rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/rng.rdoc
CHANGED
@@ -1,83 +1,83 @@
|
|
1
1
|
#
|
2
2
|
# = Random Number Generation
|
3
|
-
# The library provides a large collection of random number generators which
|
4
|
-
# can be accessed through a uniform interface. Environment variables allow you
|
5
|
-
# to select different generators and seeds at runtime, so that you can easily
|
6
|
-
# switch between generators without needing to recompile your program.
|
7
|
-
# Each instance of a generator keeps track of its own state, allowing the
|
8
|
-
# generators to be used in multi-threaded programs. Additional functions are
|
9
|
-
# available for transforming uniform random numbers into samples from
|
10
|
-
# continuous or discrete probability distributions such as the Gaussian,
|
11
|
-
# log-normal or Poisson distributions.
|
3
|
+
# The library provides a large collection of random number generators which
|
4
|
+
# can be accessed through a uniform interface. Environment variables allow you
|
5
|
+
# to select different generators and seeds at runtime, so that you can easily
|
6
|
+
# switch between generators without needing to recompile your program.
|
7
|
+
# Each instance of a generator keeps track of its own state, allowing the
|
8
|
+
# generators to be used in multi-threaded programs. Additional functions are
|
9
|
+
# available for transforming uniform random numbers into samples from
|
10
|
+
# continuous or discrete probability distributions such as the Gaussian,
|
11
|
+
# log-normal or Poisson distributions.
|
12
12
|
#
|
13
13
|
#
|
14
14
|
#
|
15
15
|
# Contents:
|
16
|
-
# 1. {General comments on random numbers}[link:
|
17
|
-
# 1. {The Random Number Generator Interface: GSL::Rng class}[link:
|
18
|
-
# 1. {Random number generator initialization}[link:
|
19
|
-
# 1. {Sampling from a random number generator}[link:
|
20
|
-
# 1. {Auxiliary random number generator functions}[link:
|
21
|
-
# 1. {Random number environment variables}[link:
|
22
|
-
#
|
23
|
-
# ==
|
24
|
-
# In 1988, Park and Miller wrote a paper entitled "Random number generators:
|
16
|
+
# 1. {General comments on random numbers}[link:rng_rdoc.html#label-General+comments+on+random+numbers]
|
17
|
+
# 1. {The Random Number Generator Interface: GSL::Rng class}[link:rng_rdoc.html#label-The+Random+Number+Generator+Interface]
