rb-gsl 1.16.0.2 → 1.16.0.3.rc1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
data/rdoc/fft.rdoc CHANGED
@@ -1,67 +1,67 @@
1
1
  #
2
2
  # = Fast Fourier Transforms
3
3
  # Contents:
4
- # 1. {Mathematical Definitions}[link:rdoc/fft_rdoc.html#1]
5
- # 1. {Complex data FFTs}[link:rdoc/fft_rdoc.html#2]
6
- # 1. {Overview of complex data FFTs}[link:rdoc/fft_rdoc.html#2.1]
7
- # 1. {Radix-2 FFT routines for complex data}[link:rdoc/fft_rdoc.html#2.2]
8
- # 1. {Example of the complex Radix-2 FFT}[link:rdoc/fft_rdoc.html#2.2.1]
9
- # 1. {Mixed-radix FFT routines for complex data}[link:rdoc/fft_rdoc.html#2.3]
10
- # 1. {GSL::FFT::ComplexWavetable class}[link:rdoc/fft_rdoc.html#2.3.1]
11
- # 1. {GSL::FFT::ComplexWorkspace class}[link:rdoc/fft_rdoc.html#2.3.2]
12
- # 1. {Methods to compute the transform}[link:rdoc/fft_rdoc.html#2.3.3]
13
- # 1. {Example of the mixed-radix FFT}[link:rdoc/fft_rdoc.html#2.3.4]
14
- # 1. {Real data FFTs}[link:rdoc/fft_rdoc.html#3]
15
- # 1. {Overview of real data FFTs}[link:rdoc/fft_rdoc.html#3.1]
16
- # 1. {Radix-2 FFT routines for real data}[link:rdoc/fft_rdoc.html#3.2]
17
- # 1. {Mixed-radix FFT routines for real data}[link:rdoc/fft_rdoc.html#3.3]
18
- # 1. {Data storage scheme}[link:rdoc/fft_rdoc.html#3.3.1]
19
- # 1. {Wavetable and Workspace classes}[link:rdoc/fft_rdoc.html#3.3.2]
20
- # 1. {Methods for real FFTs}[link:rdoc/fft_rdoc.html#3.3.3]
21
- # 1. {Examples}[link:rdoc/fft_rdoc.html#3.3.4]
22
- #
23
- # == {}[link:index.html"name="1] Mathematical Definitions
24
- # Fast Fourier Transforms are efficient algorithms for calculating the discrete
25
- # fourier transform (DFT),
26
- #
27
- # The DFT usually arises as an approximation to the continuous fourier transform
28
- # when functions are sampled at discrete intervals in space or time.
29
- # The naive evaluation of the discrete fourier transform is a matrix-vector
30
- # multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
31
- # operations for N data-points. Fast fourier transform algorithms use a
32
- # divide-and-conquer strategy to factorize the matrix W into smaller
33
- # sub-matrices, corresponding to the integer factors of the length N.
34
- # If N can be factorized into a product of integers f_1 f_2 ... f_n then the
35
- # DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
36
- # gives an operation count of O(N \log_2 N).
4
+ # 1. {Mathematical Definitions}[link:fft_rdoc.html#label-Mathematical+Definitions]
5
+ # 1. {Complex data FFTs}[link:fft_rdoc.html#label-Complex+data+FFTs]
6
+ # 1. {Overview of complex data FFTs}[link:fft_rdoc.html#label-Overview+of+complex+data+FFTs]
7
+ # 1. {Radix-2 FFT routines for complex data}[link:fft_rdoc.html#label-Radix-2+FFT+routines+for+complex+data]
8
+ # 1. {Example of the complex Radix-2 FFT}[link:fft_rdoc.html#label-Example+of+complex+Radix-2+FFT]
9
+ # 1. {Mixed-radix FFT routines for complex data}[link:fft_rdoc.html#label-Mixed-radix+FFT+routines+for+complex+data]
10
+ # 1. {GSL::FFT::ComplexWavetable class}[link:fft_rdoc.html#label-ComplexWavetable+class]
11
+ # 1. {GSL::FFT::ComplexWorkspace class}[link:fft_rdoc.html#label-ComplexWorkspace+class]
12
+ # 1. {Methods to compute the transform}[link:fft_rdoc.html#label-Methods+to+compute+transform]
13
+ # 1. {Example of the mixed-radix FFT}[link:fft_rdoc.html#label-Example+to+use+the+mixed-radix+FFT+algorithm]
14
+ # 1. {Real data FFTs}[link:fft_rdoc.html#label-Real+data+FFTs]
15
+ # 1. {Overview of real data FFTs}[link:fft_rdoc.html#label-Overview+of+real+data+FFTs]
16
+ # 1. {Radix-2 FFT routines for real data}[link:fft_rdoc.html#label-Radix-2+FFT+routines+for+real+data]
17
+ # 1. {Mixed-radix FFT routines for real data}[link:fft_rdoc.html#label-Mixed-radix+FFT+routines+for+real+data]
18
+ # 1. {Data storage scheme}[link:fft_rdoc.html#label-Data+storage+scheme]
19
