rumale 0.23.3 → 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +5 -1
- data/README.md +3 -288
- data/lib/rumale/version.rb +1 -1
- data/lib/rumale.rb +20 -131
- metadata +252 -150
- data/CHANGELOG.md +0 -643
- data/CODE_OF_CONDUCT.md +0 -74
- data/ext/rumale/extconf.rb +0 -37
- data/ext/rumale/rumaleext.c +0 -545
- data/ext/rumale/rumaleext.h +0 -12
- data/lib/rumale/base/base_estimator.rb +0 -49
- data/lib/rumale/base/classifier.rb +0 -36
- data/lib/rumale/base/cluster_analyzer.rb +0 -31
- data/lib/rumale/base/evaluator.rb +0 -17
- data/lib/rumale/base/regressor.rb +0 -36
- data/lib/rumale/base/splitter.rb +0 -21
- data/lib/rumale/base/transformer.rb +0 -22
- data/lib/rumale/clustering/dbscan.rb +0 -123
- data/lib/rumale/clustering/gaussian_mixture.rb +0 -218
- data/lib/rumale/clustering/hdbscan.rb +0 -291
- data/lib/rumale/clustering/k_means.rb +0 -122
- data/lib/rumale/clustering/k_medoids.rb +0 -141
- data/lib/rumale/clustering/mini_batch_k_means.rb +0 -139
- data/lib/rumale/clustering/power_iteration.rb +0 -127
- data/lib/rumale/clustering/single_linkage.rb +0 -203
- data/lib/rumale/clustering/snn.rb +0 -76
- data/lib/rumale/clustering/spectral_clustering.rb +0 -115
- data/lib/rumale/dataset.rb +0 -246
- data/lib/rumale/decomposition/factor_analysis.rb +0 -150
- data/lib/rumale/decomposition/fast_ica.rb +0 -188
- data/lib/rumale/decomposition/nmf.rb +0 -124
- data/lib/rumale/decomposition/pca.rb +0 -159
- data/lib/rumale/ensemble/ada_boost_classifier.rb +0 -179
- data/lib/rumale/ensemble/ada_boost_regressor.rb +0 -160
- data/lib/rumale/ensemble/extra_trees_classifier.rb +0 -139
- data/lib/rumale/ensemble/extra_trees_regressor.rb +0 -125
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +0 -306
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +0 -237
- data/lib/rumale/ensemble/random_forest_classifier.rb +0 -189
- data/lib/rumale/ensemble/random_forest_regressor.rb +0 -153
- data/lib/rumale/ensemble/stacking_classifier.rb +0 -215
- data/lib/rumale/ensemble/stacking_regressor.rb +0 -163
- data/lib/rumale/ensemble/voting_classifier.rb +0 -126
- data/lib/rumale/ensemble/voting_regressor.rb +0 -82
- data/lib/rumale/evaluation_measure/accuracy.rb +0 -29
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +0 -74
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +0 -56
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +0 -53
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +0 -39
- data/lib/rumale/evaluation_measure/f_score.rb +0 -50
- data/lib/rumale/evaluation_measure/function.rb +0 -147
- data/lib/rumale/evaluation_measure/log_loss.rb +0 -45
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +0 -29
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +0 -29
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +0 -30
- data/lib/rumale/evaluation_measure/mutual_information.rb +0 -49
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +0 -53
- data/lib/rumale/evaluation_measure/precision.rb +0 -50
- data/lib/rumale/evaluation_measure/precision_recall.rb +0 -96
- data/lib/rumale/evaluation_measure/purity.rb +0 -40
- data/lib/rumale/evaluation_measure/r2_score.rb +0 -43
- data/lib/rumale/evaluation_measure/recall.rb +0 -50
- data/lib/rumale/evaluation_measure/roc_auc.rb +0 -130
- data/lib/rumale/evaluation_measure/silhouette_score.rb +0 -82
- data/lib/rumale/feature_extraction/feature_hasher.rb +0 -110
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +0 -155
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +0 -113
- data/lib/rumale/kernel_approximation/nystroem.rb +0 -126
- data/lib/rumale/kernel_approximation/rbf.rb +0 -102
- data/lib/rumale/kernel_machine/kernel_fda.rb +0 -120
- data/lib/rumale/kernel_machine/kernel_pca.rb +0 -97
- data/lib/rumale/kernel_machine/kernel_ridge.rb +0 -82
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +0 -92
