rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,201 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'lbfgsb'
|
4
|
-
|
5
|
-
require 'rumale/linear_model/base_sgd'
|
6
|
-
require 'rumale/base/regressor'
|
7
|
-
|
8
|
-
module Rumale
|
9
|
-
module LinearModel
|
10
|
-
# LinearRegression is a class that implements ordinary least square linear regression
|
11
|
-
# with stochastic gradient descent (SGD) optimization,
|
12
|
-
# singular value decomposition (SVD), or L-BFGS optimization.
|
13
|
-
#
|
14
|
-
# @example
|
15
|
-
# estimator =
|
16
|
-
# Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
|
17
|
-
# estimator.fit(training_samples, traininig_values)
|
18
|
-
# results = estimator.predict(testing_samples)
|
19
|
-
#
|
20
|
-
# # If Numo::Linalg is installed, you can specify 'svd' for the solver option.
|
21
|
-
# require 'numo/linalg/autoloader'
|
22
|
-
# estimator = Rumale::LinearModel::LinearRegression.new(solver: 'svd')
|
23
|
-
# estimator.fit(training_samples, traininig_values)
|
24
|
-
# results = estimator.predict(testing_samples)
|
25
|
-
#
|
26
|
-
# *Reference*
|
27
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
28
|
-
class LinearRegression < BaseSGD
|
29
|
-
include Base::Regressor
|
30
|
-
|
31
|
-
# Return the weight vector.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
33
|
-
attr_reader :weight_vec
|
34
|
-
|
35
|
-
# Return the bias term (a.k.a. intercept).
|
36
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
37
|
-
attr_reader :bias_term
|
38
|
-
|
39
|
-
# Return the random generator for random sampling.
|
40
|
-
# @return [Random]
|
41
|
-
attr_reader :rng
|
42
|
-
|
43
|
-
# Create a new ordinary least square linear regressor.
|
44
|
-
#
|
45
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
46
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
47
|
-
# If solver is not 'sgd', this parameter is ignored.
|
48
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
49
|
-
# If nil is given, the decay sets to 'learning_rate'.
|
50
|
-
# If solver is not 'sgd', this parameter is ignored.
|
51
|
-
# @param momentum [Float] The momentum factor.
|
52
|
-
# If solver is not 'sgd', this parameter is ignored.
|
53
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
54
|
-
# @param bias_scale [Float] The scale of the bias term.
|
55
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
56
|
-
# how many times the whole data is given to the training process.
|
57
|
-
# If solver is 'svd', this parameter is ignored.
|
58
|
-
# @param batch_size [Integer] The size of the mini batches.
|
59
|
-
# If solver is not 'sgd', this parameter is ignored.
|
60
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
61
|
-
# If solver is 'svd', this parameter is ignored.
|
62
|
-
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd' or 'lbfgs').
|
63
|
-
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'lbfgs' solver.
|
64
|
-
# 'sgd' uses the stochastic gradient descent optimization.
|
65
|
-
# 'svd' performs singular value decomposition of samples.
|
66
|
-
# 'lbfgs' uses the L-BFGS method for optimization.
|
67
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
68
|
-
# If nil is given, the method does not execute in parallel.
|
69
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
70
|
-
# This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
|
71
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
72
|
-
# If solver is 'svd', this parameter is ignored.
|
73
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
74
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
75
|
-
fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4,
|
76
|
-
solver: 'auto',
|
77
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
78
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
79
|
-
bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
80
|
-
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
81
|
-
check_params_string(solver: solver)
|
82
|
-
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
83
|
-
check_params_positive(learning_rate: learning_rate, max_iter: max_iter, batch_size: batch_size)
|
84
|
-
super()
|
85
|
-
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
86
|
-
@params[:solver] = if solver == 'auto'
|
87
|
-
enable_linalg?(warning: false) ? 'svd' : 'lbfgs'
|
88
|
-
else
|
89
|
-
solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'lbfgs'
|
90
|
-
end
|
91
|
-
@params[:decay] ||= @params[:learning_rate]
|
92
|
-
@params[:random_seed] ||= srand
|
93
|
-
@rng = Random.new(@params[:random_seed])
