rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,132 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/pairwise_metric'
|
5
|
-
require 'rumale/base/base_estimator'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module NearestNeighbors
|
9
|
-
# VPTree is a class that implements the nearest neigbor searcher based on vantage point tree.
|
10
|
-
# This implementation, unlike the paper, does not perform random sampling with vantage point selection.
|
11
|
-
# This class is used internally for k-nearest neighbor estimators.
|
12
|
-
#
|
13
|
-
# @deprecated This class will be removed in ver. 0.24.0. The author recommends to use the annoy-rb gem instead.
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - Yianilos, P N., "Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces," Proc. SODA'93, pp. 311--321, 1993.
|
17
|
-
class VPTree
|
18
|
-
include Validation
|
19
|
-
include Base::BaseEstimator
|
20
|
-
|
21
|
-
# Return the training data.
|
22
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_features])
|
23
|
-
attr_reader :data
|
24
|
-
|
25
|
-
# Create a search index with vantage point tree algorithm.
|
26
|
-
#
|
27
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to used generating search index.
|
28
|
-
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
29
|
-
def initialize(x, min_samples_leaf: 1)
|
30
|
-
check_params_numeric(min_samples_leaf: min_samples_leaf)
|
31
|
-
check_params_positive(min_samples_leaf: min_samples_leaf)
|
32
|
-
@params = {}
|
33
|
-
@params[:min_samples_leaf] = min_samples_leaf
|
34
|
-
@data = x
|
35
|
-
@tree = build_tree(Numo::Int32.cast(Array(0...@data.shape[0])))
|
36
|
-
end
|
37
|
-
|
38
|
-
# Search k-nearest neighbors of given query point.
|
39
|
-
#
|
40
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
41
|
-
# @param k [Integer] The samples to be query points.
|
42
|
-
# @return [Array<Array<Numo::Int32, Numo::DFloat>>] The indices and distances of retrieved k-nearest neighbors.
|
43
|
-
def query(x, k = 1)
|
44
|
-
x = check_convert_sample_array(x)
|
45
|
-
check_params_numeric(k: k)
|
46
|
-
check_params_positive(k: k)
|
47
|
-
|
48
|
-
n_samples = x.shape[0]
|
49
|
-
rel_ids = []
|
50
|
-
rel_dists = []
|
51
|
-
|
52
|
-
n_samples.times do |n|
|
53
|
-
q = x[n, true]
|
54
|
-
rel_node = search(q, @tree, k)
|
55
|
-
dist_arr = calc_distances(q, @data[rel_node.sample_ids, true])
|
56
|
-
rank_ids = dist_arr.sort_index[0...k]
|
57
|
-
rel_ids.push(rel_node.sample_ids[rank_ids].dup)
|
58
|
-
rel_dists.push(dist_arr[rank_ids].dup)
|
59
|
-
end
|
60
|
-
|
61
|
-
[Numo::Int32.cast(rel_ids), Numo::DFloat.cast(rel_dists)]
|
62
|
-
end
|
63
|
-
|
64
|
-
private
|
65
|
-
|
66
|
-
Node = Struct.new(:sample_ids, :n_samples, :vantage_point_id, :threshold, :left, :right) do
|
67
|
-
def leaf?
|
68
|
-
vantage_point_id.nil?
|
69
|
-
end
|
70
|
-
end
|
71
|
-
|
72
|
-
private_constant :Node
|
73
|
-
|
74
|
-
def search(q, node, k, tau = Float::INFINITY)
|
75
|
-
return node if node.leaf?