|
18
|
+
# 1. {Random number generator initialization}[link:rng_rdoc.html#label-Random+number+generator+initialization]
|
19
|
+
# 1. {Sampling from a random number generator}[link:rng_rdoc.html#label-Sampling+from+a+random+number+generator]
|
20
|
+
# 1. {Auxiliary random number generator functions}[link:rng_rdoc.html#label-Auxiliary+random+number+generator+functions]
|
21
|
+
# 1. {Random number environment variables}[link:rng_rdoc.html#label-Random+number+environment+variables]
|
22
|
+
#
|
23
|
+
# == General comments on random numbers
|
24
|
+
# In 1988, Park and Miller wrote a paper entitled "Random number generators:
|
25
25
|
# good ones are hard to find." [Commun. ACM, 31, 1192-1201]. Fortunately, some
|
26
|
-
# excellent random number generators are available, though poor ones are still
|
27
|
-
# in common use. You may be happy with the system-supplied random number
|
28
|
-
# generator on your computer, but you should be aware that as computers get
|
29
|
-
# faster, requirements on random number generators increase. Nowadays, a
|
30
|
-
# simulation that calls a random number generator millions of times can often
|
31
|
-
# finish before you can make it down the hall to the coffee machine and back.
|
32
|
-
#
|
33
|
-
# A very nice review of random number generators was written by Pierre L'Ecuyer,
|
26
|
+
# excellent random number generators are available, though poor ones are still
|
27
|
+
# in common use. You may be happy with the system-supplied random number
|
28
|
+
# generator on your computer, but you should be aware that as computers get
|
29
|
+
# faster, requirements on random number generators increase. Nowadays, a
|
30
|
+
# simulation that calls a random number generator millions of times can often
|
31
|
+
# finish before you can make it down the hall to the coffee machine and back.
|
32
|
+
#
|
33
|
+
# A very nice review of random number generators was written by Pierre L'Ecuyer,
|
34
34
|
# as Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed.
|
35
|
-
# (Wiley, 1997). The chapter is available in postscript from L'Ecuyer's
|
36
|
-
# ftp site (see references). Knuth's volume on Seminumerical Algorithms
|
35
|
+
# (Wiley, 1997). The chapter is available in postscript from L'Ecuyer's
|
36
|
+
# ftp site (see references). Knuth's volume on Seminumerical Algorithms
|
37
37
|
# (originally published in 1968) devotes 170 pages to random number generators,
|
38
|
-
# and has recently been updated in its 3rd edition (1997). It is brilliant,
|
39
|
-
# a classic. If you don't own it, you should stop reading right now, run to the
|
40
|
-
# nearest bookstore, and buy it.
|
41
|
-
#
|
42
|
-
# A good random number generator will satisfy both theoretical and statistical
|
43
|
-
# properties. Theoretical properties are often hard to obtain (they require real
|
44
|
-
# math!), but one prefers a random number generator with a long period,
|
45
|
-
# low serial correlation, and a tendency not to "fall mainly on the planes."
|
38
|
+
# and has recently been updated in its 3rd edition (1997). It is brilliant,
|
39
|
+
# a classic. If you don't own it, you should stop reading right now, run to the
|
40
|
+
# nearest bookstore, and buy it.
|
41
|
+
#
|
42
|
+
# A good random number generator will satisfy both theoretical and statistical
|
43
|
+
# properties. Theoretical properties are often hard to obtain (they require real
|
44
|
+
# math!), but one prefers a random number generator with a long period,
|
45
|
+
# low serial correlation, and a tendency not to "fall mainly on the planes."
|
46
46
|
# Statistical tests are performed with numerical simulations. Generally,
|
47
|
-
# a random number generator is used to estimate some quantity for which the
|
48
|
-
