rb-gsl 1.16.0.2 → 1.16.0.3.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
data/rdoc/perm.rdoc CHANGED
@@ -1,39 +1,39 @@
1
1
  #
2
2
  # = Permutations
3
3
  # Contents:
4
- # 1. {Permuation allocations}[link:rdoc/perm_rdoc.html#1]
5
- # 1. {Methods}[link:rdoc/perm_rdoc.html#2]
6
- # 1. {Accessing permutation elements}[link:rdoc/perm_rdoc.html#2.1]
7
- # 1. {Permuation properties}[link:rdoc/perm_rdoc.html#2.2]
8
- # 1. {Permuation functions}[link:rdoc/perm_rdoc.html#2.3]
9
- # 1. {Reading and writing permutations}[link:rdoc/perm_rdoc.html#2.4]
10
- # 1. {Permutations in cyclic form}[link:rdoc/perm_rdoc.html#2.5]
11
- # 1. {Applying Permutations}[link:rdoc/perm_rdoc.html#3]
4
+ # 1. {Permuation allocations}[link:perm_rdoc.html#label-Permuation+allocations]
5
+ # 1. {Methods}[link:perm_rdoc.html#label-Methods]
6
+ # 1. {Accessing permutation elements}[link:perm_rdoc.html#label-Accessing+permutation+elements]
7
+ # 1. {Permuation properties}[link:perm_rdoc.html#label-Permutation+properties]
8
+ # 1. {Permuation functions}[link:perm_rdoc.html#label-Permutation+functions]
9
+ # 1. {Reading and writing permutations}[link:perm_rdoc.html#label-Reading+and+writing+permutations]
10
+ # 1. {Permutations in cyclic form}[link:perm_rdoc.html#label-Permutations+in+cyclic+Form]
11
+ # 1. {Applying Permutations}[link:perm_rdoc.html#label-Applying+Permutations]
12
12
  #
13
- # == {}[link:index.html"name="1] Permuation allocations
13
+ # == Permuation allocations
14
14
  # ---
15
15
  # * GSL::Permutation.alloc(n)
16
16
  #
17
- # These functions create a new permutation of size <tt>n</tt>.
18
- # The permutation is not initialized and its elements are undefined.
19
- # Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
20
- # which is initialized to the identity.
17
+ # These functions create a new permutation of size <tt>n</tt>.
18
+ # The permutation is not initialized and its elements are undefined.
19
+ # Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
20
+ # which is initialized to the identity.
21
21
  #
22
22
  # ---
23
23
  # * GSL::Permutation.calloc(n)
24
24
  #
25
- # This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
25
+ # This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
26
26
  #
27
- # == {}[link:index.html"name="2] Methods
27
+ # == Methods
28
28
  # ---
29
29
  # * GSL::Permutation#init()
30
30
  #
31
- # This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
31
+ # This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
32
32
  #
33
33
  # ---
34
34
  # * GSL::Permutation.memcpy(dest, src)
35
35
  #
36
- # This method copies the elements of the permutation <tt>src</tt>
36
+ # This method copies the elements of the permutation <tt>src</tt>
37
37
  # into the permutation <tt>dest</tt>. The two permutations must have the same size.
38
38
  #
39
39
  # ---
@@ -41,19 +41,19 @@
41
41
  #
42
42
  # This creates a new permutation with the same elements of <tt>self</tt>.
43
43
  #
44
- # === {}[link:index.html"name="2.1] Accessing permutation elements
44
+ # === Accessing permutation elements
45
45
  #
46
46
  # ---
47
47
  # * GSL::Permutation#get(i)
48
48
  #
49
- # Returns the value of the <tt>i</tt>-th element of the permutation.
49
+ # Returns the value of the <tt>i</tt>-th element of the permutation.
50
50
  #
51
51
  # ---
52
52
  # * GSL::Permutation#swap(i, j)
53
53
  #
54
54
  # This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
55
55
  #
56
- # === {}[link:index.html"name="2.2] Permutation properties
56
+ # === Permutation properties
57
57
  # ---
58
58
  # * GSL::Permutation#size
59
59
  #
@@ -61,7 +61,7 @@
61
61
  # ---
62
62
  # * GSL::Permutation#valid
63
63
  #
64
- # This checks that the permutation <tt>self</tt> is valid.