- data/lib/rumale/kernel_machine/kernel_svc.rb +0 -193
- data/lib/rumale/linear_model/base_sgd.rb +0 -285
- data/lib/rumale/linear_model/elastic_net.rb +0 -119
- data/lib/rumale/linear_model/lasso.rb +0 -115
- data/lib/rumale/linear_model/linear_regression.rb +0 -201
- data/lib/rumale/linear_model/logistic_regression.rb +0 -275
- data/lib/rumale/linear_model/nnls.rb +0 -137
- data/lib/rumale/linear_model/ridge.rb +0 -209
- data/lib/rumale/linear_model/svc.rb +0 -213
- data/lib/rumale/linear_model/svr.rb +0 -132
- data/lib/rumale/manifold/mds.rb +0 -155
- data/lib/rumale/manifold/tsne.rb +0 -222
- data/lib/rumale/metric_learning/fisher_discriminant_analysis.rb +0 -113
- data/lib/rumale/metric_learning/mlkr.rb +0 -161
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +0 -167
- data/lib/rumale/model_selection/cross_validation.rb +0 -125
- data/lib/rumale/model_selection/function.rb +0 -42
- data/lib/rumale/model_selection/grid_search_cv.rb +0 -225
- data/lib/rumale/model_selection/group_k_fold.rb +0 -93
- data/lib/rumale/model_selection/group_shuffle_split.rb +0 -115
- data/lib/rumale/model_selection/k_fold.rb +0 -81
- data/lib/rumale/model_selection/shuffle_split.rb +0 -90
- data/lib/rumale/model_selection/stratified_k_fold.rb +0 -99
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +0 -118
- data/lib/rumale/model_selection/time_series_split.rb +0 -91
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +0 -83
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +0 -47
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +0 -82
- data/lib/rumale/naive_bayes/complement_nb.rb +0 -85
- data/lib/rumale/naive_bayes/gaussian_nb.rb +0 -69
- data/lib/rumale/naive_bayes/multinomial_nb.rb +0 -74
- data/lib/rumale/naive_bayes/negation_nb.rb +0 -71
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +0 -133
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +0 -108
- data/lib/rumale/nearest_neighbors/vp_tree.rb +0 -132
- data/lib/rumale/neural_network/adam.rb +0 -56
- data/lib/rumale/neural_network/base_mlp.rb +0 -248
- data/lib/rumale/neural_network/mlp_classifier.rb +0 -120
- data/lib/rumale/neural_network/mlp_regressor.rb +0 -90
- data/lib/rumale/pairwise_metric.rb +0 -152
- data/lib/rumale/pipeline/feature_union.rb +0 -69
- data/lib/rumale/pipeline/pipeline.rb +0 -175
- data/lib/rumale/preprocessing/bin_discretizer.rb +0 -93
- data/lib/rumale/preprocessing/binarizer.rb +0 -60
- data/lib/rumale/preprocessing/kernel_calculator.rb +0 -92
- data/lib/rumale/preprocessing/l1_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/l2_normalizer.rb +0 -63
- data/lib/rumale/preprocessing/label_binarizer.rb +0 -89
- data/lib/rumale/preprocessing/label_encoder.rb +0 -79
- data/lib/rumale/preprocessing/max_abs_scaler.rb +0 -61
- data/lib/rumale/preprocessing/max_normalizer.rb +0 -62
- data/lib/rumale/preprocessing/min_max_scaler.rb +0 -76
- data/lib/rumale/preprocessing/one_hot_encoder.rb +0 -100
- data/lib/rumale/preprocessing/ordinal_encoder.rb +0 -109
- data/lib/rumale/preprocessing/polynomial_features.rb +0 -109
- data/lib/rumale/preprocessing/standard_scaler.rb +0 -71
- data/lib/rumale/probabilistic_output.rb +0 -114
- data/lib/rumale/tree/base_decision_tree.rb +0 -150
- data/lib/rumale/tree/decision_tree_classifier.rb +0 -150
- data/lib/rumale/tree/decision_tree_regressor.rb +0 -116
- data/lib/rumale/tree/extra_tree_classifier.rb +0 -107
- data/lib/rumale/tree/extra_tree_regressor.rb +0 -94
- data/lib/rumale/tree/gradient_tree_regressor.rb +0 -202
- data/lib/rumale/tree/node.rb +0 -39
- data/lib/rumale/utils.rb +0 -42
- data/lib/rumale/validation.rb +0 -128
- data/lib/rumale/values.rb +0 -13
@@ -1,97 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/transformer'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module KernelMachine
