rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,49 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
module Rumale
|
4
|
-
# This module consists of basic mix-in classes.
|
5
|
-
module Base
|
6
|
-
# Base module for all estimators in Rumale.
|
7
|
-
module BaseEstimator
|
8
|
-
# Return parameters about an estimator.
|
9
|
-
# @return [Hash]
|
10
|
-
attr_reader :params
|
11
|
-
|
12
|
-
private
|
13
|
-
|
14
|
-
def enable_linalg?(warning: true)
|
15
|
-
if defined?(Numo::Linalg).nil?
|
16
|
-
warn('If you want to use features that depend on Numo::Linalg, you should install and load Numo::Linalg in advance.') if warning
|
17
|
-
return false
|
18
|
-
end
|
19
|
-
if Numo::Linalg::VERSION < '0.1.4'
|
20
|
-
if warning
|
21
|
-
warn('The loaded Numo::Linalg does not implement the methods required by Rumale. Please load Numo::Linalg version 0.1.4 or later.')
|
22
|
-
end
|
23
|
-
return false
|
24
|
-
end
|
25
|
-
true
|
26
|
-
end
|
27
|
-
|
28
|
-
def enable_parallel?
|
29
|
-
return false if @params[:n_jobs].nil?
|
30
|
-
|
31
|
-
if defined?(Parallel).nil?
|
32
|
-
warn('If you want to use parallel option, you should install and load Parallel in advance.')
|
33
|
-
return false
|
34
|
-
end
|
35
|
-
true
|
36
|
-
end
|
37
|
-
|
38
|
-
def n_processes
|
39
|
-
return 1 unless enable_parallel?
|
40
|
-
|
41
|
-
@params[:n_jobs] <= 0 ? Parallel.processor_count : @params[:n_jobs]
|
42
|
-
end
|
43
|
-
|
44
|
-
def parallel_map(n_outputs, &block)
|
45
|
-
Parallel.map(Array.new(n_outputs) { |v| v }, in_processes: n_processes, &block)
|
46
|
-
end
|
47
|
-
end
|
48
|
-
end
|
49
|
-
end
|
@@ -1,36 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/evaluation_measure/accuracy'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Base
|
8
|
-
# Module for all classifiers in Rumale.
|
9
|
-
module Classifier
|
10
|
-
include Validation
|
11
|
-
|
12
|
-
# An abstract method for fitting a model.
|
13
|
-
def fit
|
14
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
15
|
-
end
|
16
|
-
|
17
|
-
# An abstract method for predicting labels.
|
18
|
-
def predict
|
19
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
20
|
-
end
|
21
|
-
|
22
|
-
# Calculate the mean accuracy of the given testing data.
|
23
|
-
#
|
24
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
25
|
-
# @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data.
|
26
|
-
# @return [Float] Mean accuracy
|
27
|
-
def score(x, y)
|
28
|
-
x = check_convert_sample_array(x)
|
29
|
-
y = check_convert_label_array(y)
|
30
|
-
check_sample_label_size(x, y)
|
31
|
-
evaluator = Rumale::EvaluationMeasure::Accuracy.new
|
32
|
-
evaluator.score(y, predict(x))
|
33
|
-
end
|
34
|
-
end
|
35
|
-
end
|
36
|
-
end
|
@@ -1,31 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/evaluation_measure/purity'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Base
