rb-gsl 1.16.0.2 → 1.16.0.3.rc1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/perm.rdoc
CHANGED
@@ -1,39 +1,39 @@
|
|
1
1
|
#
|
2
2
|
# = Permutations
|
3
3
|
# Contents:
|
4
|
-
# 1. {Permuation allocations}[link:
|
5
|
-
# 1. {Methods}[link:
|
6
|
-
# 1. {Accessing permutation elements}[link:
|
7
|
-
# 1. {Permuation properties}[link:
|
8
|
-
# 1. {Permuation functions}[link:
|
9
|
-
# 1. {Reading and writing permutations}[link:
|
10
|
-
# 1. {Permutations in cyclic form}[link:
|
11
|
-
# 1. {Applying Permutations}[link:
|
4
|
+
# 1. {Permuation allocations}[link:perm_rdoc.html#label-Permuation+allocations]
|
5
|
+
# 1. {Methods}[link:perm_rdoc.html#label-Methods]
|
6
|
+
# 1. {Accessing permutation elements}[link:perm_rdoc.html#label-Accessing+permutation+elements]
|
7
|
+
# 1. {Permuation properties}[link:perm_rdoc.html#label-Permutation+properties]
|
8
|
+
# 1. {Permuation functions}[link:perm_rdoc.html#label-Permutation+functions]
|
9
|
+
# 1. {Reading and writing permutations}[link:perm_rdoc.html#label-Reading+and+writing+permutations]
|
10
|
+
# 1. {Permutations in cyclic form}[link:perm_rdoc.html#label-Permutations+in+cyclic+Form]
|
11
|
+
# 1. {Applying Permutations}[link:perm_rdoc.html#label-Applying+Permutations]
|
12
12
|
#
|
13
|
-
# ==
|
13
|
+
# == Permuation allocations
|
14
14
|
# ---
|
15
15
|
# * GSL::Permutation.alloc(n)
|
16
16
|
#
|
17
|
-
# These functions create a new permutation of size <tt>n</tt>.
|
18
|
-
# The permutation is not initialized and its elements are undefined.
|
19
|
-
# Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
|
20
|
-
# which is initialized to the identity.
|
17
|
+
# These functions create a new permutation of size <tt>n</tt>.
|
18
|
+
# The permutation is not initialized and its elements are undefined.
|
19
|
+
# Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
|
20
|
+
# which is initialized to the identity.
|
21
21
|
#
|
22
22
|
# ---
|
23
23
|
# * GSL::Permutation.calloc(n)
|
24
24
|
#
|
25
|
-
# This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
|
25
|
+
# This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
|
26
26
|
#
|
27
|
-
# ==
|
27
|
+
# == Methods
|
28
28
|
# ---
|
29
29
|
# * GSL::Permutation#init()
|
30
30
|
#
|
31
|
-
# This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
|
31
|
+
# This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
|
32
32
|
#
|
33
33
|
# ---
|
34
34
|
# * GSL::Permutation.memcpy(dest, src)
|
35
35
|
#
|
36
|
-
# This method copies the elements of the permutation <tt>src</tt>
|
36
|
+
# This method copies the elements of the permutation <tt>src</tt>
|
37
37
|
# into the permutation <tt>dest</tt>. The two permutations must have the same size.
|
38
38
|
#
|
39
39
|
# ---
|
@@ -41,19 +41,19 @@
|
|
41
41
|
#
|
42
42
|
# This creates a new permutation with the same elements of <tt>self</tt>.
|
43
43
|
#
|
44
|
-
# ===
|
44
|
+
# === Accessing permutation elements
|
45
45
|
#
|
46
46
|
# ---
|
47
47
|
# * GSL::Permutation#get(i)
|
48
48
|
#
|
49
|
-
# Returns the value of the <tt>i</tt>-th element of the permutation.
|
49
|
+
# Returns the value of the <tt>i</tt>-th element of the permutation.
|
50
50
|
#
|
51
51
|
# ---
|
52
52
|
# * GSL::Permutation#swap(i, j)
|
53
53
|
#
|
54
54
|
# This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
|
55
55
|
#
|
56
|
-
# ===
|
56
|
+
# === Permutation properties
|
57
57
|
# ---
|
58
58
