, y)
|
42
|
-
x = check_convert_sample_array(x)
|
43
|
-
y = check_convert_label_array(y)
|
44
|
-
check_sample_label_size(x, y)
|
45
|
-
n_samples, = x.shape
|
46
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
47
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
48
|
-
@means = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].mean(0) }]
|
49
|
-
@variances = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].var(0) }]
|
50
|
-
self
|
51
|
-
end
|
52
|
-
|
53
|
-
# Calculate confidence scores for samples.
|
54
|
-
#
|
55
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
56
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
57
|
-
def decision_function(x)
|
58
|
-
x = check_convert_sample_array(x)
|
59
|
-
n_classes = @classes.size
|
60
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
61
|
-
Math.log(@class_priors[l]) - 0.5 * (
|
62
|
-
Numo::NMath.log(2.0 * Math::PI * @variances[l, true]) +
|
63
|
-
((x - @means[l, true])**2 / @variances[l, true])).sum(1)
|
64
|
-
end
|
65
|
-
Numo::DFloat[*log_likelihoods].transpose.dup
|
66
|
-
end
|
67
|
-
end
|
68
|
-
end
|
69
|
-
end
|
@@ -1,74 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NaiveBayes
|
7
|
-
# MultinomialNB is a class that implements Multinomial Naive Bayes classifier.
|
8
|
-
#
|
9
|
-
# @example
|
10
|
-
# estimator = Rumale::NaiveBayes::MultinomialNB.new(smoothing_param: 1.0)
|
11
|
-
# estimator.fit(training_samples, training_labels)
|
12
|
-
# results = estimator.predict(testing_samples)
|
13
|
-
#
|
14
|
-
# *Reference*
|
15
|
-
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
16
|
-
class MultinomialNB < BaseNaiveBayes
|
17
|
-
# Return the class labels.
|
18
|
-
# @return [Numo::Int32] (size: n_classes)
|
19
|
-
attr_reader :classes
|
20
|
-
|
21
|
-
# Return the prior probabilities of the classes.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
23
|
-
attr_reader :class_priors
|
24
|
-
|
25
|
-
# Return the conditional probabilities for features of each class.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
-
attr_reader :feature_probs
|
28
|
-
|
29
|
-
# Create a new classifier with Multinomial Naive Bayes.
|
30
|
-
#
|
31
|
-
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
32
|
-
def initialize(smoothing_param: 1.0)
|
33
|
-
check_params_numeric(smoothing_param: smoothing_param)
|
34
|
-
check_params_positive(smoothing_param: smoothing_param)
|
35
|
-
@params = {}
|
36
|
-
@params[:smoothing_param] = smoothing_param
|
37
|
-
end
|
38
|
-
|
39
|
-
# Fit the model with given training data.
|
40
|
-
#
|
41
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
42
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
43
|
-
# to be used for fitting the model.
|
44
|
-
# @return [MultinomialNB] The learned classifier itself.
|
45
|
-
def fit(x, y)
|
46
|
-
x = check_convert_sample_array(x)
|
47
|
-
y = check_convert_label_array(y)
|
48
|
-
check_sample_label_size(x, y)
|
49
|
-
n_samples, = x.shape
|
50
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
51
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
52
|
-
count_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].sum(0) }]
|
53
|
-
count_features += @params[:smoothing_param]
|
54
|
-
n_classes = @classes.size
|
55
|
-
@feature_probs = count_features / count_features.sum(1).reshape(n_classes, 1)
|
56
|
-
self
|
57
|
-
end
|
58
|
-
|
59
|
-
# Calculate confidence scores for samples.
|
60
|
-
#
|
61
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
62
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
63
|
-
def decision_function(x)
|
64
|
-
x = check_convert_sample_array(x)
|
65
|
-
n_classes = @classes.size
|
66
|
-
bin_x = x.gt(0)
|
67
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
68
|
-
Math.log(@class_priors[l]) + (Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
