rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/fft.rdoc
CHANGED
@@ -1,67 +1,67 @@
|
|
1
1
|
#
|
2
2
|
# = Fast Fourier Transforms
|
3
3
|
# Contents:
|
4
|
-
# 1. {Mathematical Definitions}[link:
|
5
|
-
# 1. {Complex data FFTs}[link:
|
6
|
-
# 1. {Overview of complex data FFTs}[link:
|
7
|
-
# 1. {Radix-2 FFT routines for complex data}[link:
|
8
|
-
# 1. {Example of the complex Radix-2 FFT}[link:
|
9
|
-
# 1. {Mixed-radix FFT routines for complex data}[link:
|
10
|
-
# 1. {GSL::FFT::ComplexWavetable class}[link:
|
11
|
-
# 1. {GSL::FFT::ComplexWorkspace class}[link:
|
12
|
-
# 1. {Methods to compute the transform}[link:
|
13
|
-
# 1. {Example of the mixed-radix FFT}[link:
|
14
|
-
# 1. {Real data FFTs}[link:
|
15
|
-
# 1. {Overview of real data FFTs}[link:
|
16
|
-
# 1. {Radix-2 FFT routines for real data}[link:
|
17
|
-
#
|
18
|
-
#
|
19
|
-
# 1. {Wavetable and Workspace classes}[link:
|
20
|
-
# 1. {Methods for real FFTs}[link:
|
21
|
-
#
|
22
|
-
#
|
23
|
-
# ==
|
24
|
-
# Fast Fourier Transforms are efficient algorithms for calculating the discrete
|
25
|
-
# fourier transform (DFT),
|
26
|
-
#
|
27
|
-
# The DFT usually arises as an approximation to the continuous fourier transform
|
28
|
-
# when functions are sampled at discrete intervals in space or time.
|
29
|
-
# The naive evaluation of the discrete fourier transform is a matrix-vector
|
30
|
-
# multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
|
31
|
-
# operations for N data-points. Fast fourier transform algorithms use a
|
32
|
-
# divide-and-conquer strategy to factorize the matrix W into smaller
|
33
|
-
# sub-matrices, corresponding to the integer factors of the length N.
|
34
|
-
# If N can be factorized into a product of integers f_1 f_2 ... f_n then the
|
35
|
-
# DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
|
36
|
-
# gives an operation count of O(N \log_2 N).
|
4
|
+
# 1. {Mathematical Definitions}[link:fft_rdoc.html#label-Mathematical+Definitions]
|
5
|
+
# 1. {Complex data FFTs}[link:fft_rdoc.html#label-Complex+data+FFTs]
|
6
|
+
# 1. {Overview of complex data FFTs}[link:fft_rdoc.html#label-Overview+of+complex+data+FFTs]
|
7
|
+
# 1. {Radix-2 FFT routines for complex data}[link:fft_rdoc.html#label-Radix-2+FFT+routines+for+complex+data]
|
8
|
+
# 1. {Example of the complex Radix-2 FFT}[link:fft_rdoc.html#label-Example+of+complex+Radix-2+FFT]
|
9
|
+
# 1. {Mixed-radix FFT routines for complex data}[link:fft_rdoc.html#label-Mixed-radix+FFT+routines+for+complex+data]
|
10
|
+
# 1. {GSL::FFT::ComplexWavetable class}[link:fft_rdoc.html#label-ComplexWavetable+class]
|
11
|
+
# 1. {GSL::FFT::ComplexWorkspace class}[link:fft_rdoc.html#label-ComplexWorkspace+class]
|
12
|
+
# 1. {Methods to compute the transform}[link:fft_rdoc.html#label-Methods+to+compute+transform]
|
13
|
+
# 1. {Example of the mixed-radix FFT}[link:fft_rdoc.html#label-Example+to+use+the+mixed-radix+FFT+algorithm]
|
14
|
+
# 1. {Real data FFTs}[link:fft_rdoc.html#label-Real+data+FFTs]
|
15
|
+
# 1. {Overview of real data FFTs}[link:fft_rdoc.html#label-Overview+of+real+data+FFTs]
|
16
|
+
# 1. {Radix-2 FFT routines for real data}[link:fft_rdoc.html#label-Radix-2+FFT+routines+for+real+data]
|
17
|
+
# 1. {Mixed-radix FFT routines for real data}[link:fft_rdoc.html#label-Mixed-radix+FFT+routines+for+real+data]
|
18
|
+
# 1. {Data storage scheme}[link:fft_rdoc.html#label-Data+storage+scheme]
|
19
|
+
