rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/perm.rdoc
CHANGED
@@ -1,39 +1,39 @@
|
|
1
1
|
#
|
2
2
|
# = Permutations
|
3
3
|
# Contents:
|
4
|
-
# 1. {Permuation allocations}[link:
|
5
|
-
# 1. {Methods}[link:
|
6
|
-
# 1. {Accessing permutation elements}[link:
|
7
|
-
# 1. {Permuation properties}[link:
|
8
|
-
# 1. {Permuation functions}[link:
|
9
|
-
# 1. {Reading and writing permutations}[link:
|
10
|
-
# 1. {Permutations in cyclic form}[link:
|
11
|
-
# 1. {Applying Permutations}[link:
|
4
|
+
# 1. {Permuation allocations}[link:perm_rdoc.html#label-Permuation+allocations]
|
5
|
+
# 1. {Methods}[link:perm_rdoc.html#label-Methods]
|
6
|
+
# 1. {Accessing permutation elements}[link:perm_rdoc.html#label-Accessing+permutation+elements]
|
7
|
+
# 1. {Permuation properties}[link:perm_rdoc.html#label-Permutation+properties]
|
8
|
+
# 1. {Permuation functions}[link:perm_rdoc.html#label-Permutation+functions]
|
9
|
+
# 1. {Reading and writing permutations}[link:perm_rdoc.html#label-Reading+and+writing+permutations]
|
10
|
+
# 1. {Permutations in cyclic form}[link:perm_rdoc.html#label-Permutations+in+cyclic+Form]
|
11
|
+
# 1. {Applying Permutations}[link:perm_rdoc.html#label-Applying+Permutations]
|
12
12
|
#
|
13
|
-
# ==
|
13
|
+
# == Permuation allocations
|
14
14
|
# ---
|
15
15
|
# * GSL::Permutation.alloc(n)
|
16
16
|
#
|
17
|
-
# These functions create a new permutation of size <tt>n</tt>.
|
18
|
-
# The permutation is not initialized and its elements are undefined.
|
19
|
-
# Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
|
20
|
-
# which is initialized to the identity.
|
17
|
+
# These functions create a new permutation of size <tt>n</tt>.
|
18
|
+
# The permutation is not initialized and its elements are undefined.
|
19
|
+
# Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
|
20
|
+
# which is initialized to the identity.
|
21
21
|
#
|
22
22
|
# ---
|
23
23
|
# * GSL::Permutation.calloc(n)
|
24
24
|
#
|
25
|
-
# This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
|
25
|
+
# This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
|
26
26
|
#
|
27
|
-
# ==
|
27
|
+
# == Methods
|
28
28
|
# ---
|
29
29
|
# * GSL::Permutation#init()
|
30
30
|
#
|
31
|
-
# This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
|
31
|
+
# This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
|
32
32
|
#
|
33
33
|
# ---
|
34
34
|
# * GSL::Permutation.memcpy(dest, src)
|
35
35
|
#
|
36
|
-
# This method copies the elements of the permutation <tt>src</tt>
|
36
|
+
# This method copies the elements of the permutation <tt>src</tt>
|
37
37
|
# into the permutation <tt>dest</tt>. The two permutations must have the same size.
|
38
38
|
#
|
39
39
|
# ---
|
@@ -41,19 +41,19 @@
|
|
41
41
|
#
|
42
42
|
# This creates a new permutation with the same elements of <tt>self</tt>.
|
43
43
|
#
|
44
|
-
# ===
|
44
|
+
# === Accessing permutation elements
|
45
45
|
#
|
46
46
|
# ---
|
47
47
|
# * GSL::Permutation#get(i)
|
48
48
|
#
|
49
|
-
# Returns the value of the <tt>i</tt>-th element of the permutation.
|
49
|
+
# Returns the value of the <tt>i</tt>-th element of the permutation.
|
50
50
|
#
|
51
51
|
# ---
|
52
52
|
# * GSL::Permutation#swap(i, j)
|
53
53
|
#
|
54
54
|
# This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
|
55
55
|
#
|
56
|
-
# ===
|
56
|
+
# === Permutation properties
|
57
57
|
# ---
|
58
58
|
# * GSL::Permutation#size
|