|
94
|
-
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
95
|
-
@weight_vec = nil
|
96
|
-
@bias_term = nil
|
97
|
-
end
|
98
|
-
|
99
|
-
# Fit the model with given training data.
|
100
|
-
#
|
101
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
102
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
103
|
-
# @return [LinearRegression] The learned regressor itself.
|
104
|
-
def fit(x, y)
|
105
|
-
x = check_convert_sample_array(x)
|
106
|
-
y = check_convert_tvalue_array(y)
|
107
|
-
check_sample_tvalue_size(x, y)
|
108
|
-
|
109
|
-
if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
110
|
-
fit_svd(x, y)
|
111
|
-
elsif @params[:solver] == 'lbfgs'
|
112
|
-
fit_lbfgs(x, y)
|
113
|
-
else
|
114
|
-
fit_sgd(x, y)
|
115
|
-
end
|
116
|
-
|
117
|
-
self
|
118
|
-
end
|
119
|
-
|
120
|
-
# Predict values for samples.
|
121
|
-
#
|
122
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
123
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
124
|
-
def predict(x)
|
125
|
-
x = check_convert_sample_array(x)
|
126
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
127
|
-
end
|
128
|
-
|
129
|
-
private
|
130
|
-
|
131
|
-
def fit_svd(x, y)
|
132
|
-
x = expand_feature(x) if fit_bias?
|
133
|
-
w = Numo::Linalg.pinv(x, driver: 'svd').dot(y)
|
134
|
-
@weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w)
|
135
|
-
end
|
136
|
-
|
137
|
-
def fit_lbfgs(x, y)
|
138
|
-
fnc = proc do |w, x, y| # rubocop:disable Lint/ShadowingOuterLocalVariable
|
139
|
-
n_samples, n_features = x.shape
|
140
|
-
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
141
|
-
z = x.dot(w.transpose)
|
142
|
-
d = z - y
|
143
|
-
loss = (d**2).sum.fdiv(n_samples)
|
144
|
-
gradient = 2.fdiv(n_samples) * d.transpose.dot(x)
|
145
|
-
[loss, gradient.flatten.dup]
|
146
|
-
end
|
147
|
-
|
148
|
-
x = expand_feature(x) if fit_bias?
|
149
|
-
|
150
|
-
n_features = x.shape[1]
|
151
|
-
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
152
|
-
|
153
|
-
res = Lbfgsb.minimize(
|
154
|
-
fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y],
|
155
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
156
|
-
verbose: @params[:verbose] ? 1 : -1
|
157
|
-
)
|
158
|
-
|
159
|
-
@weight_vec, @bias_term =
|
160
|
-
if single_target?(y)
|
161
|
-
split_weight(res[:x])
|
162
|
-
else
|
163
|
-
split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
|
164
|
-
end
|
165
|
-
end
|
166
|
-
|
167
|
-
def fit_sgd(x, y)
|
168
|
-
if single_target?(y)
|
169
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
170
|
-
else
|
171
|
-
n_outputs = y.shape[1]
|
172
|
-
n_features = x.shape[1]
|
173
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
174
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
175
|
-
if enable_parallel?
|
176
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
177
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
178
|
-
else
|
179
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
180
|
-
end
|
181
|
-
end
|
182
|
-
end
|
183
|
-
|
184
|
-
def single_target?(y)
|
185
|
-
y.ndim == 1
|
186
|
-
end
|
187
|
-
|
188
|
-
def init_weight(n_features, n_outputs)
|
189
|
-
Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
190
|
-
end
|
191
|
-
|
192
|
-
def split_weight_mult(w)
|
193
|
-
if fit_bias?
|
194
|
-
[w[0...-1, true].dup, w[-1, true].dup]
|
195
|
-
else
|
196
|
-
[w.dup, Numo::DFloat.zeros(w.shape[1])]
|
197
|
-
end
|
198
|
-
end
|
199
|
-
end
|
200
|
-
end
|
201
|
-
end
|
@@ -1,275 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'lbfgsb'
|
4
|
-
require 'rumale/base/classifier'
|
5
|
-
require 'rumale/linear_model/base_sgd'
|
6
|
-
require 'rumale/preprocessing/label_binarizer'