# 1. {Wavetable and Workspace classes}[link:fft_rdoc.html#label-Wavetable+and+Workspace+classes]
|
20
|
+
# 1. {Methods for real FFTs}[link:fft_rdoc.html#label-Methods+for+mixed-radix+real+FFTs]
|
21
|
+
# 1. {Examples}[link:fft_rdoc.html#label-Examples]
|
22
|
+
#
|
23
|
+
# == Mathematical Definitions
|
24
|
+
# Fast Fourier Transforms are efficient algorithms for calculating the discrete
|
25
|
+
# fourier transform (DFT),
|
26
|
+
#
|
27
|
+
# The DFT usually arises as an approximation to the continuous fourier transform
|
28
|
+
# when functions are sampled at discrete intervals in space or time.
|
29
|
+
# The naive evaluation of the discrete fourier transform is a matrix-vector
|
30
|
+
# multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
|
31
|
+
# operations for N data-points. Fast fourier transform algorithms use a
|
32
|
+
# divide-and-conquer strategy to factorize the matrix W into smaller
|
33
|
+
# sub-matrices, corresponding to the integer factors of the length N.
|
34
|
+
# If N can be factorized into a product of integers f_1 f_2 ... f_n then the
|
35
|
+
# DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
|
36
|
+
# gives an operation count of O(N \log_2 N).
|
37
37
|
#
|
38
38
|
# All the FFT functions offer three types of transform: forwards, inverse and
|
39
|
-
# backwards, based on the same mathematical definitions. The definition of the
|
40
|
-
# forward fourier transform, x = FFT(z), is, and the definition of the inverse
|
41
|
-
# fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
|
42
|
-
# inverse. For example, a call to gsl_fft_complex_forward followed by a call
|
43
|
-
# to gsl_fft_complex_inverse should return the original data (within numerical
|
44
|
-
# errors).
|
45
|
-
#
|
46
|
-
# In general there are two possible choices for the sign of the exponential
|
39
|
+
# backwards, based on the same mathematical definitions. The definition of the
|
40
|
+
# forward fourier transform, x = FFT(z), is, and the definition of the inverse
|
41
|
+
# fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
|
42
|
+
# inverse. For example, a call to gsl_fft_complex_forward followed by a call
|
43
|
+
# to gsl_fft_complex_inverse should return the original data (within numerical
|
44
|
+
# errors).
|
45
|
+
#
|
46
|
+
# In general there are two possible choices for the sign of the exponential
|
47
47
|
# in the transform/ inverse-transform pair. GSL follows the same convention as
|
48
|
-
# FFTPACK, using a negative exponential for the forward transform.
|
49
|
-
# The advantage of this convention is that the inverse transform recreates
|
50
|
-
# the original function with simple fourier synthesis. Numerical Recipes uses
|
51
|
-
# the opposite convention, a positive exponential in the forward transform.
|
48
|
+
# FFTPACK, using a negative exponential for the forward transform.
|
49
|
+
# The advantage of this convention is that the inverse transform recreates
|
50
|
+
# the original function with simple fourier synthesis. Numerical Recipes uses
|
51
|
+
# the opposite convention, a positive exponential in the forward transform.
|
52
52
|
#
|
53
|
-
# The backwards FFT is simply our terminology for an unscaled version of the
|
54
|
-
# inverse FFT, When the overall scale of the result is unimportant it is often
|
53
|
+
# The backwards FFT is simply our terminology for an unscaled version of the
|
54
|
+
# inverse FFT, When the overall scale of the result is unimportant it is often
|
55