|
# * GSL::Permutation#size
|
59
59
|
#
|
@@ -61,7 +61,7 @@
|
|
61
61
|
# ---
|
62
62
|
# * GSL::Permutation#valid
|
63
63
|
#
|
64
|
-
# This checks that the permutation <tt>self</tt> is valid.
|
64
|
+
# This checks that the permutation <tt>self</tt> is valid.
|
65
65
|
# The n elements should contain each of the numbers 0 .. n-1 once and only once.
|
66
66
|
#
|
67
67
|
# ---
|
@@ -69,7 +69,7 @@
|
|
69
69
|
#
|
70
70
|
# This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
|
71
71
|
#
|
72
|
-
# ===
|
72
|
+
# === Permutation functions
|
73
73
|
#
|
74
74
|
# ---
|
75
75
|
# * GSL::Permutation#reverse
|
@@ -84,20 +84,20 @@
|
|
84
84
|
# ---
|
85
85
|
# * GSL::Permutation#next
|
86
86
|
#
|
87
|
-
# This method advances the permutation <tt>self</tt> to the next permutation in
|
88
|
-
# lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
|
89
|
-
# are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
|
90
|
-
# Starting with the identity permutation and repeatedly applying this function
|
87
|
+
# This method advances the permutation <tt>self</tt> to the next permutation in
|
88
|
+
# lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
|
89
|
+
# are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
|
90
|
+
# Starting with the identity permutation and repeatedly applying this function
|
91
91
|
# will iterate through all possible permutations of a given order.
|
92
92
|
# ---
|
93
93
|
# * GSL::Permutation#prev
|
94
94
|
#
|
95
|
-
# This method steps backwards from the permutation <tt>self</tt> to the previous
|
96
|
-
# permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
|
97
|
-
# If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
|
95
|
+
# This method steps backwards from the permutation <tt>self</tt> to the previous
|
96
|
+
# permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
|
97
|
+
# If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
|
98
98
|
# and leaves <tt>self</tt> unmodified.
|
99
99
|
#
|
100
|
-
# ===
|
100
|
+
# === Reading and writing permutations
|
101
101
|
# ---
|
102
102
|
# * GSL::Permutation#fwrite(io)
|
103
103
|
# * GSL::Permutation#fwrite(filename)
|
@@ -109,113 +109,113 @@
|
|
109
109
|
# * GSL::Permutation#fscanf(filename)
|
110
110
|
#
|
111
111
|
#
|
112
|
-
# ===
|
113
|
-
# A permutation can be represented in both <tt>linear</tt> and
|
114
|
-
# <tt>cyclic</tt> notations. The functions described in this section convert
|
115
|
-
# between the two forms. The linear notation is an index mapping, and has
|
116
|
-
# already been described above. The cyclic notation expresses a
|
117
|
-
# permutation as a series of circular rearrangements of groups
|
118
|
-
# of elements, or <tt>cycles</tt>.
|
112
|
+
# === Permutations in cyclic Form
|
113
|
+
# A permutation can be represented in both <tt>linear</tt> and
|
114
|
+
# <tt>cyclic</tt> notations. The functions described in this section convert
|
115
|
+
# between the two forms. The linear notation is an index mapping, and has
|
116
|
+
# already been described above. The cyclic notation expresses a
|
117
|
+
# permutation as a series of circular rearrangements of groups
|
118
|
+
# of elements, or <tt>cycles</tt>.
|
119
119
|
#
|
120
|
-
# For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
|
121
|
-
# by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
|
122
|
-
# sets of elements can be combined independently, for example (1 2 3) (4 5)
|