+ # 1. {Wavetable and Workspace classes}[link:fft_rdoc.html#label-Wavetable+and+Workspace+classes]
20
+ # 1. {Methods for real FFTs}[link:fft_rdoc.html#label-Methods+for+mixed-radix+real+FFTs]
21
+ # 1. {Examples}[link:fft_rdoc.html#label-Examples]
22
+ #
23
+ # == Mathematical Definitions
24
+ # Fast Fourier Transforms are efficient algorithms for calculating the discrete
25
+ # fourier transform (DFT),
26
+ #
27
+ # The DFT usually arises as an approximation to the continuous fourier transform
28
+ # when functions are sampled at discrete intervals in space or time.
29
+ # The naive evaluation of the discrete fourier transform is a matrix-vector
30
+ # multiplication W\vec{z}. A general matrix-vector multiplication takes O(N^2)
31
+ # operations for N data-points. Fast fourier transform algorithms use a
32
+ # divide-and-conquer strategy to factorize the matrix W into smaller
33
+ # sub-matrices, corresponding to the integer factors of the length N.
34
+ # If N can be factorized into a product of integers f_1 f_2 ... f_n then the
35
+ # DFT can be computed in O(N \sum f_i) operations. For a radix-2 FFT this
36
+ # gives an operation count of O(N \log_2 N).
37
37
  #
38
38
  # All the FFT functions offer three types of transform: forwards, inverse and
39
- # backwards, based on the same mathematical definitions. The definition of the
40
- # forward fourier transform, x = FFT(z), is, and the definition of the inverse
41
- # fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
42
- # inverse. For example, a call to gsl_fft_complex_forward followed by a call
43
- # to gsl_fft_complex_inverse should return the original data (within numerical
44
- # errors).
45
- #
46
- # In general there are two possible choices for the sign of the exponential
39
+ # backwards, based on the same mathematical definitions. The definition of the
40
+ # forward fourier transform, x = FFT(z), is, and the definition of the inverse
41
+ # fourier transform, x = IFFT(z), is, The factor of 1/N makes this a true
42
+ # inverse. For example, a call to gsl_fft_complex_forward followed by a call
43
+ # to gsl_fft_complex_inverse should return the original data (within numerical
44
+ # errors).
45
+ #
46
+ # In general there are two possible choices for the sign of the exponential
47
47
  # in the transform/ inverse-transform pair. GSL follows the same convention as
48
- # FFTPACK, using a negative exponential for the forward transform.
49
- # The advantage of this convention is that the inverse transform recreates
50
- # the original function with simple fourier synthesis. Numerical Recipes uses
51
- # the opposite convention, a positive exponential in the forward transform.
48
+ # FFTPACK, using a negative exponential for the forward transform.
49
+ # The advantage of this convention is that the inverse transform recreates
50
+ # the original function with simple fourier synthesis. Numerical Recipes uses
51
+ # the opposite convention, a positive exponential in the forward transform.
52
52
  #
53
- # The backwards FFT is simply our terminology for an unscaled version of the
54
- # inverse FFT, When the overall scale of the result is unimportant it is often
53
+ # The backwards FFT is simply our terminology for an unscaled version of the
54
+ # inverse FFT, When the overall scale of the result is unimportant it is often
55
55
  # convenient to use the backwards FFT instead of the inverse to save unnecessary
56
- # divisions.
56
+ # divisions.
57
57
  #
58
58
  #
59
- # == {}[link:index.html"name="2] Complex data FFTs
60
- # === {}[link:index.html"name="2.1] Overview of complex data FFTs
59
+ # == Complex data FFTs
60
+ # === Overview of complex data FFTs
61
61
  # The complex data FFT routines are provided as instance methods of
62
- # {GSL::Vector::Complex}[link:rdoc/vector_complex_rdoc.html].
