rb-gsl 1.16.0.2 → 1.16.0.3.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
data/rdoc/fit.rdoc CHANGED
@@ -1,92 +1,92 @@
1
1
  #
2
2
  # = Least-Squares Fitting
3
- # This chapter describes routines for performing least squares fits to
4
- # experimental data using linear combinations of functions. The data may be
5
- # weighted or unweighted, i.e. with known or unknown errors. For weighted data
6
- # the functions compute the best fit parameters and their associated covariance
7
- # matrix. For unweighted data the covariance matrix is estimated from the
8
- # scatter of the points, giving a variance-covariance matrix.
3
+ # This chapter describes routines for performing least squares fits to
4
+ # experimental data using linear combinations of functions. The data may be
5
+ # weighted or unweighted, i.e. with known or unknown errors. For weighted data
6
+ # the functions compute the best fit parameters and their associated covariance
7
+ # matrix. For unweighted data the covariance matrix is estimated from the
8
+ # scatter of the points, giving a variance-covariance matrix.
9
9
  #
10
- # The functions are divided into separate versions for simple one- or
11
- # two-parameter regression and multiple-parameter fits.
10
+ # The functions are divided into separate versions for simple one- or
11
+ # two-parameter regression and multiple-parameter fits.
12
12
  #
13
13
  # Contents:
14
- # 1. {Overview}[link:rdoc/fit_rdoc.html#1]
15
- # 1. {Linear regression}[link:rdoc/fit_rdoc.html#2]
16
- # 1. {Module functions for linear regression}[link:rdoc/fit_rdoc.html#2.1]
17
- # 1. {Linear fitting without a constant term}[link:rdoc/fit_rdoc.html#3]
18
- # 1. {Multi-parameter fitting}[link:rdoc/fit_rdoc.html#4]
19
- # 1. {GSL::MultiFit::Workspace class}[link:rdoc/fit_rdoc.html#4.1]
20
- # 1. {Module functions}[link:rdoc/fit_rdoc.html#4.2]
21
- # 1. {Higer level interface}[link:rdoc/fit_rdoc.html#4.3]
22
- # 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:rdoc/ndlinear_rdoc.html] (GSL extension)
23
- # 1. {Examples}[link:rdoc/fit_rdoc.html#5]
24
- # 1. {Linear regression}[link:rdoc/fit_rdoc.html#5.1]
25
- # 1. {Exponential fitting}[link:rdoc/fit_rdoc.html#5.2]
26
- # 1. {Multi-parameter fitting}[link:rdoc/fit_rdoc.html#5.3]
27
- #
28
- # == {}[link:index.html"name="1] Overview
29
- # Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
30
- # sum of squared residuals over n experimental datapoints (x_i, y_i) for the
14
+ # 1. {Overview}[link:fit_rdoc.html#label-Overview]
15
+ # 1. {Linear regression}[link:fit_rdoc.html#label-Linear+regression]
16
+ # 1. {Module functions for linear regression}[link:fit_rdoc.html#label-Module+functions+for+linear+regression]
17
+ # 1. {Linear fitting without a constant term}[link:fit_rdoc.html#label-Linear+fitting+without+a+constant+term]
18
+ # 1. {Multi-parameter fitting}[link:fit_rdoc.html#label-Multi-parameter+fitting]
19
+ # 1. {GSL::MultiFit::Workspace class}[link:fit_rdoc.html#label-Workspace+class]
20
+ # 1. {Module functions}[link:fit_rdoc.html#label-Module+functions]
21
+ # 1. {Higer level interface}[link:fit_rdoc.html#label-Higer+level+interface]
22
+ # 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:ndlinear_rdoc.html] (GSL extension)
23
+ # 1. {Examples}[link:fit_rdoc.html#label-Examples]
24
+ # 1. {Linear regression}[link:fit_rdoc.html#label-Linear+regression]
25
+ # 1. {Exponential fitting}[link:fit_rdoc.html#label-Exponential+fitting]
26
+ # 1. {Multi-parameter fitting}[link:fit_rdoc.html#label-Multi-parameter+fitting]
27
+ #
28
+ # == Overview
29
+ # Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
30
+ # sum of squared residuals over n experimental datapoints (x_i, y_i) for the
31
31
  # model Y(c,x), The p parameters of the model are c = {c_0, c_1, ...}. The
32
32
  # weight factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the
33
33
  # experimental error on the data-point y_i. The errors are assumed to be
34
34
  # gaussian and uncorrelated. For unweighted data the chi-squared sum is
35
35
  # computed without any weight factors.
36
36
  #
37
- # The fitting routines return the best-fit parameters c and their p \times p
38
- # covariance matrix. The covariance matrix measures the statistical errors on
39
- # the best-fit parameters resulting from the errors on the data, \sigma_i, and
40
- # is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
41
- # over the gaussian error distributions of the underlying datapoints.