|
76
|
-
|
77
|
-
dist = Math.sqrt(((q - @data[node.vantage_point_id, true])**2).sum)
|
78
|
-
tau = dist if dist < tau
|
79
|
-
|
80
|
-
# :nocov:
|
81
|
-
if dist < node.threshold
|
82
|
-
if dist - tau <= node.threshold
|
83
|
-
node.left.n_samples < k ? node : search(q, node.left, k, tau)
|
84
|
-
elsif dist + tau >= node.threshold
|
85
|
-
node.right.n_samples < k ? node : search(q, node.right, k, tau)
|
86
|
-
else
|
87
|
-
node
|
88
|
-
end
|
89
|
-
elsif dist + tau >= node.threshold
|
90
|
-
node.right.n_samples < k ? node : search(q, node.right, k, tau)
|
91
|
-
elsif dist - tau <= node.threshold
|
92
|
-
node.left.n_samples < k ? node : search(q, node.left, k, tau)
|
93
|
-
else
|
94
|
-
node
|
95
|
-
end
|
96
|
-
# :nocov:
|
97
|
-
end
|
98
|
-
|
99
|
-
def build_tree(sample_ids)
|
100
|
-
n_samples = sample_ids.size
|
101
|
-
node = Node.new
|
102
|
-
node.n_samples = n_samples
|
103
|
-
node.sample_ids = sample_ids
|
104
|
-
return node if n_samples <= @params[:min_samples_leaf]
|
105
|
-
|
106
|
-
vantage_point_id = select_vantage_point_id(sample_ids)
|
107
|
-
distance_arr = calc_distances(@data[vantage_point_id, true], @data[sample_ids, true])
|
108
|
-
threshold = distance_arr.median
|
109
|
-
left_flgs = distance_arr.lt(threshold)
|
110
|
-
right_flgs = distance_arr.ge(threshold)
|
111
|
-
return node if left_flgs.count < @params[:min_samples_leaf] || right_flgs.count < @params[:min_samples_leaf]
|
112
|
-
|
113
|
-
node.left = build_tree(sample_ids[left_flgs])
|
114
|
-
node.right = build_tree(sample_ids[right_flgs])
|
115
|
-
node.vantage_point_id = vantage_point_id
|
116
|
-
node.threshold = threshold
|
117
|
-
node
|
118
|
-
end
|
119
|
-
|
120
|
-
def select_vantage_point_id(sample_ids)
|
121
|
-
dist_mat = Rumale::PairwiseMetric.euclidean_distance(@data[sample_ids, true])
|
122
|
-
means = dist_mat.mean(0)
|
123
|
-
vars = ((dist_mat - means)**2).mean(0)
|
124
|
-
sample_ids[vars.max_index]
|
125
|
-
end
|
126
|
-
|
127
|
-
def calc_distances(q, x)
|
128
|
-
Rumale::PairwiseMetric.euclidean_distance(q.expand_dims(0), x).flatten.dup
|
129
|
-
end
|
130
|
-
end
|
131
|
-
end
|
132
|
-
end
|
@@ -1,56 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module NeuralNetwork
|
7
|
-
# @!visibility private
|
8
|
-
# This module consists of the classes that implement optimizers adaptively tuning learning rate.
|
9
|
-
module Optimizer
|
10
|
-
# @!visibility private
|
11
|
-
# Adam is a class that implements Adam optimizer.
|
12
|
-
#
|
13
|
-
# *Reference*
|
14
|
-
# - Kingma, D P., and Ba, J., "Adam: A Method for Stochastic Optimization," Proc. ICLR'15, 2015.
|
15
|
-
class Adam
|
16
|
-
include Base::BaseEstimator
|
17
|
-
|
18
|
-
# @!visibility private
|
19
|
-
# Create a new optimizer with Adam
|
20
|
-
#
|
21
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
22
|
-
# @param decay1 [Float] The smoothing parameter for the first moment.
|
23
|
-
# @param decay2 [Float] The smoothing parameter for the second moment.
|
24
|
-
def initialize(learning_rate: 0.001, decay1: 0.9, decay2: 0.999)