64
+ # This checks that the permutation <tt>self</tt> is valid.
65
65
  # The n elements should contain each of the numbers 0 .. n-1 once and only once.
66
66
  #
67
67
  # ---
@@ -69,7 +69,7 @@
69
69
  #
70
70
  # This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
71
71
  #
72
- # === {}[link:index.html"name="2.3] Permutation functions
72
+ # === Permutation functions
73
73
  #
74
74
  # ---
75
75
  # * GSL::Permutation#reverse
@@ -84,20 +84,20 @@
84
84
  # ---
85
85
  # * GSL::Permutation#next
86
86
  #
87
- # This method advances the permutation <tt>self</tt> to the next permutation in
88
- # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
89
- # are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
90
- # Starting with the identity permutation and repeatedly applying this function
87
+ # This method advances the permutation <tt>self</tt> to the next permutation in
88
+ # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
89
+ # are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
90
+ # Starting with the identity permutation and repeatedly applying this function
91
91
  # will iterate through all possible permutations of a given order.
92
92
  # ---
93
93
  # * GSL::Permutation#prev
94
94
  #
95
- # This method steps backwards from the permutation <tt>self</tt> to the previous
96
- # permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
97
- # If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
95
+ # This method steps backwards from the permutation <tt>self</tt> to the previous
96
+ # permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
97
+ # If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
98
98
  # and leaves <tt>self</tt> unmodified.
99
99
  #
100
- # === {}[link:index.html"name="2.4] Reading and writing permutations
100
+ # === Reading and writing permutations
101
101
  # ---
102
102
  # * GSL::Permutation#fwrite(io)
103
103
  # * GSL::Permutation#fwrite(filename)
@@ -109,113 +109,113 @@
109
109
  # * GSL::Permutation#fscanf(filename)
110
110
  #
111
111
  #
112
- # === {}[link:index.html"name="2.5] Permutations in cyclic Form
113
- # A permutation can be represented in both <tt>linear</tt> and
114
- # <tt>cyclic</tt> notations. The functions described in this section convert
115
- # between the two forms. The linear notation is an index mapping, and has
116
- # already been described above. The cyclic notation expresses a
117
- # permutation as a series of circular rearrangements of groups
118
- # of elements, or <tt>cycles</tt>.
112
+ # === Permutations in cyclic Form
113
+ # A permutation can be represented in both <tt>linear</tt> and
114
+ # <tt>cyclic</tt> notations. The functions described in this section convert
115
+ # between the two forms. The linear notation is an index mapping, and has
116
+ # already been described above. The cyclic notation expresses a
117
+ # permutation as a series of circular rearrangements of groups
118
+ # of elements, or <tt>cycles</tt>.
119
119
  #
120
- # For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
121
- # by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
122
- # sets of elements can be combined independently, for example (1 2 3) (4 5)
123
- # combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
124
- # elements 4 and 5. A cycle of length one represents an element which is
125
- # unchanged by the permutation and is referred to as a <tt>singleton</tt>.
120
+ # For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
121
+ # by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
122
+ # sets of elements can be combined independently, for example (1 2 3) (4 5)
123
+ # combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
124
+ # elements 4 and 5. A cycle of length one represents an element which is
125
+ # unchanged by the permutation and is referred to as a <tt>singleton</tt>.
126
126
  #
127
- # It can be shown that every permutation can be decomposed into combinations
128
- # of cycles. The decomposition is not unique, but can always be rearranged
129
- # into a standard <tt>canonical form</tt> by a reordering of elements.
130
- # The library uses the canonical form defined in Knuth's
131
- # <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
127
+ # It can be shown that every permutation can be decomposed into combinations
128
+ # of cycles. The decomposition is not unique, but can always be rearranged
129
+ # into a standard <tt>canonical form</tt> by a reordering of elements.
130
+ # The library uses the canonical form defined in Knuth's
131
+ # <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
132
132
  #
133
- # The procedure for obtaining the canonical form given by Knuth is,
133
+ # The procedure for obtaining the canonical form given by Knuth is,
134
134
  #
135
135
  #
136
- # 1. Write all singleton cycles explicitly
137
- # 1. Within each cycle, put the smallest number first
138
- # 1. Order the cycles in decreasing order of the first number in the cycle.