37
+ # The fitting routines return the best-fit parameters c and their p \times p
38
+ # covariance matrix. The covariance matrix measures the statistical errors on
39
+ # the best-fit parameters resulting from the errors on the data, \sigma_i, and
40
+ # is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
41
+ # over the gaussian error distributions of the underlying datapoints.
42
42
  #
43
- # The covariance matrix is calculated by error propagation from the data errors
44
- # \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
43
+ # The covariance matrix is calculated by error propagation from the data errors
44
+ # \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
45
45
  # in the data \delta y_i is given by allowing the covariance matrix to be written
46
- # in terms of the errors on the data, For uncorrelated data the fluctuations of
47
- # the underlying datapoints satisfy
48
- # <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
49
- # parameter covariance matrix of When computing the covariance matrix for
50
- # unweighted data, i.e. data with unknown errors, the weight factors w_i in this
51
- # sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
52
- # computed variance of the residuals about the
53
- # best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
54
- # This is referred to as the variance-covariance matrix.
55
- #
56
- # The standard deviations of the best-fit parameters are given by the square
57
- # root of the corresponding diagonal elements of the covariance matrix,
58
- # \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
59
- # parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
60
- #
61
- #
62
- # == {}[link:index.html"name="2] Linear regression
63
- # The functions described in this section can be used to perform least-squares
64
- # fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
46
+ # in terms of the errors on the data, For uncorrelated data the fluctuations of
47
+ # the underlying datapoints satisfy
48
+ # <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
49
+ # parameter covariance matrix of When computing the covariance matrix for
50
+ # unweighted data, i.e. data with unknown errors, the weight factors w_i in this
51
+ # sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
52
+ # computed variance of the residuals about the
53
+ # best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
54
+ # This is referred to as the variance-covariance matrix.
55
+ #
56
+ # The standard deviations of the best-fit parameters are given by the square
57
+ # root of the corresponding diagonal elements of the covariance matrix,
58
+ # \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
59
+ # parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
60
+ #
61
+ #
62
+ # == Linear regression
63
+ # The functions described in this section can be used to perform least-squares
64
+ # fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
65
65
  # is found by minimizing the weighted sum of squared residuals, chi^2,
66
66
  #
67
67
  # chi^2 = sum_i w_i (y_i - (c0 + c1 x_i))^2
68
68
  #
69
- # for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
69
+ # for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
70
70
  # <tt>w_i = 1</tt>.
71
71
  #
72
- # === {}[link:index.html"name="2.1] Module functions for linear regression
72
+ # === Module functions for linear regression
73
73
  # ---
74
74
  # * GSL::Fit::linear(x, y)
75
75
  #
76
- # This function computes the best-fit linear regression coefficients (c0,c1)
77
- # of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
78
- # equal length with stride 1. This returns an array of 7 elements,
76
+ # This function computes the best-fit linear regression coefficients (c0,c1)
77
+ # of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
78
+ # equal length with stride 1. This returns an array of 7 elements,
79
79
  # <tt>[c0, c1, cov00, cov01, cov11, chisq, status]</tt>, where <tt>c0, c1</tt> are the
80
- # estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
80
+ # estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
81
81
  # matrix elements, <tt>chisq</tt> is the sum of squares of the residuals, and
82
82
  # <tt>status</tt> is the return code from the GSL function <tt>gsl_fit_linear()</tt>.
83
83
  #
84
84
  # ---
85
85
  # * GSL::Fit::wlinear(x, w, y)
86
86
  #
87
- # This function computes the best-fit linear regression coefficients (c0,c1)
88
- # of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
89
- # The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
87
+ # This function computes the best-fit linear regression coefficients (c0,c1)