|
25
|
-
@params = {}
|
26
|
-
@params[:learning_rate] = learning_rate
|
27
|
-
@params[:decay1] = decay1
|
28
|
-
@params[:decay2] = decay2
|
29
|
-
@fst_moment = nil
|
30
|
-
@sec_moment = nil
|
31
|
-
@iter = 0
|
32
|
-
end
|
33
|
-
|
34
|
-
# @!visibility private
|
35
|
-
# Calculate the updated weight with Adam adaptive learning rate.
|
36
|
-
#
|
37
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
38
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
39
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
40
|
-
def call(weight, gradient)
|
41
|
-
@fst_moment ||= Numo::DFloat.zeros(weight.shape)
|
42
|
-
@sec_moment ||= Numo::DFloat.zeros(weight.shape)
|
43
|
-
|
44
|
-
@iter += 1
|
45
|
-
|
46
|
-
@fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
|
47
|
-
@sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
|
48
|
-
nm_fst_moment = @fst_moment / (1.0 - @params[:decay1]**@iter)
|
49
|
-
nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
|
50
|
-
|
51
|
-
weight - @params[:learning_rate] * nm_fst_moment / (nm_sec_moment**0.5 + 1e-8)
|
52
|
-
end
|
53
|
-
end
|
54
|
-
end
|
55
|
-
end
|
56
|
-
end
|
@@ -1,248 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
# This module consists of the modules and classes for implementation multi-layer perceptron estimator.
|
7
|
-
module NeuralNetwork
|
8
|
-
# @!visibility private
|
9
|
-
# This module consists of the classes that implement layer functions of neural network.
|
10
|
-
module Layer
|
11
|
-
# @!visibility private
|
12
|
-
# Affine is a class that calculates the linear transform.
|
13
|
-
# This class is used internally.
|
14
|
-
class Affine
|
15
|
-
# @!visibility private
|
16
|
-
def initialize(n_inputs: nil, n_outputs: nil, optimizer: nil, rng: nil)
|
17
|
-
@weight = 0.01 * Rumale::Utils.rand_normal([n_inputs, n_outputs], rng)
|
18
|
-
@bias = Numo::DFloat.zeros(n_outputs)
|
19
|
-
@optimizer_weight = optimizer.dup
|
20
|
-
@optimizer_bias = optimizer.dup
|
21
|
-
end
|
22
|
-
|
23
|
-
# @!visibility private
|
24
|
-
def forward(x)
|
25
|
-
out = x.dot(@weight) + @bias
|
26
|
-
|
27
|
-
backward = proc do |dout|
|
28
|
-
dx = dout.dot(@weight.transpose)
|
29
|
-
dw = x.transpose.dot(dout)
|
30
|
-
db = dout.sum(0)
|
31
|
-
|
32
|
-
@weight = @optimizer_weight.call(@weight, dw)
|
33
|
-
@bias = @optimizer_bias.call(@bias, db)
|
34
|
-
|
35
|
-
dx
|
36
|
-
end
|
37
|
-
|
38
|
-
[out, backward]
|
39
|
-
end
|
40
|
-
end
|
41
|
-
|
42
|
-
# @!visibility private
|
43
|
-
# Dropout is a class that performs dropout regularization.
|
44
|
-
# This class is used internally.
|
45
|
-
class Dropout
|
46
|
-
# @!visibility private
|
47
|
-
def initialize(rate: 0.3, rng: nil)
|
48
|
-
@rate = rate
|
49
|
-
@rng = rng
|
50
|
-
end
|
51
|
-
|
52
|
-
# @!visibility private
|
53
|
-
def forward(x)
|
54
|
-
rand_mat = Rumale::Utils.rand_uniform(x.shape, @rng)
|
55
|
-
mask = rand_mat.ge(@rate)
|
56
|
-
out = x * mask
|
57
|
-
out *= 1.fdiv(1 - @rate) if @rate < 1.0
|
58
|
-
|
59
|
-
backward = proc { |dout| dout * mask }
|
60
|
-
|
61
|
-
[out, backward]
|
62
|
-
end
|
63
|
-
end
|
64
|
-
|
65
|
-
# @!visibility private
|
66
|
-
# ReLU is a class that calculates rectified linear function.
|
67
|
-
# This class is used internally.
|
68
|
-
class Relu
|
69
|
-
# @!visibility private
|
70
|
-
def forward(x)
|
71
|
-
mask = x.gt(0)
|
72
|
-
out = x * mask
|
73
|
-
|
74
|
-
backward = proc { |dout| dout * mask }
|
75
|
-
|
76
|
-
[out, backward]