123
|
-
# combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
|
124
|
-
# elements 4 and 5. A cycle of length one represents an element which is
|
125
|
-
# unchanged by the permutation and is referred to as a <tt>singleton</tt>.
|
120
|
+
# For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
|
121
|
+
# by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
|
122
|
+
# sets of elements can be combined independently, for example (1 2 3) (4 5)
|
123
|
+
# combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
|
124
|
+
# elements 4 and 5. A cycle of length one represents an element which is
|
125
|
+
# unchanged by the permutation and is referred to as a <tt>singleton</tt>.
|
126
126
|
#
|
127
|
-
# It can be shown that every permutation can be decomposed into combinations
|
128
|
-
# of cycles. The decomposition is not unique, but can always be rearranged
|
129
|
-
# into a standard <tt>canonical form</tt> by a reordering of elements.
|
130
|
-
# The library uses the canonical form defined in Knuth's
|
131
|
-
# <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
|
127
|
+
# It can be shown that every permutation can be decomposed into combinations
|
128
|
+
# of cycles. The decomposition is not unique, but can always be rearranged
|
129
|
+
# into a standard <tt>canonical form</tt> by a reordering of elements.
|
130
|
+
# The library uses the canonical form defined in Knuth's
|
131
|
+
# <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
|
132
132
|
#
|
133
|
-
# The procedure for obtaining the canonical form given by Knuth is,
|
133
|
+
# The procedure for obtaining the canonical form given by Knuth is,
|
134
134
|
#
|
135
135
|
#
|
136
|
-
# 1. Write all singleton cycles explicitly
|
137
|
-
# 1. Within each cycle, put the smallest number first
|
138
|
-
# 1. Order the cycles in decreasing order of the first number in the cycle.
|
136
|
+
# 1. Write all singleton cycles explicitly
|
137
|
+
# 1. Within each cycle, put the smallest number first
|
138
|
+
# 1. Order the cycles in decreasing order of the first number in the cycle.
|
139
139
|
#
|
140
|
-
# For example, the linear representation (2 4 3 0 1) is represented as
|
141
|
-
# (1 4) (0 2 3) in canonical form. The permutation corresponds to an
|
142
|
-
# exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
|
140
|
+
# For example, the linear representation (2 4 3 0 1) is represented as
|
141
|
+
# (1 4) (0 2 3) in canonical form. The permutation corresponds to an
|
142
|
+
# exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
|
143
143
|
#
|
144
|
-
# The important property of the canonical form is that it can be reconstructed
|
145
|
-
# from the contents of each cycle without the brackets. In addition, by removing
|
146
|
-
# the brackets it can be considered as a linear representation of a different
|
147
|
-
# permutation. In the example given above the permutation (2 4 3 0 1) would
|
148
|
-
# become (1 4 0 2 3). This mapping has many applications in the theory of
|
149
|
-
# permutations.
|
144
|
+
# The important property of the canonical form is that it can be reconstructed
|
145
|
+
# from the contents of each cycle without the brackets. In addition, by removing
|
146
|
+
# the brackets it can be considered as a linear representation of a different
|
147
|
+
# permutation. In the example given above the permutation (2 4 3 0 1) would
|