59
59
|
#
|
@@ -61,7 +61,7 @@
|
|
61
61
|
# ---
|
62
62
|
# * GSL::Permutation#valid
|
63
63
|
#
|
64
|
-
# This checks that the permutation <tt>self</tt> is valid.
|
64
|
+
# This checks that the permutation <tt>self</tt> is valid.
|
65
65
|
# The n elements should contain each of the numbers 0 .. n-1 once and only once.
|
66
66
|
#
|
67
67
|
# ---
|
@@ -69,7 +69,7 @@
|
|
69
69
|
#
|
70
70
|
# This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
|
71
71
|
#
|
72
|
-
# ===
|
72
|
+
# === Permutation functions
|
73
73
|
#
|
74
74
|
# ---
|
75
75
|
# * GSL::Permutation#reverse
|
@@ -84,20 +84,20 @@
|
|
84
84
|
# ---
|
85
85
|
# * GSL::Permutation#next
|
86
86
|
#
|
87
|
-
# This method advances the permutation <tt>self</tt> to the next permutation in
|
88
|
-
# lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
|
89
|
-
# are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
|
90
|
-
# Starting with the identity permutation and repeatedly applying this function
|
87
|
+
# This method advances the permutation <tt>self</tt> to the next permutation in
|
88
|
+
# lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
|
89
|
+
# are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
|
90
|
+
# Starting with the identity permutation and repeatedly applying this function
|
91
91
|
# will iterate through all possible permutations of a given order.
|
92
92
|
# ---
|
93
93
|
# * GSL::Permutation#prev
|
94
94
|
#
|
95
|
-
# This method steps backwards from the permutation <tt>self</tt> to the previous
|
96
|
-
# permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
|
97
|
-
# If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
|
95
|
+
# This method steps backwards from the permutation <tt>self</tt> to the previous
|
96
|
+
# permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
|
97
|
+
# If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
|
98
98
|
# and leaves <tt>self</tt> unmodified.
|
99
99
|
#
|
100
|
-
# ===
|
100
|
+
# === Reading and writing permutations
|
101
101
|
# ---
|
102
102
|
# * GSL::Permutation#fwrite(io)
|
103
103
|
# * GSL::Permutation#fwrite(filename)
|
@@ -109,113 +109,113 @@
|
|
109
109
|
# * GSL::Permutation#fscanf(filename)
|
110
110
|
#
|
111
111
|
#
|
112
|
-
# ===
|
113
|
-
# A permutation can be represented in both <tt>linear</tt> and
|
114
|
-
# <tt>cyclic</tt> notations. The functions described in this section convert
|
115
|
-
# between the two forms. The linear notation is an index mapping, and has
|
116
|
-
# already been described above. The cyclic notation expresses a
|
117
|
-
# permutation as a series of circular rearrangements of groups
|
118
|
-
# of elements, or <tt>cycles</tt>.
|
112
|
+
# === Permutations in cyclic Form
|
113
|
+
# A permutation can be represented in both <tt>linear</tt> and
|
114
|
+
# <tt>cyclic</tt> notations. The functions described in this section convert
|
115
|
+
# between the two forms. The linear notation is an index mapping, and has
|
116
|
+
# already been described above. The cyclic notation expresses a
|
117
|
+
# permutation as a series of circular rearrangements of groups
|
118
|
+
# of elements, or <tt>cycles</tt>.
|
119
119
|
#
|
120
|
-
# For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
|
121
|
-
# by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
|
122
|
-
# sets of elements can be combined independently, for example (1 2 3) (4 5)
|
123