|
77
|
-
end
|
78
|
-
end
|
79
|
-
end
|
80
|
-
|
81
|
-
# @!visibility private
|
82
|
-
# This module consists of the classes that implement loss function for neural network.
|
83
|
-
module Loss
|
84
|
-
# @!visibility private
|
85
|
-
# MeanSquaredError is a class that calculates mean squared error for regression task.
|
86
|
-
# This class is used internally.
|
87
|
-
class MeanSquaredError
|
88
|
-
# @!visibility private
|
89
|
-
def call(out, y)
|
90
|
-
sz_batch = y.shape[0]
|
91
|
-
diff = out - y
|
92
|
-
loss = (diff**2).sum.fdiv(sz_batch)
|
93
|
-
dout = 2.fdiv(sz_batch) * diff
|
94
|
-
[loss, dout]
|
95
|
-
end
|
96
|
-
end
|
97
|
-
|
98
|
-
# @!visibility private
|
99
|
-
# SoftmaxCrossEntropy is a class that calculates softmax cross-entropy for classification task.
|
100
|
-
# This class is used internally.
|
101
|
-
class SoftmaxCrossEntropy
|
102
|
-
# @!visibility private
|
103
|
-
def call(out, y)
|
104
|
-
sz_batch = y.shape[0]
|
105
|
-
z = softmax(out)
|
106
|
-
loss = -(y * Numo::NMath.log(z + 1e-8)).sum.fdiv(sz_batch)
|
107
|
-
dout = (z - y) / sz_batch
|
108
|
-
[loss, dout]
|
109
|
-
end
|
110
|
-
|
111
|
-
private
|
112
|
-
|
113
|
-
def softmax(x)
|
114
|
-
clip = x.max(-1).expand_dims(-1)
|
115
|
-
exp_x = Numo::NMath.exp(x - clip)
|
116
|
-
exp_x / exp_x.sum(-1).expand_dims(-1)
|
117
|
-
end
|
118
|
-
end
|
119
|
-
end
|
120
|
-
|
121
|
-
# @!visibility private
|
122
|
-
# This module consists of the classes for implementing neural network model.
|
123
|
-
module Model
|
124
|
-
# @!visibility private
|
125
|
-
attr_reader :layers
|
126
|
-
|
127
|
-
# @!visibility private
|
128
|
-
# Sequential is a class that implements linear stack model.
|
129
|
-
# This class is used internally.
|
130
|
-
class Sequential
|
131
|
-
# @!visibility private
|
132
|
-
def initialize
|
133
|
-
@layers = []
|
134
|
-
end
|
135
|
-
|
136
|
-
# @!visibility private
|
137
|
-
def push(ops)
|
138
|
-
@layers.push(ops)
|
139
|
-
self
|
140
|
-
end
|
141
|
-
|
142
|
-
# @!visibility private
|
143
|
-
def delete_dropout
|
144
|
-
@layers.delete_if { |node| node.is_a?(Layer::Dropout) }
|
145
|
-
self
|
146
|
-
end
|
147
|
-
|
148
|
-
# @!visibility private
|
149
|
-
def forward(x)
|
150
|
-
backprops = []
|
151
|
-
out = x.dup
|
152
|
-
|
153
|
-
@layers.each do |l|
|
154
|
-
out, bw = l.forward(out)
|
155
|
-
backprops.push(bw)
|
156
|
-
end
|
157
|
-
|
158
|
-
backward = proc do |dout|
|
159
|
-
backprops.reverse_each { |bw| dout = bw.call(dout) }
|
160
|
-
dout
|
161
|
-
end
|
162
|
-
|
163
|
-
[out, backward]