|
8
|
-
# Module for all clustering algorithms in Rumale.
|
9
|
-
module ClusterAnalyzer
|
10
|
-
include Validation
|
11
|
-
|
12
|
-
# An abstract method for analyzing clusters and predicting cluster indices.
|
13
|
-
def fit_predict
|
14
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
15
|
-
end
|
16
|
-
|
17
|
-
# Calculate purity of clustering result.
|
18
|
-
#
|
19
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
20
|
-
# @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data.
|
21
|
-
# @return [Float] Purity
|
22
|
-
def score(x, y)
|
23
|
-
x = check_convert_sample_array(x)
|
24
|
-
y = check_convert_label_array(y)
|
25
|
-
check_sample_label_size(x, y)
|
26
|
-
evaluator = Rumale::EvaluationMeasure::Purity.new
|
27
|
-
evaluator.score(y, fit_predict(x))
|
28
|
-
end
|
29
|
-
end
|
30
|
-
end
|
31
|
-
end
|
@@ -1,17 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module Base
|
7
|
-
# Module for all evaluation measures in Rumale.
|
8
|
-
module Evaluator
|
9
|
-
include Validation
|
10
|
-
|
11
|
-
# An abstract method for evaluation of model.
|
12
|
-
def score
|
13
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
14
|
-
end
|
15
|
-
end
|
16
|
-
end
|
17
|
-
end
|
@@ -1,36 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/evaluation_measure/r2_score'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Base
|
8
|
-
# Module for all regressors in Rumale.
|
9
|
-
module Regressor
|
10
|
-
include Validation
|
11
|
-
|
12
|
-
# An abstract method for fitting a model.
|
13
|
-
def fit
|
14
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
15
|
-
end
|
16
|
-
|
17
|
-
# An abstract method for predicting labels.
|
18
|
-
def predict
|
19
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
20
|
-
end
|
21
|
-
|
22
|
-
# Calculate the coefficient of determination for the given testing data.
|
23
|
-
#
|
24
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
25
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) Target values for testing data.
|
26
|
-
# @return [Float] Coefficient of determination
|
27
|
-
def score(x, y)
|
28
|
-
x = check_convert_sample_array(x)
|
29
|
-
y = check_convert_tvalue_array(y)
|
30
|
-
check_sample_tvalue_size(x, y)
|
31
|
-
evaluator = Rumale::EvaluationMeasure::R2Score.new
|
32
|
-
evaluator.score(y, predict(x))
|
33
|
-
end
|
34
|
-
end
|
35
|
-
end
|
36
|
-
end
|
data/lib/rumale/base/splitter.rb
DELETED
@@ -1,21 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module Base
|
7
|
-
# Module for all validation methods in Rumale.
|
8
|
-
module Splitter
|
9
|
-
include Validation
|
10
|
-
|
11
|
-
# Return the number of splits.
|
12
|
-
# @return [Integer]
|
13
|
-
attr_reader :n_splits
|
14
|
-
|
15
|
-
# An abstract method for splitting dataset.
|
16
|
-
def split
|
17
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
18
|
-
end
|
19
|
-
end
|
20
|
-
end
|
21
|
-
end
|
@@ -1,22 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
|
5
|
-
module Rumale
|
6
|
-
module Base
|
7
|
-
# Module for all transfomers in Rumale.
|
8
|
-
module Transformer
|
9
|
-
include Validation
|
10
|
-
|
11
|
-
# An abstract method for fitting a model.
|
12
|
-
def fit
|
13
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
14
|
-
end
|
15
|
-
|
16
|
-
# An abstract method for fitting a model and transforming given data.
|
17
|
-
def fit_transform
|
18
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
19
|
-
end
|
20
|
-
end
|
21
|
-
end
|
22
|
-
end
|
@@ -1,123 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/cluster_analyzer'
|
5
|
-
require 'rumale/pairwise_metric'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module Clustering
|
9
|
-
# DBSCAN is a class that implements DBSCAN cluster analysis.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# analyzer = Rumale::Clustering::DBSCAN.new(eps: 0.5, min_samples: 5)
|
13
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - Ester, M., Kriegel, H-P., Sander, J., and Xu, X., "A density-based algorithm for discovering clusters in large spatial databases with noise," Proc. KDD' 96, pp. 266--231, 1996.
|
17
|
-
class DBSCAN
|
18
|
-
include Base::BaseEstimator
|
19
|
-
include Base::ClusterAnalyzer
|
20
|
-
|
21
|
-
# Return the core sample indices.
|
22
|
-
# @return [Numo::Int32] (shape: [n_core_samples])
|
23
|
-
attr_reader :core_sample_ids
|
24
|
-
|
25
|
-
# Return the cluster labels. The negative cluster label indicates that the point is noise.
|
26
|
-
# @return [Numo::Int32] (shape: [n_samples])
|
27
|
-
attr_reader :labels
|
28
|
-
|
29
|
-
# Create a new cluster analyzer with DBSCAN method.
|
30
|
-
#
|
31
|
-
# @param eps [Float] The radius of neighborhood.
|
32
|
-
# @param min_samples [Integer] The number of neighbor samples to be used for the criterion whether a point is a core point.