148
|
+
# become (1 4 0 2 3). This mapping has many applications in the theory of
|
149
|
+
# permutations.
|
150
150
|
#
|
151
151
|
# ---
|
152
152
|
# * GSL::Permutation#linear_to_canonical
|
153
153
|
# * GSL::Permutation#to_canonical
|
154
154
|
#
|
155
|
-
# Computes the canonical form of the permutation <tt>self</tt> and
|
155
|
+
# Computes the canonical form of the permutation <tt>self</tt> and
|
156
156
|
# returns it as a new <tt>GSL::Permutation</tt>.
|
157
157
|
#
|
158
158
|
# ---
|
159
159
|
# * GSL::Permutation#canonical_to_linear
|
160
160
|
# * GSL::Permutation#to_linear
|
161
161
|
#
|
162
|
-
# Converts a permutation <tt>self</tt> in canonical form back into linear
|
162
|
+
# Converts a permutation <tt>self</tt> in canonical form back into linear
|
163
163
|
# form and returns it as a new <tt>GSL::Permutation</tt>.
|
164
164
|
#
|
165
165
|
#
|
166
166
|
# ---
|
167
167
|
# * GSL::Permutation#inversions
|
168
168
|
#
|
169
|
-
# Counts the number of inversions in the permutation <tt>self</tt>.
|
170
|
-
# An inversion is any pair of elements that are not in order.
|
169
|
+
# Counts the number of inversions in the permutation <tt>self</tt>.
|
170
|
+
# An inversion is any pair of elements that are not in order.
|
171
171
|
# For example, the permutation 2031 has three inversions, corresponding
|
172
|
-
# to the pairs (2,0) (2,1) and (3,1).
|
173
|
-
# The identity permutation has no inversions.
|
172
|
+
# to the pairs (2,0) (2,1) and (3,1).
|
173
|
+
# The identity permutation has no inversions.
|
174
174
|
#
|
175
175
|
# ---
|
176
176
|
# * GSL::Permutation#linear_cycles
|
177
177
|
#
|
178
|
-
# Counts the number of cycles in the permutation <tt>self</tt>,
|
179
|
-
# given in linear form.
|
178
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
179
|
+
# given in linear form.
|
180
180
|
#
|
181
181
|
# ---
|
182
182
|
# * GSL::Permutation#canonical_cycles
|
183
183
|
#
|
184
|
-
# Counts the number of cycles in the permutation <tt>self</tt>,
|
185
|
-
# given in canonical form.
|
184
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
185
|
+
# given in canonical form.
|
186
186
|
#
|
187
|
-
# ==
|
187
|
+
# == Applying Permutations
|
188
188
|
# ---
|
189
189
|
# * GSL::Permutation::permute(v)
|
190
190
|
#
|
191
|
-
# Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
|
192
|
-
# considered as a row-vector acted on by a permutation matrix from the
|
193
|
-
# right, v' = v P. The j-th column of the permutation matrix P is
|
194
|
-
# given by the p_j-th column of the identity matrix.
|
191
|
+
# Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
|
192
|
+
# considered as a row-vector acted on by a permutation matrix from the
|
193
|
+
# right, v' = v P. The j-th column of the permutation matrix P is
|
194
|
+
# given by the p_j-th column of the identity matrix.
|
195
195
|
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
196
196
|
# ---
|
197
197
|
# * GSL::Permutation::permute_inverse(v)
|
198
198
|
#
|
199
|
-
# Applies the inverse of the permutation <tt>self</tt> to the elements of
|
200
|
-
# the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
|
201
|
-
# permutation matrix from the right, v' = v P^T.
|
202
|
-
# Note that for permutation matrices the inverse is the same as the
|
203
|
-
# transpose. The j-th column of the permutation matrix P is given by
|
204
|
-