69
|
-
end
|
70
|
-
Numo::DFloat[*log_likelihoods].transpose.dup
|
71
|
-
end
|
72
|
-
end
|
73
|
-
end
|
74
|
-
end
|
@@ -1,71 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NaiveBayes
|
7
|
-
# NegationNB is a class that implements Negation Naive Bayes classifier.
|
8
|
-
#
|
9
|
-
# @example
|
10
|
-
# estimator = Rumale::NaiveBayes::NegationNB.new(smoothing_param: 1.0)
|
11
|
-
# estimator.fit(training_samples, training_labels)
|
12
|
-
# results = estimator.predict(testing_samples)
|
13
|
-
#
|
14
|
-
# *Reference*
|
15
|
-
# - Komiya, K., Sato, N., Fujimoto, K., and Kotani, Y., "Negation Naive Bayes for Categorization of Product Pages on the Web," RANLP' 11, pp. 586--592, 2011.
|
16
|
-
class NegationNB < BaseNaiveBayes
|
17
|
-
# Return the class labels.
|
18
|
-
# @return [Numo::Int32] (size: n_classes)
|
19
|
-
attr_reader :classes
|
20
|
-
|
21
|
-
# Return the prior probabilities of the classes.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
23
|
-
attr_reader :class_priors
|
24
|
-
|
25
|
-
# Return the conditional probabilities for features of each class.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
-
attr_reader :feature_probs
|
28
|
-
|
29
|
-
# Create a new classifier with Complement Naive Bayes.
|
30
|
-
#
|
31
|
-
# @param smoothing_param [Float] The smoothing parameter.
|
32
|
-
def initialize(smoothing_param: 1.0)
|
33
|
-
check_params_numeric(smoothing_param: smoothing_param)
|
34
|
-
check_params_positive(smoothing_param: smoothing_param)
|
35
|
-
@params = {}
|
36
|
-
@params[:smoothing_param] = smoothing_param
|
37
|
-
end
|
38
|
-
|
39
|
-
# Fit the model with given training data.
|
40
|
-
#
|
41
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
42
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
43
|
-
# to be used for fitting the model.
|
44
|
-
# @return [ComplementNB] The learned classifier itself.
|
45
|
-
def fit(x, y)
|
46
|
-
x = check_convert_sample_array(x)
|
47
|
-
y = check_convert_label_array(y)
|
48
|
-
check_sample_label_size(x, y)
|
49
|
-
n_samples, = x.shape
|
50
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
51
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.fdiv(n_samples) }]
|
52
|
-
@class_log_probs = Numo::NMath.log(1 / (1 - @class_priors))
|
53
|
-
compl_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.ne(l).where, true].sum(0) }]
|
54
|
-
compl_features += @params[:smoothing_param]
|
55
|
-
n_classes = @classes.size
|
56
|
-
@feature_probs = compl_features / compl_features.sum(1).reshape(n_classes, 1)
|
57
|
-
@weights = Numo::NMath.log(@feature_probs)
|
58
|
-
self
|
59
|
-
end
|
60
|
-
|
61
|
-
# Calculate confidence scores for samples.
|
62
|
-
#
|
63
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
64
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
65
|
-
def decision_function(x)
|
66
|
-
x = check_convert_sample_array(x)
|
67
|
-
@class_log_probs - x.dot(@weights.transpose)
|
68
|
-
end
|
69
|
-
end
|
70
|
-
end
|
71
|
-
end
|
@@ -1,133 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/classifier'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement estimators based on nearest neighbors rule.
|
8
|
-
module NearestNeighbors
|
9
|
-
# KNeighborsClassifier is a class that implements the classifier with the k-nearest neighbors rule.
|
10
|
-
# The current implementation uses the Euclidean distance for finding the neighbors.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# Rumale::NearestNeighbors::KNeighborsClassifier.new(n_neighbors: 5)
|
15
|
-
# estimator.fit(training_samples, traininig_labels)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class KNeighborsClassifier
