rb-gsl 1.16.0.2 → 1.16.0.3.rc1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
data/rdoc/perm.rdoc CHANGED
@@ -1,39 +1,39 @@
1
1
  #
2
2
  # = Permutations
3
3
  # Contents:
4
- # 1. {Permuation allocations}[link:rdoc/perm_rdoc.html#1]
5
- # 1. {Methods}[link:rdoc/perm_rdoc.html#2]
6
- # 1. {Accessing permutation elements}[link:rdoc/perm_rdoc.html#2.1]
7
- # 1. {Permuation properties}[link:rdoc/perm_rdoc.html#2.2]
8
- # 1. {Permuation functions}[link:rdoc/perm_rdoc.html#2.3]
9
- # 1. {Reading and writing permutations}[link:rdoc/perm_rdoc.html#2.4]
10
- # 1. {Permutations in cyclic form}[link:rdoc/perm_rdoc.html#2.5]
11
- # 1. {Applying Permutations}[link:rdoc/perm_rdoc.html#3]
4
+ # 1. {Permuation allocations}[link:perm_rdoc.html#label-Permuation+allocations]
5
+ # 1. {Methods}[link:perm_rdoc.html#label-Methods]
6
+ # 1. {Accessing permutation elements}[link:perm_rdoc.html#label-Accessing+permutation+elements]
7
+ # 1. {Permuation properties}[link:perm_rdoc.html#label-Permutation+properties]
8
+ # 1. {Permuation functions}[link:perm_rdoc.html#label-Permutation+functions]
9
+ # 1. {Reading and writing permutations}[link:perm_rdoc.html#label-Reading+and+writing+permutations]
10
+ # 1. {Permutations in cyclic form}[link:perm_rdoc.html#label-Permutations+in+cyclic+Form]
11
+ # 1. {Applying Permutations}[link:perm_rdoc.html#label-Applying+Permutations]
12
12
  #
13
- # == {}[link:index.html"name="1] Permuation allocations
13
+ # == Permuation allocations
14
14
  # ---
15
15
  # * GSL::Permutation.alloc(n)
16
16
  #
17
- # These functions create a new permutation of size <tt>n</tt>.
18
- # The permutation is not initialized and its elements are undefined.
19
- # Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
20
- # which is initialized to the identity.
17
+ # These functions create a new permutation of size <tt>n</tt>.
18
+ # The permutation is not initialized and its elements are undefined.
19
+ # Use <tt>GSL::Permutation.calloc</tt> if you want to create a permutation
20
+ # which is initialized to the identity.
21
21
  #
22
22
  # ---
23
23
  # * GSL::Permutation.calloc(n)
24
24
  #
25
- # This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
25
+ # This creates a new permutation of size <tt>n</tt> and initializes it to the identity.
26
26
  #
27
- # == {}[link:index.html"name="2] Methods
27
+ # == Methods
28
28
  # ---
29
29
  # * GSL::Permutation#init()
30
30
  #
31
- # This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
31
+ # This initializes the permutation to the identity, i.e. (0,1,2,...,n-1).
32
32
  #
33
33
  # ---
34
34
  # * GSL::Permutation.memcpy(dest, src)
35
35
  #
36
- # This method copies the elements of the permutation <tt>src</tt>
36
+ # This method copies the elements of the permutation <tt>src</tt>
37
37
  # into the permutation <tt>dest</tt>. The two permutations must have the same size.
38
38
  #
39
39
  # ---
@@ -41,19 +41,19 @@
41
41
  #
42
42
  # This creates a new permutation with the same elements of <tt>self</tt>.
43
43
  #
44
- # === {}[link:index.html"name="2.1] Accessing permutation elements
44
+ # === Accessing permutation elements
45
45
  #
46
46
  # ---
47
47
  # * GSL::Permutation#get(i)
48
48
  #
49
- # Returns the value of the <tt>i</tt>-th element of the permutation.
49
+ # Returns the value of the <tt>i</tt>-th element of the permutation.