# the p_j-th column of the identity matrix.
|
199
|
+
# Applies the inverse of the permutation <tt>self</tt> to the elements of
|
200
|
+
# the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
|
201
|
+
# permutation matrix from the right, v' = v P^T.
|
202
|
+
# Note that for permutation matrices the inverse is the same as the
|
203
|
+
# transpose. The j-th column of the permutation matrix P is given by
|
204
|
+
# the p_j-th column of the identity matrix.
|
205
205
|
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
206
206
|
# ---
|
207
207
|
# * GSL::Permutation.mul(pa, pb)
|
208
208
|
#
|
209
|
-
# Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
|
210
|
-
# permutation <tt>p</tt> and returns it.
|
211
|
-
# The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
|
212
|
-
# and then <tt>pa</tt>.
|
209
|
+
# Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
|
210
|
+
# permutation <tt>p</tt> and returns it.
|
211
|
+
# The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
|
212
|
+
# and then <tt>pa</tt>.
|
213
213
|
#
|
214
214
|
#
|
215
|
-
# {prev}[link:
|
216
|
-
# {next}[link:
|
215
|
+
# {prev}[link:matrix_rdoc.html]
|
216
|
+
# {next}[link:combi_rdoc.html]
|
217
217
|
#
|
218
|
-
# {Reference index}[link:
|
218
|
+
# {Reference index}[link:ref_rdoc.html]
|
219
219
|
# {top}[link:index.html]
|
220
220
|
#
|
221
221
|
#
|
data/rdoc/poly.rdoc
CHANGED
@@ -1,26 +1,26 @@
|
|
1
1
|
#
|
2
2
|
# = Polynomials
|
3
3
|
# Contents:
|
4
|
-
# 1. {Polynomial Evaluation}[link:
|
5
|
-
# 1. {Solving polynomial equations}[link:
|
6
|
-
# 1. {Quadratic Equations}[link:
|
7
|
-
# 1. {Cubic Equations}[link:
|
8
|
-
# 1. {General Polynomial Equations}[link:
|
9
|
-
# 1. {GSL::Poly
|
10
|
-
# 1. {Constructors}[link:
|
11
|
-
# 1. {Methods}[link:
|
12
|
-
# 1. {Polynomial Fitting}[link:
|
13
|
-
# 1. {Divided-difference representations}[link:
|
14
|
-
# 1. {Extensions}[link:
|
15
|
-
# 1. {Special Polynomials}[link:
|
16
|
-
# 1. {Polynomial Operations}[link:
|
17
|
-
#
|
18
|
-
# ==
|
4
|
+
# 1. {Polynomial Evaluation}[link:poly_rdoc.html#label-Polynomial+Evaluation]
|
5
|
+
# 1. {Solving polynomial equations}[link:poly_rdoc.html#label-Solving+polynomial+equations]
|
6
|
+
# 1. {Quadratic Equations}[link:poly_rdoc.html#label-Quadratic+Equations]
|
7
|
+
# 1. {Cubic Equations}[link:poly_rdoc.html#label-Cubic+Equations]
|
8
|
+
# 1. {General Polynomial Equations}[link:poly_rdoc.html#label-General+Polynomial+Equations]
|
9
|
+
# 1. {GSL::Poly class}[link:poly_rdoc.html#label-Poly+class]
|
10
|
+
# 1. {Constructors}[link:poly_rdoc.html#label-Constructors]
|
11
|
+
# 1. {Methods}[link:poly_rdoc.html#label-Instance+Methods]
|
12
|
+
# 1. {Polynomial Fitting}[link:poly_rdoc.html#label-Polynomial+fitting]
|
13
|
+
# 1. {Divided-difference representations}[link:poly_rdoc.html#label-Divided-difference+representations]
|
14
|
+
# 1. {Extensions}[link:poly_rdoc.html#label-Extensions]
|
15
|
+
# 1. {Special Polynomials}[link:poly_rdoc.html#label-Special+Polynomials]
|
16
|
+
# 1. {Polynomial Operations}[link:poly_rdoc.html#label-Polynomial+Operations]
|
17
|
+
#
|
18
|
+
# == Polynomial Evaluation
|
19
19
|
# ---
|
20
20
|
# * GSL::Poly.eval(c, x)
|
21
21
|
#
|
22
|
-
# Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
|
23
|
-
# The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
|
22
|
+
# Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
|
23
|
+