136
+ # 1. Write all singleton cycles explicitly
137
+ # 1. Within each cycle, put the smallest number first
138
+ # 1. Order the cycles in decreasing order of the first number in the cycle.
139
139
  #
140
- # For example, the linear representation (2 4 3 0 1) is represented as
141
- # (1 4) (0 2 3) in canonical form. The permutation corresponds to an
142
- # exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
140
+ # For example, the linear representation (2 4 3 0 1) is represented as
141
+ # (1 4) (0 2 3) in canonical form. The permutation corresponds to an
142
+ # exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
143
143
  #
144
- # The important property of the canonical form is that it can be reconstructed
145
- # from the contents of each cycle without the brackets. In addition, by removing
146
- # the brackets it can be considered as a linear representation of a different
147
- # permutation. In the example given above the permutation (2 4 3 0 1) would
148
- # become (1 4 0 2 3). This mapping has many applications in the theory of
149
- # permutations.
144
+ # The important property of the canonical form is that it can be reconstructed
145
+ # from the contents of each cycle without the brackets. In addition, by removing
146
+ # the brackets it can be considered as a linear representation of a different
147
+ # permutation. In the example given above the permutation (2 4 3 0 1) would
148
+ # become (1 4 0 2 3). This mapping has many applications in the theory of
149
+ # permutations.
150
150
  #
151
151
  # ---
152
152
  # * GSL::Permutation#linear_to_canonical
153
153
  # * GSL::Permutation#to_canonical
154
154
  #
155
- # Computes the canonical form of the permutation <tt>self</tt> and
155
+ # Computes the canonical form of the permutation <tt>self</tt> and
156
156
  # returns it as a new <tt>GSL::Permutation</tt>.
157
157
  #
158
158
  # ---
159
159
  # * GSL::Permutation#canonical_to_linear
160
160
  # * GSL::Permutation#to_linear
161
161
  #
162
- # Converts a permutation <tt>self</tt> in canonical form back into linear
162
+ # Converts a permutation <tt>self</tt> in canonical form back into linear
163
163
  # form and returns it as a new <tt>GSL::Permutation</tt>.
164
164
  #
165
165
  #
166
166
  # ---
167
167
  # * GSL::Permutation#inversions
168
168
  #
169
- # Counts the number of inversions in the permutation <tt>self</tt>.
170
- # An inversion is any pair of elements that are not in order.
169
+ # Counts the number of inversions in the permutation <tt>self</tt>.
170
+ # An inversion is any pair of elements that are not in order.
171
171
  # For example, the permutation 2031 has three inversions, corresponding
172
- # to the pairs (2,0) (2,1) and (3,1).
173
- # The identity permutation has no inversions.
172
+ # to the pairs (2,0) (2,1) and (3,1).
173
+ # The identity permutation has no inversions.
174
174
  #
175
175
  # ---
176
176
  # * GSL::Permutation#linear_cycles
177
177
  #
178
- # Counts the number of cycles in the permutation <tt>self</tt>,
179
- # given in linear form.
178
+ # Counts the number of cycles in the permutation <tt>self</tt>,
179
+ # given in linear form.
180
180
  #
181
181
  # ---
182
182
  # * GSL::Permutation#canonical_cycles
183
183
  #
184
- # Counts the number of cycles in the permutation <tt>self</tt>,
185
- # given in canonical form.
184
+ # Counts the number of cycles in the permutation <tt>self</tt>,
185
+ # given in canonical form.
186
186
  #
187
- # == {}[link:index.html"name="3] Applying Permutations
187
+ # == Applying Permutations
188
188
  # ---
189
189
  # * GSL::Permutation::permute(v)
190
190
  #
191
- # Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
192
- # considered as a row-vector acted on by a permutation matrix from the
193
- # right, v' = v P. The j-th column of the permutation matrix P is
194
- # given by the p_j-th column of the identity matrix.
191
+ # Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
192
+ # considered as a row-vector acted on by a permutation matrix from the
193
+ # right, v' = v P. The j-th column of the permutation matrix P is
194
+ # given by the p_j-th column of the identity matrix.