88
+ # of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
89
+ # The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
90
90
  # reciprocal of the variance for each datapoint in <tt>y</tt>. This returns an
91
91
  # array of 7 elements, same as the method <tt>linear</tt>.
92
92
  #
@@ -94,82 +94,82 @@
94
94
  # * GSL::Fit::linear_est(x, c0, c1, c00, c01, c11)
95
95
  # * GSL::Fit::linear_est(x, [c0, c1, c00, c01, c11])
96
96
  #
97
- # This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
98
- # their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
97
+ # This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
98
+ # their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
99
99
  # and its standard deviation for the model Y = c_0 + c_1 X at the point <tt>x</tt>.
100
100
  # The returned value is an array of <tt>[y, yerr]</tt>.
101
101
  #
102
- # == {}[link:index.html"name="3] Linear fitting without a constant term
102
+ # == Linear fitting without a constant term
103
103
  # ---
104
104
  # * GSL::Fit::mul(x, y)
105
105
  #
106
- # This function computes the best-fit linear regression coefficient <tt>c1</tt>
107
- # of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
108
- # equal length with stride 1. This returns an array of 4 elements,
106
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
107
+ # of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
108
+ # equal length with stride 1. This returns an array of 4 elements,
109
109
  # <tt>[c1, cov11, chisq, status]</tt>.
110
110
  #
111
111
  # ---
112
112
  # * GSL::Fit::wmul(x, w, y)
113
113
  #
114
- # This function computes the best-fit linear regression coefficient <tt>c1</tt>
115
- # of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
116
- # <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
114
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
115
+ # of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
116
+ # <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
117
117
  # of the variance for each datapoint in <tt>y</tt>.
118
118
  #
119
119
  # ---
120
120
  # * GSL::Fit::mul_est(x, c1, c11)
121
121
  # * GSL::Fit::mul_est(x, [c1, c11])
122
122
  #
123
- # This function uses the best-fit linear regression coefficient <tt>c1</tt>
124
- # and its estimated covariance <tt>cov11</tt> to compute the fitted function
125
- # <tt>y</tt> and its standard deviation <tt>y_err</tt>
126
- # for the model Y = c_1 X at the point <tt>x</tt>.
123
+ # This function uses the best-fit linear regression coefficient <tt>c1</tt>
124
+ # and its estimated covariance <tt>cov11</tt> to compute the fitted function
125
+ # <tt>y</tt> and its standard deviation <tt>y_err</tt>
126
+ # for the model Y = c_1 X at the point <tt>x</tt>.
127
127
  # The returned value is an array of <tt>[y, yerr]</tt>.
128
128
  #
129
- # == {}[link:index.html"name="4] Multi-parameter fitting
130
- # === {}[link:index.html"name="4.1] GSL::MultiFit::Workspace class
129
+ # == Multi-parameter fitting
130
+ # === Workspace class
131
131
  # ---
132
132
  # * GSL::MultiFit::Workspace.alloc(n, p)
133
133
  #
134
- # This creates a workspace for fitting a model to <tt>n</tt>
134
+ # This creates a workspace for fitting a model to <tt>n</tt>
135
135
  # observations using <tt>p</tt> parameters.
136
136
  #
137
- # === {}[link:index.html"name="4.2] Module functions
137
+ # === Module functions
138
138
  # ---
139
139
  # * GSL::MultiFit::linear(X, y, work)
140
140
  # * GSL::MultiFit::linear(X, y)
141
141
  #
142
- # This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
143
- # for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
144
- # The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
145
- # from the scatter of the observations about the best-fit. The sum of squares
142
+ # This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
143
+ # for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
144
+ # The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
145
+ # from the scatter of the observations about the best-fit. The sum of squares
146
146
  # of the residuals from the best-fit is also calculated. The returned value is
147
147
  # an array of 4 elements, <tt>[c, cov, chisq, status]</tt>, where <tt>c</tt> is a
148
- # {GSL::Vector}[link:rdoc/vector_rdoc.html] object which contains the best-fit parameters,
149
- # and <tt>cov</tt> is the variance-covariance matrix as a
150
- # {GSL::Matrix}[link:rdoc/matrix_rdoc.html] object.
148
+ # {GSL::Vector}[link:vector_rdoc.html] object which contains the best-fit parameters,
149
+ # and <tt>cov</tt> is the variance-covariance matrix as a
150
+ # {GSL::Matrix}[link:matrix_rdoc.html] object.
151
151
  #
152
- # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
152
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
153
153
  # using the workspace provided in <tt>work</tt> (optional, if not given, it is allocated
154
- # internally).