55
|
# convenient to use the backwards FFT instead of the inverse to save unnecessary
|
56
|
-
# divisions.
|
56
|
+
# divisions.
|
57
57
|
#
|
58
58
|
#
|
59
|
-
# ==
|
60
|
-
# ===
|
59
|
+
# == Complex data FFTs
|
60
|
+
# === Overview of complex data FFTs
|
61
61
|
# The complex data FFT routines are provided as instance methods of
|
62
|
-
# {GSL::Vector::Complex}[link:
|
62
|
+
# {GSL::Vector::Complex}[link:vector_complex_rdoc.html].
|
63
63
|
#
|
64
|
-
# Here is a table which shows the layout of the array data, and the correspondence
|
64
|
+
# Here is a table which shows the layout of the array data, and the correspondence
|
65
65
|
# between the time-domain complex data z, and the frequency-domain complex data x.
|
66
66
|
#
|
67
67
|
# index z x = FFT(z)
|
@@ -82,7 +82,7 @@
|
|
82
82
|
# frequencies +1/(2 Delta), -1/(2 Delta) which are equivalent. If N is odd then
|
83
83
|
# general structure of the table above still applies, but N/2 does not appear.
|
84
84
|
#
|
85
|
-
# {GSL::Vector::Complex}[link:
|
85
|
+
# {GSL::Vector::Complex}[link:vector_complex_rdoc.html] provides four methods for
|
86
86
|
# shifting the frequency domain data between <b>FFT order</b>, shown in the table
|
87
87
|
# above, and <b>natural order</b>, which has the most negative freqeuncy component
|
88
88
|
# first, the zero frequency component in the middle, and the most positive
|
@@ -110,14 +110,14 @@
|
|
110
110
|
# <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
|
111
111
|
# for even lengths, but not for odd lengths.
|
112
112
|
#
|
113
|
-
# ===
|
114
|
-
# The radix-2 algorithms are simple and compact, although not necessarily the
|
115
|
-
# most efficient. They use the Cooley-Tukey algorithm to compute complex
|
116
|
-
# FFTs for lengths which are a power of 2 -- no additional storage is required.
|
117
|
-
# The corresponding self-sorting mixed-radix routines offer better performance
|
113
|
+
# === Radix-2 FFT routines for complex data
|
114
|
+
# The radix-2 algorithms are simple and compact, although not necessarily the
|
115
|
+
# most efficient. They use the Cooley-Tukey algorithm to compute complex
|
116
|
+
# FFTs for lengths which are a power of 2 -- no additional storage is required.
|
117
|
+
# The corresponding self-sorting mixed-radix routines offer better performance
|
118
118
|
# at the expense of requiring additional working space.
|
119
119
|
#
|
120
|
-
# <b>The FFT methods described below return FFTed data, and the input vector is
|
120
|
+
# <b>The FFT methods described below return FFTed data, and the input vector is
|
121
121
|
# not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
|
122
122
|
#
|
123
123
|
# ---
|
@@ -136,7 +136,7 @@
|
|
136
136
|
#
|
137
137
|
#
|
138
138
|
# The sign argument can be either <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
|
139
|
-
#
|
139
|
+
#
|
140
140
|
# ---
|
141
141
|
# * GSL::Vector::Complex#radix2_dif_forward
|
142
142
|
# * GSL::Vector::Complex#radix2_dif_backward
|
@@ -146,10 +146,10 @@
|
|
146
146
|
#
|
147
147
|
# These are decimation-in-frequency versions of the radix-2 FFT functions.
|
148
148
|
#
|
149
|
-
# ====
|
150
|
-
# Here is an example program which computes the FFT of a short pulse in a
|
151
|
-
# sample of length 128. To make the resulting Fourier transform real the pulse
|
152
|
-
# is defined for equal positive and negative times (-10 ... 10), where the
|
149
|
+
# ==== Example of complex Radix-2 FFT
|