50
50
  #
51
51
  # ---
52
52
  # * GSL::Permutation#swap(i, j)
53
53
  #
54
54
  # This exchanges the <tt>i</tt>-th and <tt>j</tt>-th elements of the permutation.
55
55
  #
56
- # === {}[link:index.html"name="2.2] Permutation properties
56
+ # === Permutation properties
57
57
  # ---
58
58
  # * GSL::Permutation#size
59
59
  #
@@ -61,7 +61,7 @@
61
61
  # ---
62
62
  # * GSL::Permutation#valid
63
63
  #
64
- # This checks that the permutation <tt>self</tt> is valid.
64
+ # This checks that the permutation <tt>self</tt> is valid.
65
65
  # The n elements should contain each of the numbers 0 .. n-1 once and only once.
66
66
  #
67
67
  # ---
@@ -69,7 +69,7 @@
69
69
  #
70
70
  # This returns true if the permutation <tt>self</tt> is valid, and false otherwise.
71
71
  #
72
- # === {}[link:index.html"name="2.3] Permutation functions
72
+ # === Permutation functions
73
73
  #
74
74
  # ---
75
75
  # * GSL::Permutation#reverse
@@ -84,20 +84,20 @@
84
84
  # ---
85
85
  # * GSL::Permutation#next
86
86
  #
87
- # This method advances the permutation <tt>self</tt> to the next permutation in
88
- # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
89
- # are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
90
- # Starting with the identity permutation and repeatedly applying this function
87
+ # This method advances the permutation <tt>self</tt> to the next permutation in
88
+ # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further permutations
89
+ # are available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
90
+ # Starting with the identity permutation and repeatedly applying this function
91
91
  # will iterate through all possible permutations of a given order.
92
92
  # ---
93
93
  # * GSL::Permutation#prev
94
94
  #
95
- # This method steps backwards from the permutation <tt>self</tt> to the previous
96
- # permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
97
- # If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
95
+ # This method steps backwards from the permutation <tt>self</tt> to the previous
96
+ # permutation in lexicographic order, returning <tt>GSL_SUCCESS</tt>.
97
+ # If no previous permutation is available it returns <tt>GSL_FAILURE</tt>
98
98
  # and leaves <tt>self</tt> unmodified.
99
99
  #
100
- # === {}[link:index.html"name="2.4] Reading and writing permutations
100
+ # === Reading and writing permutations
101
101
  # ---
102
102
  # * GSL::Permutation#fwrite(io)
103
103
  # * GSL::Permutation#fwrite(filename)
@@ -109,113 +109,113 @@
109
109
  # * GSL::Permutation#fscanf(filename)
110
110
  #
111
111
  #
112
- # === {}[link:index.html"name="2.5] Permutations in cyclic Form
113
- # A permutation can be represented in both <tt>linear</tt> and
114
- # <tt>cyclic</tt> notations. The functions described in this section convert
115
- # between the two forms. The linear notation is an index mapping, and has
116
- # already been described above. The cyclic notation expresses a
117
- # permutation as a series of circular rearrangements of groups
118
- # of elements, or <tt>cycles</tt>.
112
+ # === Permutations in cyclic Form
113
+ # A permutation can be represented in both <tt>linear</tt> and
114
+ # <tt>cyclic</tt> notations. The functions described in this section convert
115
+ # between the two forms. The linear notation is an index mapping, and has
116
+ # already been described above. The cyclic notation expresses a
117
+ # permutation as a series of circular rearrangements of groups
118
+ # of elements, or <tt>cycles</tt>.
119
119
  #
120
- # For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
121
- # by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
122
- # sets of elements can be combined independently, for example (1 2 3) (4 5)
123
- # combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
124
- # elements 4 and 5. A cycle of length one represents an element which is
125
- # unchanged by the permutation and is referred to as a <tt>singleton</tt>.
120
+ # For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
121
+ # by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
122
+ # sets of elements can be combined independently, for example (1 2 3) (4 5)
123
+ # combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of
124
+ # elements 4 and 5. A cycle of length one represents an element which is
125
+ # unchanged by the permutation and is referred to as a <tt>singleton</tt>.