|
7
|
-
|
8
|
-
module Rumale
|
9
|
-
module LinearModel
|
10
|
-
# LogisticRegression is a class that implements Logistic Regression.
|
11
|
-
# In multiclass classification problem, it uses one-vs-the-rest strategy for the sgd solver
|
12
|
-
# and multinomial logistic regression for the lbfgs solver.
|
13
|
-
#
|
14
|
-
# @note
|
15
|
-
# Rumale::SVM provides Logistic Regression based on LIBLINEAR.
|
16
|
-
# If you prefer execution speed, you should use Rumale::SVM::LogisticRegression.
|
17
|
-
# https://github.com/yoshoku/rumale-svm
|
18
|
-
#
|
19
|
-
# @example
|
20
|
-
# estimator =
|
21
|
-
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, random_seed: 1)
|
22
|
-
# estimator.fit(training_samples, traininig_labels)
|
23
|
-
# results = estimator.predict(testing_samples)
|
24
|
-
#
|
25
|
-
# *Reference*
|
26
|
-
# - Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
27
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
28
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
29
|
-
class LogisticRegression < BaseSGD
|
30
|
-
include Base::Classifier
|
31
|
-
|
32
|
-
# Return the weight vector for Logistic Regression.
|
33
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
34
|
-
attr_reader :weight_vec
|
35
|
-
|
36
|
-
# Return the bias term (a.k.a. intercept) for Logistic Regression.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
38
|
-
attr_reader :bias_term
|
39
|
-
|
40
|
-
# Return the class labels.
|
41
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
42
|
-
attr_reader :classes
|
43
|
-
|
44
|
-
# Return the random generator for performing random sampling.
|
45
|
-
# @return [Random]
|
46
|
-
attr_reader :rng
|
47
|
-
|
48
|
-
# Create a new classifier with Logisitc Regression.
|
49
|
-
#
|
50
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
51
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
52
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
53
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
54
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
55
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
56
|
-
# @param momentum [Float] The momentum factor.
|
57
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
58
|
-
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
59
|
-
# If solver = 'lbfgs', only 'l2' can be selected for this parameter.
|
60
|
-
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
61
|
-
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
62
|
-
# If l1_ratio = 1, the regularization is similar to Lasso.
|
63
|
-
# If l1_ratio = 0, the regularization is similar to Ridge.
|
64
|
-
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
65
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
66
|
-
# @param reg_param [Float] The regularization parameter.
|
67
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
68
|
-
# @param bias_scale [Float] The scale of the bias term.
|
69
|
-
# If fit_bias is true, the feature vector v becoms [v; bias_scale].
|
70
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
71
|
-
# how many times the whole data is given to the training process.
|
72
|
-
# @param batch_size [Integer] The size of the mini batches.
|
73
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
74
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
75
|
-
# If solver = 'lbfgs', this value is given as tol / Lbfgsb::DBL_EPSILON to the factr argument of Lbfgsb.minimize method.
|
76
|
-
# @param solver [String] The algorithm for optimization. ('lbfgs' or 'sgd').
|
77
|
-
# 'lbfgs' uses the L-BFGS with lbfgs.rb gem.
|
78
|
-
# 'sgd' uses the stochastic gradient descent optimization.
|
79
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
80
|
-
# If nil is given, the methods do not execute in parallel.
|
81
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
82
|
-
# This parameter is ignored if the Parallel gem is not loaded or the solver is 'lbfgs'.
|
83
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
84
|
-
# If solver = 'lbfgs' and true is given, 'iterate.dat' file is generated by lbfgsb.rb.
|
85
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
86
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
87
|
-
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
88
|
-
fit_bias: true, bias_scale: 1.0,
|
89
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
90
|
-
solver: 'lbfgs',
|
91
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
92
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
93
|
-
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
94
|
-
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
95
|
-
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
96
|
-
check_params_string(solver: solver, penalty: penalty)
|
97
|
-
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
98
|
-
check_params_positive(learning_rate: learning_rate, reg_param: reg_param,
|
99
|
-
bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
100
|
-
raise ArgumentError, "The 'lbfgs' solver supports only 'l2' penalties." if solver == 'lbfgs' && penalty != 'l2'
|
101
|
-
|
102
|
-
super()
|
103
|
-
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
104
|
-
@params[:solver] = solver == 'sgd' ? 'sgd' : 'lbfgs'
|
105
|
-
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
106
|
-
@params[:random_seed] ||= srand
|
107
|
-
@rng = Random.new(@params[:random_seed])
|
108
|
-
@penalty_type = @params[:penalty]