150
|
+
# Here is an example program which computes the FFT of a short pulse in a
|
151
|
+
# sample of length 128. To make the resulting Fourier transform real the pulse
|
152
|
+
# is defined for equal positive and negative times (-10 ... 10), where the
|
153
153
|
# negative times wrap around the end of the array.
|
154
154
|
#
|
155
155
|
# require("gsl")
|
@@ -176,23 +176,23 @@
|
|
176
176
|
# printf("%d %e %e\n", i, ffted[i].re, ffted[i].im)
|
177
177
|
# end
|
178
178
|
#
|
179
|
-
# ===
|
179
|
+
# === Mixed-radix FFT routines for complex data
|
180
180
|
#
|
181
|
-
# ====
|
181
|
+
# ==== ComplexWavetable class
|
182
182
|
# ---
|
183
183
|
# * GSL::FFT::ComplexWavetable.alloc(n)
|
184
184
|
#
|
185
185
|
#
|
186
186
|
# This method prepares a trigonometric lookup table for a complex FFT of length <tt>n</tt>.
|
187
|
-
# The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
|
188
|
-
# trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
|
189
|
-
# computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
|
190
|
-
# to compute the lookup table faster, but if an application performs many FFTs of the same
|
191
|
-
# length then this computation is a one-off overhead which does not affect the final
|
187
|
+
# The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
|
188
|
+
# trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
|
189
|
+
# computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
|
190
|
+
# to compute the lookup table faster, but if an application performs many FFTs of the same
|
191
|
+
# length then this computation is a one-off overhead which does not affect the final
|
192
192
|
# throughput.
|
193
193
|
#
|
194
194
|
# The <tt>Wavetable</tt> object can be used repeatedly for any transform of the same length.
|
195
|
-
# The table is not modified by calls to any of the other FFT functions. The same wavetable
|
195
|
+
# The table is not modified by calls to any of the other FFT functions. The same wavetable
|
196
196
|
# can be used for both forward and backward (or inverse) transforms of a given length.
|
197
197
|
#
|
198
198
|
# ---
|
@@ -201,14 +201,14 @@
|
|
201
201
|
# * GSL::FFT::ComplexWavetable#factor
|
202
202
|
#
|
203
203
|
#
|
204
|
-
# ====
|
204
|
+
# ==== ComplexWorkspace class
|
205
205
|
# ---
|
206
206
|
# * GSL::FFT::ComplexWorkspace.alloc(n)
|
207
207
|
#
|
208
208
|
#
|
209
209
|
# Creates a workspace for a complex transform of length <tt>n</tt>.
|
210
210
|
#
|
211
|
-
# ====
|
211
|
+
# ==== Methods to compute transform
|
212
212
|
# <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
|
213
213
|
#
|
214
214
|
# ---
|
@@ -226,16 +226,16 @@
|
|
226
226
|
# There is no restriction on the length. Efficient modules are provided for
|
227
227
|
# subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are
|
228
228
|
# computed with a slow, O(n^2), general-n module.
|
229
|
-
#
|
229
|
+
#
|
230
230
|
# The caller can supply a <tt>table</tt> containing the trigonometric lookup
|
231
231
|
# tables and a workspace <tt>work</tt> (they are optional).
|
232
|
-
#
|
232
|
+
#
|
233
233
|
# The sign argument for the method <tt>transform</tt> can be either
|
234
234
|
# <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
|
235
235
|
#
|
236
236
|
# These methods return the FFTed data, and the input data is not changed.
|
237
237
|
#
|
238
|
-
# ====
|
238
|
+
# ==== Example to use the mixed-radix FFT algorithm
|
239