# theory of probability provides an exact answer. Comparison to this exact
|
49
|
-
# answer provides a measure of "randomness".
|
50
|
-
#
|
51
|
-
# ==
|
52
|
-
# It is important to remember that a random number generator is not a "real"
|
53
|
-
# function like sine or cosine. Unlike real functions, successive calls to a
|
54
|
-
# random number generator yield different return values. Of course that is just
|
55
|
-
# what you want for a random number generator, but to achieve this effect,
|
56
|
-
# the generator must keep track of some kind of "state" variable. Sometimes this
|
57
|
-
# state is just an integer (sometimes just the value of the previously generated
|
58
|
-
# random number), but often it is more complicated than that and may involve a
|
59
|
-
# whole array of numbers, possibly with some indices thrown in. To use the
|
60
|
-
# random number generators, you do not need to know the details of what
|
61
|
-
# comprises the state, and besides that varies from algorithm to algorithm.
|
47
|
+
# a random number generator is used to estimate some quantity for which the
|
48
|
+
# theory of probability provides an exact answer. Comparison to this exact
|
49
|
+
# answer provides a measure of "randomness".
|
50
|
+
#
|
51
|
+
# == The Random Number Generator Interface
|
52
|
+
# It is important to remember that a random number generator is not a "real"
|
53
|
+
# function like sine or cosine. Unlike real functions, successive calls to a
|
54
|
+
# random number generator yield different return values. Of course that is just
|
55
|
+
# what you want for a random number generator, but to achieve this effect,
|
56
|
+
# the generator must keep track of some kind of "state" variable. Sometimes this
|
57
|
+
# state is just an integer (sometimes just the value of the previously generated
|
58
|
+
# random number), but often it is more complicated than that and may involve a
|
59
|
+
# whole array of numbers, possibly with some indices thrown in. To use the
|
60
|
+
# random number generators, you do not need to know the details of what
|
61
|
+
# comprises the state, and besides that varies from algorithm to algorithm.
|
62
62
|
#
|
63
63
|
# The random number generator library uses <tt>GSL::Rng</tt> class for the interface.
|
64
|
-
# ==
|
64
|
+
# == Random number generator initialization
|
65
65
|
#
|
66
66
|
# ---
|
67
67
|
# * GSL::Rng.alloc(rng_type[, seed])
|
68
68
|
#
|
69
|
-
# This method returns a GSL::Rng object of a random number generator of type
|
70
|
-
# <tt>rng_type</tt> with a seed <tt>seed</tt>. These two arguments can be omitted,
|
69
|
+
# This method returns a GSL::Rng object of a random number generator of type
|
70
|
+
# <tt>rng_type</tt> with a seed <tt>seed</tt>. These two arguments can be omitted,
|
71
71
|
# and the generator 'gsl_rng_mt19937' and a seed 0 are used as defaults.
|
72
|
-
# The GSL library provides a number of random number generator types,
|
72
|
+
# The GSL library provides a number of random number generator types,
|
73
73
|
# and one can choose with a constant <tt>GSL::RNG_xxx</tt> or a String, as
|
74
74
|
#
|
75
75
|
# * <tt>GSL::Rng::MT19937</tt> or <tt>"gsl_rng_mt19937"</tt> or <tt>"mt19937"</tt>
|
76
|
-
# * <tt>GSL::Rng::RANLXS0</tt> or <tt>"gsl_rng_ranlsx0"</tt> or <tt>"ranlxs0"</tt>
|
77
|
-
# * <tt>GSL::Rng::ZUF</tt> or <tt>"gsl_rng_zuf"</tt> or <tt>"zuf"</tt>
|
76
|
+
# * <tt>GSL::Rng::RANLXS0</tt> or <tt>"gsl_rng_ranlsx0"</tt> or <tt>"ranlxs0"</tt>
|
77
|
+
# * <tt>GSL::Rng::ZUF</tt> or <tt>"gsl_rng_zuf"</tt> or <tt>"zuf"</tt>
|
78
78
|
# * ...
|
79
79
|
#
|
80
|
-
# See the {GSL reference manual}[
|
80
|
+
# See the {GSL reference manual}[https://gnu.org/software/gsl/manual/html_node/Random-number-generator-algorithms.html#Random-number-generator-algorithms] for the complete list.
