rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,285 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module LinearModel
|
7
|
-
# @!visibility private
|
8
|
-
# This module consists of the classes that implement penalty (regularization) term.
|
9
|
-
module Penalty
|
10
|
-
# @!visibility private
|
11
|
-
# L2Penalty is a class that applies L2 penalty to weight vector of linear model.
|
12
|
-
# This class is used internally.
|
13
|
-
class L2Penalty
|
14
|
-
# @!visibility private
|
15
|
-
def initialize(reg_param:)
|
16
|
-
@reg_param = reg_param
|
17
|
-
end
|
18
|
-
|
19
|
-
# @!visibility private
|
20
|
-
def call(weight, lr)
|
21
|
-
weight - @reg_param * lr * weight
|
22
|
-
end
|
23
|
-
end
|
24
|
-
|
25
|
-
# @!visibility private
|
26
|
-
# L1Penalty is a class that applies L1 penalty to weight vector of linear model.
|
27
|
-
# This class is used internally.
|
28
|
-
class L1Penalty
|
29
|
-
# @!visibility private
|
30
|
-
def initialize(reg_param:)
|
31
|
-
@q_vec = nil
|
32
|
-
@u = 0
|
33
|
-
@reg_param = reg_param
|
34
|
-
end
|
35
|
-
|
36
|
-
# @!visibility private
|
37
|
-
def call(weight, lr)
|
38
|
-
@q_vec ||= Numo::DFloat.zeros(weight.shape[0])
|
39
|
-
@u += @reg_param * lr
|
40
|
-
z = weight.dup
|
41
|
-
gt = weight.gt(0)
|
42
|
-
lt = weight.lt(0)
|
43
|
-
weight[gt] = Numo::DFloat.maximum(0.0, weight[gt] - (@u + @q_vec[gt])) if gt.count.positive?
|
44
|
-
weight[lt] = Numo::DFloat.minimum(0.0, weight[lt] + (@u - @q_vec[lt])) if lt.count.positive?
|
45
|
-
@q_vec += weight - z
|
46
|
-
weight
|
47
|
-
end
|
48
|
-
end
|
49
|
-
end
|
50
|
-
|
51
|
-
# @!visibility private
|
52
|
-
# This module consists of the class that implements stochastic gradient descent (SGD) optimizer.
|
53
|
-
module Optimizer
|
54
|
-
# @!visibility private
|
55
|
-
# SGD is a class that implements SGD optimizer.
|
56
|
-
# This class is used internally.
|
57
|
-
class SGD
|
58
|
-
# @!visibility private
|
59
|
-
# Create a new SGD optimizer.
|
60
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
61
|
-
# @param momentum [Float] The initial value of momentum.
|
62
|
-
# @param decay [Float] The smooting parameter.
|
63
|
-
def initialize(learning_rate: 0.01, momentum: 0.0, decay: 0.0)
|
64
|
-
@learning_rate = learning_rate
|
65
|
-
@momentum = momentum
|
66
|
-
@decay = decay
|
67
|
-
@update = nil
|
68
|
-
@iter = 0
|
69
|
-
end
|
70
|
-
|
71
|
-
# @!visibility private
|
72
|
-
def current_learning_rate
|
73
|
-
@learning_rate / (1.0 + @decay * @iter)
|
74
|
-
end
|
75
|
-
|
76
|
-
# @!visibility private
|
77
|
-
def call(weight, gradient)