|
109
|
-
@loss_func = LinearModel::Loss::LogLoss.new
|
110
|
-
@weight_vec = nil
|
111
|
-
@bias_term = nil
|
112
|
-
@classes = nil
|
113
|
-
end
|
114
|
-
|
115
|
-
# Fit the model with given training data.
|
116
|
-
#
|
117
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
118
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
119
|
-
# @return [LogisticRegression] The learned classifier itself.
|
120
|
-
def fit(x, y)
|
121
|
-
x = check_convert_sample_array(x)
|
122
|
-
y = check_convert_label_array(y)
|
123
|
-
check_sample_label_size(x, y)
|
124
|
-
|
125
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
126
|
-
if @params[:solver] == 'sgd'
|
127
|
-
fit_sgd(x, y)
|
128
|
-
else
|
129
|
-
fit_lbfgs(x, y)
|
130
|
-
end
|
131
|
-
|
132
|
-
self
|
133
|
-
end
|
134
|
-
|
135
|
-
# Calculate confidence scores for samples.
|
136
|
-
#
|
137
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
138
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
139
|
-
def decision_function(x)
|
140
|
-
x = check_convert_sample_array(x)
|
141
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
142
|
-
end
|
143
|
-
|
144
|
-
# Predict class labels for samples.
|
145
|
-
#
|
146
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
147
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
148
|
-
def predict(x)
|
149
|
-
x = check_convert_sample_array(x)
|
150
|
-
|
151
|
-
n_samples, = x.shape
|
152
|
-
decision_values = predict_proba(x)
|
153
|
-
predicted = if enable_parallel?
|
154
|
-
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
155
|
-
else
|
156
|
-
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
157
|
-
end
|
158
|
-
Numo::Int32.asarray(predicted)
|
159
|
-
end
|
160
|
-
|
161
|
-
# Predict probability for samples.
|
162
|
-
#
|
163
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
164
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
165
|
-
def predict_proba(x)
|
166
|
-
x = check_convert_sample_array(x)
|
167
|
-
|
168
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
169
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
170
|
-
|
171
|
-
n_samples, = x.shape
|
172
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
173
|
-
probs[true, 1] = proba
|
174
|
-
probs[true, 0] = 1.0 - proba
|
175
|
-
probs
|
176
|
-
end
|
177
|
-
|
178
|
-
private
|
179
|
-
|
180
|
-
def multiclass_problem?
|
181
|
-
@classes.size > 2
|
182
|
-
end
|
183
|
-
|
184
|
-
def fit_lbfgs(base_x, base_y) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength
|
185
|
-
if multiclass_problem?
|
186
|
-
fnc = proc do |w, x, y, a|
|
187
|
-
n_features = x.shape[1]
|
188
|
-
n_classes = y.shape[1]
|
189
|
-
z = x.dot(w.reshape(n_classes, n_features).transpose)
|
190
|
-
# logsumexp and softmax
|
191
|
-
z_max = z.max(-1).expand_dims(-1).dup
|
192
|
-
z_max[~z_max.isfinite] = 0.0
|
193
|
-
lgsexp = Numo::NMath.log(Numo::NMath.exp(z - z_max).sum(-1)).expand_dims(-1) + z_max
|
194
|
-
t = z - lgsexp
|
195
|
-
sftmax = Numo::NMath.exp(t)
|
196
|
-
# loss and gradient
|
197
|
-
loss = -(y * t).sum + 0.5 * a * w.dot(w)
|
198
|
-
grad = (sftmax - y).transpose.dot(x).flatten.dup + a * w
|
199
|
-
[loss, grad]
|
200
|
-
end
|
201
|
-
|
202
|
-
base_x = expand_feature(base_x) if fit_bias?