# The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
|
24
24
|
# a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
|
25
25
|
# is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
|
26
26
|
# From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
|
@@ -54,17 +54,17 @@
|
|
54
54
|
# * GSL::Poly#eval_derivs(x, lenres)
|
55
55
|
#
|
56
56
|
# (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
|
57
|
-
#
|
57
|
+
#
|
58
58
|
# Ex.)
|
59
59
|
# >> ary = [1, 2, 3]
|
60
60
|
# => [1, 2, 3]
|
61
61
|
# >> GSL::Poly.eval_derivs(ary, 1)
|
62
62
|
# => [6.0, 8.0, 6.0, 0.0]
|
63
63
|
# >> na = NArray[1.0, 2, 3]
|
64
|
-
# => NArray.float(3):
|
64
|
+
# => NArray.float(3):
|
65
65
|
# [ 1.0, 2.0, 3.0 ]
|
66
66
|
# >> GSL::Poly.eval_derivs(na, 1)
|
67
|
-
# => NArray.float(4):
|
67
|
+
# => NArray.float(4):
|
68
68
|
# [ 6.0, 8.0, 6.0, 0.0 ]
|
69
69
|
# >> poly = GSL::Poly[1.0, 2, 3]
|
70
70
|
# => GSL::Poly
|
@@ -79,20 +79,20 @@
|
|
79
79
|
# => GSL::Poly
|
80
80
|
# [ 6.000e+00 8.000e+00 6.000e+00 ]
|
81
81
|
#
|
82
|
-
# ==
|
83
|
-
# ===
|
82
|
+
# == Solving polynomial equations
|
83
|
+
# === Quadratic Equations
|
84
84
|
# ---
|
85
85
|
# * GSL::Poly::solve_quadratic(a, b, c)
|
86
86
|
# * GSL::Poly::solve_quadratic([a, b, c])
|
87
87
|
#
|
88
88
|
# Find the real roots of the quadratic equation,
|
89
89
|
# a x^2 + b x + c = 0
|
90
|
-
# The coefficients are given by 3 numbers, or a Ruby array,
|
90
|
+
# The coefficients are given by 3 numbers, or a Ruby array,
|
91
91
|
# or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
|
92
92
|
#
|
93
93
|
# * Ex: z^2 - 3z + 2 = 0
|
94
94
|
# >> GSL::Poly::solve_quadratic(1, -3, 2)
|
95
|
-
# => GSL::Vector:
|
95
|
+
# => GSL::Vector:
|
96
96
|
# [ 1.000e+00 2.000e+00 ]
|
97
97
|
#
|
98
98
|
#
|
@@ -102,21 +102,21 @@
|
|
102
102
|
#
|
103
103
|
# Find the complex roots of the quadratic equation,
|
104
104
|
# a z^2 + b z + z = 0
|
105
|
-
# The coefficients are given by 3 numbers or a Ruby array, or a
|
105
|
+
# The coefficients are given by 3 numbers or a Ruby array, or a
|
106
106
|
# <tt>GSL::Vector</tt>.
|
107
107
|
# The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
|
108
|
-
#
|
108
|
+
#
|
109
109
|
# * Ex: z^2 - 3z + 2 = 0
|
110
110
|
# >> require("gsl")
|
111
111
|
# => true
|
112
112
|
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
|
113
|
-
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
113
|
+
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
114
114
|
# => #<GSL::Vector::Complex:0x764014>
|
115
115
|
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
|
116
|
-
# => GSL::Vector::View:
|
116
|
+
# => GSL::Vector::View:
|
117
117
|
# [ 1.000e+00 2.000e+00 ]
|
118
118
|
#
|
119
|
-
# ===
|
119
|
+
# === Cubic Equations
|
120
120
|
# ---
|
121
121
|
# * GSL::Poly::solve_cubic(same as solve_quadratic)
|
122
122
|
#
|
@@ -129,28 +129,28 @@
|
|
129
129
|
# This method finds the complex roots of the cubic equation,
|
130
130
|
# z^3 + a z^2 + b z + c = 0
|
131
131
|
#
|
132
|
-
# ===
|
132
|
+
# === General Polynomial Equations
|
133
133
|
# ---
|
134
134
|
# * GSL::Poly::complex_solve(c0, c1, c2,,, )
|
135
135
|
# * GSL::Poly::solve(c0, c1, c2,,, )
|
136
136
|
#
|
137
|
-
# Find the complex roots of the polynomial equation. Note that
|
137
|
+
# Find the complex roots of the polynomial equation. Note that
|
138
138
|
# the coefficients are given by "ascending" order.
|