239
|
# require 'gsl'
|
240
240
|
# include GSL
|
241
241
|
#
|
@@ -259,11 +259,11 @@
|
|
259
259
|
# printf("%d %e %e\n", i, data[i].re, data[i].im)
|
260
260
|
# end
|
261
261
|
#
|
262
|
-
# ==
|
263
|
-
# ===
|
262
|
+
# == Real data FFTs
|
263
|
+
# === Overview of real data FFTs
|
264
264
|
#
|
265
265
|
# The functions for real data FFTs are provided as instance methods of
|
266
|
-
# {GSL::Vector}[link:
|
266
|
+
# {GSL::Vector}[link:vector_rdoc.html]. While they are similar to those for
|
267
267
|
# complex data, there is an important difference in the data storage layout
|
268
268
|
# between forward and inverse transforms. The Fourier transform of a real
|
269
269
|
# sequence is not real. It is a complex sequence with a special symmetry. A
|
@@ -274,7 +274,7 @@
|
|
274
274
|
# Forward transforms of real sequences produce half complex sequences of the same
|
275
275
|
# length. Backward and inverse transforms of half complex sequences produce real
|
276
276
|
# sequences of the same length. In both cases, the input and output sequences
|
277
|
-
# are instances of {GSL::Vector}[link:
|
277
|
+
# are instances of {GSL::Vector}[link:vector_rdoc.html].
|
278
278
|
#
|
279
279
|
# The precise storage arrangements of half complex seqeunces depend on the
|
280
280
|
# algorithm, and are different for radix-2 and mixed-radix routines. The radix-2
|
@@ -286,9 +286,9 @@
|
|
286
286
|
# complex sequence produces by a radix-2 forward transform <b>cannot</b> be
|
287
287
|
# recovered by a mixed-radix inverse transform (and vice versa).
|
288
288
|
#
|
289
|
-
# ===
|
289
|
+
# === Radix-2 FFT routines for real data
|
290
290
|
# The routines for readix-2 real FFTs are provided as instance methods of
|
291
|
-
# {GSL::Vector}[link:
|
291
|
+
# {GSL::Vector}[link:vector_rdoc.html].
|
292
292
|
#
|
293
293
|
# <b>The FFT methods described below return FFTed data, and the input vector is
|
294
294
|
# not changed. Use methods with '!' as <tt>radix2_tranform!</tt> for in-place
|
@@ -312,23 +312,23 @@
|
|
312
312
|
#
|
313
313
|
# These methods return the FFTed data, and the input data is not changed.
|
314
314
|
#
|
315
|
-
# The following table shows the correspondence between the output <tt>self</tt>
|
316
|
-
# and the equivalent results obtained by considering the input data as a
|
315
|
+
# The following table shows the correspondence between the output <tt>self</tt>
|
316
|
+
# and the equivalent results obtained by considering the input data as a
|
317
317
|
# complex sequence with zero imaginary part,
|
318
318
|
#
|
319
|
-
# complex[0].real = self[0]
|
320
|
-
# complex[0].imag = 0
|
321
|
-
# complex[1].real = self[1]
|
319
|
+
# complex[0].real = self[0]
|
320
|
+
# complex[0].imag = 0
|
321
|
+
# complex[1].real = self[1]
|
322
322
|
# complex[1].imag = self[N-1]
|
323
323
|
# ............... ................
|
324
324
|
# complex[k].real = self[k]
|
325
|
-
# complex[k].imag = self[N-k]
|
325
|
+
# complex[k].imag = self[N-k]
|
326
326
|
# ............... ................
|
327
327
|
# complex[N/2].real = self[N/2]
|
328
328
|
# complex[N/2].real = 0
|
329
329
|
# ............... ................
|
330
330
|
# complex[k'].real = self[k] k' = N - k
|
331
|
-
# complex[k'].imag = -self[N-k]
|
331
|
+
# complex[k'].imag = -self[N-k]
|
332
332
|
# ............... ................
|
333
333
|
# complex[N-1].real = self[1]
|
334
334
|
# complex[N-1].imag = -self[N-1]
|
@@ -344,16 +344,16 @@