|
203
|
-
encoder = Rumale::Preprocessing::LabelBinarizer.new
|
204
|
-
onehot_y = encoder.fit_transform(base_y)
|
205
|
-
n_classes = @classes.size
|
206
|
-
n_features = base_x.shape[1]
|
207
|
-
w_init = Numo::DFloat.zeros(n_classes * n_features)
|
208
|
-
|
209
|
-
verbose = @params[:verbose] ? 1 : -1
|
210
|
-
res = Lbfgsb.minimize(
|
211
|
-
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, onehot_y, @params[:reg_param]],
|
212
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: verbose
|
213
|
-
)
|
214
|
-
|
215
|
-
if fit_bias?
|
216
|
-
weight = res[:x].reshape(n_classes, n_features)
|
217
|
-
@weight_vec = weight[true, 0...-1].dup
|
218
|
-
@bias_term = weight[true, -1].dup
|
219
|
-
else
|
220
|
-
@weight_vec = res[:x].reshape(n_classes, n_features)
|
221
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
222
|
-
end
|
223
|
-
else
|
224
|
-
fnc = proc do |w, x, y, a|
|
225
|
-
z = 1 + Numo::NMath.exp(-y * x.dot(w))
|
226
|
-
loss = Numo::NMath.log(z).sum + 0.5 * a * w.dot(w)
|
227
|
-
grad = (y / z - y).dot(x) + a * w
|
228
|
-
[loss, grad]
|
229
|
-
end
|
230
|
-
|
231
|
-
base_x = expand_feature(base_x) if fit_bias?
|
232
|
-
negative_label = @classes[0]
|
233
|
-
bin_y = Numo::Int32.cast(base_y.ne(negative_label)) * 2 - 1
|
234
|
-
n_features = base_x.shape[1]
|
235
|
-
w_init = Numo::DFloat.zeros(n_features)
|
236
|
-
|
237
|
-
verbose = @params[:verbose] ? 1 : -1
|
238
|
-
res = Lbfgsb.minimize(
|
239
|
-
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
|
240
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: verbose
|
241
|
-
)
|
242
|
-
|
243
|
-
@weight_vec, @bias_term = split_weight(res[:x])
|
244
|
-
end
|
245
|
-
end
|
246
|
-
|
247
|
-
def fit_sgd(x, y)
|
248
|
-
if multiclass_problem?
|
249
|
-
n_classes = @classes.size
|
250
|
-
n_features = x.shape[1]
|
251
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
252
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
253
|
-
if enable_parallel?
|
254
|
-
# :nocov:
|
255
|
-
models = parallel_map(n_classes) do |n|
|
256
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
257
|
-
partial_fit(x, bin_y)
|
258
|
-
end
|
259
|
-
# :nocov:
|
260
|
-
n_classes.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
261
|
-
else
|
262
|
-
n_classes.times do |n|
|
263
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
264
|
-
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
265
|
-
end
|
266
|
-
end
|
267
|
-
else
|
268
|
-
negative_label = @classes[0]
|
269
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
270
|
-
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
271
|
-
end
|
272
|
-
end
|
273
|
-
end
|
274
|
-
end
|
275
|
-
end
|
@@ -1,137 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'lbfgsb'
|
4
|
-
|
5
|
-
require 'rumale/base/base_estimator'
|
6
|
-
require 'rumale/base/regressor'
|
7
|
-
|
8
|
-
module Rumale
|
9
|
-
module LinearModel
|
10
|
-
# NNLS is a class that implements non-negative least squares regression.
|
11
|
-
# NNLS solves least squares problem under non-negative constraints on the coefficient using L-BFGS-B method.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01, random_seed: 1)