139
139
|
#
|
140
|
-
# * Ex: x^2 - 3 x + 2 == 0
|
140
|
+
# * Ex: x^2 - 3 x + 2 == 0
|
141
141
|
# >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
|
142
142
|
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
143
143
|
# => #<GSL::Vector::Complex:0x75e614>
|
144
144
|
#
|
145
|
-
# ==
|
145
|
+
# == Poly class
|
146
146
|
# This class expresses polynomials of arbitrary orders.
|
147
147
|
#
|
148
|
-
# ===
|
148
|
+
# === Constructors
|
149
149
|
# ---
|
150
150
|
# * GSL::Poly.alloc(c0, c1, c2, ....)
|
151
151
|
# * GSL::Poly[c0, c1, c2, ....]
|
152
152
|
#
|
153
|
-
# This creates an instance of the <tt>GSL::Poly</tt> class,
|
153
|
+
# This creates an instance of the <tt>GSL::Poly</tt> class,
|
154
154
|
# which represents a polynomial
|
155
155
|
# c0 + c1 x + c2 x^2 + ....
|
156
156
|
# This class is derived from <tt>GSL::Vector</tt>.
|
@@ -158,13 +158,13 @@
|
|
158
158
|
# * Ex: x^2 - 3 x + 2
|
159
159
|
# poly = GSL::Poly.alloc([2, -3, 1])
|
160
160
|
#
|
161
|
-
# ===
|
161
|
+
# === Instance Methods
|
162
162
|
# ---
|
163
163
|
# * GSL::Poly#eval(x)
|
164
164
|
# * GSL::Poly#at(x)
|
165
165
|
#
|
166
|
-
# Evaluates the polynomial
|
167
|
-
# c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
|
166
|
+
# Evaluates the polynomial
|
167
|
+
# <tt>c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}</tt>
|
168
168
|
# using Horner's method for stability. The argument <tt>x</tt> is a
|
169
169
|
# <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
|
170
170
|
#
|
@@ -175,10 +175,10 @@
|
|
175
175
|
#
|
176
176
|
# * Ex: z^2 - 3 z + 2 = 0:
|
177
177
|
# >> a = GSL::Poly[2, -3, 1]
|
178
|
-
# => GSL::Poly:
|
178
|
+
# => GSL::Poly:
|
179
179
|
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
180
180
|
# >> a.solve_quadratic
|
181
|
-
# => GSL::Vector:
|
181
|
+
# => GSL::Vector:
|
182
182
|
# [ 1.000e+00 2.000e+00 ]
|
183
183
|
#
|
184
184
|
# ---
|
@@ -196,21 +196,21 @@
|
|
196
196
|
#
|
197
197
|
# * Ex: z^2 - 3 z + 2 = 0:
|
198
198
|
# >> a = GSL::Poly[2, -3, 1]
|
199
|
-
# => GSL::Poly:
|
199
|
+
# => GSL::Poly:
|
200
200
|
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
201
201
|
# >> a.solve
|
202
202
|
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
203
203
|
# => #<GSL::Vector::Complex:0x35db28>
|
204
204
|
#
|
205
|
-
# ==
|
205
|
+
# == Polynomial fitting
|
206
206
|
# ---
|
207
207
|
# * GSL::Poly.fit(x, y, order)
|
208
208
|
# * GSL::Poly.wfit(x, w, y, order)
|
209
209
|
#
|
210
|
-
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
210
|
+
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
211
211
|
# that fits the vector data (<tt>x, y</tt>) in a least-square sense.
|
212
212
|
# This provides a higher-level interface to the method
|
213
|
-
# {GSL::Multifit#linear}[link:
|
213
|
+
# {GSL::Multifit#linear}[link:fit_rdoc.html] in a case of polynomial fitting.
|
214
214
|
#
|
215
215
|
# Example:
|
216
216
|
# #!/usr/bin/env ruby
|
@@ -219,34 +219,34 @@
|
|
219
219
|
# x = GSL::Vector[1, 2, 3, 4, 5]
|
220
220
|
# y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
|
221
221
|
# # The results are stored in a polynomial "coef"
|
222
|
-
# coef, cov, chisq, status = Poly.fit(x, y, 3)
|
222
|
+
# coef, cov, chisq, status = Poly.fit(x, y, 3)
|
223
223
|
#
|
224
224
|
# x2 = GSL::Vector.linspace(1, 5, 20)
|
225
225
|
# graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
|
226