|
|
344
344
|
# half-complex sequence data stored according the output scheme used by
|
345
345
|
# gsl_fft_real_radix2. The result is a real array stored in natural order.
|
346
346
|
#
|
347
|
-
# ==
|
347
|
+
# == Mixed-radix FFT routines for real data
|
348
348
|
#
|
349
|
-
# This section describes mixed-radix FFT algorithms for real data.
|
350
|
-
# The mixed-radix functions work for FFTs of any length. They are a
|
351
|
-
# reimplementation of the real-FFT routines in the Fortran FFTPACK library
|
352
|
-
# by Paul Swarztrauber.
|
353
|
-
# The theory behind the algorithm is explained in the article
|
354
|
-
# <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
|
355
|
-
# The routines here use the same indexing scheme and basic algorithms as
|
356
|
-
# FFTPACK.
|
349
|
+
# This section describes mixed-radix FFT algorithms for real data.
|
350
|
+
# The mixed-radix functions work for FFTs of any length. They are a
|
351
|
+
# reimplementation of the real-FFT routines in the Fortran FFTPACK library
|
352
|
+
# by Paul Swarztrauber.
|
353
|
+
# The theory behind the algorithm is explained in the article
|
354
|
+
# <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
|
355
|
+
# The routines here use the same indexing scheme and basic algorithms as
|
356
|
+
# FFTPACK.
|
357
357
|
#
|
358
358
|
# The functions use the FFTPACK storage convention for half-complex sequences.
|
359
359
|
# In this convention the half-complex transform of a real sequence is stored with
|
@@ -363,22 +363,22 @@
|
|
363
363
|
# component is never stored. It is known to be zero since the zero frequency
|
364
364
|
# component is simply the sum of the input data (all real). For a sequence of
|
365
365
|
# even length the imaginary part of the frequency n/2 is not stored either, since
|
366
|
-
# the symmetry z_k = z_{N-k}^* implies that this is purely real too.
|
366
|
+
# the symmetry z_k = z_{N-k}^* implies that this is purely real too.
|
367
367
|
#
|
368
368
|
#
|
369
|
-
# ===
|
369
|
+
# === Data storage scheme
|
370
370
|
#
|
371
|
-
# The storage scheme is best shown by some examples.
|
372
|
-
# The table below shows the output for an odd-length sequence, n=5.
|
373
|
-
# The two columns give the correspondence between the 5 values in the
|
374
|
-
# half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
|
375
|
-
# and the values <tt>complex[]</tt> that would be returned if the same real input
|
376
|
-
# sequence were passed to <tt>complex_backward</tt> as a complex sequence
|
371
|
+
# The storage scheme is best shown by some examples.
|
372
|
+
# The table below shows the output for an odd-length sequence, n=5.
|
373
|
+
# The two columns give the correspondence between the 5 values in the
|
374
|
+
# half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
|
375
|
+
# and the values <tt>complex[]</tt> that would be returned if the same real input
|
376
|
+
# sequence were passed to <tt>complex_backward</tt> as a complex sequence
|
377
377
|
# (with imaginary parts set to 0),
|
378
378
|
#
|
379
|
-
# complex[0].real = halfcomplex[0]
|
379
|
+
# complex[0].real = halfcomplex[0]
|
380
380
|
# complex[0].imag = 0
|
381
|
-
# complex[1].real = halfcomplex[1]
|
381
|
+
# complex[1].real = halfcomplex[1]
|
382
382
|
# complex[1].imag = halfcomplex[2]
|
383
383
|
# complex[2].real = halfcomplex[3]
|
384
384
|
# complex[2].imag = halfcomplex[4]
|
@@ -388,46 +388,46 @@
|
|
388
388
|