62
+ # {GSL::Vector::Complex}[link:vector_complex_rdoc.html].
63
63
  #
64
- # Here is a table which shows the layout of the array data, and the correspondence
64
+ # Here is a table which shows the layout of the array data, and the correspondence
65
65
  # between the time-domain complex data z, and the frequency-domain complex data x.
66
66
  #
67
67
  # index z x = FFT(z)
@@ -82,7 +82,7 @@
82
82
  # frequencies +1/(2 Delta), -1/(2 Delta) which are equivalent. If N is odd then
83
83
  # general structure of the table above still applies, but N/2 does not appear.
84
84
  #
85
- # {GSL::Vector::Complex}[link:rdoc/vector_complex_rdoc.html] provides four methods for
85
+ # {GSL::Vector::Complex}[link:vector_complex_rdoc.html] provides four methods for
86
86
  # shifting the frequency domain data between <b>FFT order</b>, shown in the table
87
87
  # above, and <b>natural order</b>, which has the most negative freqeuncy component
88
88
  # first, the zero frequency component in the middle, and the most positive
@@ -110,14 +110,14 @@
110
110
  # <tt>self</tt>. Note that <tt>#fftshift</tt> and <tt>#ifftshift</tt> are equivalent
111
111
  # for even lengths, but not for odd lengths.
112
112
  #
113
- # === {}[link:index.html"name="2.2] Radix-2 FFT routines for complex data
114
- # The radix-2 algorithms are simple and compact, although not necessarily the
115
- # most efficient. They use the Cooley-Tukey algorithm to compute complex
116
- # FFTs for lengths which are a power of 2 -- no additional storage is required.
117
- # The corresponding self-sorting mixed-radix routines offer better performance
113
+ # === Radix-2 FFT routines for complex data
114
+ # The radix-2 algorithms are simple and compact, although not necessarily the
115
+ # most efficient. They use the Cooley-Tukey algorithm to compute complex
116
+ # FFTs for lengths which are a power of 2 -- no additional storage is required.
117
+ # The corresponding self-sorting mixed-radix routines offer better performance
118
118
  # at the expense of requiring additional working space.
119
119
  #
120
- # <b>The FFT methods described below return FFTed data, and the input vector is
120
+ # <b>The FFT methods described below return FFTed data, and the input vector is