|
-
# combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
|
124
|
-
# elements 4 and 5. A cycle of length one represents an element which is
|
125
|
-
# unchanged by the permutation and is referred to as a <tt>singleton</tt>.
|
120
|
+
# For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
|
121
|
+
# by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
|
122
|
+
# sets of elements can be combined independently, for example (1 2 3) (4 5)
|
123
|
+
# combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
|
124
|
+
# elements 4 and 5. A cycle of length one represents an element which is
|
125
|
+
# unchanged by the permutation and is referred to as a <tt>singleton</tt>.
|
126
126
|
#
|
127
|
-
# It can be shown that every permutation can be decomposed into combinations
|
128
|
-
# of cycles. The decomposition is not unique, but can always be rearranged
|
129
|
-
# into a standard <tt>canonical form</tt> by a reordering of elements.
|
130
|
-
# The library uses the canonical form defined in Knuth's
|
131
|
-
# <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
|
127
|
+
# It can be shown that every permutation can be decomposed into combinations
|
128
|
+
# of cycles. The decomposition is not unique, but can always be rearranged
|
129
|
+
# into a standard <tt>canonical form</tt> by a reordering of elements.
|
130
|
+
# The library uses the canonical form defined in Knuth's
|
131
|
+
# <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
|
132
132
|
#
|
133
|
-
# The procedure for obtaining the canonical form given by Knuth is,
|
133
|
+
# The procedure for obtaining the canonical form given by Knuth is,
|
134
134
|
#
|
135
135
|
#
|
136
|
-
# 1. Write all singleton cycles explicitly
|
137
|
-
# 1. Within each cycle, put the smallest number first
|
138
|
-
# 1. Order the cycles in decreasing order of the first number in the cycle.
|
136
|
+
# 1. Write all singleton cycles explicitly
|
137
|
+
# 1. Within each cycle, put the smallest number first
|
138
|
+
# 1. Order the cycles in decreasing order of the first number in the cycle.
|
139
139
|
#
|
140
|
-
# For example, the linear representation (2 4 3 0 1) is represented as
|
141
|
-
# (1 4) (0 2 3) in canonical form. The permutation corresponds to an
|
142
|
-
# exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
|
140
|
+
# For example, the linear representation (2 4 3 0 1) is represented as
|
141
|
+
# (1 4) (0 2 3) in canonical form. The permutation corresponds to an
|
142
|
+
# exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
|
143
143
|
#
|
144
|
-
# The important property of the canonical form is that it can be reconstructed
|
145
|
-
# from the contents of each cycle without the brackets. In addition, by removing
|
146
|
-
# the brackets it can be considered as a linear representation of a different
|
147
|
-
# permutation. In the example given above the permutation (2 4 3 0 1) would
|
148
|
-
# become (1 4 0 2 3). This mapping has many applications in the theory of
|
149
|
-
# permutations.
|
144
|
+
# The important property of the canonical form is that it can be reconstructed
|
145
|
+
# from the contents of each cycle without the brackets. In addition, by removing
|
146
|
+
# the brackets it can be considered as a linear representation of a different
|
147
|
+
# permutation. In the example given above the permutation (2 4 3 0 1) would
|
148
|
+