126
126
  #
127
- # It can be shown that every permutation can be decomposed into combinations
128
- # of cycles. The decomposition is not unique, but can always be rearranged
129
- # into a standard <tt>canonical form</tt> by a reordering of elements.
130
- # The library uses the canonical form defined in Knuth's
131
- # <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
127
+ # It can be shown that every permutation can be decomposed into combinations
128
+ # of cycles. The decomposition is not unique, but can always be rearranged
129
+ # into a standard <tt>canonical form</tt> by a reordering of elements.
130
+ # The library uses the canonical form defined in Knuth's
131
+ # <tt>Art of Computer Programming</tt> (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
132
132
  #
133
- # The procedure for obtaining the canonical form given by Knuth is,
133
+ # The procedure for obtaining the canonical form given by Knuth is,
134
134
  #
135
135
  #
136
- # 1. Write all singleton cycles explicitly
137
- # 1. Within each cycle, put the smallest number first
138
- # 1. Order the cycles in decreasing order of the first number in the cycle.
136
+ # 1. Write all singleton cycles explicitly
137
+ # 1. Within each cycle, put the smallest number first
138
+ # 1. Order the cycles in decreasing order of the first number in the cycle.
139
139
  #
140
- # For example, the linear representation (2 4 3 0 1) is represented as
141
- # (1 4) (0 2 3) in canonical form. The permutation corresponds to an
142
- # exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
140
+ # For example, the linear representation (2 4 3 0 1) is represented as
141
+ # (1 4) (0 2 3) in canonical form. The permutation corresponds to an
142
+ # exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
143
143
  #
144
- # The important property of the canonical form is that it can be reconstructed
145
- # from the contents of each cycle without the brackets. In addition, by removing
146
- # the brackets it can be considered as a linear representation of a different
147
- # permutation. In the example given above the permutation (2 4 3 0 1) would
148
- # become (1 4 0 2 3). This mapping has many applications in the theory of
149
- # permutations.
144
+ # The important property of the canonical form is that it can be reconstructed
145
+ # from the contents of each cycle without the brackets. In addition, by removing
146
+ # the brackets it can be considered as a linear representation of a different
147
+ # permutation. In the example given above the permutation (2 4 3 0 1) would
148
+ # become (1 4 0 2 3). This mapping has many applications in the theory of
149
+ # permutations.
150
150
  #
151
151
  # ---
152
152
  # * GSL::Permutation#linear_to_canonical
153
153
  # * GSL::Permutation#to_canonical
154
154
  #
155
- # Computes the canonical form of the permutation <tt>self</tt> and
155
+ # Computes the canonical form of the permutation <tt>self</tt> and
156
156
  # returns it as a new <tt>GSL::Permutation</tt>.
157
157
  #
158
158
  # ---
159
159
  # * GSL::Permutation#canonical_to_linear
160
160
  # * GSL::Permutation#to_linear
161
161
  #
162
- # Converts a permutation <tt>self</tt> in canonical form back into linear
162
+ # Converts a permutation <tt>self</tt> in canonical form back into linear
163
163
  # form and returns it as a new <tt>GSL::Permutation</tt>.
164
164
  #
165
165
  #
166
166
  # ---
167
167
  # * GSL::Permutation#inversions
168
168
  #
169
- # Counts the number of inversions in the permutation <tt>self</tt>.
170
- # An inversion is any pair of elements that are not in order.
169
+ # Counts the number of inversions in the permutation <tt>self</tt>.
170
+ # An inversion is any pair of elements that are not in order.
171
171
  # For example, the permutation 2031 has three inversions, corresponding
172
- # to the pairs (2,0) (2,1) and (3,1).
173
- # The identity permutation has no inversions.
172
+ # to the pairs (2,0) (2,1) and (3,1).
173
+ # The identity permutation has no inversions.
174
174
  #
175
175
  # ---
176
176
  # * GSL::Permutation#linear_cycles
177
177
  #
178
- # Counts the number of cycles in the permutation <tt>self</tt>,
179
- # given in linear form.
178
+ # Counts the number of cycles in the permutation <tt>self</tt>,
179
+ # given in linear form.