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Base::Classifier
|
21
|
-
|
22
|
-
# Return the prototypes for the nearest neighbor classifier.
|
23
|
-
# If the metric is 'precomputed', that returns nil.
|
24
|
-
# If the algorithm is 'vptree', that returns Rumale::NearestNeighbors::VPTree.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_training_samples, n_features])
|
26
|
-
attr_reader :prototypes
|
27
|
-
|
28
|
-
# Return the labels of the prototypes
|
29
|
-
# @return [Numo::Int32] (size: n_training_samples)
|
30
|
-
attr_reader :labels
|
31
|
-
|
32
|
-
# Return the class labels.
|
33
|
-
# @return [Numo::Int32] (size: n_classes)
|
34
|
-
attr_reader :classes
|
35
|
-
|
36
|
-
# Create a new classifier with the nearest neighbor rule.
|
37
|
-
#
|
38
|
-
# @param n_neighbors [Integer] The number of neighbors.
|
39
|
-
# @param algorithm [String] The algorithm is used for finding the nearest neighbors.
|
40
|
-
# If algorithm is 'brute', brute-force search will be used.
|
41
|
-
# If algorithm is 'vptree', vantage point tree will be used.
|
42
|
-
# This parameter is ignored when metric parameter is 'precomputed'.
|
43
|
-
# @param metric [String] The metric to calculate the distances.
|
44
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance between points.
|
45
|
-
# If metric is 'precomputed', the fit and predict methods expect to be given a distance matrix.
|
46
|
-
def initialize(n_neighbors: 5, algorithm: 'brute', metric: 'euclidean')
|
47
|
-
check_params_numeric(n_neighbors: n_neighbors)
|
48
|
-
check_params_positive(n_neighbors: n_neighbors)
|
49
|
-
check_params_string(algorith: algorithm, metric: metric)
|
50
|
-
@params = {}
|
51
|
-
@params[:n_neighbors] = n_neighbors
|
52
|
-
@params[:algorithm] = algorithm == 'vptree' ? 'vptree' : 'brute'
|
53
|
-
@params[:metric] = metric == 'precomputed' ? 'precomputed' : 'euclidean'
|
54
|
-
@prototypes = nil
|
55
|
-
@labels = nil
|
56
|
-
@classes = nil
|
57
|
-
end
|
58
|
-
|
59
|
-
# Fit the model with given training data.
|
60
|
-
#
|
61
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_features]) The training data to be used for fitting the model.
|
62
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_training_samples, n_training_samples]).
|
63
|
-
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
64
|
-
# @return [KNeighborsClassifier] The learned classifier itself.
|
65
|
-
def fit(x, y)
|
66
|
-
x = check_convert_sample_array(x)
|
67
|
-
y = check_convert_label_array(y)
|
68
|
-
check_sample_label_size(x, y)
|
69
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
70
|
-
|
71
|
-
@prototypes = if @params[:metric] == 'euclidean'
|
72
|
-
if @params[:algorithm] == 'vptree'
|
73
|
-
VPTree.new(x)
|
74
|
-
else
|
75
|
-
x.dup
|
76
|
-
end
|
77
|
-
end
|
78
|
-
@labels = Numo::Int32.asarray(y.to_a)
|
79
|
-
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
80
|
-
self
|
81
|
-
end
|
82
|
-
|
83
|
-
# Calculate confidence scores for samples.
|
84
|
-
#
|
85
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_features]) The samples to compute the scores.
|
86
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_testing_samples, n_training_samples]).
|
87
|
-
# @return [Numo::DFloat] (shape: [n_testing_samples, n_classes]) Confidence scores per sample for each class.
|
88
|
-
def decision_function(x)
|
89
|
-
x = check_convert_sample_array(x)
|
90
|
-
if @params[:metric] == 'precomputed' && x.shape[1] != @labels.size
|
91
|
-
raise ArgumentError, 'Expect the size input matrix to be n_testing_samples-by-n_training_samples.'