# complex[4].imag = -halfcomplex[2]
|
389
389
|
#
|
390
390
|
# The upper elements of the <tt>complex</tt> array, <tt>complex[3]</tt> and <tt>complex[4]</tt>
|
391
|
-
# are filled in using the symmetry condition. The imaginary part of
|
391
|
+
# are filled in using the symmetry condition. The imaginary part of
|
392
392
|
# the zero-frequency term <tt>complex[0].imag</tt> is known to be zero by the symmetry.
|
393
393
|
#
|
394
|
-
# The next table shows the output for an even-length sequence,
|
394
|
+
# The next table shows the output for an even-length sequence,
|
395
395
|
# n=5 In the even case there are two values which are purely real,
|
396
396
|
#
|
397
397
|
# complex[0].real = halfcomplex[0]
|
398
398
|
# complex[0].imag = 0
|
399
|
-
# complex[1].real = halfcomplex[1]
|
400
|
-
# complex[1].imag = halfcomplex[2]
|
401
|
-
# complex[2].real = halfcomplex[3]
|
402
|
-
# complex[2].imag = halfcomplex[4]
|
403
|
-
# complex[3].real = halfcomplex[5]
|
404
|
-
# complex[3].imag = 0
|
405
|
-
# complex[4].real = halfcomplex[3]
|
399
|
+
# complex[1].real = halfcomplex[1]
|
400
|
+
# complex[1].imag = halfcomplex[2]
|
401
|
+
# complex[2].real = halfcomplex[3]
|
402
|
+
# complex[2].imag = halfcomplex[4]
|
403
|
+
# complex[3].real = halfcomplex[5]
|
404
|
+
# complex[3].imag = 0
|
405
|
+
# complex[4].real = halfcomplex[3]
|
406
406
|
# complex[4].imag = -halfcomplex[4]
|
407
|
-
# complex[5].real = halfcomplex[1]
|
408
|
-
# complex[5].imag = -halfcomplex[2]
|
407
|
+
# complex[5].real = halfcomplex[1]
|
408
|
+
# complex[5].imag = -halfcomplex[2]
|
409
409
|
#
|
410
|
-
# The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
|
411
|
-
# and <tt>complex[5]</tt> are filled in using the symmetry condition.
|
410
|
+
# The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
|
411
|
+
# and <tt>complex[5]</tt> are filled in using the symmetry condition.
|
412
412
|
# Both <tt>complex[0].imag</tt> and <tt>complex[3].imag</tt> are known to be zero.
|
413
413
|
#
|
414
|
-
# ====
|
414
|
+
# ==== Wavetable and Workspace classes
|
415
415
|
# ---
|
416
416
|
# * GSL::FFT::RealWavetable.alloc(n)
|
417
417
|
# * GSL::FFT::HalfComplexWavetable.alloc(n)
|
418
418
|
#
|
419
419
|
#
|
420
|
-
# These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
|
421
|
-
# real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
|
420
|
+
# These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
|
421
|
+
# real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
|
422
422
|
# and the factors and their trigonometric coefficients are stored in the wavetable.
|
423
|
-
# The trigonometric coefficients are computed using direct calls to sin and cos,
|
424
|
-
# for accuracy. Recursion relations could be used to compute the lookup table
|
425
|
-
# faster, but if an application performs many FFTs of the same length then
|
426
|
-
# computing the wavetable is a one-off overhead which does not affect the final
|
423
|
+
# The trigonometric coefficients are computed using direct calls to sin and cos,
|
424
|
+
# for accuracy. Recursion relations could be used to compute the lookup table
|
425
|
+
# faster, but if an application performs many FFTs of the same length then
|
426
|
+
# computing the wavetable is a one-off overhead which does not affect the final
|
427
427
|
# throughput.
|
428
428
|
#
|
429
|
-
# The wavetable structure can be used repeatedly for any transform of the same
|
430
|
-