180
180
  #
181
181
  # ---
182
182
  # * GSL::Permutation#canonical_cycles
183
183
  #
184
- # Counts the number of cycles in the permutation <tt>self</tt>,
185
- # given in canonical form.
184
+ # Counts the number of cycles in the permutation <tt>self</tt>,
185
+ # given in canonical form.
186
186
  #
187
- # == {}[link:index.html"name="3] Applying Permutations
187
+ # == Applying Permutations
188
188
  # ---
189
189
  # * GSL::Permutation::permute(v)
190
190
  #
191
- # Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
192
- # considered as a row-vector acted on by a permutation matrix from the
193
- # right, v' = v P. The j-th column of the permutation matrix P is
194
- # given by the p_j-th column of the identity matrix.
191
+ # Applies the permutation <tt>self</tt> to the elements of the vector <tt>v</tt>,
192
+ # considered as a row-vector acted on by a permutation matrix from the
193
+ # right, v' = v P. The j-th column of the permutation matrix P is
194
+ # given by the p_j-th column of the identity matrix.
195
195
  # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
196
196
  # ---
197
197
  # * GSL::Permutation::permute_inverse(v)
198
198
  #
199
- # Applies the inverse of the permutation <tt>self</tt> to the elements of
200
- # the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
201
- # permutation matrix from the right, v' = v P^T.
202
- # Note that for permutation matrices the inverse is the same as the
203
- # transpose. The j-th column of the permutation matrix P is given by
204
- # the p_j-th column of the identity matrix.
199
+ # Applies the inverse of the permutation <tt>self</tt> to the elements of
200
+ # the vector <tt>v</tt>, considered as a row-vector acted on by an inverse
201
+ # permutation matrix from the right, v' = v P^T.
202
+ # Note that for permutation matrices the inverse is the same as the
203
+ # transpose. The j-th column of the permutation matrix P is given by
204
+ # the p_j-th column of the identity matrix.
205
205
  # The permutation <tt>self</tt> and the vector <tt>v</tt> must have the same length.
206
206
  # ---
207
207
  # * GSL::Permutation.mul(pa, pb)
208
208
  #
209
- # Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
210
- # permutation <tt>p</tt> and returns it.
211
- # The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
212
- # and then <tt>pa</tt>.
209
+ # Combines the two permutations <tt>pa</tt> and <tt>pb</tt> into a single
210
+ # permutation <tt>p</tt> and returns it.
211
+ # The permutation <tt>p</tt> is equivalent to applying <tt>pb</tt> first
212
+ # and then <tt>pa</tt>.
213
213
  #
214
214
  #
215
- # {prev}[link:rdoc/matrix_rdoc.html]
216
- # {next}[link:rdoc/combi_rdoc.html]
215
+ # {prev}[link:matrix_rdoc.html]
216
+ # {next}[link:combi_rdoc.html]
217
217
  #
218
- # {Reference index}[link:rdoc/ref_rdoc.html]
218
+ # {Reference index}[link:ref_rdoc.html]
219
219
  # {top}[link:index.html]
220
220
  #
221
221
  #
data/rdoc/poly.rdoc CHANGED
@@ -1,26 +1,26 @@
1
1