|
92
|
-
end
|
93
|
-
|
94
|
-
n_prototypes = @labels.size
|
95
|
-
n_neighbors = [@params[:n_neighbors], n_prototypes].min
|
96
|
-
n_samples = x.shape[0]
|
97
|
-
n_classes = @classes.size
|
98
|
-
scores = Numo::DFloat.zeros(n_samples, n_classes)
|
99
|
-
|
100
|
-
if @params[:metric] == 'euclidean' && @params[:algorithm] == 'vptree'
|
101
|
-
neighbor_ids, = @prototypes.query(x, n_neighbors)
|
102
|
-
n_samples.times do |m|
|
103
|
-
neighbor_ids[m, true].each { |n| scores[m, @classes.to_a.index(@labels[n])] += 1.0 }
|
104
|
-
end
|
105
|
-
else
|
106
|
-
distance_matrix = @params[:metric] == 'precomputed' ? x : PairwiseMetric.euclidean_distance(x, @prototypes)
|
107
|
-
n_samples.times do |m|
|
108
|
-
neighbor_ids = distance_matrix[m, true].to_a.each_with_index.sort.map(&:last)[0...n_neighbors]
|
109
|
-
neighbor_ids.each { |n| scores[m, @classes.to_a.index(@labels[n])] += 1.0 }
|
110
|
-
end
|
111
|
-
end
|
112
|
-
|
113
|
-
scores
|
114
|
-
end
|
115
|
-
|
116
|
-
# Predict class labels for samples.
|
117
|
-
#
|
118
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_features]) The samples to predict the labels.
|
119
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_testing_samples, n_training_samples]).
|
120
|
-
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
121
|
-
def predict(x)
|
122
|
-
x = check_convert_sample_array(x)
|
123
|
-
if @params[:metric] == 'precomputed' && x.shape[1] != @labels.size
|
124
|
-
raise ArgumentError, 'Expect the size input matrix to be n_samples-by-n_training_samples.'
|
125
|
-
end
|
126
|
-
|
127
|
-
decision_values = decision_function(x)
|
128
|
-
n_samples = x.shape[0]
|
129
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
130
|
-
end
|
131
|
-
end
|
132
|
-
end
|
133
|
-
end
|
@@ -1,108 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/regressor'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module NearestNeighbors
|
8
|
-
# KNeighborsRegressor is a class that implements the regressor with the k-nearest neighbors rule.
|
9
|
-
# The current implementation uses the Euclidean distance for finding the neighbors.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# estimator =
|
13
|
-
# Rumale::NearestNeighbors::KNeighborsRegressor.new(n_neighbors: 5)
|
14
|
-
# estimator.fit(training_samples, traininig_target_values)
|
15
|
-
# results = estimator.predict(testing_samples)
|
16
|
-
#
|
17
|
-
class KNeighborsRegressor
|
18
|
-
include Base::BaseEstimator
|
19
|
-
include Base::Regressor
|
20
|
-
|
21
|
-
# Return the prototypes for the nearest neighbor regressor.
|
22
|
-
# If the metric is 'precomputed', that returns nil.
|
23
|
-
# If the algorithm is 'vptree', that returns Rumale::NearestNeighbors::VPTree.
|
24
|
-
# @return [Numo::DFloat] (shape: [n_training_samples, n_features])
|
25
|
-
attr_reader :prototypes
|
26
|
-
|
27
|
-
# Return the values of the prototypes
|
28
|
-
# @return [Numo::DFloat] (shape: [n_training_samples, n_outputs])
|
29
|
-
attr_reader :values
|
30
|
-
|
31
|
-
# Create a new regressor with the nearest neighbor rule.
|
32
|
-
#
|
33
|
-
# @param n_neighbors [Integer] The number of neighbors.
|
34
|
-
# @param algorithm [String] The algorithm is used for finding the nearest neighbors.
|
35
|
-
# If algorithm is 'brute', brute-force search will be used.
|
36
|
-
# If algorithm is 'vptree', vantage point tree will be used.
|
37
|
-
# This parameter is ignored when metric parameter is 'precomputed'.
|
38
|
-
# @param metric [String] The metric to calculate the distances.
|
39
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance between points.