155
- # The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
156
- # the accuracy of the singular values. Any components which have zero singular
154
+ # internally).
155
+ # The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
156
+ # the accuracy of the singular values. Any components which have zero singular
157
157
  # value (to machine precision) are discarded from the fit.
158
158
  #
159
159
  # ---
160
160
  # * GSL::MultiFit::wlinear(X, w, y, work)
161
161
  # * GSL::MultiFit::wlinear(X, w, y)
162
162
  #
163
- # This function computes the best-fit parameters <tt>c</tt> of the model
164
- # <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
165
- # variables <tt>X</tt>. The covariance matrix of the model parameters
163
+ # This function computes the best-fit parameters <tt>c</tt> of the model
164
+ # <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
165
+ # variables <tt>X</tt>. The covariance matrix of the model parameters
166
166
  # <tt>cov</tt> is estimated from the weighted data. The weighted sum of
167
- # squares of the residuals from the best-fit is also calculated.
168
- # The returned value is an array of 4 elements,
167
+ # squares of the residuals from the best-fit is also calculated.
168
+ # The returned value is an array of 4 elements,
169
169
  # <tt>[c: Vector, cov: Matrix, chisq: Float, status: Fixnum]</tt>.
170
- # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
171
- # using the workspace provided in <tt>work</tt> (optional). Any components
172
- # which have
170
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
171
+ # using the workspace provided in <tt>work</tt> (optional). Any components
172
+ # which have
173
173
  # zero singular value (to machine precision) are discarded from the fit.
174
174
  #
175
175
  # ---
@@ -181,12 +181,12 @@
181
181
  #
182
182
  # (GSL-1.11 or later) This method computes the vector of residuals <tt>r = y - X c</tt> for the observations <tt>y</tt>, coefficients <tt>c</tt> and matrix of predictor variables <tt>X</tt>, and returns <tt>r</tt>.
183
183
  #
184
- # === {}[link:index.html"name="4.3] Higer level interface
184
+ # === Higer level interface
185
185
  #
186
186
  # ---
187
187
  # * GSL::MultiFit::polyfit(x, y, order)
188
188
  #
189
- # Finds the coefficient of a polynomial of order <tt>order</tt>
189
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
190
190
  # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
191
191
  #
192
192
  # Example:
@@ -196,13 +196,13 @@
196
196
  # x = Vector[1, 2, 3, 4, 5]
197
197
  # y = Vector[5.5, 43.1, 128, 290.7, 498.4]
198
198
  # # The results are stored in a polynomial "coef"
199
- # coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
199
+ # coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
200
200
  #
201
201
  # x2 = Vector.linspace(1, 5, 20)
202
202
  # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
203
203
  #
204
- # == {}[link:index.html"name="5] Examples
205
- # === {}[link:index.html"name="5.1] Linear regression
204
+ # == Examples
205
+ # === Linear regression
206
206
  # #!/usr/bin/env ruby
207
207
  # require("gsl")
208
208
  # include GSL::Fit
@@ -220,11 +220,11 @@
220
220
  #
221
221
  # printf("# best fit: Y = %g + %g X\n", c0, c1);
222
222
  # printf("# covariance matrix:\n");
223
- # printf("# [ %g, %g\n# %g, %g]\n",
223
+ # printf("# [ %g, %g\n# %g, %g]\n",
224
224
  # cov00, cov01, cov01, cov11);
225
225
  # printf("# chisq = %g\n", chisq);
226
226
  #
227
- # === {}[link:index.html"name="5.2] Exponential fitting
227
+ # === Exponential fitting
228
228
  # #!/usr/bin/env ruby
229
229
  # require("gsl")
230
230
  #
@@ -245,13 +245,13 @@
245
245
  # printf("Result: a = %f, b = %f\n", A, b2)
246
246
  # graph([x, y], [x2, A*Sf::exp(b2*x2)], "-C -g 3 -S 4")
247
247
  #
248
- # === {}[link:index.html"name="5.3] Multi-parameter fitting
248
+ # === Multi-parameter fitting
249
249
  # #!/usr/bin/env ruby
250
250
  # require("gsl")
251
251
  # include GSL::MultiFit
252
252
  #
253
253
  # Rng.env_setup()
254
- #
254
+ #
255
255
  # r = GSL::Rng.alloc(Rng::DEFAULT)
256
256
  # n = 19
257
257
  # dim = 3
@@ -275,10 +275,10 @@
275
275
  #
276
276
  # c, cov, chisq, status = MultiFit.wlinear(X, w, y)
277
277
  #
278
- # {prev}[link:rdoc/multimin_rdoc.html]
279
- # {next}[link:rdoc/nonlinearfit_rdoc.html]
278
+ # {prev}[link:multimin_rdoc.html]
279
+ # {next}[link:nonlinearfit_rdoc.html]
280
280
  #
281
- # {Reference index}[link:rdoc/ref_rdoc.html]
281
+ # {Reference index}[link:ref_rdoc.html]