226
|
#
|
227
|
-
# ==
|
227
|
+
# == Divided-difference representations
|
228
228
|
#
|
229
229
|
# ---
|
230
230
|
# * GSL::Poly::dd_init(xa, ya)
|
231
231
|
#
|
232
|
-
# This method computes a divided-difference representation of the
|
232
|
+
# This method computes a divided-difference representation of the
|
233
233
|
# interpolating polynomial for the points <tt>(xa, ya)</tt>.
|
234
234
|
#
|
235
235
|
# ---
|
236
236
|
# * GSL::Poly::DividedDifference#eval(x)
|
237
237
|
#
|
238
|
-
# This method evaluates the polynomial stored in divided-difference form
|
238
|
+
# This method evaluates the polynomial stored in divided-difference form
|
239
239
|
# <tt>self</tt> at the point <tt>x</tt>.
|
240
240
|
#
|
241
241
|
# ---
|
242
242
|
# * GSL::Poly::DividedDifference#taylor(xp)
|
243
243
|
#
|
244
|
-
# This method converts the divided-difference representation of a polynomial
|
245
|
-
# to a Taylor expansion. On output the Taylor coefficients of the polynomial
|
244
|
+
# This method converts the divided-difference representation of a polynomial
|
245
|
+
# to a Taylor expansion. On output the Taylor coefficients of the polynomial
|
246
246
|
# expanded about the point <tt>xp</tt> are returned.
|
247
247
|
#
|
248
|
-
# ==
|
249
|
-
# ===
|
248
|
+
# == Extensions
|
249
|
+
# === Special Polynomials
|
250
250
|
# ---
|
251
251
|
# * GSL::Poly.hermite(n)
|
252
252
|
#
|
@@ -255,13 +255,13 @@
|
|
255
255
|
# H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
|
256
256
|
# * Ex:
|
257
257
|
# >> GSL::Poly.hermite(2)
|
258
|
-
# => GSL::Poly::Int:
|
258
|
+
# => GSL::Poly::Int:
|
259
259
|
# [ -2 0 4 ] <----- 4x^2 - 2
|
260
260
|
# >> GSL::Poly.hermite(5)
|
261
|
-
# => GSL::Poly::Int:
|
261
|
+
# => GSL::Poly::Int:
|
262
262
|
# [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
|
263
263
|
# >> GSL::Poly.hermite(7)
|
264
|
-
# => GSL::Poly::Int:
|
264
|
+
# => GSL::Poly::Int:
|
265
265
|
# [ 0 -1680 0 3360 0 -1344 0 128 ]
|
266
266
|
#
|
267
267
|
# ---
|
@@ -300,22 +300,22 @@
|
|
300
300
|
# rb(main):001:0> require("gsl")
|
301
301
|
# => true
|
302
302
|
# >> GSL::Poly.laguerre(0)
|
303
|
-
# => GSL::Poly::Int:
|
303
|
+
# => GSL::Poly::Int:
|
304
304
|
# [ 1 ] <--- 1
|
305
305
|
# >> GSL::Poly.laguerre(1)
|
306
|
-
# => GSL::Poly::Int:
|
306
|
+
# => GSL::Poly::Int:
|
307
307
|
# [ 1 -1 ] <--- -x + 1
|
308
308
|
# >> GSL::Poly.laguerre(2)
|
309
|
-
# => GSL::Poly::Int:
|
309
|
+
# => GSL::Poly::Int:
|
310
310
|
# [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
|
311
311
|
# >> GSL::Poly.laguerre(3)
|
312
|
-
# => GSL::Poly::Int:
|
312
|
+
# => GSL::Poly::Int:
|
313
313
|
# [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
|
314
314
|
# >> GSL::Poly.laguerre(4)
|
315
|
-
# => GSL::Poly::Int:
|
315
|
+
# => GSL::Poly::Int:
|
316
316
|
# [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
|
317
|
-
#
|
318
|
-
# ===
|
317
|
+
#
|
318
|
+
# === Polynomial Operations
|
319
319
|
# ---
|
320
320
|
# * GSL::Poly#conv
|
321
321
|
# * GSL::Poly#deconv
|
@@ -325,10 +325,10 @@
|
|
325
325
|
# * GSL::Poly#compan
|
326
326
|
#
|
327
327
|
#
|
328
|
-
# {prev}[link:
|
329
|
-
# {next}[link:
|
328
|
+
# {prev}[link:complex_rdoc.html]
|
329
|
+
# {next}[link:sf_rdoc.html]
|
330
330
|
#
|
331
|
-
# {Reference index}[link:
|
331
|
+
# {Reference index}[link:ref_rdoc.html]
|
332
332
|
# {top}[link:index.html]
|
333
333
|
#
|
334
334
|
#
|