|
164
|
-
end
|
165
|
-
end
|
166
|
-
end
|
167
|
-
|
168
|
-
# BaseMLP is an abstract class for implementation of multi-layer peceptron estimator.
|
169
|
-
# This class is used internally.
|
170
|
-
class BaseMLP
|
171
|
-
include Base::BaseEstimator
|
172
|
-
|
173
|
-
# Create a multi-layer perceptron estimator.
|
174
|
-
#
|
175
|
-
# @param hidden_units [Array] The number of units in the i-th hidden layer.
|
176
|
-
# @param dropout_rate [Float] The rate of the units to drop.
|
177
|
-
# @param learning_rate [Float] The initial value of learning rate in Adam optimizer.
|
178
|
-
# @param decay1 [Float] The smoothing parameter for the first moment in Adam optimizer.
|
179
|
-
# @param decay2 [Float] The smoothing parameter for the second moment in Adam optimizer.
|
180
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
181
|
-
# how many times the whole data is given to the training process.
|
182
|
-
# @param batch_size [Intger] The size of the mini batches.
|
183
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
184
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
185
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
186
|
-
def initialize(hidden_units: [128, 128], dropout_rate: 0.4, learning_rate: 0.001, decay1: 0.9, decay2: 0.999,
|
187
|
-
max_iter: 200, batch_size: 50, tol: 1e-4, verbose: false, random_seed: nil)
|
188
|
-
@params = {}
|
189
|
-
@params[:hidden_units] = hidden_units
|
190
|
-
@params[:dropout_rate] = dropout_rate
|
191
|
-
@params[:learning_rate] = learning_rate
|
192
|
-
@params[:decay1] = decay1
|
193
|
-
@params[:decay2] = decay2
|
194
|
-
@params[:max_iter] = max_iter
|
195
|
-
@params[:batch_size] = batch_size
|
196
|
-
@params[:tol] = tol
|
197
|
-
@params[:verbose] = verbose
|
198
|
-
@params[:random_seed] = random_seed
|
199
|
-
@params[:random_seed] ||= srand
|
200
|
-
@n_iter = nil
|
201
|
-
@rng = Random.new(@params[:random_seed])
|
202
|
-
end
|
203
|
-
|
204
|
-
private
|
205
|
-
|
206
|
-
def buld_network(n_inputs, n_outputs, srng = nil)
|
207
|
-
adam = Rumale::NeuralNetwork::Optimizer::Adam.new(
|
208
|
-
learning_rate: @params[:learning_rate], decay1: @params[:decay1], decay2: @params[:decay2]
|
209
|
-
)
|
210
|
-
model = Model::Sequential.new
|
211
|
-
n_units = [n_inputs, *@params[:hidden_units]]
|
212
|
-
n_units.each_cons(2) do |n_in, n_out|
|
213
|
-
model.push(Layer::Affine.new(n_inputs: n_in, n_outputs: n_out, optimizer: adam, rng: srng))
|
214
|
-
model.push(Layer::Relu.new)
|
215
|
-
model.push(Layer::Dropout.new(rate: @params[:dropout_rate], rng: srng))
|
216
|
-
end
|
217
|
-
model.push(Layer::Affine.new(n_inputs: n_units[-1], n_outputs: n_outputs, optimizer: adam, rng: srng))
|
218
|
-
end
|
219
|
-
|
220
|
-
def train(x, y, network, loss_func, srng = nil)
|
221
|
-
class_name = self.class.to_s.split('::').last
|
222
|
-
n_samples = x.shape[0]
|
223
|
-
|
224
|
-
@params[:max_iter].times do |t|
|
225
|
-
sample_ids = Array(0...n_samples)
|
226
|
-
sample_ids.shuffle!(random: srng)
|
227
|
-
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
228
|
-
# random sampling
|
229
|
-
sub_x = x[subset_ids, true].dup
|
230
|
-
sub_y = y[subset_ids, true].dup
|
231
|
-
# forward
|
232
|
-
out, backward = network.forward(sub_x)
|
233
|
-
# calc loss function
|
234
|
-
loss, dout = loss_func.call(out, sub_y)
|
235
|
-
break if loss < @params[:tol]
|
236
|
-
|
237
|
-
# backward
|
238
|
-
backward.call(dout)
|
239
|
-
end
|
240
|
-
@n_iter = t + 1
|
241
|
-
puts "[#{class_name}] Loss after #{@n_iter} epochs: #{loss}" if @params[:verbose]
|
242
|
-
end
|
243
|
-
|
244
|
-
network
|
245
|
-
end
|
246
|
-
end
|
247
|
-
end
|
248
|
-
end
|
@@ -1,120 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/classifier'
|
4
|
-
require 'rumale/neural_network/base_mlp'
|
5
|
-
require 'rumale/preprocessing/label_binarizer'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module NeuralNetwork
|
9
|
-
# MLPClassifier is a class that implements classifier based on multi-layer perceptron.
|
10
|
-
# MLPClassifier use ReLu as the activation function and Adam as the optimization method
|
11
|
-
# and softmax cross entropy as the loss function.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator = Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [100, 100], dropout_rate: 0.3)