# become (1 4 0 2 3). This mapping has many applications in the theory of
|
149
|
+
# permutations.
|
150
150
|
#
|
151
151
|
# ---
|
152
152
|
# * GSL::Permutation#linear_to_canonical
|
153
153
|
# * GSL::Permutation#to_canonical
|
154
154
|
#
|
155
|
-
# Computes the canonical form of the permutation <tt>self</tt> and
|
155
|
+
# Computes the canonical form of the permutation <tt>self</tt> and
|
156
156
|
# returns it as a new <tt>GSL::Permutation</tt>.
|
157
157
|
#
|
158
158
|
# ---
|
159
159
|
# * GSL::Permutation#canonical_to_linear
|
160
160
|
# * GSL::Permutation#to_linear
|
161
161
|
#
|
162
|
-
# Converts a permutation <tt>self</tt> in canonical form back into linear
|
162
|
+
# Converts a permutation <tt>self</tt> in canonical form back into linear
|
163
163
|
# form and returns it as a new <tt>GSL::Permutation</tt>.
|
164
164
|
#
|
165
165
|
#
|
166
166
|
# ---
|
167
167
|
# * GSL::Permutation#inversions
|
168
168
|
#
|
169
|
-
# Counts the number of inversions in the permutation <tt>self</tt>.
|
170
|
-
# An inversion is any pair of elements that are not in order.
|
169
|
+
# Counts the number of inversions in the permutation <tt>self</tt>.
|
170
|
+
# An inversion is any pair of elements that are not in order.
|
171
171
|
# For example, the permutation 2031 has three inversions, corresponding
|
172
|
-
# to the pairs (2,0) (2,1) and (3,1).
|
173
|
-
# The identity permutation has no inversions.
|
172
|
+
# to the pairs (2,0) (2,1) and (3,1).
|
173
|
+
# The identity permutation has no inversions.
|
174
174
|
#
|
175
175
|
# ---
|
176
176
|
# * GSL::Permutation#linear_cycles
|
177
177
|
#
|
178
|
-
# Counts the number of cycles in the permutation <tt>self</tt>,
|
179
|
-
# given in linear form.
|
178
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
179
|
+
# given in linear form.
|
180
180
|
#
|
181
181
|
# ---
|
182
182
|
# * GSL::Permutation#canonical_cycles
|
183
183
|
#
|
184
|
-
# Counts the number of cycles in the permutation <tt>self</tt>,
|
185
|
-
# given in canonical form.
|
184
|
+
# Counts the number of cycles in the permutation <tt>self</tt>,
|
185
|
+
# given in canonical form.
|
186
186
|
#
|
187
|
-
# ==
|
187
|
+
# == Applying Permutations
|
188
188
|
# ---
|
189
189
|
# * GSL::Permutation::permute(v)
|
190
190
|
#
|
191
|
-
# Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
|
192
|
-
# considered as a row-vector acted on by a permutation matrix from the
|
193
|
-
# right, v' = v P. The j-th column of the permutation matrix P is
|
194
|
-
# given by the p_j-th column of the identity matrix.
|
191
|
+
# Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
|
192
|
+
# considered as a row-vector acted on by a permutation matrix from the
|
193
|
+
# right, v' = v P. The j-th column of the permutation matrix P is
|
194
|
+
# given by the p_j-th column of the identity matrix.
|
195
195
|
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
196
196
|
# ---
|
197
197
|
# * GSL::Permutation::permute_inverse(v)
|
198
198
|
#
|
199
|
-
# Applies the inverse of the permutation <tt>self</tt> to the elements of
|
200
|
-
# the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
|
201
|
-
# permutation matrix from the right, v' = v P^T.
|
202
|
-
# Note that for permutation matrices the inverse is the same as the
|
203
|
-
# transpose. The j-th column of the permutation matrix P is given by
|
204
|
-
# the p_j-th column of the identity matrix.
|