|
81
81
|
# The following demonstrates how to use this class,
|
82
82
|
#
|
83
83
|
# require 'gsl'
|
@@ -90,12 +90,12 @@
|
|
90
90
|
#
|
91
91
|
# A generator of the type <tt>gsl_rng_taus</tt> is created with seed 1,
|
92
92
|
# and <tt>gsl_rng_ran0</tt> with seed 2. The
|
93
|
-
# method <tt>get</tt> returns a random integer.
|
93
|
+
# method <tt>get</tt> returns a random integer.
|
94
94
|
# The method <tt>uniform</tt> returns
|
95
95
|
# a floating number uniformly distributed in the range [0, 1).
|
96
96
|
#
|
97
|
-
# If the package {rngextra}[http://www.network-theory.co.uk/download/rngextra/
|
98
|
-
# two generators are available,
|
97
|
+
# If the package {rngextra}[http://www.network-theory.co.uk/download/rngextra/] is installed, additional
|
98
|
+
# two generators are available,
|
99
99
|
# * <tt>GSL::Rng::RNGEXTRA_RNG1</tt>, <tt>"rngextra_rng1"</tt>
|
100
100
|
# * <tt>GSL::Rng::RNGEXTRA_RNG2</tt>, <tt>"rngextra_rng2"</tt>
|
101
101
|
#
|
@@ -120,13 +120,13 @@
|
|
120
120
|
# ---
|
121
121
|
# * GSL::Rng.types_setup()
|
122
122
|
#
|
123
|
-
# Returns an array of all the available generators' names.
|
123
|
+
# Returns an array of all the available generators' names.
|
124
124
|
#
|
125
125
|
# ---
|
126
126
|
# * GSK::Rng.memcpy(dest, src)
|
127
127
|
#
|
128
|
-
# Copies the random number generator <tt>src</tt>) into the pre-existing generator
|
129
|
-
# <tt>dest</tt>, making dest into an exact copy of <tt>src</tt>.
|
128
|
+
# Copies the random number generator <tt>src</tt>) into the pre-existing generator
|
129
|
+
# <tt>dest</tt>, making dest into an exact copy of <tt>src</tt>.
|
130
130
|
# The two generators must be of the same type.
|
131
131
|
#
|
132
132
|
# ---
|
@@ -134,7 +134,7 @@
|
|
134
134
|
#
|
135
135
|
# This method initializes the random number generator with a given seed <tt>s</tt>.
|
136
136
|
#
|
137
|
-
# ==
|
137
|
+
# == Sampling from a random number generator
|
138
138
|
#
|
139
139
|
# ---
|
140
140
|
# * GSL::Rng#get
|
@@ -144,21 +144,21 @@
|
|
144
144
|
# ---
|
145
145
|
# * GSL::Rng#uniform
|
146
146
|
#
|
147
|
-
# This method returns a double precision floating point number uniformly
|
148
|
-
# distributed in the range [0,1).
|
147
|
+
# This method returns a double precision floating point number uniformly
|
148
|
+
# distributed in the range [0,1).
|
149
149
|
#
|
150
150
|
# ---
|
151
151
|
# * GSL::Rng#uniform_pos
|
152
152
|
#
|
153
|
-
# This returns a positive double precision floating point number uniformly
|
153
|
+
# This returns a positive double precision floating point number uniformly
|
154
154
|
# distributed in the range (0,1), excluding both 0.0 and 1.0.
|
155
155
|
#
|
156
156
|
# ---
|
157
157
|
# * GSL::Rng#uniform_int(n)
|
158
158
|
#
|
159
|
-
# This method returns a random integer from 0 to n-1 inclusive.
|
159
|
+
# This method returns a random integer from 0 to n-1 inclusive.
|
160
160
|
#
|
161
|
-
# ==
|
161
|
+
# == Auxiliary random number generator functions
|
162
162
|
#
|
163
163
|
# ---
|
164
164
|
# * GSL::Rng#name
|
@@ -169,8 +169,8 @@
|
|
169
169
|
# * GSL::Rng#max
|
170
170
|
# * GSL::Rng#min
|
171
171
|
#
|
172
|
-
# These method return the largest/smallest value that the method
|
173
|
-
# <tt>get</tt> can return.
|
172
|
+
# These method return the largest/smallest value that the method
|