282
282
  # {top}[link:index.html]
283
283
  #
284
284
  #
data/rdoc/function.rdoc CHANGED
@@ -1,13 +1,13 @@
1
1
  #
2
2
  # = GSL::Function class
3
3
  #
4
- # == {}[link:index.html"name="1] Class Methods
4
+ # == Class Methods
5
5
  #
6
6
  # ---
7
7
  # * GSL::Function.alloc
8
8
  #
9
9
  # Constructor.
10
- #
10
+ #
11
11
  # * ex:
12
12
  # require("gsl")
13
13
  # f = GSL::Function.alloc { |x| sin(x) }
@@ -18,22 +18,22 @@
18
18
  #
19
19
  # The function can have parameters of arbitrary numbers. Here is an
20
20
  # example in case of exponential function <tt>f(x; a, b) = a*exp(-b*x)</tt>.
21
- #
21
+ #
22
22
  # f = GSL::Function.alloc { |x, params| # x: a scalar, params: an array
23
23
  # a = params[0]; b = params[1]
24
24
  # a*exp(-b*x)
25
25
  # }
26
- # To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
26
+ # To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
27
27
  # f.set_params([2, 3])
28
28
  # f.eval(x)
29
29
  #
30
- # == {}[link:index.html"name="2] Methods
30
+ # == Methods
31
31
  #
32
32
  # ---
33
33
  # * GSL::Function#eval(x)
34
34
  # * GSL::Function#call(x)
35
35
  # * GSL::Function#at(x)
36
- # * GSL::Function#[x]
36
+ # * \GSL::Function#[x]
37
37
  #
38
38
  # These methods return a value of the function at <tt>x</tt>.
39
39
  # p f.eval(2.5)
@@ -57,7 +57,7 @@
57
57
  #
58
58
  # This set the constant parameters of the function.
59
59
  #
60
- # == {}[link:index.html"name="3] Graph
60
+ # == Graph
61
61
  # ---
62
62
  # * GSL::Function#graph(x[, options])
63
63
  #
@@ -70,12 +70,12 @@
70
70
  # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
71
71
  #
72
72
  #
73
- # == {}[link:index.html"name="4] Example
73
+ # == Example
74
74
  # A quadratic function, f(x) = x^2 + 2x + 3.
75
75
  #
76
76
  # >> require("gsl")
77
77
  # => true
78
- # >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
78
+ # >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
79
79
  # => #<GSL::Function:0x6e8eb0>
80
80
  # >> f.set_params(2, 3)
81
81
  # => #<GSL::Function:0x6e8eb0>
@@ -86,7 +86,7 @@
86
86
  # >> f.eval([1, 2, 3]) <--- Array
87
87
  # => [6.0, 11.0, 18.0]
88
88
  # >> f.eval(Matrix.alloc([1, 2], [3, 4])) <--- GSL::Matrix
89
- # [ 6.000e+00 1.100e+01
89
+ # [ 6.000e+00 1.100e+01
90
90
  # 1.800e+01 2.700e+01 ]
91
91
  # => #<GSL::Matrix:0x6dd1b4>
92
92
  #
data/rdoc/graph.rdoc CHANGED
@@ -2,18 +2,18 @@
2
2
  # = Graphics
3
3
  #
4
4
  # The GSL library itself does not include any utilities to visualize computation results.
5
- # Some examples found in the GSL manual use
6
- # {GNU graph}[http://www.gnu.org/software/plotutils/plotutils.html"target="_top]
5
+ # Some examples found in the GSL manual use
6
+ # {GNU graph}[https://gnu.org/software/plotutils/plotutils.html]