199
|
+
# Applies the inverse of the permutation <tt>self</tt> to the elements of
|
200
|
+
# the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
|
201
|
+
# permutation matrix from the right, v' = v P^T.
|
202
|
+
# Note that for permutation matrices the inverse is the same as the
|
203
|
+
# transpose. The j-th column of the permutation matrix P is given by
|
204
|
+
# the p_j-th column of the identity matrix.
|
205
205
|
# The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
|
206
206
|
# ---
|
207
207
|
# * GSL::Permutation.mul(pa, pb)
|
208
208
|
#
|
209
|
-
# Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
|
210
|
-
# permutation <tt>p</tt> and returns it.
|
211
|
-
# The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
|
212
|
-
# and then <tt>pa</tt>.
|
209
|
+
# Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
|
210
|
+
# permutation <tt>p</tt> and returns it.
|
211
|
+
# The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
|
212
|
+
# and then <tt>pa</tt>.
|
213
213
|
#
|
214
214
|
#
|
215
|
-
# {prev}[link:
|
216
|
-
# {next}[link:
|
215
|
+
# {prev}[link:matrix_rdoc.html]
|
216
|
+
# {next}[link:combi_rdoc.html]
|
217
217
|
#
|
218
|
-
# {Reference index}[link:
|
218
|
+
# {Reference index}[link:ref_rdoc.html]
|
219
219
|
# {top}[link:index.html]
|
220
220
|
#
|
221
221
|
#
|
data/rdoc/poly.rdoc
CHANGED
@@ -1,26 +1,26 @@
|
|
1
1
|
#
|
2
2
|
# = Polynomials
|
3
3
|
# Contents:
|
4
|
-
# 1. {Polynomial Evaluation}[link:
|
5
|
-
# 1. {Solving polynomial equations}[link:
|
6
|
-
# 1. {Quadratic Equations}[link:
|
7
|
-
# 1. {Cubic Equations}[link:
|
8
|
-
# 1. {General Polynomial Equations}[link:
|
9
|
-
# 1. {GSL::Poly
|
10
|
-
# 1. {Constructors}[link:
|
11
|
-
# 1. {Methods}[link:
|
12
|
-
# 1. {Polynomial Fitting}[link:
|
13
|
-
# 1. {Divided-difference representations}[link:
|
14
|
-
# 1. {Extensions}[link:
|
15
|
-
# 1. {Special Polynomials}[link:
|
16
|
-
# 1. {Polynomial Operations}[link:
|
17
|
-
#
|
18
|
-
# ==
|
4
|
+
# 1. {Polynomial Evaluation}[link:poly_rdoc.html#label-Polynomial+Evaluation]
|
5
|
+
# 1. {Solving polynomial equations}[link:poly_rdoc.html#label-Solving+polynomial+equations]
|
6
|
+
# 1. {Quadratic Equations}[link:poly_rdoc.html#label-Quadratic+Equations]
|
7
|
+
# 1. {Cubic Equations}[link:poly_rdoc.html#label-Cubic+Equations]
|
8
|
+
# 1. {General Polynomial Equations}[link:poly_rdoc.html#label-General+Polynomial+Equations]
|
9
|
+
# 1. {GSL::Poly class}[link:poly_rdoc.html#label-Poly+class]
|
10
|
+
# 1. {Constructors}[link:poly_rdoc.html#label-Constructors]
|
11
|
+
# 1. {Methods}[link:poly_rdoc.html#label-Instance+Methods]
|
12
|
+
# 1. {Polynomial Fitting}[link:poly_rdoc.html#label-Polynomial+fitting]
|
13
|
+
# 1. {Divided-difference representations}[link:poly_rdoc.html#label-Divided-difference+representations]
|
14
|
+
# 1. {Extensions}[link:poly_rdoc.html#label-Extensions]
|
15
|
+
# 1. {Special Polynomials}[link:poly_rdoc.html#label-Special+Polynomials]
|
16
|
+
# 1. {Polynomial Operations}[link:poly_rdoc.html#label-Polynomial+Operations]
|
17
|
+
#
|
18
|
+
# == Polynomial Evaluation
|
19
19
|
# ---
|
20
20
|
# * GSL::Poly.eval(c, x)
|
21
21
|
#
|
22
|
-
# Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
|
23
|
-
# The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
|
22
|
+
# Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
|
23
|
+