|
8
|
-
# KernelPCA is a class that implements Kernel Principal Component Analysis.
|
9
|
-
#
|
10
|
-
# @example
|
11
|
-
# require 'numo/linalg/autoloader'
|
12
|
-
#
|
13
|
-
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
14
|
-
# kpca = Rumale::KernelMachine::KernelPCA.new(n_components: 2)
|
15
|
-
# mapped_traininig_samples = kpca.fit_transform(kernel_mat_train)
|
16
|
-
#
|
17
|
-
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
18
|
-
# mapped_test_samples = kpca.transform(kernel_mat_test)
|
19
|
-
#
|
20
|
-
# *Reference*
|
21
|
-
# - Scholkopf, B., Smola, A., and Muller, K-R., "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, Vol. 10 (5), pp. 1299--1319, 1998.
|
22
|
-
class KernelPCA
|
23
|
-
include Base::BaseEstimator
|
24
|
-
include Base::Transformer
|
25
|
-
|
26
|
-
# Returns the eigenvalues of the centered kernel matrix.
|
27
|
-
# @return [Numo::DFloat] (shape: [n_components])
|
28
|
-
attr_reader :lambdas
|
29
|
-
|
30
|
-
# Returns the eigenvectors of the centered kernel matrix.
|
31
|
-
# @return [Numo::DFloat] (shape: [n_training_sampes, n_components])
|
32
|
-
attr_reader :alphas
|
33
|
-
|
34
|
-
# Create a new transformer with Kernel PCA.
|
35
|
-
#
|
36
|
-
# @param n_components [Integer] The number of components.
|
37
|
-
def initialize(n_components: 2)
|
38
|
-
check_params_numeric(n_components: n_components)
|
39
|
-
@params = {}
|
40
|
-
@params[:n_components] = n_components
|
41
|
-
@alphas = nil
|
42
|
-
@lambdas = nil
|
43
|
-
@transform_mat = nil
|
44
|
-
@row_mean = nil
|
45
|
-
@all_mean = nil
|
46
|
-
end
|
47
|
-
|
48
|
-
# Fit the model with given training data.
|
49
|
-
# To execute this method, Numo::Linalg must be loaded.
|
50
|
-
#
|
51
|
-
# @overload fit(x) -> KernelPCA
|
52
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
53
|
-
# The kernel matrix of the training data to be used for fitting the model.
|
54
|
-
# @return [KernelPCA] The learned transformer itself.
|
55
|
-
def fit(x, _y = nil)
|
56
|
-
x = check_convert_sample_array(x)
|
57
|
-
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
58
|
-
raise 'KernelPCA#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
59
|
-
|
60
|
-
n_samples = x.shape[0]
|
61
|
-
@row_mean = x.mean(0)
|
62
|
-
@all_mean = @row_mean.sum.fdiv(n_samples)
|
63
|
-
centered_kernel_mat = x - x.mean(1).expand_dims(1) - @row_mean + @all_mean
|
64
|
-
eig_vals, eig_vecs = Numo::Linalg.eigh(centered_kernel_mat, vals_range: (n_samples - @params[:n_components])...n_samples)
|
65
|
-
@alphas = eig_vecs.reverse(1).dup
|
66
|
-
@lambdas = eig_vals.reverse.dup
|
67
|
-
@transform_mat = @alphas.dot((1.0 / Numo::NMath.sqrt(@lambdas)).diag)
|
68
|
-
self
|
69
|
-
end
|
70
|
-
|
71
|
-
# Fit the model with training data, and then transform them with the learned model.
|
72
|
-
# To execute this method, Numo::Linalg must be loaded.
|
73
|
-
#
|
74
|
-
# @overload fit_transform(x) -> Numo::DFloat
|
75
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_samples])