  #
2
2
  # = Polynomials
3
3
  # Contents:
4
- # 1. {Polynomial Evaluation}[link:rdoc/poly_rdoc.html#1]
5
- # 1. {Solving polynomial equations}[link:rdoc/poly_rdoc.html#2]
6
- # 1. {Quadratic Equations}[link:rdoc/poly_rdoc.html#2.1]
7
- # 1. {Cubic Equations}[link:rdoc/poly_rdoc.html#2.2]
8
- # 1. {General Polynomial Equations}[link:rdoc/poly_rdoc.html#2.3]
9
- # 1. {GSL::Poly Class}[link:rdoc/poly_rdoc.html#3]
10
- # 1. {Constructors}[link:rdoc/poly_rdoc.html#3.1]
11
- # 1. {Methods}[link:rdoc/poly_rdoc.html#3.2]
12
- # 1. {Polynomial Fitting}[link:rdoc/poly_rdoc.html#4]
13
- # 1. {Divided-difference representations}[link:rdoc/poly_rdoc.html#5]
14
- # 1. {Extensions}[link:rdoc/poly_rdoc.html#6]
15
- # 1. {Special Polynomials}[link:rdoc/poly_rdoc.html#6.1]
16
- # 1. {Polynomial Operations}[link:rdoc/poly_rdoc.html#6.2]
17
- #
18
- # == {}[link:index.html"name="1] Polynomial Evaluation
4
+ # 1. {Polynomial Evaluation}[link:poly_rdoc.html#label-Polynomial+Evaluation]
5
+ # 1. {Solving polynomial equations}[link:poly_rdoc.html#label-Solving+polynomial+equations]
6
+ # 1. {Quadratic Equations}[link:poly_rdoc.html#label-Quadratic+Equations]
7
+ # 1. {Cubic Equations}[link:poly_rdoc.html#label-Cubic+Equations]
8
+ # 1. {General Polynomial Equations}[link:poly_rdoc.html#label-General+Polynomial+Equations]
9
+ # 1. {GSL::Poly class}[link:poly_rdoc.html#label-Poly+class]
10
+ # 1. {Constructors}[link:poly_rdoc.html#label-Constructors]
11
+ # 1. {Methods}[link:poly_rdoc.html#label-Instance+Methods]
12
+ # 1. {Polynomial Fitting}[link:poly_rdoc.html#label-Polynomial+fitting]
13
+ # 1. {Divided-difference representations}[link:poly_rdoc.html#label-Divided-difference+representations]
14
+ # 1. {Extensions}[link:poly_rdoc.html#label-Extensions]
15
+ # 1. {Special Polynomials}[link:poly_rdoc.html#label-Special+Polynomials]
16
+ # 1. {Polynomial Operations}[link:poly_rdoc.html#label-Polynomial+Operations]
17
+ #
18
+ # == Polynomial Evaluation
19
19
  # ---
20
20
  # * GSL::Poly.eval(c, x)
21
21
  #
22
- # Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
23
- # The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
22
+ # Evaluates the polynomial <tt>c[0] + c[1]x + c[2]x^2 + ...</tt>.
23
+ # The polynomial coefficients <tt>c</tt> can be an <tt>Array</tt>,
24
24
  # a <tt>GSL::Vector</tt>, or an <tt>NArray</tt>. The evaluation point <tt>x</tt>
25
25
  # is a <tt>Numeric</tt>, <tt>Array</tt>, <tt>GSL::Vector</tt> or <tt>NArray</tt>.
26
26
  # From GSL 1.11, <tt>x</tt> can be a complex number, and <tt>c</tt> can be a complex polynomial given by a <tt>GSL::Vector::Complex</tt> or an <tt>Array</tt>.
@@ -54,17 +54,17 @@
54
54
  # * GSL::Poly#eval_derivs(x, lenres)
55
55
  #
56
56
  # (GSL-1.13) Evaluate and return a polynomial and its derivatives. The output contains the values of d^k P/d x^k for the specified value of x starting with k = 0. If <tt>lenres</tt> is not given, <tt>lenres = LENGTH(self) + 1</tt> is used, therefore the last element of the output is 0.