121
121
  # not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
122
122
  #
123
123
  # ---
@@ -136,7 +136,7 @@
136
136
  #
137
137
  #
138
138
  # The sign argument can be either <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
139
- #
139
+ #
140
140
  # ---
141
141
  # * GSL::Vector::Complex#radix2_dif_forward
142
142
  # * GSL::Vector::Complex#radix2_dif_backward
@@ -146,10 +146,10 @@
146
146
  #
147
147
  # These are decimation-in-frequency versions of the radix-2 FFT functions.
148
148
  #
149
- # ==== {}[link:index.html"name="2.2.1] Example of complex Radix-2 FFT
150
- # Here is an example program which computes the FFT of a short pulse in a
151
- # sample of length 128. To make the resulting Fourier transform real the pulse
152
- # is defined for equal positive and negative times (-10 ... 10), where the
149
+ # ==== Example of complex Radix-2 FFT
150
+ # Here is an example program which computes the FFT of a short pulse in a
151
+ # sample of length 128. To make the resulting Fourier transform real the pulse
152
+ # is defined for equal positive and negative times (-10 ... 10), where the
153
153
  # negative times wrap around the end of the array.
154
154
  #
155
155
  # require("gsl")
@@ -176,23 +176,23 @@
176
176
  # printf("%d %e %e\n", i, ffted[i].re, ffted[i].im)
177
177
  # end
178
178
  #
179
- # === {}[link:index.html"name="2.3] Mixed-radix FFT routines for complex data
179
+ # === Mixed-radix FFT routines for complex data
180
180
  #
181
- # ==== {}[link:index.html"name="2.3.1] GSL::FFT::ComplexWavetable class
181
+ # ==== ComplexWavetable class
182
182
  # ---
183
183
  # * GSL::FFT::ComplexWavetable.alloc(n)
184
184
  #
185
185
  #
186
186
  # This method prepares a trigonometric lookup table for a complex FFT of length <tt>n</tt>.
187
- # The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
188
- # trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
189
- # computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
190
- # to compute the lookup table faster, but if an application performs many FFTs of the same
191
- # length then this computation is a one-off overhead which does not affect the final
187
+ # The length <tt>n</tt> is factorized into a product of subtransforms, and the factors and their
188
+ # trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are
189
+ # computed using direct calls to sin and cos, for accuracy. Recursion relations could be used
190
+ # to compute the lookup table faster, but if an application performs many FFTs of the same
191
+ # length then this computation is a one-off overhead which does not affect the final
192
192
  # throughput.
193
193
  #
194
194
  # The <tt>Wavetable</tt> object can be used repeatedly for any transform of the same length.
195
- # The table is not modified by calls to any of the other FFT functions. The same wavetable
195
+ # The table is not modified by calls to any of the other FFT functions. The same wavetable
196
196
  # can be used for both forward and backward (or inverse) transforms of a given length.
197
197
  #
198
198
  # ---
@@ -201,14 +201,14 @@
201
201
  # * GSL::FFT::ComplexWavetable#factor
202
202
  #
203
203
  #
204
- # ==== {}[link:index.html"name="2.3.2] GSL::FFT::ComplexWorkspace class
204
+ # ==== ComplexWorkspace class
205
205
  # ---
206
206
  # * GSL::FFT::ComplexWorkspace.alloc(n)
207
207
  #
208
208
  #
209
209
  # Creates a workspace for a complex transform of length <tt>n</tt>.
210
210
  #
211
- # ==== {}[link:index.html"name="2.3.3] Methods to compute transform
211
+ # ==== Methods to compute transform
212
212
  # <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>tranform!</tt> for in-place transform.</b>
213
213
  #
214
214
  # ---
@@ -226,16 +226,16 @@
226
226
  # There is no restriction on the length. Efficient modules are provided for
227
227
  # subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are
228
228
  # computed with a slow, O(n^2), general-n module.
229
- #
229
+ #
230
230
  # The caller can supply a <tt>table</tt> containing the trigonometric lookup
231
231
  # tables and a workspace <tt>work</tt> (they are optional).
232
- #
232
+ #
233
233
  # The sign argument for the method <tt>transform</tt> can be either
234
234
  # <tt>GSL::FFT::FORWARD</tt> or <tt>GSL::FFT::BACKWARD</tt>.
235
235
  #
236
236
  # These methods return the FFTed data, and the input data is not changed.
237
237
  #
238
- # ==== {}[link:index.html"name="2.3.4] Example to use the mixed-radix FFT algorithm
238
+ # ==== Example to use the mixed-radix FFT algorithm
239
239
  # require 'gsl'
240
240
  # include GSL
241
241
  #
@@ -259,11 +259,11 @@
259
259
  # printf("%d %e %e\n", i, data[i].re, data[i].im)
260
260
  # end
261
261
  #
262
- # == {}[link:index.html"name="3] Real data FFTs
263
- # === {}[link:index.html"name="3.1] Overview of real data FFTs
262
+ # == Real data FFTs
263
+ # === Overview of real data FFTs
264
264
  #
265
265
  # The functions for real data FFTs are provided as instance methods of
266
- # {GSL::Vector}[link:rdoc/vector.class]. While they are similar to those for
266
+ # {GSL::Vector}[link:vector_rdoc.html]. While they are similar to those for
267
267
  # complex data, there is an important difference in the data storage layout
268
268
  # between forward and inverse transforms. The Fourier transform of a real
269
269
  # sequence is not real. It is a complex sequence with a special symmetry. A
@@ -274,7 +274,7 @@
274
274
  # Forward transforms of real sequences produce half complex sequences of the same
275
275
  # length. Backward and inverse transforms of half complex sequences produce real
276
276
  # sequences of the same length. In both cases, the input and output sequences
277
- # are instances of {GSL::Vector}[link:rdoc/vector_rdoc.html].
277
+ # are instances of {GSL::Vector}[link:vector_rdoc.html].
278
278
  #
279
279
  # The precise storage arrangements of half complex seqeunces depend on the
280
280
  # algorithm, and are different for radix-2 and mixed-radix routines. The radix-2
@@ -286,9 +286,9 @@
286
286
  # complex sequence produces by a radix-2 forward transform <b>cannot</b> be
287
287
  # recovered by a mixed-radix inverse transform (and vice versa).
288
288
  #
289
- # === {}[link:index.html"name="3.2] Radix-2 FFT routines for real data
289
+ # === Radix-2 FFT routines for real data
290
290
  # The routines for readix-2 real FFTs are provided as instance methods of
291
- # {GSL::Vector}[link:rdoc/vector_rdoc.html].