|
33
|
-
# @param metric [String] The metric to calculate the distances.
|
34
|
-
# If metric is 'euclidean', Euclidean distance is calculated for distance between points.
|
35
|
-
# If metric is 'precomputed', the fit and fit_transform methods expect to be given a distance matrix.
|
36
|
-
def initialize(eps: 0.5, min_samples: 5, metric: 'euclidean')
|
37
|
-
check_params_numeric(eps: eps, min_samples: min_samples)
|
38
|
-
check_params_string(metric: metric)
|
39
|
-
@params = {}
|
40
|
-
@params[:eps] = eps
|
41
|
-
@params[:min_samples] = min_samples
|
42
|
-
@params[:metric] = metric == 'precomputed' ? 'precomputed' : 'euclidean'
|
43
|
-
@core_sample_ids = nil
|
44
|
-
@labels = nil
|
45
|
-
end
|
46
|
-
|
47
|
-
# Analysis clusters with given training data.
|
48
|
-
#
|
49
|
-
# @overload fit(x) -> DBSCAN
|
50
|
-
#
|
51
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
52
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
53
|
-
# @return [DBSCAN] The learned cluster analyzer itself.
|
54
|
-
def fit(x, _y = nil)
|
55
|
-
x = check_convert_sample_array(x)
|
56
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
57
|
-
|
58
|
-
partial_fit(x)
|
59
|
-
self
|
60
|
-
end
|
61
|
-
|
62
|
-
# Analysis clusters and assign samples to clusters.
|
63
|
-
#
|
64
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for cluster analysis.
|
65
|
-
# If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
66
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
67
|
-
def fit_predict(x)
|
68
|
-
x = check_convert_sample_array(x)
|
69
|
-
raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
|
70
|
-
|
71
|
-
partial_fit(x)
|
72
|
-
labels
|
73
|
-
end
|
74
|
-
|
75
|
-
private
|
76
|
-
|
77
|
-
def partial_fit(x)
|
78
|
-
cluster_id = 0
|
79
|
-
metric_mat = calc_pairwise_metrics(x)
|
80
|
-
n_samples = metric_mat.shape[0]
|
81
|
-
@core_sample_ids = []
|
82
|
-
@labels = Numo::Int32.zeros(n_samples) - 2
|
83
|
-
n_samples.times do |query_id|
|
84
|
-
next if @labels[query_id] >= -1
|
85
|
-
|
86
|
-
cluster_id += 1 if expand_cluster(metric_mat, query_id, cluster_id)
|
87
|
-
end
|
88
|
-
@core_sample_ids = Numo::Int32[*@core_sample_ids.flatten]
|
89
|
-
nil
|
90
|
-
end
|
91
|
-
|
92
|
-
def calc_pairwise_metrics(x)
|
93
|
-
@params[:metric] == 'precomputed' ? x : Rumale::PairwiseMetric.euclidean_distance(x)
|
94
|
-
end
|
95
|
-
|
96
|
-
def expand_cluster(metric_mat, query_id, cluster_id)
|
97
|
-
target_ids = region_query(metric_mat[query_id, true])
|
98
|
-
if target_ids.size < @params[:min_samples]
|
99
|
-
@labels[query_id] = -1
|
100
|
-
false
|
101
|
-
else
|
102
|
-
@labels[target_ids] = cluster_id
|
103
|
-
@core_sample_ids.push(target_ids.dup)
|
104
|
-
target_ids.delete(query_id)
|
105
|
-
while (m = target_ids.shift)
|
106
|
-
neighbor_ids = region_query(metric_mat[m, true])
|
107
|
-
next if neighbor_ids.size < @params[:min_samples]
|
108
|
-
|
109
|
-
neighbor_ids.each do |n|
|
110
|
-
target_ids.push(n) if @labels[n] < -1
|
111
|
-
@labels[n] = cluster_id if @labels[n] <= -1
|
112
|
-
end
|
113
|
-
end
|
114
|
-
true
|
115
|
-
end
|
116
|
-
end
|
117
|
-
|
118
|
-
def region_query(metric_arr)
|
119
|
-
metric_arr.lt(@params[:eps]).where.to_a
|
120
|
-
end
|
121
|
-
end
|
122
|
-
end
|
123
|
-
end
|
@@ -1,218 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/cluster_analyzer'
|
5
|
-
require 'rumale/preprocessing/label_binarizer'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module Clustering
|
9
|
-
# GaussianMixture is a class that implements cluster analysis with gaussian mixture model.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# analyzer = Rumale::Clustering::GaussianMixture.new(n_clusters: 10, max_iter: 50)