195
195
  # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
196
196
  # ---
197
197
  # * GSL::Permutation::permute_inverse(v)
198
198
  #
199
- # Applies the inverse of the permutation <tt>self</tt> to the elements of
200
- # the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
201
- # permutation matrix from the right, v' = v P^T.
202
- # Note that for permutation matrices the inverse is the same as the
203
- # transpose. The j-th column of the permutation matrix P is given by
204
- # the p_j-th column of the identity matrix.
199
+ # Applies the inverse of the permutation <tt>self</tt> to the elements of
200
+ # the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
201
+ # permutation matrix from the right, v' = v P^T.
202
+ # Note that for permutation matrices the inverse is the same as the
203
+ # transpose. The j-th column of the permutation matrix P is given by
204
+ # the p_j-th column of the identity matrix.
205
205
  # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
206
206
  # ---
207
207
  # * GSL::Permutation.mul(pa, pb)
208
208
  #
209
- # Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
210
- # permutation <tt>p</tt> and returns it.
211
- # The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
212
- # and then <tt>pa</tt>.
209
+ # Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
210
+ # permutation <tt>p</tt> and returns it.
211
+ # The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
212
+ # and then <tt>pa</tt>.
213
213
  #
214
214
  #
215
- # {prev}[link:rdoc/matrix_rdoc.html]
216
- # {next}[link:rdoc/combi_rdoc.html]
215
+ # {prev}[link:matrix_rdoc.html]
216
+ # {next}[link:combi_rdoc.html]
217
217
  #
218
- # {Reference index}[link:rdoc/ref_rdoc.html]
218
+ # {Reference index}[link:ref_rdoc.html]
219
219
  # {top}[link:index.html]
220
220
  #
221
221
  #
data/rdoc/poly.rdoc CHANGED
@@ -1,26 +1,26 @@
1
1
  #
2
2
  # = Polynomials
3
3
  # Contents:
4
- # 1. {Polynomial Evaluation}[link:rdoc/poly_rdoc.html#1]
5
- # 1. {Solving polynomial equations}[link:rdoc/poly_rdoc.html#2]
6
- # 1. {Quadratic Equations}[link:rdoc/poly_rdoc.html#2.1]
7
- # 1. {Cubic Equations}[link:rdoc/poly_rdoc.html#2.2]
8
- # 1. {General Polynomial Equations}[link:rdoc/poly_rdoc.html#2.3]
9
- # 1. {GSL::Poly Class}[link:rdoc/poly_rdoc.html#3]
10
- # 1. {Constructors}[link:rdoc/poly_rdoc.html#3.1]
11
- # 1. {Methods}[link:rdoc/poly_rdoc.html#3.2]
12
- # 1. {Polynomial Fitting}[link:rdoc/poly_rdoc.html#4]
13
- # 1. {Divided-difference representations}[link:rdoc/poly_rdoc.html#5]
14
- # 1. {Extensions}[link:rdoc/poly_rdoc.html#6]
15
- # 1. {Special Polynomials}[link:rdoc/poly_rdoc.html#6.1]
16
- # 1. {Polynomial Operations}[link:rdoc/poly_rdoc.html#6.2]
17
- #
18
- # == {}[link:index.html"name="1] Polynomial Evaluation
4
+ # 1. {Polynomial Evaluation}[link:poly_rdoc.html#label-Polynomial+Evaluation]
5
+ # 1. {Solving polynomial equations}[link:poly_rdoc.html#label-Solving+polynomial+equations]
6
+ # 1. {Quadratic Equations}[link:poly_rdoc.html#label-Quadratic+Equations]
7
+ # 1. {Cubic Equations}[link:poly_rdoc.html#label-Cubic+Equations]
8
+ # 1. {General Polynomial Equations}[link:poly_rdoc.html#label-General+Polynomial+Equations]
9
+ # 1. {GSL::Poly class}[link:poly_rdoc.html#label-Poly+class]
10
+ # 1. {Constructors}[link:poly_rdoc.html#label-Constructors]
11
+ # 1. {Methods}[link:poly_rdoc.html#label-Instance+Methods]
12
+ # 1. {Polynomial Fitting}[link:poly_rdoc.html#label-Polynomial+fitting]
13
+ # 1. {Divided-difference representations}[link:poly_rdoc.html#label-Divided-difference+representations]
14
+ # 1. {Extensions}[link:poly_rdoc.html#label-Extensions]
15
+ # 1. {Special Polynomials}[link:poly_rdoc.html#label-Special+Polynomials]
16
+ # 1. {Polynomial Operations}[link:poly_rdoc.html#label-Polynomial+Operations]