|
78
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
79
|
-
@update = @momentum * @update - current_learning_rate * gradient
|
80
|
-
@iter += 1
|
81
|
-
weight + @update
|
82
|
-
end
|
83
|
-
end
|
84
|
-
end
|
85
|
-
|
86
|
-
# @!visibility private
|
87
|
-
# This module consists of the classes that implement loss function for linear model.
|
88
|
-
module Loss
|
89
|
-
# @!visibility private
|
90
|
-
# MeanSquaredError is a class that calculates mean squared error for linear regression model.
|
91
|
-
class MeanSquaredError
|
92
|
-
# @!visibility private
|
93
|
-
def loss(out, y)
|
94
|
-
((out - y)**2).sum.fdiv(y.shape[0])
|
95
|
-
end
|
96
|
-
|
97
|
-
# @!visibility private
|
98
|
-
def dloss(out, y)
|
99
|
-
2.fdiv(y.shape[0]) * (out - y)
|
100
|
-
end
|
101
|
-
end
|
102
|
-
|
103
|
-
# @!visibility private
|
104
|
-
# LogLoss is a class that calculates logistic loss for logistic regression.
|
105
|
-
class LogLoss
|
106
|
-
# @!visibility private
|
107
|
-
def loss(out, y)
|
108
|
-
Numo::NMath.log(1 + Numo::NMath.exp(-y * out)).sum.fdiv(y.shape[0])
|
109
|
-
end
|
110
|
-
|
111
|
-
# @!visibility private
|
112
|
-
def dloss(out, y)
|
113
|
-
y / (1 + Numo::NMath.exp(-y * out)) - y
|
114
|
-
end
|
115
|
-
end
|
116
|
-
|
117
|
-
# @!visibility private
|
118
|
-
# HingeLoss is a class that calculates hinge loss for support vector classifier.
|
119
|
-
class HingeLoss
|
120
|
-
# @!visibility private
|
121
|
-
def loss(out, y)
|
122
|
-
out.class.maximum(0.0, 1 - y * out).sum.fdiv(y.shape[0])
|
123
|
-
end
|
124
|
-
|
125
|
-
# @!visibility private
|
126
|
-
def dloss(out, y)
|
127
|
-
tids = (y * out).lt(1)
|
128
|
-
d = Numo::DFloat.zeros(y.shape[0])
|
129
|
-
d[tids] = -y[tids] if tids.count.positive?
|
130
|
-
d
|
131
|
-
end
|
132
|
-
end
|
133
|
-
|
134
|
-
# @!visibility private
|
135
|
-
# EpsilonInsensitive is a class that calculates epsilon insensitive for support vector regressor.
|
136
|
-
class EpsilonInsensitive
|
137
|
-
# @!visibility private
|
138
|
-
def initialize(epsilon: 0.1)
|
139
|
-
@epsilon = epsilon
|
140
|
-
end
|
141
|
-
|
142
|
-
# @!visibility private
|
143
|
-
def loss(out, y)
|
144
|
-
out.class.maximum(0.0, (y - out).abs - @epsilon).sum.fdiv(y.shape[0])
|
145
|
-
end
|
146
|
-
|
147
|
-
# @!visibility private
|
148
|
-
def dloss(out, y)
|
149
|
-
d = Numo::DFloat.zeros(y.shape[0])
|
150
|
-
tids = (out - y).gt(@epsilon)
|
151
|
-
d[tids] = 1 if tids.count.positive?
|
152
|
-
tids = (y - out).gt(@epsilon)
|
153
|
-
d[tids] = -1 if tids.count.positive?
|
154
|
-
d
|
155
|
-
end
|
156
|
-
end
|
157
|
-
end
|
158
|
-
|
159
|
-
# BaseSGD is an abstract class for implementation of linear model with mini-batch stochastic gradient descent (SGD) optimization.