291
+ # {GSL::Vector}[link:vector_rdoc.html].
292
292
  #
293
293
  # <b>The FFT methods described below return FFTed data, and the input vector is
294
294
  # not changed. Use methods with '!' as <tt>radix2_tranform!</tt> for in-place
@@ -312,23 +312,23 @@
312
312
  #
313
313
  # These methods return the FFTed data, and the input data is not changed.
314
314
  #
315
- # The following table shows the correspondence between the output <tt>self</tt>
316
- # and the equivalent results obtained by considering the input data as a
315
+ # The following table shows the correspondence between the output <tt>self</tt>
316
+ # and the equivalent results obtained by considering the input data as a
317
317
  # complex sequence with zero imaginary part,
318
318
  #
319
- # complex[0].real = self[0]
320
- # complex[0].imag = 0
321
- # complex[1].real = self[1]
319
+ # complex[0].real = self[0]
320
+ # complex[0].imag = 0
321
+ # complex[1].real = self[1]
322
322
  # complex[1].imag = self[N-1]
323
323
  # ............... ................
324
324
  # complex[k].real = self[k]
325
- # complex[k].imag = self[N-k]
325
+ # complex[k].imag = self[N-k]
326
326
  # ............... ................
327
327
  # complex[N/2].real = self[N/2]
328
328
  # complex[N/2].real = 0
329
329
  # ............... ................
330
330
  # complex[k'].real = self[k] k' = N - k
331
- # complex[k'].imag = -self[N-k]
331
+ # complex[k'].imag = -self[N-k]
332
332
  # ............... ................
333
333
  # complex[N-1].real = self[1]
334
334
  # complex[N-1].imag = -self[N-1]
@@ -344,16 +344,16 @@
344
344
  # half-complex sequence data stored according the output scheme used by
345
345
  # gsl_fft_real_radix2. The result is a real array stored in natural order.
346
346
  #
347
- # == {}[link:index.html"name="4] Mixed-radix FFT routines for real data
347
+ # == Mixed-radix FFT routines for real data
348
348
  #
349
- # This section describes mixed-radix FFT algorithms for real data.
350
- # The mixed-radix functions work for FFTs of any length. They are a
351
- # reimplementation of the real-FFT routines in the Fortran FFTPACK library
352
- # by Paul Swarztrauber.
353
- # The theory behind the algorithm is explained in the article
354
- # <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
355
- # The routines here use the same indexing scheme and basic algorithms as
356
- # FFTPACK.
349
+ # This section describes mixed-radix FFT algorithms for real data.
350
+ # The mixed-radix functions work for FFTs of any length. They are a
351
+ # reimplementation of the real-FFT routines in the Fortran FFTPACK library
352
+ # by Paul Swarztrauber.
353
+ # The theory behind the algorithm is explained in the article
354
+ # <tt>Fast Mixed-Radix Real Fourier Transforms</tt> by Clive Temperton.
355
+ # The routines here use the same indexing scheme and basic algorithms as
356
+ # FFTPACK.
357
357
  #
358
358
  # The functions use the FFTPACK storage convention for half-complex sequences.
359
359
  # In this convention the half-complex transform of a real sequence is stored with
@@ -363,22 +363,22 @@
363
363
  # component is never stored. It is known to be zero since the zero frequency
364
364
  # component is simply the sum of the input data (all real). For a sequence of
365
365
  # even length the imaginary part of the frequency n/2 is not stored either, since
366
- # the symmetry z_k = z_{N-k}^* implies that this is purely real too.
366
+ # the symmetry z_k = z_{N-k}^* implies that this is purely real too.
367
367
  #
368
368
  #
369
- # === {}[link:index.html"name="4.1] Data storage scheme
369
+ # === Data storage scheme
370
370
  #
371
- # The storage scheme is best shown by some examples.
372
- # The table below shows the output for an odd-length sequence, n=5.
373
- # The two columns give the correspondence between the 5 values in the
374
- # half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
375
- # and the values <tt>complex[]</tt> that would be returned if the same real input
376
- # sequence were passed to <tt>complex_backward</tt> as a complex sequence
371
+ # The storage scheme is best shown by some examples.