|
40
|
-
# If metric is 'precomputed', the fit and predict methods expect to be given a distance matrix.
|
41
|
-
def initialize(n_neighbors: 5, algorithm: 'brute', metric: 'euclidean')
|
42
|
-
check_params_numeric(n_neighbors: n_neighbors)
|
43
|
-
check_params_positive(n_neighbors: n_neighbors)
|
44
|
-
check_params_string(algorith: algorithm, metric: metric)
|
45
|
-
@params = {}
|
46
|
-
@params[:n_neighbors] = n_neighbors
|
47
|
-
@params[:algorithm] = algorithm == 'vptree' ? 'vptree' : 'brute'
|
48
|
-
@params[:metric] = metric == 'precomputed' ? 'precomputed' : 'euclidean'
|
49
|
-
@prototypes = nil
|
50
|
-
@values = nil
|
51
|
-
end
|
52
|
-
|
53
|
-
# Fit the model with given training data.
|
54
|
-
#
|
55
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_features]) The training data to be used for fitting the model.
|
56
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_training_samples, n_training_samples]).
|
57
|
-
# @param y [Numo::DFloat] (shape: [n_training_samples, n_outputs]) The target values to be used for fitting the model.
|
58
|
-
# @return [KNeighborsRegressor] The learned regressor itself.
|
59
|
-
def fit(x, y)
|
60
|
-
x = check_convert_sample_array(x)
|
61
|
-
y = check_convert_tvalue_array(y)
|
62
|
-
check_sample_tvalue_size(x, y)
|
63
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
64
|
-
|
65
|
-
@prototypes = if @params[:metric] == 'euclidean'
|
66
|
-
if @params[:algorithm] == 'vptree'
|
67
|
-
VPTree.new(x)
|
68
|
-
else
|
69
|
-
x.dup
|
70
|
-
end
|
71
|
-
end
|
72
|
-
@values = y.dup
|
73
|
-
self
|
74
|
-
end
|
75
|
-
|
76
|
-
# Predict values for samples.
|
77
|
-
#
|
78
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_features]) The samples to predict the values.
|
79
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_testing_samples, n_training_samples]).
|
80
|
-
# @return [Numo::DFloat] (shape: [n_testing_samples, n_outputs]) Predicted values per sample.
|
81
|
-
def predict(x)
|
82
|
-
x = check_convert_sample_array(x)
|
83
|
-
if @params[:metric] == 'precomputed' && x.shape[1] != @values.shape[0]
|
84
|
-
raise ArgumentError, 'Expect the size input matrix to be n_testing_samples-by-n_training_samples.'
|
85
|
-
end
|
86
|
-
|
87
|
-
# Initialize some variables.
|
88
|
-
n_samples = x.shape[0]
|
89
|
-
n_prototypes, n_outputs = @values.shape
|
90
|
-
n_neighbors = [@params[:n_neighbors], n_prototypes].min
|
91
|
-
# Predict values for the given samples.
|
92
|
-
if @params[:metric] == 'euclidean' && @params[:algorithm] == 'vptree'
|
93
|
-
neighbor_ids, = @prototypes.query(x, n_neighbors)
|
94
|
-
predicted_values = Array.new(n_samples) do |n|
|
95
|
-
n_outputs.nil? ? @values[neighbor_ids[n, true]].mean : @values[neighbor_ids[n, true], true].mean(0).to_a
|
96
|
-
end
|
97
|
-
else
|
98
|
-
distance_matrix = @params[:metric] == 'precomputed' ? x : PairwiseMetric.euclidean_distance(x, @prototypes)
|
99
|
-
predicted_values = Array.new(n_samples) do |n|
|
100
|
-
neighbor_ids = distance_matrix[n, true].to_a.each_with_index.sort.map(&:last)[0...n_neighbors]
|
101
|
-
n_outputs.nil? ? @values[neighbor_ids].mean : @values[neighbor_ids, true].mean(0).to_a
|
102
|
-
end
|
103
|
-
end
|
104
|
-
Numo::DFloat[*predicted_values]
|
105
|
-
end
|
106
|
-
end
|
107
|
-
end
|
108
|
-
end
|