|
160
|
-
# This class is used internally.
|
161
|
-
class BaseSGD
|
162
|
-
include Rumale::Base::BaseEstimator
|
163
|
-
|
164
|
-
# Create an initial linear model.
|
165
|
-
def initialize
|
166
|
-
@params = {}
|
167
|
-
@params[:learning_rate] = 0.01
|
168
|
-
@params[:decay] = nil
|
169
|
-
@params[:momentum] = 0.0
|
170
|
-
@params[:bias_scale] = 1.0
|
171
|
-
@params[:fit_bias] = true
|
172
|
-
@params[:reg_param] = 0.0
|
173
|
-
@params[:l1_ratio] = 0.0
|
174
|
-
@params[:max_iter] = 1000
|
175
|
-
@params[:batch_size] = 50
|
176
|
-
@params[:tol] = 0.0001
|
177
|
-
@params[:verbose] = false
|
178
|
-
@penalty_type = nil
|
179
|
-
@loss_func = nil
|
180
|
-
@weight_vec = nil
|
181
|
-
@bias_term = nil
|
182
|
-
@n_iter = nil
|
183
|
-
@rng = nil
|
184
|
-
end
|
185
|
-
|
186
|
-
private
|
187
|
-
|
188
|
-
L2_PENALTY = 'l2'
|
189
|
-
L1_PENALTY = 'l1'
|
190
|
-
ELASTICNET_PENALTY = 'elasticnet'
|
191
|
-
|
192
|
-
private_constant :L2_PENALTY, :L1_PENALTY, :ELASTICNET_PENALTY
|
193
|
-
|
194
|
-
def partial_fit(x, y)
|
195
|
-
class_name = self.class.to_s.split('::').last if @params[:verbose]
|
196
|
-
narr = x.class
|
197
|
-
# Expand feature vectors for bias term.
|
198
|
-
x = expand_feature(x) if fit_bias?
|
199
|
-
# Initialize some variables.
|
200
|
-
sub_rng = @rng.dup
|
201
|
-
n_samples, n_features = x.shape
|
202
|
-
weight = Numo::DFloat.zeros(n_features)
|
203
|
-
optimizer = LinearModel::Optimizer::SGD.new(
|
204
|
-
learning_rate: @params[:learning_rate],
|
205
|
-
momentum: @params[:momentum],
|
206
|
-
decay: @params[:decay]
|
207
|
-
)
|
208
|
-
l2_penalty = LinearModel::Penalty::L2Penalty.new(reg_param: l2_reg_param) if apply_l2_penalty?
|
209
|
-
l1_penalty = LinearModel::Penalty::L1Penalty.new(reg_param: l1_reg_param) if apply_l1_penalty?
|
210
|
-
# Optimization.
|
211
|
-
@params[:max_iter].times do |t|
|
212
|
-
sample_ids = Array(0...n_samples)
|
213
|
-
sample_ids.shuffle!(random: sub_rng)
|
214
|
-
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
215
|
-
# sampling
|
216
|
-
sub_x = x[subset_ids, true]
|
217
|
-
sub_y = y[subset_ids]
|
218
|
-
# calculate gradient
|
219
|
-
dloss = @loss_func.dloss(sub_x.dot(weight), sub_y)
|
220
|
-
dloss = narr.minimum(1e12, narr.maximum(-1e12, dloss))
|
221
|
-
gradient = dloss.dot(sub_x)
|
222
|
-
# update weight
|
223
|
-
lr = optimizer.current_learning_rate
|
224
|
-
weight = optimizer.call(weight, gradient)
|
225
|
-
# l2 regularization
|
226
|
-
weight = l2_penalty.call(weight, lr) if apply_l2_penalty?
|
227
|
-
# l1 regularization
|
228
|
-
weight = l1_penalty.call(weight, lr) if apply_l1_penalty?
|
229
|
-
end
|
230
|
-
loss = @loss_func.loss(x.dot(weight), y)
|
231
|
-
puts "[#{class_name}] Loss after #{t + 1} epochs: #{loss}" if @params[:verbose]
|
232
|
-
break if loss < @params[:tol]
|
233
|
-
end
|
234
|
-
split_weight(weight)
|
235
|
-
end
|
236
|
-
|
237
|
-
def expand_feature(x)
|
238
|
-
n_samples = x.shape[0]
|
239
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
240
|
-
end
|
241
|
-
|
242
|
-
def split_weight(weight)
|
243
|
-
if fit_bias?
|
244
|
-
[weight[0...-1].dup, weight[-1]]
|
245
|
-
else
|
246
|
-
[weight, 0.0]
|
247
|
-
end
|
248
|
-
end
|
249
|
-
|
250
|
-
def fit_bias?
|
251
|
-
@params[:fit_bias] == true
|
252
|
-
end
|
253
|
-
|
254
|
-
def apply_l2_penalty?
|
255
|
-
@penalty_type == L2_PENALTY || @penalty_type == ELASTICNET_PENALTY
|
256
|
-
end
|
257
|
-
|
258
|
-
def apply_l1_penalty?