|
76
|
-
# The kernel matrix of the training data to be used for fitting the model and transformed.
|
77
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
78
|
-
def fit_transform(x, _y = nil)
|
79
|
-
x = check_convert_sample_array(x)
|
80
|
-
fit(x).transform(x)
|
81
|
-
end
|
82
|
-
|
83
|
-
# Transform the given data with the learned model.
|
84
|
-
#
|
85
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
86
|
-
# The kernel matrix between testing samples and training samples to be transformed.
|
87
|
-
# @return [Numo::DFloat] (shape: [n_testing_samples, n_components]) The transformed data.
|
88
|
-
def transform(x)
|
89
|
-
x = check_convert_sample_array(x)
|
90
|
-
col_mean = x.sum(1) / @row_mean.shape[0]
|
91
|
-
centered_kernel_mat = x - col_mean.expand_dims(1) - @row_mean + @all_mean
|
92
|
-
transformed = centered_kernel_mat.dot(@transform_mat)
|
93
|
-
@params[:n_components] == 1 ? transformed[true, 0].dup : transformed
|
94
|
-
end
|
95
|
-
end
|
96
|
-
end
|
97
|
-
end
|
@@ -1,82 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/regressor'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module KernelMachine
|
8
|
-
# KernelRidge is a class that implements kernel ridge regression.
|
9
|
-
#
|
10
|
-
# @example
|
11
|
-
# require 'numo/linalg/autoloader'
|
12
|
-
#
|
13
|
-
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
14
|
-
# kridge = Rumale::KernelMachine::KernelRidge.new(reg_param: 1.0)
|
15
|
-
# kridge.fit(kernel_mat_train, traininig_values)
|
16
|
-
#
|
17
|
-
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
18
|
-
# results = kridge.predict(kernel_mat_test)
|
19
|
-
class KernelRidge
|
20
|
-
include Base::BaseEstimator
|
21
|
-
include Base::Regressor
|
22
|
-
|
23
|
-
# Return the weight vector.
|
24
|
-
# @return [Numo::DFloat] (shape: [n_training_sample, n_outputs])
|
25
|
-
attr_reader :weight_vec
|
26
|
-
|
27
|
-
# Create a new regressor with kernel ridge regression.
|
28
|
-
#
|
29
|
-
# @param reg_param [Float/Numo::DFloat] The regularization parameter.
|
30
|
-
def initialize(reg_param: 1.0)
|
31
|
-
raise TypeError, 'Expect class of reg_param to be Float or Numo::DFloat' unless reg_param.is_a?(Float) || reg_param.is_a?(Numo::DFloat)
|
32
|
-
raise ArgumentError, 'Expect reg_param array to be 1-D arrray' if reg_param.is_a?(Numo::DFloat) && reg_param.shape.size != 1
|
33
|
-
|
34
|
-
@params = {}
|
35
|
-
@params[:reg_param] = reg_param
|
36
|
-
@weight_vec = nil
|
37
|
-
end
|
38
|
-
|
39
|
-
# Fit the model with given training data.
|
40
|
-
#
|
41
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
42
|
-
# The kernel matrix of the training data to be used for fitting the model.
|
43
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
44
|
-
# @return [KernelRidge] The learned regressor itself.
|
45
|
-
def fit(x, y)
|
46
|
-
x = check_convert_sample_array(x)
|
47
|
-
y = check_convert_tvalue_array(y)
|
48
|
-
check_sample_tvalue_size(x, y)
|
49
|
-
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
50
|
-
raise 'KernelRidge#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
51
|
-
|
52
|
-
n_samples = x.shape[0]
|
53
|
-
|
54
|
-
if @params[:reg_param].is_a?(Float)
|
55
|
-
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param]
|
56
|
-
@weight_vec = Numo::Linalg.solve(reg_kernel_mat, y, driver: 'sym')
|
57
|
-
else
|
58
|
-
raise ArgumentError, 'Expect y and reg_param to have the same number of elements.' unless y.shape[1] == @params[:reg_param].shape[0]
|
59
|
-
|
60
|
-
n_outputs = y.shape[1]
|
61
|
-
@weight_vec = Numo::DFloat.zeros(n_samples, n_outputs)
|
62
|
-
n_outputs.times do |n|
|
63
|
-
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param][n]
|
64
|
-
@weight_vec[true, n] = Numo::Linalg.solve(reg_kernel_mat, y[true, n], driver: 'sym')