|
15
|
-
# estimator.fit(training_samples, traininig_labels)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
class MLPClassifier < BaseMLP
|
18
|
-
include Base::Classifier
|
19
|
-
|
20
|
-
# Return the network.
|
21
|
-
# @return [Rumale::NeuralNetwork::Model::Sequential]
|
22
|
-
attr_reader :network
|
23
|
-
|
24
|
-
# Return the class labels.
|
25
|
-
# @return [Numo::Int32] (size: n_classes)
|
26
|
-
attr_reader :classes
|
27
|
-
|
28
|
-
# Return the number of iterations run for optimization
|
29
|
-
# @return [Integer]
|
30
|
-
attr_reader :n_iter
|
31
|
-
|
32
|
-
# Return the random generator.
|
33
|
-
# @return [Random]
|
34
|
-
attr_reader :rng
|
35
|
-
|
36
|
-
# Create a new classifier with multi-layer preceptron.
|
37
|
-
#
|
38
|
-
# @param hidden_units [Array] The number of units in the i-th hidden layer.
|
39
|
-
# @param dropout_rate [Float] The rate of the units to drop.
|
40
|
-
# @param learning_rate [Float] The initial value of learning rate in Adam optimizer.
|
41
|
-
# @param decay1 [Float] The smoothing parameter for the first moment in Adam optimizer.
|
42
|
-
# @param decay2 [Float] The smoothing parameter for the second moment in Adam optimizer.
|
43
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
44
|
-
# how many times the whole data is given to the training process.
|
45
|
-
# @param batch_size [Intger] The size of the mini batches.
|
46
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
47
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
48
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
|
-
def initialize(hidden_units: [128, 128], dropout_rate: 0.4, learning_rate: 0.001, decay1: 0.9, decay2: 0.999,
|
50
|
-
max_iter: 200, batch_size: 50, tol: 1e-4, verbose: false, random_seed: nil)
|
51
|
-
check_params_type(Array, hidden_units: hidden_units)
|
52
|
-
check_params_numeric(dropout_rate: dropout_rate, learning_rate: learning_rate, decay1: decay1, decay2: decay2,
|
53
|
-
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
54
|
-
check_params_boolean(verbose: verbose)
|
55
|
-
check_params_numeric_or_nil(random_seed: random_seed)
|
56
|
-
super
|
57
|
-
@classes = nil
|
58
|
-
@network = nil
|
59
|
-
end
|
60
|
-
|
61
|
-
# Fit the model with given training data.
|
62
|
-
#
|
63
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
64
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
65
|
-
# @return [MLPClassifier] The learned classifier itself.
|
66
|
-
def fit(x, y)
|
67
|
-
x = check_convert_sample_array(x)
|
68
|
-
y = check_convert_label_array(y)
|
69
|
-
check_sample_label_size(x, y)
|
70
|
-
|
71
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
72
|
-
n_labels = @classes.size
|
73
|
-
n_features = x.shape[1]
|
74
|
-
sub_rng = @rng.dup
|
75
|
-
|
76
|
-
loss = Loss::SoftmaxCrossEntropy.new
|
77
|
-
@network = buld_network(n_features, n_labels, sub_rng)
|
78
|
-
@network = train(x, one_hot_encode(y), @network, loss, sub_rng)
|
79
|
-
@network.delete_dropout
|
80
|
-
|
81
|
-
self
|
82
|
-
end
|
83
|
-
|
84
|
-
# Predict class labels for samples.
|
85
|
-
#
|
86
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
87
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
88
|
-
def predict(x)
|
89
|
-
x = check_convert_sample_array(x)
|
90
|
-
n_samples = x.shape[0]
|
91
|
-
decision_values = predict_proba(x)
|
92
|
-
predicted = Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
93
|
-
Numo::Int32.asarray(predicted)
|
94
|
-
end
|
95
|
-
|
96
|
-
# Predict probability for samples.
|
97
|
-
#
|
98
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
99
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
100
|
-
def predict_proba(x)
|
101
|
-
x = check_convert_sample_array(x)
|
102
|
-
out, = @network.forward(x)
|
103
|
-
softmax(out)
|
104
|
-
end
|
105
|
-
|
106
|
-
private
|
107
|
-
|
108
|
-
def one_hot_encode(y)
|
109
|
-
encoder = Rumale::Preprocessing::LabelBinarizer.new
|
110
|
-
encoder.fit_transform(y)
|
111
|
-
end
|
112
|
-
|
113
|
-
def softmax(x)
|
114
|
-
clip = x.max(-1).expand_dims(-1)
|
115
|
-
exp_x = Numo::NMath.exp(x - clip)
|
116
|
-
exp_x / exp_x.sum(-1).expand_dims(-1)
|
117
|
-
end
|
118
|
-
end
|
119
|
-
end
|
120
|
-
end
|
@@ -1,90 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/regressor'
|
4
|
-
require 'rumale/neural_network/base_mlp'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module NeuralNetwork