|
259
|
-
@penalty_type == L1_PENALTY || @penalty_type == ELASTICNET_PENALTY
|
260
|
-
end
|
261
|
-
|
262
|
-
def l2_reg_param
|
263
|
-
case @penalty_type
|
264
|
-
when ELASTICNET_PENALTY
|
265
|
-
@params[:reg_param] * (1.0 - @params[:l1_ratio])
|
266
|
-
when L2_PENALTY
|
267
|
-
@params[:reg_param]
|
268
|
-
else
|
269
|
-
0.0
|
270
|
-
end
|
271
|
-
end
|
272
|
-
|
273
|
-
def l1_reg_param
|
274
|
-
case @penalty_type
|
275
|
-
when ELASTICNET_PENALTY
|
276
|
-
@params[:reg_param] * @params[:l1_ratio]
|
277
|
-
when L1_PENALTY
|
278
|
-
@params[:reg_param]
|
279
|
-
else
|
280
|
-
0.0
|
281
|
-
end
|
282
|
-
end
|
283
|
-
end
|
284
|
-
end
|
285
|
-
end
|
@@ -1,119 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/linear_model/base_sgd'
|
4
|
-
require 'rumale/base/regressor'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module LinearModel
|
8
|
-
# ElasticNet is a class that implements Elastic-net Regression
|
9
|
-
# with stochastic gradient descent (SGD) optimization.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# estimator =
|
13
|
-
# Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter: 1000, batch_size: 50, random_seed: 1)
|
14
|
-
# estimator.fit(training_samples, traininig_values)
|
15
|
-
# results = estimator.predict(testing_samples)
|
16
|
-
#
|
17
|
-
# *Reference*
|
18
|
-
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
19
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
20
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
21
|
-
class ElasticNet < BaseSGD
|
22
|
-
include Base::Regressor
|
23
|
-
|
24
|
-
# Return the weight vector.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
26
|
-
attr_reader :weight_vec
|
27
|
-
|
28
|
-
# Return the bias term (a.k.a. intercept).
|
29
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
30
|
-
attr_reader :bias_term
|
31
|
-
|
32
|
-
# Return the random generator for random sampling.
|
33
|
-
# @return [Random]
|
34
|
-
attr_reader :rng
|
35
|
-
|
36
|
-
# Create a new Elastic-net regressor.
|
37
|
-
#
|
38
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
39
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
40
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
41
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
42
|
-
# @param momentum [Float] The momentum factor.
|
43
|
-
# @param reg_param [Float] The regularization parameter.
|
44
|
-
# @param l1_ratio [Float] The elastic-net mixing parameter.
|
45
|
-
# If l1_ratio = 1, the regularization is similar to Lasso.
|
46
|
-
# If l1_ratio = 0, the regularization is similar to Ridge.
|
47
|
-
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
48
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
49
|
-
# @param bias_scale [Float] The scale of the bias term.
|
50
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
51
|
-
# how many times the whole data is given to the training process.
|
52
|
-
# @param batch_size [Integer] The size of the mini batches.
|
53
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
54
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
55
|
-
# If nil is given, the method does not execute in parallel.
|
56
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
57
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
58
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
59
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
60
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
61
|
-
reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
|
62
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
63
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
64
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
65
|
-
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
66
|
-
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
67
|
-
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
68
|
-
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
69
|
-
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
70
|
-
super()
|
71
|
-
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
72
|
-
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
73
|
-
@params[:random_seed] ||= srand
|
74
|
-
@rng = Random.new(@params[:random_seed])
|
75
|
-
@penalty_type = ELASTICNET_PENALTY
|
76
|
-
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
77
|
-
@weight_vec = nil
|
78
|
-
@bias_term = nil
|
79
|
-
end
|
80
|
-
|
81
|
-
# Fit the model with given training data.
|
82
|
-
#
|
83
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
84
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
85
|
-
# @return [ElasticNet] The learned regressor itself.
|
86
|
-
def fit(x, y)
|
87
|
-
x = check_convert_sample_array(x)
|
88
|
-
y = check_convert_tvalue_array(y)
|
89
|
-
check_sample_tvalue_size(x, y)
|
90
|
-
|
91
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
92
|
-
n_features = x.shape[1]
|
93
|
-
|
94
|
-
if n_outputs > 1
|
95
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
96
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
97
|
-
if enable_parallel?