173
|
+
# <tt>get</tt> can return.
|
174
174
|
#
|
175
175
|
# ---
|
176
176
|
# * GSL::Rng#clone
|
@@ -178,26 +178,26 @@
|
|
178
178
|
#
|
179
179
|
# Return a newly created generator which is an exact copy of the generator <tt>self</tt>.
|
180
180
|
#
|
181
|
-
# ==
|
182
|
-
# The library allows you to choose a default generator and seed from the
|
183
|
-
# environment variables <tt>GSL_RNG_TYPE</tt> and <tt>GSL_RNG_SEED</tt>
|
184
|
-
# and the method <tt>GSL::Rng::env_setup</tt>.
|
181
|
+
# == Random number environment variables
|
182
|
+
# The library allows you to choose a default generator and seed from the
|
183
|
+
# environment variables <tt>GSL_RNG_TYPE</tt> and <tt>GSL_RNG_SEED</tt>
|
184
|
+
# and the method <tt>GSL::Rng::env_setup</tt>.
|
185
185
|
#
|
186
186
|
# ---
|
187
187
|
# * GSL::Rng.env_setup()
|
188
188
|
#
|
189
|
-
# Reads the environment variables <tt>GSL_RNG_TYPE</tt> and
|
190
|
-
# <tt>GSL_RNG_SEED</tt> and uses their values to set the corresponding
|
189
|
+
# Reads the environment variables <tt>GSL_RNG_TYPE</tt> and
|
190
|
+
# <tt>GSL_RNG_SEED</tt> and uses their values to set the corresponding
|
191
191
|
# library variables.
|
192
192
|
#
|
193
|
-
# If you don't specify a generator for <tt>GSL_RNG_TYPE</tt>
|
194
|
-
# then "mt19937" is used as the default.
|
195
|
-
# The initial value of the default seed is zero.
|
193
|
+
# If you don't specify a generator for <tt>GSL_RNG_TYPE</tt>
|
194
|
+
# then "mt19937" is used as the default.
|
195
|
+
# The initial value of the default seed is zero.
|
196
196
|
#
|
197
197
|
#
|
198
|
-
# {prev}[link:
|
199
|
-
# {next}[link:
|
198
|
+
# {prev}[link:integration_rdoc.html]
|
199
|
+
# {next}[link:qrng_rdoc.html]
|
200
200
|
#
|
201
|
-
# {Reference index}[link:
|
201
|
+
# {Reference index}[link:ref_rdoc.html]
|
202
202
|
# {top}[link:index.html]
|
203
203
|
#
|
data/rdoc/roots.rdoc
CHANGED
@@ -1,27 +1,27 @@
|
|
1
1
|
#
|
2
2
|
# = One dimensional root-finding and the solver classes
|
3
|
-
# One-dimensional root finding algorithms can be divided into two classes,
|
4
|
-
# <tt>root bracketing</tt> and <tt>root polishing</tt>. The state for bracketing solvers
|
5
|
-
# is held in a <tt>GSL::Root::FSolver</tt> object. The updating procedure uses only
|
6
|
-
# function evaluations (not derivatives). The state for root polishing solvers is
|
7
|
-
# held in a <tt>GSL::Root::FdfSolver</tt> object. The updates require both the function
|
3
|
+
# One-dimensional root finding algorithms can be divided into two classes,
|
4
|
+
# <tt>root bracketing</tt> and <tt>root polishing</tt>. The state for bracketing solvers
|
5
|
+
# is held in a <tt>GSL::Root::FSolver</tt> object. The updating procedure uses only
|
6
|
+
# function evaluations (not derivatives). The state for root polishing solvers is
|
7
|
+
# held in a <tt>GSL::Root::FdfSolver</tt> object. The updates require both the function
|
8
8
|
# and its derivative (hence the name fdf) to be supplied by the user.
|
9
9
|
#
|
10
10
|
# Contents:
|
11
|
-
# 1. {Solver classes}[link:
|
12
|
-
# 1. {Methods}[link:
|
13
|
-
# 1. {Methods to solve equations}[link:
|
14
|
-
# 1. {GSL::Function_fdf class: Providing the function to solve}[link:
|
15
|
-
# 1. {Search Stopping Parameters}[link:
|
16
|
-
# 1. {Higher-level interface}[link:
|
17
|
-