# length. The table is not modified by calls to any of the other FFT functions.
|
429
|
+
# The wavetable structure can be used repeatedly for any transform of the same
|
430
|
+
# length. The table is not modified by calls to any of the other FFT functions.
|
431
431
|
# The appropriate type of wavetable must be used for forward real or inverse
|
432
432
|
# half-complex transforms.
|
433
433
|
#
|
@@ -439,7 +439,7 @@
|
|
439
439
|
# <tt>n</tt>. The same workspace can be used for both forward real and inverse
|
440
440
|
# halfcomplex transforms.
|
441
441
|
#
|
442
|
-
# ====
|
442
|
+
# ==== Methods for mixed-radix real FFTs
|
443
443
|
#
|
444
444
|
# <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>real_tranform!</tt> for in-place transform.</b>
|
445
445
|
#
|
@@ -454,12 +454,12 @@
|
|
454
454
|
# <tt>real_transform</tt> <tt>self</tt> is an array of time-ordered real data. For
|
455
455
|
# <tt>halfcomplex_transform</tt> <tt>self</tt> contains Fourier coefficients in the
|
456
456
|
# half-complex ordering described above. There is no restriction on the
|
457
|
-
# length <tt>n</tt>.
|
457
|
+
# length <tt>n</tt>.
|
458
458
|
#
|
459
|
-
# Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
|
460
|
-
# Any remaining factors are computed with a slow, O(n^2), general-n module.
|
459
|
+
# Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
|
460
|
+
# Any remaining factors are computed with a slow, O(n^2), general-n module.
|
461
461
|
#
|
462
|
-
# The caller can supply a <tt>table</tt> containing trigonometric lookup tables
|
462
|
+
# The caller can supply a <tt>table</tt> containing trigonometric lookup tables
|
463
463
|
# and a workspace <tt>work</tt> (optional).
|
464
464
|
#
|
465
465
|
# These methods return the FFTed data, and the input data is not changed.
|
@@ -470,9 +470,9 @@
|
|
470
470
|
# * GSL::Vector#ifft
|
471
471
|
#
|
472
472
|
#
|
473
|
-
# ==
|
473
|
+
# == Examples
|
474
474
|
#
|
475
|
-
# ===
|
475
|
+
# === Example 1
|
476
476
|
#
|
477
477
|
# #!/usr/bin/env ruby
|
478
478
|
# require("gsl")
|
@@ -493,7 +493,7 @@
|
|
493
493
|
# f = Vector.linspace(0, SAMPLING/2, mag.size)
|
494
494
|
# graph(f, mag, "-C -g 3 -x 0 200 -X 'Frequency [Hz]'")
|
495
495
|
#
|
496
|
-
# ===
|
496
|
+
# === Example 2
|
497
497
|
# #!/usr/bin/env ruby
|
498
498
|
# require("gsl")
|
499
499
|
# include GSL
|
@@ -507,7 +507,7 @@
|
|
507
507
|
#
|
508
508
|
# rtable = FFT::RealWavetable.alloc(n)
|
509
509
|
# rwork = FFT::RealWorkspace.alloc(n)
|
510
|
-
#
|
510
|
+
#
|
511
511
|
# #ffted = data.real_transform(rtable, rwork)
|
512
512
|
# #ffted = data.real_transform(rtable)
|
513
513
|
# #ffted = data.real_transform(rwork)
|
@@ -517,19 +517,19 @@
|
|
517
517
|
# for i in 11...n do
|
518
518
|
# ffted[i] = 0.0
|
519
519
|
# end
|
520
|
-
#
|
520
|
+
#
|
521
521
|
# hctable = FFT::HalfComplexWavetable.alloc(n)
|
522
|
-
#
|
522
|
+
#
|
523
523
|
# #data2 = ffted.halfcomplex_inverse(hctable, rwork)
|
524
524
|
# #data2 = ffted.halfcomplex_inverse()
|
525
525
|
# data2 = ffted.ifft
|
526
526
|
#
|
527
527
|
# graph(nil, data, data2, "-T X -C -g 3 -L 'Real-halfcomplex' -x 0 #{data.size}")
|
528
528
|
#
|
529
|
-
# {prev}[link:
|
530
|
-
# {next}[link:
|
529
|
+
# {prev}[link:eigen_rdoc.html]
|
530
|
+
# {next}[link:wavelet_rdoc.html]
|
531
531
|
#
|
532
|
-
# {Reference index}[link:
|
532
|
+
# {Reference index}[link:ref_rdoc.html]
|
533
533
|
# {top}[link:index.html]
|
534
534
|
#
|
535
535
|
#
|