|
98
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
99
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
100
|
-
else
|
101
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
102
|
-
end
|
103
|
-
else
|
104
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
105
|
-
end
|
106
|
-
self
|
107
|
-
end
|
108
|
-
|
109
|
-
# Predict values for samples.
|
110
|
-
#
|
111
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
112
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
113
|
-
def predict(x)
|
114
|
-
x = check_convert_sample_array(x)
|
115
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
116
|
-
end
|
117
|
-
end
|
118
|
-
end
|
119
|
-
end
|
@@ -1,115 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/linear_model/base_sgd'
|
4
|
-
require 'rumale/base/regressor'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module LinearModel
|
8
|
-
# Lasso is a class that implements Lasso Regression
|
9
|
-
# with stochastic gradient descent (SGD) optimization.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# estimator =
|
13
|
-
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
14
|
-
# estimator.fit(training_samples, traininig_values)
|
15
|
-
# results = estimator.predict(testing_samples)
|
16
|
-
#
|
17
|
-
# *Reference*
|
18
|
-
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
19
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
20
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
21
|
-
class Lasso < BaseSGD
|
22
|
-
include Base::Regressor
|
23
|
-
|
24
|
-
# Return the weight vector.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
26
|
-
attr_reader :weight_vec
|
27
|
-
|
28
|
-
# Return the bias term (a.k.a. intercept).
|
29
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
30
|
-
attr_reader :bias_term
|
31
|
-
|
32
|
-
# Return the random generator for random sampling.
|
33
|
-
# @return [Random]
|
34
|
-
attr_reader :rng
|
35
|
-
|
36
|
-
# Create a new Lasso regressor.
|
37
|
-
#
|
38
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
39
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
40
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
41
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
42
|
-
# @param momentum [Float] The momentum factor.
|
43
|
-
# @param reg_param [Float] The regularization parameter.
|
44
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
45
|
-
# @param bias_scale [Float] The scale of the bias term.
|
46
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
47
|
-
# how many times the whole data is given to the training process.
|
48
|
-
# @param batch_size [Integer] The size of the mini batches.
|
49
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
50
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
51
|
-
# If nil is given, the method does not execute in parallel.
|
52
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
53
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
54
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
55
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
56
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
57
|
-
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
58
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
59
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
60
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
61
|
-
reg_param: reg_param, bias_scale: bias_scale,
|
62
|
-
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
63
|
-
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
64
|
-
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
65
|
-
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
66
|
-
super()
|
67
|
-
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
68
|
-
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
69
|
-
@params[:random_seed] ||= srand
|
70
|
-
@rng = Random.new(@params[:random_seed])
|
71
|
-
@penalty_type = L1_PENALTY
|
72
|
-
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
73
|
-
@weight_vec = nil
|
74
|
-
@bias_term = nil
|
75
|
-
end
|
76
|
-
|
77
|
-
# Fit the model with given training data.
|
78
|
-
#
|
79
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
80
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
81
|
-
# @return [Lasso] The learned regressor itself.
|
82
|
-
def fit(x, y)
|
83
|
-
x = check_convert_sample_array(x)
|
84
|
-
y = check_convert_tvalue_array(y)
|
85
|
-
check_sample_tvalue_size(x, y)
|
86
|
-
|
87
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
88
|
-
n_features = x.shape[1]
|
89
|
-
|
90
|
-
if n_outputs > 1
|
91
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
92
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
93
|
-
if enable_parallel?
|
94
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
95
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
96
|
-
else
|
97
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
98
|
-
end
|
99
|
-
else
|
100
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
101
|
-
end
|
102
|
-
self
|
103
|
-
end
|
104
|
-
|
105
|
-
# Predict values for samples.
|
106
|
-
#
|
107
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
108
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
109
|
-
def predict(x)
|
110
|
-
x = check_convert_sample_array(x)
|
111
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
112
|
-
end
|
113
|
-
end
|
114
|
-
end
|
115
|
-
end
|