# 1. {Example}[link:
|
11
|
+
# 1. {Solver classes}[link:roots_rdoc.html#label-Solver+classes]
|
12
|
+
# 1. {Methods}[link:roots_rdoc.html#label-Methods]
|
13
|
+
# 1. {Methods to solve equations}[link:roots_rdoc.html#label-Methods+to+solve+equations]
|
14
|
+
# 1. {GSL::Function_fdf class: Providing the function to solve}[link:roots_rdoc.html#label-Function_fdf+class]
|
15
|
+
# 1. {Search Stopping Parameters}[link:roots_rdoc.html#label-Search+Stopping+Parameters]
|
16
|
+
# 1. {Higher-level interface}[link:roots_rdoc.html#label-High-level+interface]
|
17
|
+
# 1. {Example}[link:roots_rdoc.html#label-Example]
|
18
18
|
#
|
19
|
-
# ==
|
19
|
+
# == Solver classes
|
20
20
|
#
|
21
21
|
# ---
|
22
22
|
# * GSL::Root::FSolver.alloc(T)
|
23
23
|
#
|
24
|
-
# This creates a equation solver with a root bracketing algorithm of type <tt>T</tt>.
|
24
|
+
# This creates a equation solver with a root bracketing algorithm of type <tt>T</tt>.
|
25
25
|
# The type <tt>T</tt> is given by a String or a constant,
|
26
26
|
# * <tt>"bisection"</tt> or <tt>GSL::Root::FSolver::BISECION</tt>
|
27
27
|
# * <tt>"falsepos"</tt> or <tt>GSL::Root::FSolver::FALSEPOS</tt>
|
@@ -37,37 +37,37 @@
|
|
37
37
|
# ---
|
38
38
|
# * GSL::Root::FdfSolver.alloc(T)
|
39
39
|
#
|
40
|
-
# This creates a derivative-based solver of type <tt>T</tt>.
|
40
|
+
# This creates a derivative-based solver of type <tt>T</tt>.
|
41
41
|
# The type <tt>T</tt> is given by a String or a constant,
|
42
42
|
# * <tt>"newton"</tt> or <tt>GSL::Root::FdfSolver::NEWTON</tt>
|
43
43
|
# * <tt>"secant"</tt> or <tt>GSL::Root::FdfSolver::SECANT</tt>
|
44
44
|
# * <tt>"steffenson"</tt> or <tt>GSL::Root::FdfSolver::STEFFENSON</tt>.
|
45
45
|
#
|
46
|
-
# ==
|
46
|
+
# == Methods
|
47
47
|
#
|
48
48
|
# ---
|
49
49
|
# * GSL::Root::FSolver#set(f, xl, xu)
|
50
50
|
#
|
51
|
-
# This initialize the solver <tt>self</tt> to use the function <tt>f</tt>,
|
52
|
-
# and the initial search
|
53
|
-
# interval <tt>xl, xu</tt>. The function to be solved <tt>f</tt> is given
|
54
|
-
# an instanse of the {GSL::Function}[link:
|
51
|
+
# This initialize the solver <tt>self</tt> to use the function <tt>f</tt>,
|
52
|
+
# and the initial search
|
53
|
+
# interval <tt>xl, xu</tt>. The function to be solved <tt>f</tt> is given
|
54
|
+
# an instanse of the {GSL::Function}[link:function_rdoc.html] class.
|
55
55
|
#
|
56
56
|
# ---
|
57
57
|
# * GSL::Root::FdfSolver#set(fdf, r)
|
58
58
|
#
|
59
|
-
# This initializes, or reinitializes, an existing solver <tt>self</tt>
|
59
|
+
# This initializes, or reinitializes, an existing solver <tt>self</tt>
|
60
60
|
# to use the function and derivative <tt>fdf</tt> and the initial guess <tt>r</tt>.
|
61
61
|
# Here <tt>fdf</tt> is a <tt>GSL::Function_fdf</tt> object (see below).
|
62
62
|
#
|
63
63
|
#
|
64
|
-
# ===
|
64
|
+
# === Methods to solve equations
|
65
65
|
#
|
66
66
|
# ---
|
67
67
|
# * GSL::Root::FSolver#iterate
|
68
68
|
# * GSL::Root::FdfSolver#iterate
|
69
69
|
#
|
70
|
-
# This performs a single iteration of the solver. If the iteration encounters an unexpected problem then an error code will be returned ( <tt>GSL::EBADFUNC</tt> or
|
70
|
+
# This performs a single iteration of the solver. If the iteration encounters an unexpected problem then an error code will be returned ( <tt>GSL::EBADFUNC</tt> or