372
+ # The table below shows the output for an odd-length sequence, n=5.
373
+ # The two columns give the correspondence between the 5 values in the
374
+ # half-complex sequence computed <tt>real_transform</tt>, <tt>halfcomplex[]</tt>
375
+ # and the values <tt>complex[]</tt> that would be returned if the same real input
376
+ # sequence were passed to <tt>complex_backward</tt> as a complex sequence
377
377
  # (with imaginary parts set to 0),
378
378
  #
379
- # complex[0].real = halfcomplex[0]
379
+ # complex[0].real = halfcomplex[0]
380
380
  # complex[0].imag = 0
381
- # complex[1].real = halfcomplex[1]
381
+ # complex[1].real = halfcomplex[1]
382
382
  # complex[1].imag = halfcomplex[2]
383
383
  # complex[2].real = halfcomplex[3]
384
384
  # complex[2].imag = halfcomplex[4]
@@ -388,46 +388,46 @@
388
388
  # complex[4].imag = -halfcomplex[2]
389
389
  #
390
390
  # The upper elements of the <tt>complex</tt> array, <tt>complex[3]</tt> and <tt>complex[4]</tt>
391
- # are filled in using the symmetry condition. The imaginary part of
391
+ # are filled in using the symmetry condition. The imaginary part of
392
392
  # the zero-frequency term <tt>complex[0].imag</tt> is known to be zero by the symmetry.
393
393
  #
394
- # The next table shows the output for an even-length sequence,
394
+ # The next table shows the output for an even-length sequence,
395
395
  # n=5 In the even case there are two values which are purely real,
396
396
  #
397
397
  # complex[0].real = halfcomplex[0]
398
398
  # complex[0].imag = 0
399
- # complex[1].real = halfcomplex[1]
400
- # complex[1].imag = halfcomplex[2]
401
- # complex[2].real = halfcomplex[3]
402
- # complex[2].imag = halfcomplex[4]
403
- # complex[3].real = halfcomplex[5]
404
- # complex[3].imag = 0
405
- # complex[4].real = halfcomplex[3]
399
+ # complex[1].real = halfcomplex[1]
400
+ # complex[1].imag = halfcomplex[2]
401
+ # complex[2].real = halfcomplex[3]
402
+ # complex[2].imag = halfcomplex[4]
403
+ # complex[3].real = halfcomplex[5]
404
+ # complex[3].imag = 0
405
+ # complex[4].real = halfcomplex[3]
406
406
  # complex[4].imag = -halfcomplex[4]
407
- # complex[5].real = halfcomplex[1]
408
- # complex[5].imag = -halfcomplex[2]
407
+ # complex[5].real = halfcomplex[1]
408
+ # complex[5].imag = -halfcomplex[2]
409
409
  #
410
- # The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
411
- # and <tt>complex[5]</tt> are filled in using the symmetry condition.
410
+ # The upper elements of the <tt>complex</tt> array, <tt>complex[4]</tt>
411
+ # and <tt>complex[5]</tt> are filled in using the symmetry condition.
412
412
  # Both <tt>complex[0].imag</tt> and <tt>complex[3].imag</tt> are known to be zero.
413
413
  #
414
- # ==== {}[link:index.html"name="4.1.1] Wavetable and Workspace classes
414
+ # ==== Wavetable and Workspace classes
415
415
  # ---
416
416
  # * GSL::FFT::RealWavetable.alloc(n)
417
417
  # * GSL::FFT::HalfComplexWavetable.alloc(n)
418
418
  #
419
419
  #
420
- # These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
421
- # real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
420
+ # These methods create trigonometric lookup tables for an FFT of size <tt>n</tt>
421
+ # real elements. The length <tt>n</tt> is factorized into a product of subtransforms,
422
422
  # and the factors and their trigonometric coefficients are stored in the wavetable.
423
- # The trigonometric coefficients are computed using direct calls to sin and cos,
424
- # for accuracy. Recursion relations could be used to compute the lookup table
425
- # faster, but if an application performs many FFTs of the same length then
426
- # computing the wavetable is a one-off overhead which does not affect the final
423
+ # The trigonometric coefficients are computed using direct calls to sin and cos,
424
+ # for accuracy. Recursion relations could be used to compute the lookup table
425
+ # faster, but if an application performs many FFTs of the same length then
426
+ # computing the wavetable is a one-off overhead which does not affect the final
427
427
  # throughput.
428
428
  #
429
- # The wavetable structure can be used repeatedly for any transform of the same
430
- # length. The table is not modified by calls to any of the other FFT functions.