# The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
|
24
24
|
# a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
|
25
25
|
# is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
|
26
26
|
# From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
|
@@ -54,17 +54,17 @@
|
|
54
54
|
# * GSL::Poly#eval_derivs(x, lenres)
|
55
55
|
#
|
56
56
|
# (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
|
57
|
-
#
|
57
|
+
#
|
58
58
|
# Ex.)
|
59
59
|
# >> ary = [1, 2, 3]
|
60
60
|
# => [1, 2, 3]
|
61
61
|
# >> GSL::Poly.eval_derivs(ary, 1)
|
62
62
|
# => [6.0, 8.0, 6.0, 0.0]
|
63
63
|
# >> na = NArray[1.0, 2, 3]
|
64
|
-
# => NArray.float(3):
|
64
|
+
# => NArray.float(3):
|
65
65
|
# [ 1.0, 2.0, 3.0 ]
|
66
66
|
# >> GSL::Poly.eval_derivs(na, 1)
|
67
|
-
# => NArray.float(4):
|
67
|
+
# => NArray.float(4):
|
68
68
|
# [ 6.0, 8.0, 6.0, 0.0 ]
|
69
69
|
# >> poly = GSL::Poly[1.0, 2, 3]
|
70
70
|
# => GSL::Poly
|
@@ -79,20 +79,20 @@
|
|
79
79
|
# => GSL::Poly
|
80
80
|
# [ 6.000e+00 8.000e+00 6.000e+00 ]
|
81
81
|
#
|
82
|
-
# ==
|
83
|
-
# ===
|
82
|
+
# == Solving polynomial equations
|
83
|
+
# === Quadratic Equations
|
84
84
|
# ---
|
85
85
|
# * GSL::Poly::solve_quadratic(a, b, c)
|
86
86
|
# * GSL::Poly::solve_quadratic([a, b, c])
|
87
87
|
#
|
88
88
|
# Find the real roots of the quadratic equation,
|
89
89
|
# a x^2 + b x + c = 0
|
90
|
-
# The coefficients are given by 3 numbers, or a Ruby array,
|
90
|
+
# The coefficients are given by 3 numbers, or a Ruby array,
|
91
91
|
# or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
|
92
92
|
#
|
93
93
|
# * Ex: z^2 - 3z + 2 = 0
|
94
94
|
# >> GSL::Poly::solve_quadratic(1, -3, 2)
|
95
|
-
# => GSL::Vector:
|
95
|
+
# => GSL::Vector:
|
96
96
|
# [ 1.000e+00 2.000e+00 ]
|
97
97
|
#
|
98
98
|
#
|
@@ -102,21 +102,21 @@
|
|
102
102
|
#
|
103
103
|
# Find the complex roots of the quadratic equation,
|
104
104
|
# a z^2 + b z + z = 0
|
105
|
-
# The coefficients are given by 3 numbers or a Ruby array, or a
|
105
|
+
# The coefficients are given by 3 numbers or a Ruby array, or a
|
106
106
|
# <tt>GSL::Vector</tt>.
|
107
107
|
# The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
|
108
|
-
#
|
108
|
+
#
|
109
109
|
# * Ex: z^2 - 3z + 2 = 0
|
110
110
|
# >> require("gsl")
|
111
111
|
# => true
|
112
112
|
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
|
113
|
-
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
113
|
+
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
114
114
|
# => #<GSL::Vector::Complex:0x764014>
|
115
115
|
# >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
|
116
|
-
# => GSL::Vector::View:
|
116
|
+
# => GSL::Vector::View:
|
117
117
|
# [ 1.000e+00 2.000e+00 ]
|
118
118
|
#
|
119
|
-
# ===
|
119
|
+
# === Cubic Equations
|
120
120
|
# ---
|
121
121
|
# * GSL::Poly::solve_cubic(same as solve_quadratic)
|
122
122
|
#
|
@@ -129,28 +129,28 @@
|
|
129
129
|
# This method finds the complex roots of the cubic equation,
|
130
130
|
# z^3 + a z^2 + b z + c = 0
|
131
131
|
#
|
132
|
-
# ===
|
132
|
+
# === General Polynomial Equations
|
133
133
|
# ---
|
134
134
|
# * GSL::Poly::complex_solve(c0, c1, c2,,, )
|
135
135
|
# * GSL::Poly::solve(c0, c1, c2,,, )
|
136
136
|
#
|
137
|
-
# Find the complex roots of the polynomial equation. Note that
|
137
|
+
# Find the complex roots of the polynomial equation. Note that
|
138
138
|
# the coefficients are given by "ascending" order.
|