57
- #
57
+ #
58
58
  # Ex.)
59
59
  # >> ary = [1, 2, 3]
60
60
  # => [1, 2, 3]
61
61
  # >> GSL::Poly.eval_derivs(ary, 1)
62
62
  # => [6.0, 8.0, 6.0, 0.0]
63
63
  # >> na = NArray[1.0, 2, 3]
64
- # => NArray.float(3):
64
+ # => NArray.float(3):
65
65
  # [ 1.0, 2.0, 3.0 ]
66
66
  # >> GSL::Poly.eval_derivs(na, 1)
67
- # => NArray.float(4):
67
+ # => NArray.float(4):
68
68
  # [ 6.0, 8.0, 6.0, 0.0 ]
69
69
  # >> poly = GSL::Poly[1.0, 2, 3]
70
70
  # => GSL::Poly
@@ -79,20 +79,20 @@
79
79
  # => GSL::Poly
80
80
  # [ 6.000e+00 8.000e+00 6.000e+00 ]
81
81
  #
82
- # == {}[link:index.html"name="2] Solving polynomial equations
83
- # === {}[link:index.html"name="2.1] Quadratic Equations
82
+ # == Solving polynomial equations
83
+ # === Quadratic Equations
84
84
  # ---
85
85
  # * GSL::Poly::solve_quadratic(a, b, c)
86
86
  # * GSL::Poly::solve_quadratic([a, b, c])
87
87
  #
88
88
  # Find the real roots of the quadratic equation,
89
89
  # a x^2 + b x + c = 0
90
- # The coefficients are given by 3 numbers, or a Ruby array,
90
+ # The coefficients are given by 3 numbers, or a Ruby array,
91
91
  # or a <tt>GSL::Vector</tt> object. The roots are returned as a <tt>GSL::Vector</tt>.
92
92
  #
93
93
  # * Ex: z^2 - 3z + 2 = 0
94
94
  # >> GSL::Poly::solve_quadratic(1, -3, 2)
95
- # => GSL::Vector:
95
+ # => GSL::Vector:
96
96
  # [ 1.000e+00 2.000e+00 ]
97
97
  #
98
98
  #
@@ -102,21 +102,21 @@
102
102
  #
103
103
  # Find the complex roots of the quadratic equation,
104
104
  # a z^2 + b z + z = 0
105
- # The coefficients are given by 3 numbers or a Ruby array, or a
105
+ # The coefficients are given by 3 numbers or a Ruby array, or a
106
106
  # <tt>GSL::Vector</tt>.
107
107
  # The roots are returned as a <tt>GSL::Vector::Complex</tt> of two elements.
108
- #
108
+ #
109
109
  # * Ex: z^2 - 3z + 2 = 0
110
110
  # >> require("gsl")
111
111
  # => true
112
112
  # >> GSL::Poly::complex_solve_quadratic(1, -3, 2)
113
- # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
113
+ # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
114
114
  # => #<GSL::Vector::Complex:0x764014>
115
115
  # >> GSL::Poly::complex_solve_quadratic(1, -3, 2).real <--- Real part
116
- # => GSL::Vector::View:
116
+ # => GSL::Vector::View:
117
117
  # [ 1.000e+00 2.000e+00 ]
118
118
  #
119
- # === {}[link:index.html"name="2.2] Cubic Equations
119
+ # === Cubic Equations
120
120
  # ---
121
121
  # * GSL::Poly::solve_cubic(same as solve_quadratic)
122
122
  #
@@ -129,28 +129,28 @@
129
129
  # This method finds the complex roots of the cubic equation,
130
130
  # z^3 + a z^2 + b z + c = 0
131
131
  #
132
- # === {}[link:index.html"name="2.3] General Polynomial Equations
132
+ # === General Polynomial Equations
133
133
  # ---
134
134
  # * GSL::Poly::complex_solve(c0, c1, c2,,, )
135
135
  # * GSL::Poly::solve(c0, c1, c2,,, )
136
136
  #
137
- # Find the complex roots of the polynomial equation. Note that
137
+ # Find the complex roots of the polynomial equation. Note that
138
138
  # the coefficients are given by "ascending" order.
139
139
  #
140
- # * Ex: x^2 - 3 x + 2 == 0
140
+ # * Ex: x^2 - 3 x + 2 == 0
141
141
  # >> GSL::Poly::complex_solve(2, -3, 1) <--- different from Poly::quadratic_solve
142
142
  # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
143
143
  # => #<GSL::Vector::Complex:0x75e614>
144
144
  #
145
- # == {}[link:index.html"name="3] GSL::Poly Class
145
+ # == Poly class
146
146
  # This class expresses polynomials of arbitrary orders.
147
147
  #
148
- # === {}[link:index.html"name="3.1] Constructors
148
+ # === Constructors
149
149
  # ---
150
150
  # * GSL::Poly.alloc(c0, c1, c2, ....)
151
151
  # * GSL::Poly[c0, c1, c2, ....]
152
152
  #
153
- # This creates an instance of the <tt>GSL::Poly</tt> class,
153
+ # This creates an instance of the <tt>GSL::Poly</tt> class,
154
154
  # which represents a polynomial
155
155
  # c0 + c1 x + c2 x^2 + ....
156
156
  # This class is derived from <tt>GSL::Vector</tt>.
@@ -158,13 +158,13 @@
158
158
  # * Ex: x^2 - 3 x + 2
159
159
  # poly = GSL::Poly.alloc([2, -3, 1])
160
160
  #
161
- # === {}[link:index.html"name="3.2] Instance Methods
161
+ # === Instance Methods
162
162
  # ---
163
163
  # * GSL::Poly#eval(x)
164
164
  # * GSL::Poly#at(x)
165
165
  #
166
- # Evaluates the polynomial
167
- # c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}
166
+ # Evaluates the polynomial
167
+ # <tt>c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^{len-1}</tt>
168
168
  # using Horner's method for stability. The argument <tt>x</tt> is a
169
169
  # <tt>Numeric</tt>, <tt>GSL::Vector, Matrix</tt> or an <tt>Array</tt>.
170
170
  #
@@ -175,10 +175,10 @@
175
175
  #
176
176
  # * Ex: z^2 - 3 z + 2 = 0:
177
177
  # >> a = GSL::Poly[2, -3, 1]
178
- # => GSL::Poly:
178
+ # => GSL::Poly:
179
179
  # [ 2.000e+00 -3.000e+00 1.000e+00 ]
180
180
  # >> a.solve_quadratic
181
- # => GSL::Vector:
181
+ # => GSL::Vector:
182
182
  # [ 1.000e+00 2.000e+00 ]
183
183
  #
184
184
  # ---
@@ -196,21 +196,21 @@
196
196
  #
197
197
  # * Ex: z^2 - 3 z + 2 = 0:
198
198
  # >> a = GSL::Poly[2, -3, 1]
199
- # => GSL::Poly:
199
+ # => GSL::Poly:
200
200
  # [ 2.000e+00 -3.000e+00 1.000e+00 ]
201
201
  # >> a.solve
202
202
  # [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] ]
203
203
  # => #<GSL::Vector::Complex:0x35db28>
204
204
  #
205
- # == {}[link:index.html"name="4] Polynomial fitting
205
+ # == Polynomial fitting
206
206
  # ---
207
207
  # * GSL::Poly.fit(x, y, order)
208
208
  # * GSL::Poly.wfit(x, w, y, order)
209
209
  #
210
- # Finds the coefficient of a polynomial of order <tt>order</tt>
210
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
211
211
  # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
212
212
  # This provides a higher-level interface to the method
213
- # {GSL::Multifit#linear}[link:rdoc/fit_rdoc.html] in a case of polynomial fitting.
213
+ # {GSL::Multifit#linear}[link:fit_rdoc.html] in a case of polynomial fitting.
214
214
  #
215
215
  # Example:
216
216
  # #!/usr/bin/env ruby
@@ -219,34 +219,34 @@
219
219
  # x = GSL::Vector[1, 2, 3, 4, 5]
220
220
  # y = GSL::Vector[5.5, 43.1, 128, 290.7, 498.4]
221
221
  # # The results are stored in a polynomial "coef"
222
- # coef, cov, chisq, status = Poly.fit(x, y, 3)
222
+ # coef, cov, chisq, status = Poly.fit(x, y, 3)