429
+ # The wavetable structure can be used repeatedly for any transform of the same
430
+ # length. The table is not modified by calls to any of the other FFT functions.
431
431
  # The appropriate type of wavetable must be used for forward real or inverse
432
432
  # half-complex transforms.
433
433
  #
@@ -439,7 +439,7 @@
439
439
  # <tt>n</tt>. The same workspace can be used for both forward real and inverse
440
440
  # halfcomplex transforms.
441
441
  #
442
- # ==== {}[link:index.html"name="4.1.2] Methods for mixed-radix real FFTs
442
+ # ==== Methods for mixed-radix real FFTs
443
443
  #
444
444
  # <b>The FFT methods described below return FFTed data, and the input vector is not changed. Use methods with '!' as <tt>real_tranform!</tt> for in-place transform.</b>
445
445
  #
@@ -454,12 +454,12 @@
454
454
  # <tt>real_transform</tt> <tt>self</tt> is an array of time-ordered real data. For
455
455
  # <tt>halfcomplex_transform</tt> <tt>self</tt> contains Fourier coefficients in the
456
456
  # half-complex ordering described above. There is no restriction on the
457
- # length <tt>n</tt>.
457
+ # length <tt>n</tt>.
458
458
  #
459
- # Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
460
- # Any remaining factors are computed with a slow, O(n^2), general-n module.
459
+ # Efficient modules are provided for subtransforms of length 2, 3, 4 and 5.
460
+ # Any remaining factors are computed with a slow, O(n^2), general-n module.
461
461
  #
462
- # The caller can supply a <tt>table</tt> containing trigonometric lookup tables
462
+ # The caller can supply a <tt>table</tt> containing trigonometric lookup tables
463
463
  # and a workspace <tt>work</tt> (optional).
464
464
  #
465
465
  # These methods return the FFTed data, and the input data is not changed.
@@ -470,9 +470,9 @@
470
470
  # * GSL::Vector#ifft
471
471
  #
472
472
  #
473
- # == {}[link:index.html"name="5] Examples
473
+ # == Examples
474
474
  #
475
- # === {}[link:index.html"name="5.1] Example 1
475
+ # === Example 1
476
476
  #
477
477
  # #!/usr/bin/env ruby
478
478
  # require("gsl")
@@ -493,7 +493,7 @@
493
493
  # f = Vector.linspace(0, SAMPLING/2, mag.size)
494
494
  # graph(f, mag, "-C -g 3 -x 0 200 -X 'Frequency [Hz]'")
495
495
  #
496
- # === {}[link:index.html"name="5.2] Example 2
496
+ # === Example 2
497
497
  # #!/usr/bin/env ruby
498
498
  # require("gsl")
499
499
  # include GSL
@@ -507,7 +507,7 @@
507
507
  #
508
508
  # rtable = FFT::RealWavetable.alloc(n)
509
509
  # rwork = FFT::RealWorkspace.alloc(n)
510
- #
510
+ #
511
511
  # #ffted = data.real_transform(rtable, rwork)
512
512
  # #ffted = data.real_transform(rtable)
513
513
  # #ffted = data.real_transform(rwork)
@@ -517,19 +517,19 @@
517
517
  # for i in 11...n do
518
518
  # ffted[i] = 0.0
519
519
  # end
520
- #
520
+ #
521
521
  # hctable = FFT::HalfComplexWavetable.alloc(n)
522
- #
522
+ #
523
523
  # #data2 = ffted.halfcomplex_inverse(hctable, rwork)
524
524
  # #data2 = ffted.halfcomplex_inverse()
525
525
  # data2 = ffted.ifft
526
526
  #
527
527
  # graph(nil, data, data2, "-T X -C -g 3 -L 'Real-halfcomplex' -x 0 #{data.size}")
528
528
  #
529
- # {prev}[link:rdoc/eigen_rdoc.html]
530
- # {next}[link:rdoc/wavelet_rdoc.html]
529
+ # {prev}[link:eigen_rdoc.html]
530
+ # {next}[link:wavelet_rdoc.html]
531
531
  #
532
- # {Reference index}[link:rdoc/ref_rdoc.html]
532
+ # {Reference index}[link:ref_rdoc.html]
533
533
  # {top}[link:index.html]
534
534
  #
535
535
  #