7
7
  # to show the results: the data are stored in data files, and then
8
8
  # displayed by using <tt>GNU graph</tt>.
9
9
  # Ruby/GSL provides simple interfaces to <tt>GNU graph</tt>
10
10
  # to plot vectors or histograms directly without storing them in data files.
11
- # Although the methods described below do not cover all the functionalities
12
- # of <tt>GNU graph</tt>, these are useful to check calculations and get some
11
+ # Although the methods described below do not cover all the functionalities
12
+ # of <tt>GNU graph</tt>, these are useful to check calculations and get some
13
13
  # speculations on the data.
14
14
  #
15
15
  #
16
- # == {}[link:index.html"name="1] Plotting vectors
16
+ # == Plotting vectors
17
17
  # ---
18
18
  # * Vector.graph(y[, options])
19
19
  # * Vector.graph(nil, y[, y2, y3, ..., options])
@@ -25,7 +25,7 @@
25
25
  # * GSL::graph([x1, y1], [x2, y2], ...., options)
26
26
  #
27
27
  # These methods use the <tt>GNU graph</tt> utility to plot vectors.
28
- # The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
28
+ # The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
29
29
  # given for <tt>ARGV[0]</tt>, auto-generated abscissa are used.
30
30
  #
31
31
  # Ex:
@@ -44,10 +44,10 @@
44
44
  # * GSL::Vector#graph(options)
45
45
  # * GSL::Vector#graph(x[, options])
46
46
  #
47
- # These methods plot the vector using the GNU <tt>graph</tt>
47
+ # These methods plot the vector using the GNU <tt>graph</tt>
48
48
  # command. The options for the <tt>graph</tt> command are given by a <tt>String</tt>.
49
49
  #
50
- # Ex1:
50
+ # Ex1:
51
51
  # >> x = Vector[1..5]
52
52
  # [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
53
53
  # >> x.graph("-m 2") # dotted line
@@ -60,13 +60,13 @@
60
60
  # >> c = Sf::cos(x)
61
61
  # >> c.graph(x, "-T X -C -g 3 -L 'cos(x)'")
62
62
  #
63
- # == {}[link:index.html"name="2] Drawing histogram
63
+ # == Drawing histogram
64
64
  # ---
65
65
  # * GSL::Histogram#graph(options)
66
66
  #
67
67
  # This method uses the GNU plotutils <tt>graph</tt> to draw a histogram.
68
68
  #
69
- # == {}[link:index.html"name="3] Plotting Functions
69
+ # == Plotting Functions
70
70
  # ---
71
71
  # * GSL::Function#graph(x[, options])
72
72
  #
@@ -78,7 +78,7 @@
78
78
  # x = Vector.linspace(0, 2*M_PI, 50)
79
79
  # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
80
80
  #
81
- # == {}[link:index.html"name="4] Other way
81
+ # == Other way
82
82
  # The code below uses <tt>GNUPLOT</tt> directly to plot vectors.
83
83
  #
84
84
  # #!/usr/bin/env ruby
@@ -101,14 +101,14 @@
101
101
  #
102
102
  # Gnuplot.open do |gp|
103
103
  # Gnuplot::Plot.new( gp ) do |plot|
104
- #
104
+ #
105
105
  # plot.xrange "[0:10]"
106
106
  # plot.yrange "[-1.5:1.5]"
107
107
  # plot.title "Sin Wave Example"
108
108
  # plot.xlabel "x"
109
109
  # plot.ylabel "sin(x)"
110
110
  # plot.pointsize 3
111
- # plot.grid
111
+ # plot.grid
112
112
  #
113
113
  # x = GSL::Vector[0..10]
114
114
  # y = GSL::Sf::sin(x)
@@ -119,7 +119,7 @@
119
119
  # ds.title = "String function"
120
120
  # ds.linewidth = 4
121
121
  # },
122
- #
122
+ #
123
123
  # Gnuplot::DataSet.new( [x, y] ) { |ds|
124
124
  # ds.with = "linespoints"
125
125
  # ds.title = "Array data"
@@ -129,9 +129,9 @@
129
129
  # end
130
130
  # end
131
131
  #
132
- # {prev}[link:rdoc/const_rdoc.html]
132
+ # {prev}[link:const_rdoc.html]
133
133
  #
134
- # {Reference index}[link:rdoc/ref_rdoc.html]
134
+ # {Reference index}[link:ref_rdoc.html]
135
135
  # {top}[link:index.html]
136
136
  #
137
137
  #