|
65
|
-
end
|
66
|
-
end
|
67
|
-
|
68
|
-
self
|
69
|
-
end
|
70
|
-
|
71
|
-
# Predict values for samples.
|
72
|
-
#
|
73
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
74
|
-
# The kernel matrix between testing samples and training samples to predict values.
|
75
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
76
|
-
def predict(x)
|
77
|
-
x = check_convert_sample_array(x)
|
78
|
-
x.dot(@weight_vec)
|
79
|
-
end
|
80
|
-
end
|
81
|
-
end
|
82
|
-
end
|
@@ -1,92 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/classifier'
|
5
|
-
require 'rumale/preprocessing/label_binarizer'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
module KernelMachine
|
9
|
-
# KernelRidgeClassifier is a class that implements classifier based-on kernel ridge regression.
|
10
|
-
# It learns a classifier by converting labels to target values { -1, 1 } and performing kernel ridge regression.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# require 'numo/linalg/autoloader'
|
14
|
-
# require 'rumale'
|
15
|
-
#
|
16
|
-
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
17
|
-
# kridge = Rumale::KernelMachine::KernelRidgeClassifier.new(reg_param: 0.5)
|
18
|
-
# kridge.fit(kernel_mat_train, traininig_values)
|
19
|
-
#
|
20
|
-
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
21
|
-
# results = kridge.predict(kernel_mat_test)
|
22
|
-
class KernelRidgeClassifier
|
23
|
-
include Base::BaseEstimator
|
24
|
-
include Base::Classifier
|
25
|
-
|
26
|
-
# Return the class labels.
|
27
|
-
# @return [Numo::Int32] (size: n_classes)
|
28
|
-
attr_reader :classes
|
29
|
-
|
30
|
-
# Return the weight vector.
|
31
|
-
# @return [Numo::DFloat] (shape: [n_training_sample, n_classes])
|
32
|
-
attr_reader :weight_vec
|
33
|
-
|
34
|
-
# Create a new regressor with kernel ridge classifier.
|
35
|
-
#
|
36
|
-
# @param reg_param [Float/Numo::DFloat] The regularization parameter.
|
37
|
-
def initialize(reg_param: 1.0)
|
38
|
-
@params = {}
|
39
|
-
@params[:reg_param] = reg_param
|
40
|
-
@classes = nil
|
41
|
-
@weight_vec = nil
|
42
|
-
end
|
43
|
-
|
44
|
-
# Fit the model with given training data.
|
45
|
-
#
|
46
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
47
|
-
# The kernel matrix of the training data to be used for fitting the model.
|
48
|
-
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
49
|
-
# @return [KernelRidgeClassifier] The learned classifier itself.
|
50
|
-
def fit(x, y)
|
51
|
-
x = check_convert_sample_array(x)
|
52
|
-
y = check_convert_label_array(y)
|
53
|
-
check_sample_label_size(x, y)
|
54
|
-
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
55
|
-
raise 'KernelRidgeClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
56
|
-
|
57
|
-
@encoder = Rumale::Preprocessing::LabelBinarizer.new
|
58
|
-
y_encoded = Numo::DFloat.cast(@encoder.fit_transform(y)) * 2 - 1
|
59
|
-
@classes = Numo::NArray[*@encoder.classes]
|
60
|
-
|
61
|
-
n_samples = x.shape[0]
|
62
|
-
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param]
|
63
|
-
@weight_vec = Numo::Linalg.solve(reg_kernel_mat, y_encoded, driver: 'sym')
|
64
|
-
|
65
|
-
self
|
66
|
-
end
|
67
|
-
|
68
|
-
# Calculate confidence scores for samples.
|
69
|
-
#
|
70
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
71
|
-
# The kernel matrix between testing samples and training samples to predict values.
|
72
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The confidence score per sample.