|
15
|
-
# estimator.fit(training_samples, traininig_values)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class NNLS
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Base::Regressor
|
21
|
-
|
22
|
-
# Return the weight vector.
|
23
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
24
|
-
attr_reader :weight_vec
|
25
|
-
|
26
|
-
# Return the bias term (a.k.a. intercept).
|
27
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
28
|
-
attr_reader :bias_term
|
29
|
-
|
30
|
-
# Returns the number of iterations when converged.
|
31
|
-
# @return [Integer]
|
32
|
-
attr_reader :n_iter
|
33
|
-
|
34
|
-
# Return the random generator for initializing weight.
|
35
|
-
# @return [Random]
|
36
|
-
attr_reader :rng
|
37
|
-
|
38
|
-
# Create a new regressor with non-negative least squares method.
|
39
|
-
#
|
40
|
-
# @param reg_param [Float] The regularization parameter for L2 regularization term.
|
41
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
42
|
-
# @param bias_scale [Float] The scale of the bias term.
|
43
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
44
|
-
# how many times the whole data is given to the training process.
|
45
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
46
|
-
# If solver = 'svd', this parameter is ignored.
|
47
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
48
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
|
-
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
50
|
-
max_iter: 1000, tol: 1e-4, verbose: false, random_seed: nil)
|
51
|
-
check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, tol: tol)
|
52
|
-
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
53
|
-
check_params_numeric_or_nil(random_seed: random_seed)
|
54
|
-
check_params_positive(reg_param: reg_param, max_iter: max_iter)
|
55
|
-
@params = method(:initialize).parameters.each_with_object({}) { |(_, prm), obj| obj[prm] = binding.local_variable_get(prm) }
|
56
|
-
@params[:random_seed] ||= srand
|
57
|
-
@n_iter = nil
|
58
|
-
@weight_vec = nil
|
59
|
-
@bias_term = nil
|
60
|
-
@rng = Random.new(@params[:random_seed])
|
61
|
-
end
|
62
|
-
|
63
|
-
# Fit the model with given training data.
|
64
|
-
#
|
65
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
66
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
67
|
-
# @return [NonneagtiveLeastSquare] The learned regressor itself.
|
68
|
-
def fit(x, y)
|
69
|
-
x = check_convert_sample_array(x)
|
70
|
-
y = check_convert_tvalue_array(y)
|
71
|
-
check_sample_tvalue_size(x, y)
|
72
|
-
|
73
|
-
x = expand_feature(x) if fit_bias?
|
74
|
-
|
75
|
-
n_features = x.shape[1]
|
76
|
-
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
77
|
-
|
78
|
-
w_init = Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
79
|
-
w_init[w_init.lt(0)] = 0
|
80
|
-
bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
|
81
|
-
bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
|
82
|
-
|
83
|
-
res = Lbfgsb.minimize(
|
84
|
-
fnc: method(:nnls_fnc), jcb: true, x_init: w_init, args: [x, y, @params[:reg_param]], bounds: bounds,
|
85
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1
|
86
|
-
)
|
87
|
-
|
88
|
-
@n_iter = res[:n_iter]
|
89
|
-
w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features).transpose
|
90
|
-
|
91
|
-
if fit_bias?
|
92
|
-
@weight_vec = single_target?(y) ? w[0...-1].dup : w[0...-1, true].dup
|
93
|
-
@bias_term = single_target?(y) ? w[-1] : w[-1, true].dup
|
94
|
-
else
|
95
|
-
@weight_vec = w.dup
|
96
|
-
@bias_term = single_target?(y) ? 0 : Numo::DFloat.zeros(y.shape[1])
|
97
|
-
end
|
98
|
-
|
99
|
-
self
|
100
|
-
end
|
101
|
-
|
102
|
-
# Predict values for samples.
|
103
|
-
#
|
104
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
105
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
106
|
-
def predict(x)
|
107
|
-
x = check_convert_sample_array(x)
|
108
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
109
|
-
end
|
110
|
-
|
111
|
-
private
|
112
|
-
|
113
|
-
def nnls_fnc(w, x, y, alpha)
|
114
|
-
n_samples, n_features = x.shape
|
115
|
-
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
116
|
-
z = x.dot(w.transpose)
|
117
|
-
d = z - y
|
118
|
-
loss = (d**2).sum.fdiv(n_samples) + alpha * (w * w).sum
|
119
|
-
gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * alpha * w
|
120
|
-
[loss, gradient.flatten.dup]
|
121
|
-
end
|
122
|
-
|
123
|
-
def expand_feature(x)
|
124
|
-
n_samples = x.shape[0]
|
125
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
126
|
-
end
|
127
|
-
|
128
|
-
def fit_bias?
|
129
|
-
@params[:fit_bias] == true
|
130
|
-
end
|
131
|
-
|
132
|
-
def single_target?(y)
|
133
|
-
y.ndim == 1
|
134
|
-
end
|
135
|
-
end
|
136
|
-
end
|
137
|
-
end
|