|
71
71
|
# <tt>GSL::EZERODIV</tt> ).
|
72
72
|
#
|
73
73
|
# ---
|
@@ -89,9 +89,9 @@
|
|
89
89
|
#
|
90
90
|
# Return the current bracketing interval for the solver.
|
91
91
|
#
|
92
|
-
# ===
|
93
|
-
# The <tt>FSolver</tt> object require an instance of the
|
94
|
-
# {GSL::Function}[link:
|
92
|
+
# === Function_fdf class
|
93
|
+
# The <tt>FSolver</tt> object require an instance of the
|
94
|
+
# {GSL::Function}[link:function_rdoc.html] class, which is already introduced elsewhere.
|
95
95
|
# The <tt>FdfSolver</tt> which uses the root-polishing algorithm requires not only
|
96
96
|
# the function to solve, but also
|
97
97
|
# procedures to calculate the derivatives. This is
|
@@ -103,7 +103,7 @@
|
|
103
103
|
# * GSL::Function_fdf.alloc(f, df, fdf)
|
104
104
|
#
|
105
105
|
# Constructors. Here <tt>f, df</tt> are Ruby <tt>Proc</tt> objects which return a single value.
|
106
|
-
# The option <tt>fdf</tt> must return an array which contain the values of the function
|
106
|
+
# The option <tt>fdf</tt> must return an array which contain the values of the function
|
107
107
|
# and its derivative.
|
108
108
|
#
|
109
109
|
# ---
|
@@ -112,16 +112,16 @@
|
|
112
112
|
#
|
113
113
|
# This initializes or reinitializes the <tt>Function_fdf</tt> object <tt>self</tt> by
|
114
114
|
# two or three <tt>Proc</tt> objects <tt>f, df</tt> and <tt>fdf</tt>.
|
115
|
-
#
|
115
|
+
#
|
116
116
|
# * ex: A quadratic equation a*x*x + b*x + c = 0:
|
117
117
|
#
|
118
118
|
# # Returns a value of the function
|
119
|
-
# f = Proc.new { |x, params|
|
119
|
+
# f = Proc.new { |x, params|
|
120
120
|
# a = params[0]; b = params[1]; c = params[2]
|
121
121
|
# (a*x + b)*x + c
|
122
122
|
# }
|
123
123
|
# # Calculate the derivative
|
124
|
-
# df = Proc.new { |x, params|
|
124
|
+
# df = Proc.new { |x, params|
|
125
125
|
# a = params[0]; b = params[1]
|
126
126
|
# 2*a*x + b
|
127
127
|
# }
|
@@ -140,24 +140,24 @@
|
|
140
140
|
# This sets or resets the constant parameters in the function.
|
141
141
|
#
|
142
142
|
# * Ex: x*x - 5 == 0
|
143
|
-
#
|
143
|
+
#
|
144
144
|
# function_fdf.set_params([1, 0, -5])
|
145
145
|
#
|
146
|
-
# ===
|
146
|
+
# === Search Stopping Parameters
|
147
147
|
#
|
148
148
|
# ---
|
149
149
|
# * GSL::Root::test_interval(xl, xu, epsrel, epsabs)
|
150
150
|
#
|
151
|
-
# This function tests for the convergence of the interval
|
152
|
-
# <tt>[xl, xu]</tt> with absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>.
|
151
|
+
# This function tests for the convergence of the interval
|
152
|
+
# <tt>[xl, xu]</tt> with absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>.
|
153
153
|
# The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
|
154
|
-
# |a - b| < epsabs + epsrel min(|a|,|b|)
|
155
|
-
# when the interval x = [a,b] does not include the origin. If the interval includes
|
156
|
-
# the origin then min(|a|,|b|) is replaced by zero (which is the minimum value of
|
157
|
-
# |x| over the interval). This ensures that the relative error is accurately
|
154
|
+
# |a - b| < epsabs + epsrel min(|a|,|b|)
|
155
|
+
# when the interval x = [a,b] does not include the origin. If the interval includes
|
156
|
+
# the origin then min(|a|,|b|) is replaced by zero (which is the minimum value of
|
157
|
+