|
13
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
14
|
-
#
|
15
|
-
# # If Numo::Linalg is installed, you can specify 'full' for the tyep of covariance option.
|
16
|
-
# require 'numo/linalg/autoloader'
|
17
|
-
# analyzer = Rumale::Clustering::GaussianMixture.new(n_clusters: 10, max_iter: 50, covariance_type: 'full')
|
18
|
-
# cluster_labels = analyzer.fit_predict(samples)
|
19
|
-
#
|
20
|
-
class GaussianMixture
|
21
|
-
include Base::BaseEstimator
|
22
|
-
include Base::ClusterAnalyzer
|
23
|
-
|
24
|
-
# Return the number of iterations to covergence.
|
25
|
-
# @return [Integer]
|
26
|
-
attr_reader :n_iter
|
27
|
-
|
28
|
-
# Return the weight of each cluster.
|
29
|
-
# @return [Numo::DFloat] (shape: [n_clusters])
|
30
|
-
attr_reader :weights
|
31
|
-
|
32
|
-
# Return the mean of each cluster.
|
33
|
-
# @return [Numo::DFloat] (shape: [n_clusters, n_features])
|
34
|
-
attr_reader :means
|
35
|
-
|
36
|
-
# Return the diagonal elements of covariance matrix of each cluster.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_clusters, n_features] if 'diag', [n_clusters, n_features, n_features] if 'full')
|
38
|
-
attr_reader :covariances
|
39
|
-
|
40
|
-
# Create a new cluster analyzer with gaussian mixture model.
|
41
|
-
#
|
42
|
-
# @param n_clusters [Integer] The number of clusters.
|
43
|
-
# @param init [String] The initialization method for centroids ('random' or 'k-means++').
|
44
|
-
# @param covariance_type [String] The type of covariance parameter to be used ('diag' or 'full').
|
45
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
46
|
-
# @param tol [Float] The tolerance of termination criterion.
|
47
|
-
# @param reg_covar [Float] The non-negative regularization to the diagonal of covariance.
|
48
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
|
-
def initialize(n_clusters: 8, init: 'k-means++', covariance_type: 'diag', max_iter: 50, tol: 1.0e-4, reg_covar: 1.0e-6, random_seed: nil)
|
50
|
-
check_params_numeric(n_clusters: n_clusters, max_iter: max_iter, tol: tol)
|
51
|
-
check_params_string(init: init)
|
52
|
-
check_params_numeric_or_nil(random_seed: random_seed)
|
53
|
-
check_params_positive(n_clusters: n_clusters, max_iter: max_iter)
|
54
|
-
@params = {}
|
55
|
-
@params[:n_clusters] = n_clusters
|
56
|
-
@params[:init] = init == 'random' ? 'random' : 'k-means++'
|
57
|
-
@params[:covariance_type] = covariance_type == 'full' ? 'full' : 'diag'