223
223
  #
224
224
  # x2 = GSL::Vector.linspace(1, 5, 20)
225
225
  # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
226
226
  #
227
- # == {}[link:index.html"name="5] Divided-difference representations
227
+ # == Divided-difference representations
228
228
  #
229
229
  # ---
230
230
  # * GSL::Poly::dd_init(xa, ya)
231
231
  #
232
- # This method computes a divided-difference representation of the
232
+ # This method computes a divided-difference representation of the
233
233
  # interpolating polynomial for the points <tt>(xa, ya)</tt>.
234
234
  #
235
235
  # ---
236
236
  # * GSL::Poly::DividedDifference#eval(x)
237
237
  #
238
- # This method evaluates the polynomial stored in divided-difference form
238
+ # This method evaluates the polynomial stored in divided-difference form
239
239
  # <tt>self</tt> at the point <tt>x</tt>.
240
240
  #
241
241
  # ---
242
242
  # * GSL::Poly::DividedDifference#taylor(xp)
243
243
  #
244
- # This method converts the divided-difference representation of a polynomial
245
- # to a Taylor expansion. On output the Taylor coefficients of the polynomial
244
+ # This method converts the divided-difference representation of a polynomial
245
+ # to a Taylor expansion. On output the Taylor coefficients of the polynomial
246
246
  # expanded about the point <tt>xp</tt> are returned.
247
247
  #
248
- # == {}[link:index.html"name="6] Extensions
249
- # === {}[link:index.html"name="6.1] Special Polynomials
248
+ # == Extensions
249
+ # === Special Polynomials
250
250
  # ---
251
251
  # * GSL::Poly.hermite(n)
252
252
  #
@@ -255,13 +255,13 @@
255
255
  # H(x; n+1) = 2 x H(x; n) - 2 n H(x; n-1)
256
256
  # * Ex:
257
257
  # >> GSL::Poly.hermite(2)
258
- # => GSL::Poly::Int:
258
+ # => GSL::Poly::Int:
259
259
  # [ -2 0 4 ] <----- 4x^2 - 2
260
260
  # >> GSL::Poly.hermite(5)
261
- # => GSL::Poly::Int:
261
+ # => GSL::Poly::Int:
262
262
  # [ 0 120 0 -160 0 32 ] <----- 32x^5 - 160x^3 + 120x
263
263
  # >> GSL::Poly.hermite(7)
264
- # => GSL::Poly::Int:
264
+ # => GSL::Poly::Int:
265
265
  # [ 0 -1680 0 3360 0 -1344 0 128 ]
266
266
  #
267
267
  # ---
@@ -300,22 +300,22 @@
300
300
  # rb(main):001:0> require("gsl")
301
301
  # => true
302
302
  # >> GSL::Poly.laguerre(0)
303
- # => GSL::Poly::Int:
303
+ # => GSL::Poly::Int:
304
304
  # [ 1 ] <--- 1
305
305
  # >> GSL::Poly.laguerre(1)
306
- # => GSL::Poly::Int:
306
+ # => GSL::Poly::Int:
307
307
  # [ 1 -1 ] <--- -x + 1
308
308
  # >> GSL::Poly.laguerre(2)
309
- # => GSL::Poly::Int:
309
+ # => GSL::Poly::Int:
310
310
  # [ 2 -4 1 ] <--- (x^2 - 4x + 2)/2!
311
311
  # >> GSL::Poly.laguerre(3)
312
- # => GSL::Poly::Int:
312
+ # => GSL::Poly::Int:
313
313
  # [ 6 -18 9 -1 ] <--- (-x^3 + 9x^2 - 18x + 6)/3!
314
314
  # >> GSL::Poly.laguerre(4)
315
- # => GSL::Poly::Int:
315
+ # => GSL::Poly::Int:
316
316
  # [ 24 -96 72 -16 1 ] <--- (x^4 - 16x^3 + 72x^2 - 96x + 24)/4!
317
- #
318
- # === {}[link:index.html"name="6.2] Polynomial Operations
317
+ #
318
+ # === Polynomial Operations
319
319
  # ---
320
320
  # * GSL::Poly#conv
321
321
  # * GSL::Poly#deconv
@@ -325,10 +325,10 @@
325
325
  # * GSL::Poly#compan
326
326
  #
327
327
  #
328
- # {prev}[link:rdoc/complex_rdoc.html]
329
- # {next}[link:rdoc/sf_rdoc.html]
328
+ # {prev}[link:complex_rdoc.html]
329
+ # {next}[link:sf_rdoc.html]
330
330
  #
331
- # {Reference index}[link:rdoc/ref_rdoc.html]
331
+ # {Reference index}[link:ref_rdoc.html]
332
332
  # {top}[link:index.html]
333
333
  #
334
334
  #