|
8
|
-
# MLPRegressor is a class that implements regressor based on multi-layer perceptron.
|
9
|
-
# MLPRegressor use ReLu as the activation function and Adam as the optimization method
|
10
|
-
# and mean squared error as the loss function.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator = Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [100, 100], dropout_rate: 0.3)
|
14
|
-
# estimator.fit(training_samples, traininig_labels)
|
15
|
-
# results = estimator.predict(testing_samples)
|
16
|
-
class MLPRegressor < BaseMLP
|
17
|
-
include Base::Regressor
|
18
|
-
|
19
|
-
# Return the network.
|
20
|
-
# @return [Rumale::NeuralNetwork::Model::Sequential]
|
21
|
-
attr_reader :network
|
22
|
-
|
23
|
-
# Return the number of iterations run for optimization
|
24
|
-
# @return [Integer]
|
25
|
-
attr_reader :n_iter
|
26
|
-
|
27
|
-
# Return the random generator.
|
28
|
-
# @return [Random]
|
29
|
-
attr_reader :rng
|
30
|
-
|
31
|
-
# Create a new regressor with multi-layer perceptron.
|
32
|
-
#
|
33
|
-
# @param hidden_units [Array] The number of units in the i-th hidden layer.
|
34
|
-
# @param dropout_rate [Float] The rate of the units to drop.
|
35
|
-
# @param learning_rate [Float] The initial value of learning rate in Adam optimizer.
|
36
|
-
# @param decay1 [Float] The smoothing parameter for the first moment in Adam optimizer.
|
37
|
-
# @param decay2 [Float] The smoothing parameter for the second moment in Adam optimizer.
|
38
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
39
|
-
# how many times the whole data is given to the training process.
|
40
|
-
# @param batch_size [Intger] The size of the mini batches.
|
41
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
42
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
43
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
-
def initialize(hidden_units: [128, 128], dropout_rate: 0.4, learning_rate: 0.001, decay1: 0.9, decay2: 0.999,
|
45
|
-
max_iter: 200, batch_size: 50, tol: 1e-4, verbose: false, random_seed: nil)
|
46
|
-
check_params_type(Array, hidden_units: hidden_units)
|
47
|
-
check_params_numeric(dropout_rate: dropout_rate, learning_rate: learning_rate, decay1: decay1, decay2: decay2,
|
48
|
-
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
49
|
-
check_params_boolean(verbose: verbose)
|
50
|
-
check_params_numeric_or_nil(random_seed: random_seed)
|
51
|
-
super
|
52
|
-
@network = nil
|
53
|
-
end
|
54
|
-
|
55
|
-
# Fit the model with given training data.
|
56
|
-
#
|
57
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
58
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
59
|
-
# @return [MLPRegressor] The learned regressor itself.
|
60
|
-
def fit(x, y)
|
61
|
-
x = check_convert_sample_array(x)
|
62
|
-
y = check_convert_tvalue_array(y)
|
63
|
-
check_sample_tvalue_size(x, y)
|
64
|
-
|
65
|
-
y = y.expand_dims(1) if y.ndim == 1
|
66
|
-
n_targets = y.shape[1]
|
67
|
-
n_features = x.shape[1]
|
68
|
-
sub_rng = @rng.dup
|
69
|
-
|
70
|
-
loss = Loss::MeanSquaredError.new
|
71
|
-
@network = buld_network(n_features, n_targets, sub_rng)
|
72
|
-
@network = train(x, y, @network, loss, sub_rng)
|
73
|
-
@network.delete_dropout
|
74
|
-
|
75
|
-
self
|
76
|
-
end
|
77
|
-
|
78
|
-
# Predict values for samples.
|
79
|
-
#
|
80
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
81
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
82
|
-
def predict(x)
|
83
|
-
x = check_convert_sample_array(x)
|
84
|
-
out, = @network.forward(x)
|
85
|
-
out = out[true, 0] if out.shape[1] == 1
|
86
|
-
out
|
87
|
-
end
|
88
|
-
end
|
89
|
-
end
|
90
|
-
end
|