|
73
|
-
def decision_function(x)
|
74
|
-
x = check_convert_sample_array(x)
|
75
|
-
x.dot(@weight_vec)
|
76
|
-
end
|
77
|
-
|
78
|
-
# Predict class labels for samples.
|
79
|
-
#
|
80
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
81
|
-
# The kernel matrix between testing samples and training samples to predict the labels.
|
82
|
-
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
83
|
-
def predict(x)
|
84
|
-
x = check_convert_sample_array(x)
|
85
|
-
scores = decision_function(x)
|
86
|
-
n_samples, n_classes = scores.shape
|
87
|
-
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes
|
88
|
-
@classes[label_ids].dup
|
89
|
-
end
|
90
|
-
end
|
91
|
-
end
|
92
|
-
end
|
@@ -1,193 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/base/classifier'
|
5
|
-
require 'rumale/probabilistic_output'
|
6
|
-
|
7
|
-
module Rumale
|
8
|
-
# This module consists of the classes that implement kernel method-based estimator.
|
9
|
-
module KernelMachine
|
10
|
-
# KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier
|
11
|
-
# with stochastic gradient descent (SGD) optimization.
|
12
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
13
|
-
#
|
14
|
-
# @note
|
15
|
-
# Rumale::SVM provides kernel support vector classifier based on LIBSVM.
|
16
|
-
# If you prefer execution speed, you should use Rumale::SVM::SVC.
|
17
|
-
# https://github.com/yoshoku/rumale-svm
|
18
|
-
#
|
19
|
-
# @example
|
20
|
-
# training_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
21
|
-
# estimator =
|
22
|
-
# Rumale::KernelMachine::KernelSVC.new(reg_param: 1.0, max_iter: 1000, random_seed: 1)
|
23
|
-
# estimator.fit(training_kernel_matrix, traininig_labels)
|
24
|
-
# testing_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(testing_samples, training_samples)
|
25
|
-
# results = estimator.predict(testing_kernel_matrix)
|
26
|
-
#
|
27
|
-
# *Reference*
|
28
|
-
# - Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
29
|
-
class KernelSVC
|
30
|
-
include Base::BaseEstimator
|
31
|
-
include Base::Classifier
|
32
|
-
|
33
|
-
# Return the weight vector for Kernel SVC.
|
34
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_trainig_sample])
|
35
|
-
attr_reader :weight_vec
|
36
|
-
|
37
|
-
# Return the class labels.
|
38
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
39
|
-
attr_reader :classes
|
40
|
-
|
41
|
-
# Return the random generator for performing random sampling.
|
42
|
-
# @return [Random]
|
43
|
-
attr_reader :rng
|
44
|
-
|
45
|
-
# Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
|
46
|
-
#
|
47
|
-
# @param reg_param [Float] The regularization parameter.
|
48
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
49
|
-
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
50
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
51
|
-
# If nil is given, the methods do not execute in parallel.
|
52
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
53
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
54
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
|
-
def initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil)
|
56
|
-
check_params_numeric(reg_param: reg_param, max_iter: max_iter)
|
57
|
-
check_params_boolean(probability: probability)
|
58
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
59
|
-
check_params_positive(reg_param: reg_param, max_iter: max_iter)
|
60
|
-
@params = {}
|
61
|
-
@params[:reg_param] = reg_param
|
62
|
-
@params[:max_iter] = max_iter
|
63
|
-
@params[:probability] = probability
|
64
|
-
@params[:n_jobs] = n_jobs
|
65
|
-
@params[:random_seed] = random_seed
|
66
|
-
@params[:random_seed] ||= srand
|
67
|
-
@weight_vec = nil
|
68
|
-
@prob_param = nil
|
69
|
-
@classes = nil
|
70
|
-
@rng = Random.new(@params[:random_seed])
|
71
|
-
end
|
72
|
-
|
73
|
-
# Fit the model with given training data.
|
74
|
-
#
|
75
|
-
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
76
|
-
# The kernel matrix of the training data to be used for fitting the model.
|
77
|
-
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
78
|
-
# @return [KernelSVC] The learned classifier itself.
|
79
|
-
def fit(x, y)
|
80
|
-
x = check_convert_sample_array(x)
|
81
|
-
y = check_convert_label_array(y)
|
82
|
-
check_sample_label_size(x, y)
|
83
|
-
|
84
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
85
|
-
n_classes = @classes.size
|
86
|
-
n_features = x.shape[1]
|
87
|
-
|
88
|
-
if n_classes > 2
|
89
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
90
|
-
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
91
|
-
models = if enable_parallel?