|
58
|
-
@params[:max_iter] = max_iter
|
59
|
-
@params[:tol] = tol
|
60
|
-
@params[:reg_covar] = reg_covar
|
61
|
-
@params[:random_seed] = random_seed
|
62
|
-
@params[:random_seed] ||= srand
|
63
|
-
@n_iter = nil
|
64
|
-
@weights = nil
|
65
|
-
@means = nil
|
66
|
-
@covariances = nil
|
67
|
-
end
|
68
|
-
|
69
|
-
# Analysis clusters with given training data.
|
70
|
-
#
|
71
|
-
# @overload fit(x) -> GaussianMixture
|
72
|
-
#
|
73
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
74
|
-
# @return [GaussianMixture] The learned cluster analyzer itself.
|
75
|
-
def fit(x, _y = nil)
|
76
|
-
x = check_convert_sample_array(x)
|
77
|
-
check_enable_linalg('fit')
|
78
|
-
|
79
|
-
n_samples = x.shape[0]
|
80
|
-
memberships = init_memberships(x)
|
81
|
-
@params[:max_iter].times do |t|
|
82
|
-
@n_iter = t
|
83
|
-
@weights = calc_weights(n_samples, memberships)
|
84
|
-
@means = calc_means(x, memberships)
|
85
|
-
@covariances = calc_covariances(x, @means, memberships, @params[:reg_covar], @params[:covariance_type])
|
86
|
-
new_memberships = calc_memberships(x, @weights, @means, @covariances, @params[:covariance_type])
|
87
|
-
error = (memberships - new_memberships).abs.max
|
88
|
-
break if error <= @params[:tol]
|
89
|
-
|
90
|
-
memberships = new_memberships.dup
|
91
|
-
end
|
92
|
-
self
|
93
|
-
end
|
94
|
-
|
95
|
-
# Predict cluster labels for samples.
|
96
|
-
#
|
97
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the cluster label.
|
98
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
99
|
-
def predict(x)
|
100
|
-
x = check_convert_sample_array(x)
|
101
|
-
check_enable_linalg('predict')
|
102
|
-
|
103
|
-
memberships = calc_memberships(x, @weights, @means, @covariances, @params[:covariance_type])
|
104
|
-
assign_cluster(memberships)
|
105
|
-
end
|
106
|
-
|
107
|
-
# Analysis clusters and assign samples to clusters.
|
108
|
-
#
|
109
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for cluster analysis.
|
110
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted cluster label per sample.
|
111
|
-
def fit_predict(x)
|
112
|
-
x = check_convert_sample_array(x)
|
113
|
-
check_enable_linalg('fit_predict')
|
114
|
-
|
115
|
-
fit(x).predict(x)
|
116
|
-
end
|
117
|
-
|
118
|
-
private
|
119
|
-
|
120
|
-
def assign_cluster(memberships)
|
121
|
-
n_clusters = memberships.shape[1]
|
122
|
-
memberships.max_index(axis: 1) - Numo::Int32[*0.step(memberships.size - 1, n_clusters)]
|
123
|
-
end
|
124
|
-
|
125
|
-
def init_memberships(x)
|
126
|
-
kmeans = Rumale::Clustering::KMeans.new(
|
127
|
-
n_clusters: @params[:n_clusters], init: @params[:init], max_iter: 0, random_seed: @params[:random_seed]
|
128
|
-
)
|
129
|
-
cluster_ids = kmeans.fit_predict(x)
|
130
|
-
encoder = Rumale::Preprocessing::LabelBinarizer.new
|
131
|
-
Numo::DFloat.cast(encoder.fit_transform(cluster_ids))
|
132
|
-
end
|
133
|
-
|
134
|
-
def calc_memberships(x, weights, means, covars, covar_type)
|
135
|
-
n_samples = x.shape[0]
|
136
|
-
n_clusters = means.shape[0]
|
137
|
-
memberships = Numo::DFloat.zeros(n_samples, n_clusters)