17
+ #
18
+ # == Polynomial Evaluation
19
19
  # ---
20
20
  # * GSL::Poly.eval(c, x)
21
21
  #
22
- # Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
23
- # The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
22
+ # Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
23
+ # The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
24
24
  # a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
25
25
  # is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
26
26
  # From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
@@ -54,17 +54,17 @@
54
54
  # * GSL::Poly#eval_derivs(x, lenres)
55
55
  #
56
56
  # (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
57
- #
57
+ #
58
58
  # Ex.)
59
59
  # >> ary = [1, 2, 3]
60
60
  # => [1, 2, 3]
61
61
  # >> GSL::Poly.eval_derivs(ary, 1)
62
62
  # => [6.0, 8.0, 6.0, 0.0]
63
63
  # >> na = NArray[1.0, 2, 3]
64
- # => NArray.float(3):
64
+ # => NArray.float(3):
65
65
  # [ 1.0, 2.0, 3.0 ]
66
66
  # >> GSL::Poly.eval_derivs(na, 1)
67
- # => NArray.float(4):
67
+ # => NArray.float(4):
68
68
  # [ 6.0, 8.0, 6.0, 0.0 ]
69
69
  # >> poly = GSL::Poly[1.0, 2, 3]
70
70
  # => GSL::Poly
@@ -79,20 +79,20 @@
79
79
  # => GSL::Poly
80
80
  # [ 6.000e+00 8.000e+00 6.000e+00 ]
81
81
  #
82
- # == {}[link:index.html"name="2] Solving polynomial equations
83
- # === {}[link:index.html"name="2.1] Quadratic Equations
82
+ # == Solving polynomial equations
83
+ # === Quadratic Equations
84
84
  # ---
85
85
  # * GSL::Poly::solve_quadratic(a, b, c)
86
86
  # * GSL::Poly::solve_quadratic([a, b, c])
87
87
  #
88
88
  # Find the real roots of the quadratic equation,
89
89
  # a x^2 + b x + c = 0
90
- # The coefficients are given by 3 numbers, or a Ruby array,
90
+ # The coefficients are given by 3 numbers, or a Ruby array,
91
91
  # or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
92
92
  #
93
93
  # * Ex: z^2 - 3z + 2 = 0
94
94
  # >> GSL::Poly::solve_quadratic(1, -3, 2)
95
- # => GSL::Vector:
95
+ # => GSL::Vector:
96
96
  # [ 1.000e+00 2.000e+00 ]
97
97
  #
98
98
  #
@@ -102,21 +102,21 @@
102
102
  #
103
103
  # Find the complex roots of the quadratic equation,
104
104
  # a z^2 + b z + z = 0
105
- # The coefficients are given by 3 numbers or a Ruby array, or a
105
+ # The coefficients are given by 3 numbers or a Ruby array, or a
106
106
  # <tt>GSL::Vector</tt>.
107
107
  # The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
108
- #
108
+ #
109
109
  # * Ex: z^2 - 3z + 2 = 0
110
110
  # >> require("gsl")
111
111
  # => true
112
112
  # >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
113
- # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
113
+ # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
114
114
  # => #<GSL::Vector::Complex:0x764014>
115
115
  # >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
116
- # => GSL::Vector::View:
116
+ # => GSL::Vector::View:
117
117
  # [ 1.000e+00 2.000e+00 ]
118
118
  #
119
- # === {}[link:index.html"name="2.2] Cubic Equations
119
+ # === Cubic Equations
120
120
  # ---
121
121
  # * GSL::Poly::solve_cubic(same as solve_quadratic)
122
122
  #
@@ -129,28 +129,28 @@
129
129
  # This method finds the complex roots of the cubic equation,
130
130
  # z^3 + a z^2 + b z + c = 0
131
131
  #
132
- # === {}[link:index.html"name="2.3] General Polynomial Equations
132
+ # === General Polynomial Equations
133
133
  # ---
134
134
  # * GSL::Poly::complex_solve(c0, c1, c2,,, )
135
135
  # * GSL::Poly::solve(c0, c1, c2,,, )
136
136
  #
137
- # Find the complex roots of the polynomial equation. Note that
137
+ # Find the complex roots of the polynomial equation. Note that
138
138
  # the coefficients are given by "ascending" order.
139
139
  #
140
- # * Ex: x^2 - 3 x + 2 == 0
140
+ # * Ex: x^2 - 3 x + 2 == 0
141
141
  # >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
142
142
  # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
143
143
  # => #<GSL::Vector::Complex:0x75e614>
144
144
  #
145
- # == {}[link:index.html"name="3] GSL::Poly Class
145
+ # == Poly class
146
146
  # This class expresses polynomials of arbitrary orders.
147
147
  #
148
- # === {}[link:index.html"name="3.1] Constructors
148
+ # === Constructors
149
149
  # ---
150
150
  # * GSL::Poly.alloc(c0, c1, c2, ....)
151
151
  # * GSL::Poly[c0, c1, c2, ....]
152
152
  #
153
- # This creates an instance of the <tt>GSL::Poly</tt> class,
153
+ # This creates an instance of the <tt>GSL::Poly</tt> class,
154
154
  # which represents a polynomial
155
155
  # c0 + c1 x + c2 x^2 + ....
156
156
  # This class is derived from <tt>GSL::Vector</tt>.
@@ -158,13 +158,13 @@
158
158
  # * Ex: x^2 - 3 x + 2
159
159
  # poly = GSL::Poly.alloc([2, -3, 1])
160
160
  #
161
- # === {}[link:index.html"name="3.2] Instance Methods
161
+ # === Instance Methods
162
162
  # ---
163
163
  # * GSL::Poly#eval(x)
164
164
  # * GSL::Poly#at(x)
165
165
  #
166
- # Evaluates the polynomial
167
- # c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
166
+ # Evaluates the polynomial
167
+ # <tt>c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}</tt>
168
168
  # using Horner's method for stability. The argument <tt>x</tt> is a
169
169
  # <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
170
170
  #
@@ -175,10 +175,10 @@
175
175
  #
176
176
  # * Ex: z^2 - 3 z + 2 = 0:
177
177
  # >> a = GSL::Poly[2, -3, 1]
178
- # => GSL::Poly:
178
+ # => GSL::Poly:
179
179
  # [ 2.000e+00 -3.000e+00 1.000e+00 ]
180
180
  # >> a.solve_quadratic
181
- # => GSL::Vector:
181
+ # => GSL::Vector:
182
182
  # [ 1.000e+00 2.000e+00 ]
183
183
  #
184
184
  # ---
@@ -196,21 +196,21 @@
196
196
  #
197
197
  # * Ex: z^2 - 3 z + 2 = 0:
198
198
  # >> a = GSL::Poly[2, -3, 1]
199
- # => GSL::Poly:
199
+ # => GSL::Poly:
200
200
  # [ 2.000e+00 -3.000e+00 1.000e+00 ]
201
201
  # >> a.solve
202
202
  # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
203
203
  # => #<GSL::Vector::Complex:0x35db28>
204
204
  #
205
- # == {}[link:index.html"name="4] Polynomial fitting
205
+ # == Polynomial fitting
206
206
  # ---
207
207
  # * GSL::Poly.fit(x, y, order)
208
208
  # * GSL::Poly.wfit(x, w, y, order)
209
209
  #
210
- # Finds the coefficient of a polynomial of order <tt>order</tt>
210
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
211
211
  # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
212
212
  # This provides a higher-level interface to the method
213
- # {GSL::Multifit#linear}[link:rdoc/fit_rdoc.html] in a case of polynomial fitting.
213
+ # {GSL::Multifit#linear}[link:fit_rdoc.html] in a case of polynomial fitting.