|
92
|
-
# :nocov:
|
93
|
-
parallel_map(n_classes) do |n|
|
94
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
95
|
-
partial_fit(x, bin_y)
|
96
|
-
end
|
97
|
-
# :nocov:
|
98
|
-
else
|
99
|
-
Array.new(n_classes) do |n|
|
100
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
101
|
-
partial_fit(x, bin_y)
|
102
|
-
end
|
103
|
-
end
|
104
|
-
models.each_with_index { |model, n| @weight_vec[n, true], @prob_param[n, true] = model }
|
105
|
-
else
|
106
|
-
negative_label = y.to_a.uniq.min
|
107
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
108
|
-
@weight_vec, @prob_param = partial_fit(x, bin_y)
|
109
|
-
end
|
110
|
-
|
111
|
-
self
|
112
|
-
end
|
113
|
-
|
114
|
-
# Calculate confidence scores for samples.
|
115
|
-
#
|
116
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
117
|
-
# The kernel matrix between testing samples and training samples to compute the scores.
|
118
|
-
# @return [Numo::DFloat] (shape: [n_testing_samples, n_classes]) Confidence score per sample.
|
119
|
-
def decision_function(x)
|
120
|
-
x = check_convert_sample_array(x)
|
121
|
-
|
122
|
-
x.dot(@weight_vec.transpose)
|
123
|
-
end
|
124
|
-
|
125
|
-
# Predict class labels for samples.
|
126
|
-
#
|
127
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
128
|
-
# The kernel matrix between testing samples and training samples to predict the labels.
|
129
|
-
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
130
|
-
def predict(x)
|
131
|
-
x = check_convert_sample_array(x)
|
132
|
-
|
133
|
-
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
134
|
-
|
135
|
-
n_samples, = x.shape
|
136
|
-
decision_values = decision_function(x)
|
137
|
-
predicted = if enable_parallel?
|
138
|
-
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
139
|
-
else
|
140
|
-
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
141
|
-
end
|
142
|
-
Numo::Int32.asarray(predicted)
|
143
|
-
end
|
144
|
-
|
145
|
-
# Predict probability for samples.
|
146
|
-
#
|
147
|
-
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
148
|
-
# The kernel matrix between testing samples and training samples to predict the labels.
|
149
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
150
|
-
def predict_proba(x)
|
151
|
-
x = check_convert_sample_array(x)
|
152
|
-
|
153
|
-
if @classes.size > 2
|
154
|
-
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
155
|
-
return (probs.transpose / probs.sum(axis: 1)).transpose.dup
|
156
|
-
end
|
157
|
-
|
158
|
-
n_samples, = x.shape
|
159
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
160
|
-
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
161
|
-
probs[true, 0] = 1.0 - probs[true, 1]
|
162
|
-
probs
|
163
|
-
end
|
164
|
-
|
165
|
-
private
|
166
|
-
|
167
|
-
def partial_fit(x, bin_y)
|
168
|
-
# Initialize some variables.
|
169
|
-
n_training_samples = x.shape[0]
|
170
|
-
rand_ids = []
|
171
|
-
weight_vec = Numo::DFloat.zeros(n_training_samples)
|
172
|
-
sub_rng = @rng.dup
|
173
|
-
# Start optimization.
|
174
|
-
@params[:max_iter].times do |t|
|
175
|
-
# random sampling
|
176
|
-
rand_ids = Array(0...n_training_samples).shuffle(random: sub_rng) if rand_ids.empty?
|
177
|
-
target_id = rand_ids.shift
|
178
|
-
# update the weight vector
|
179
|
-
func = (weight_vec * bin_y).dot(x[target_id, true].transpose).to_f
|
180
|
-
func *= bin_y[target_id] / (@params[:reg_param] * (t + 1))
|
181
|
-
weight_vec[target_id] += 1.0 if func < 1.0
|
182
|
-
end
|
183
|
-
w = weight_vec * bin_y
|
184
|
-
p = if @params[:probability]
|
185
|
-
Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w), bin_y)
|
186
|
-
else
|
187
|
-
Numo::DFloat[1, 0]
|
188
|
-
end
|
189
|
-
[w, p]
|
190
|
-
end
|
191
|
-
end
|
192
|
-
end
|
193
|
-
end
|