|
138
|
-
n_clusters.times do |n|
|
139
|
-
centered = x - means[n, true]
|
140
|
-
covar = covar_type == 'full' ? covars[n, true, true] : covars[n, true]
|
141
|
-
memberships[true, n] = calc_unnormalized_membership(centered, weights[n], covar, covar_type)
|
142
|
-
end
|
143
|
-
memberships / memberships.sum(1).expand_dims(1)
|
144
|
-
end
|
145
|
-
|
146
|
-
def calc_weights(n_samples, memberships)
|
147
|
-
memberships.sum(0) / n_samples
|
148
|
-
end
|
149
|
-
|
150
|
-
def calc_means(x, memberships)
|
151
|
-
memberships.transpose.dot(x) / memberships.sum(0).expand_dims(1)
|
152
|
-
end
|
153
|
-
|
154
|
-
def calc_covariances(x, means, memberships, reg_cover, covar_type)
|
155
|
-
if covar_type == 'full'
|
156
|
-
calc_full_covariances(x, means, reg_cover, memberships)
|
157
|
-
else
|
158
|
-
calc_diag_covariances(x, means, reg_cover, memberships)
|
159
|
-
end
|
160
|
-
end
|
161
|
-
|
162
|
-
def calc_diag_covariances(x, means, reg_cover, memberships)
|
163
|
-
n_clusters = means.shape[0]
|
164
|
-
diag_cov = Array.new(n_clusters) do |n|
|
165
|
-
centered = x - means[n, true]
|
166
|
-
memberships[true, n].dot(centered**2) / memberships[true, n].sum
|
167
|
-
end
|
168
|
-
Numo::DFloat.asarray(diag_cov) + reg_cover
|
169
|
-
end
|
170
|
-
|
171
|
-
def calc_full_covariances(x, means, reg_cover, memberships)
|
172
|
-
n_features = x.shape[1]
|
173
|
-
n_clusters = means.shape[0]
|
174
|
-
cov_mats = Numo::DFloat.zeros(n_clusters, n_features, n_features)
|
175
|
-
reg_mat = Numo::DFloat.eye(n_features) * reg_cover
|
176
|
-
n_clusters.times do |n|
|
177
|
-
centered = x - means[n, true]
|
178
|
-
members = memberships[true, n]
|
179
|
-
cov_mats[n, true, true] = reg_mat + (centered.transpose * members).dot(centered) / members.sum
|
180
|
-
end
|
181
|
-
cov_mats
|
182
|
-
end
|
183
|
-
|
184
|
-
def calc_unnormalized_membership(centered, weight, covar, covar_type)
|
185
|
-
inv_covar = calc_inv_covariance(covar, covar_type)
|
186
|
-
inv_sqrt_det_covar = calc_inv_sqrt_det_covariance(covar, covar_type)
|
187
|
-
distances = if covar_type == 'full'
|
188
|
-
(centered.dot(inv_covar) * centered).sum(1)
|
189
|
-
else
|
190
|
-
(centered * inv_covar * centered).sum(1)
|
191
|
-
end
|
192
|
-
weight * inv_sqrt_det_covar * Numo::NMath.exp(-0.5 * distances)
|
193
|
-
end
|
194
|
-
|
195
|
-
def calc_inv_covariance(covar, covar_type)
|
196
|
-
if covar_type == 'full'
|
197
|
-
Numo::Linalg.inv(covar)
|
198
|
-
else
|
199
|
-
1.0 / covar
|
200
|
-
end
|
201
|
-
end
|
202
|
-
|
203
|
-
def calc_inv_sqrt_det_covariance(covar, covar_type)
|
204
|
-
if covar_type == 'full'
|
205
|
-
1.0 / Math.sqrt(Numo::Linalg.det(covar))
|
206
|
-
else
|
207
|
-
1.0 / Math.sqrt(covar.prod)
|
208
|
-
end
|
209
|
-
end
|
210
|
-
|
211
|
-
def check_enable_linalg(method_name)
|
212
|
-
return unless @params[:covariance_type] == 'full' && !enable_linalg?
|
213
|
-
|
214
|
-
raise "GaussianMixture##{method_name} requires Numo::Linalg when covariance_type is 'full' but that is not loaded."
|
215
|
-
end
|
216
|
-
end
|
217
|
-
end
|
218
|
-
end
|