139
139
|
#
|
140
|
-
# * Ex: x^2 - 3 x + 2 == 0
|
140
|
+
# * Ex: x^2 - 3 x + 2 == 0
|
141
141
|
# >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
|
142
142
|
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
143
143
|
# => #<GSL::Vector::Complex:0x75e614>
|
144
144
|
#
|
145
|
-
# ==
|
145
|
+
# == Poly class
|
146
146
|
# This class expresses polynomials of arbitrary orders.
|
147
147
|
#
|
148
|
-
# ===
|
148
|
+
# === Constructors
|
149
149
|
# ---
|
150
150
|
# * GSL::Poly.alloc(c0, c1, c2, ....)
|
151
151
|
# * GSL::Poly[c0, c1, c2, ....]
|
152
152
|
#
|
153
|
-
# This creates an instance of the <tt>GSL::Poly</tt> class,
|
153
|
+
# This creates an instance of the <tt>GSL::Poly</tt> class,
|
154
154
|
# which represents a polynomial
|
155
155
|
# c0 + c1 x + c2 x^2 + ....
|
156
156
|
# This class is derived from <tt>GSL::Vector</tt>.
|
@@ -158,13 +158,13 @@
|
|
158
158
|
# * Ex: x^2 - 3 x + 2
|
159
159
|
# poly = GSL::Poly.alloc([2, -3, 1])
|
160
160
|
#
|
161
|
-
# ===
|
161
|
+
# === Instance Methods
|
162
162
|
# ---
|
163
163
|
# * GSL::Poly#eval(x)
|
164
164
|
# * GSL::Poly#at(x)
|
165
165
|
#
|
166
|
-
# Evaluates the polynomial
|
167
|
-
# c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
|
166
|
+
# Evaluates the polynomial
|
167
|
+
# <tt>c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}</tt>
|
168
168
|
# using Horner's method for stability. The argument <tt>x</tt> is a
|
169
169
|
# <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
|
170
170
|
#
|
@@ -175,10 +175,10 @@
|
|
175
175
|
#
|
176
176
|
# * Ex: z^2 - 3 z + 2 = 0:
|
177
177
|
# >> a = GSL::Poly[2, -3, 1]
|
178
|
-
# => GSL::Poly:
|
178
|
+
# => GSL::Poly:
|
179
179
|
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
180
180
|
# >> a.solve_quadratic
|
181
|
-
# => GSL::Vector:
|
181
|
+
# => GSL::Vector:
|
182
182
|
# [ 1.000e+00 2.000e+00 ]
|
183
183
|
#
|
184
184
|
# ---
|
@@ -196,21 +196,21 @@
|
|
196
196
|
#
|
197
197
|
# * Ex: z^2 - 3 z + 2 = 0:
|
198
198
|
# >> a = GSL::Poly[2, -3, 1]
|
199
|
-
# => GSL::Poly:
|
199
|
+
# => GSL::Poly:
|
200
200
|
# [ 2.000e+00 -3.000e+00 1.000e+00 ]
|
201
201
|
# >> a.solve
|
202
202
|
# [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
|
203
203
|
# => #<GSL::Vector::Complex:0x35db28>
|
204
204
|
#
|
205
|
-
# ==
|
205
|
+
# == Polynomial fitting
|
206
206
|
# ---
|
207
207
|
# * GSL::Poly.fit(x, y, order)
|
208
208
|
# * GSL::Poly.wfit(x, w, y, order)
|
209
209
|
#
|
210
|
-
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
210
|
+
# Finds the coefficient of a polynomial of order <tt>order</tt>
|
211
211
|
# that fits the vector data (<tt>x, y</tt>) in a least-square sense.
|
212
212
|
# This provides a higher-level interface to the method
|
213
|
-
# {GSL::Multifit#linear}[link:
|
213
|
+
# {GSL::Multifit#linear}[link:fit_rdoc.html] in a case of polynomial fitting.
|
214
214
|
#
|
215
215
|
# Example:
|
216
216
|
# #!/usr/bin/env ruby
|
@@ -219,34 +219,34 @@
|
|
219
219
|
# x = GSL::Vector[1, 2, 3, 4, 5]
|
220
220
|
# y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
|
221
221
|
# # The results are stored in a polynomial "coef"
|
222
|
-
# coef, cov, chisq, status = Poly.fit(x, y, 3)
|
222
|
+
# coef, cov, chisq, status = Poly.fit(x, y, 3)
|
223
223
|
#
|
224
224
|
# x2 = GSL::Vector.linspace(1, 5, 20)
|
225
225
|
# graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
|
226
226