214
214
  #
215
215
  # Example:
216
216
  # #!/usr/bin/env ruby
@@ -219,34 +219,34 @@
219
219
  # x = GSL::Vector[1, 2, 3, 4, 5]
220
220
  # y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
221
221
  # # The results are stored in a polynomial "coef"
222
- # coef, cov, chisq, status = Poly.fit(x, y, 3)
222
+ # coef, cov, chisq, status = Poly.fit(x, y, 3)
223
223
  #
224
224
  # x2 = GSL::Vector.linspace(1, 5, 20)
225
225
  # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
226
226
  #
227
- # == {}[link:index.html"name="5] Divided-difference representations
227
+ # == Divided-difference representations
228
228
  #
229
229
  # ---
230
230
  # * GSL::Poly::dd_init(xa, ya)
231
231
  #
232
- # This method computes a divided-difference representation of the
232
+ # This method computes a divided-difference representation of the
233
233
  # interpolating polynomial for the points <tt>(xa, ya)</tt>.
234
234
  #
235
235
  # ---
236
236
  # * GSL::Poly::DividedDifference#eval(x)
237
237
  #
238
- # This method evaluates the polynomial stored in divided-difference form
238
+ # This method evaluates the polynomial stored in divided-difference form
239
239
  # <tt>self</tt> at the point <tt>x</tt>.
240
240
  #
241
241
  # ---
242
242
  # * GSL::Poly::DividedDifference#taylor(xp)
243
243
  #
244
- # This method converts the divided-difference representation of a polynomial
245
- # to a Taylor expansion. On output the Taylor coefficients of the polynomial
244
+ # This method converts the divided-difference representation of a polynomial
245
+ # to a Taylor expansion. On output the Taylor coefficients of the polynomial
246
246
  # expanded about the point <tt>xp</tt> are returned.
247
247
  #
248
- # == {}[link:index.html"name="6] Extensions
249
- # === {}[link:index.html"name="6.1] Special Polynomials
248
+ # == Extensions
249
+ # === Special Polynomials
250
250
  # ---
251
251
  # * GSL::Poly.hermite(n)
252
252
  #
@@ -255,13 +255,13 @@
255
255
  # H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
256
256
  # * Ex:
257
257
  # >> GSL::Poly.hermite(2)
258
- # => GSL::Poly::Int:
258
+ # => GSL::Poly::Int:
259
259
  # [ -2 0 4 ] <----- 4x^2 - 2
260
260
  # >> GSL::Poly.hermite(5)
261
- # => GSL::Poly::Int:
261
+ # => GSL::Poly::Int:
262
262
  # [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
263
263
  # >> GSL::Poly.hermite(7)
264
- # => GSL::Poly::Int:
264
+ # => GSL::Poly::Int:
265
265
  # [ 0 -1680 0 3360 0 -1344 0 128 ]
266
266
  #
267
267
  # ---
@@ -300,22 +300,22 @@
300
300
  # rb(main):001:0> require("gsl")
301
301
  # => true
302
302
  # >> GSL::Poly.laguerre(0)
303
- # => GSL::Poly::Int:
303
+ # => GSL::Poly::Int:
304
304
  # [ 1 ] <--- 1
305
305
  # >> GSL::Poly.laguerre(1)
306
- # => GSL::Poly::Int:
306
+ # => GSL::Poly::Int:
307
307
  # [ 1 -1 ] <--- -x + 1
308
308
  # >> GSL::Poly.laguerre(2)
309
- # => GSL::Poly::Int:
309
+ # => GSL::Poly::Int:
310
310
  # [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
311
311
  # >> GSL::Poly.laguerre(3)
312
- # => GSL::Poly::Int:
312
+ # => GSL::Poly::Int:
313
313
  # [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
314
314
  # >> GSL::Poly.laguerre(4)
315
- # => GSL::Poly::Int:
315
+ # => GSL::Poly::Int:
316
316
  # [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
317
- #
318
- # === {}[link:index.html"name="6.2] Polynomial Operations
317
+ #
318
+ # === Polynomial Operations
319
319
  # ---
320
320
  # * GSL::Poly#conv
321
321
  # * GSL::Poly#deconv
@@ -325,10 +325,10 @@
325
325
  # * GSL::Poly#compan
326
326
  #
327
327
  #
328
- # {prev}[link:rdoc/complex_rdoc.html]
329
- # {next}[link:rdoc/sf_rdoc.html]
328
+ # {prev}[link:complex_rdoc.html]
329
+ # {next}[link:sf_rdoc.html]
330
330
  #
331
- # {Reference index}[link:rdoc/ref_rdoc.html]
331
+ # {Reference index}[link:ref_rdoc.html]
332
332
  # {top}[link:index.html]
333
333
  #
334
334
  #