|
#
|
227
|
-
# ==
|
227
|
+
# == Divided-difference representations
|
228
228
|
#
|
229
229
|
# ---
|
230
230
|
# * GSL::Poly::dd_init(xa, ya)
|
231
231
|
#
|
232
|
-
# This method computes a divided-difference representation of the
|
232
|
+
# This method computes a divided-difference representation of the
|
233
233
|
# interpolating polynomial for the points <tt>(xa, ya)</tt>.
|
234
234
|
#
|
235
235
|
# ---
|
236
236
|
# * GSL::Poly::DividedDifference#eval(x)
|
237
237
|
#
|
238
|
-
# This method evaluates the polynomial stored in divided-difference form
|
238
|
+
# This method evaluates the polynomial stored in divided-difference form
|
239
239
|
# <tt>self</tt> at the point <tt>x</tt>.
|
240
240
|
#
|
241
241
|
# ---
|
242
242
|
# * GSL::Poly::DividedDifference#taylor(xp)
|
243
243
|
#
|
244
|
-
# This method converts the divided-difference representation of a polynomial
|
245
|
-
# to a Taylor expansion. On output the Taylor coefficients of the polynomial
|
244
|
+
# This method converts the divided-difference representation of a polynomial
|
245
|
+
# to a Taylor expansion. On output the Taylor coefficients of the polynomial
|
246
246
|
# expanded about the point <tt>xp</tt> are returned.
|
247
247
|
#
|
248
|
-
# ==
|
249
|
-
# ===
|
248
|
+
# == Extensions
|
249
|
+
# === Special Polynomials
|
250
250
|
# ---
|
251
251
|
# * GSL::Poly.hermite(n)
|
252
252
|
#
|
@@ -255,13 +255,13 @@
|
|
255
255
|
# H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
|
256
256
|
# * Ex:
|
257
257
|
# >> GSL::Poly.hermite(2)
|
258
|
-
# => GSL::Poly::Int:
|
258
|
+
# => GSL::Poly::Int:
|
259
259
|
# [ -2 0 4 ] <----- 4x^2 - 2
|
260
260
|
# >> GSL::Poly.hermite(5)
|
261
|
-
# => GSL::Poly::Int:
|
261
|
+
# => GSL::Poly::Int:
|
262
262
|
# [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
|
263
263
|
# >> GSL::Poly.hermite(7)
|
264
|
-
# => GSL::Poly::Int:
|
264
|
+
# => GSL::Poly::Int:
|
265
265
|
# [ 0 -1680 0 3360 0 -1344 0 128 ]
|
266
266
|
#
|
267
267
|
# ---
|
@@ -300,22 +300,22 @@
|
|
300
300
|
# rb(main):001:0> require("gsl")
|
301
301
|
# => true
|
302
302
|
# >> GSL::Poly.laguerre(0)
|
303
|
-
# => GSL::Poly::Int:
|
303
|
+
# => GSL::Poly::Int:
|
304
304
|
# [ 1 ] <--- 1
|
305
305
|
# >> GSL::Poly.laguerre(1)
|
306
|
-
# => GSL::Poly::Int:
|
306
|
+
# => GSL::Poly::Int:
|
307
307
|
# [ 1 -1 ] <--- -x + 1
|
308
308
|
# >> GSL::Poly.laguerre(2)
|
309
|
-
# => GSL::Poly::Int:
|
309
|
+
# => GSL::Poly::Int:
|
310
310
|
# [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
|
311
311
|
# >> GSL::Poly.laguerre(3)
|
312
|
-
# => GSL::Poly::Int:
|
312
|
+
# => GSL::Poly::Int:
|
313
313
|
# [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
|
314
314
|
# >> GSL::Poly.laguerre(4)
|
315
|
-
# => GSL::Poly::Int:
|
315
|
+
# => GSL::Poly::Int:
|
316
316
|
# [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
|
317
|
-
#
|
318
|
-
# ===
|
317
|
+
#
|
318
|
+
# === Polynomial Operations
|
319
319
|
# ---
|
320
320
|
# * GSL::Poly#conv
|
321
321
|
# * GSL::Poly#deconv
|
@@ -325,10 +325,10 @@
|
|
325
325
|
# * GSL::Poly#compan
|
326
326
|
#
|
327
327
|
#
|
328
|
-
# {prev}[link:
|
329
|
-
# {next}[link:
|
328
|
+
# {prev}[link:complex_rdoc.html]
|
329
|
+
# {next}[link:sf_rdoc.html]
|
330
330
|
#
|
331
|
-
# {Reference index}[link:
|
331
|
+
# {Reference index}[link:ref_rdoc.html]
|
332
332
|
# {top}[link:index.html]
|
333
333
|
#
|
334
334
|
#
|