# |x| over the interval). This ensures that the relative error is accurately
|
158
158
|
# estimated for roots close to the origin.
|
159
159
|
#
|
160
|
-
# This condition on the interval also implies that any estimate of the root r in
|
160
|
+
# This condition on the interval also implies that any estimate of the root r in
|
161
161
|
# the interval satisfies the same condition with respect to the true root r0,
|
162
162
|
#
|
163
163
|
# |r - r0| < epsabs + epsrel r0
|
@@ -167,8 +167,8 @@
|
|
167
167
|
# ---
|
168
168
|
# * GSL::Root::test_delta(x1, x0, epsrel, epsabs)
|
169
169
|
#
|
170
|
-
# This function tests for the convergence of the sequence ..., <tt>x0, x1</tt> with
|
171
|
-
# absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>.
|
170
|
+
# This function tests for the convergence of the sequence ..., <tt>x0, x1</tt> with
|
171
|
+
# absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>.
|
172
172
|
# The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
|
173
173
|
# |x_1 - x_0| < epsabs + epsrel |x_1|
|
174
174
|
# and returns <tt>GSL::CONTINUE</tt> otherwise.
|
@@ -176,15 +176,15 @@
|
|
176
176
|
# ---
|
177
177
|
# * GSL::Root::test_residual(f, epsabs)
|
178
178
|
#
|
179
|
-
# This function tests the residual value <tt>f</tt> against the absolute error bound
|
180
|
-
# <tt>epsabs</tt>. The test returns <tt>GSL::SUCCESS</tt> if the following condition is
|
179
|
+
# This function tests the residual value <tt>f</tt> against the absolute error bound
|
180
|
+
# <tt>epsabs</tt>. The test returns <tt>GSL::SUCCESS</tt> if the following condition is
|
181
181
|
# achieved,
|
182
182
|
# |f| < epsabs
|
183
|
-
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
184
|
-
# situations where the precise location of the root, x, is unimportant provided a
|
183
|
+
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
184
|
+
# situations where the precise location of the root, x, is unimportant provided a
|
185
185
|
# value can be found where the residual, |f(x)|, is small enough.
|
186
186
|
#
|
187
|
-
# ==
|
187
|
+
# == High-level interface
|
188
188
|
# ---
|
189
189
|
# * GSL::Root:FSolver.solve(func, [xl, xu], [epsabs = 0, epsrel = 1e-6])
|
190
190
|
#
|
@@ -211,8 +211,8 @@
|
|
211
211
|
# f = Function.alloc { |x| x*x - 5 }
|
212
212
|
# f.fsolve([0, 5]) <----- 2.23606797749979
|
213
213
|
#
|
214
|
-
# ==
|
215
|
-
# This example is equivalent to the one found in the GSL manual,
|
214
|
+
# == Example
|
215
|
+
# This example is equivalent to the one found in the GSL manual,
|
216
216
|
# using the Brent's algorithm to solve the equation x^2 - 5 = 0.
|
217
217
|
#
|
218
218
|
# #!/usr/bin/env ruby
|
@@ -232,7 +232,7 @@
|
|
232
232
|
# func.set_params([1, 0, -5])
|
233
233
|
#
|
234
234
|
# printf("%5s [%9s, %9s] %9s %10s %9s\n",
|
235
|
-
# "iter", "lower", "upper", "root",
|
235
|
+
# "iter", "lower", "upper", "root",
|
236
236
|
# "err", "err(est)")
|
237
237
|
#
|
238
238
|
# solver.set(func, 0.0, 5.0) # initialize the solver
|
@@ -252,18 +252,18 @@
|
|
252
252
|
# i += 1
|
253
253
|
# end while status != GSL::SUCCESS
|
254
254
|
#
|
255
|
-
# The following is an another version, using the <tt>FdfSolver</tt> with the Newton-Raphson
|
255
|
+
# The following is an another version, using the <tt>FdfSolver</tt> with the Newton-Raphson
|
256
256
|
# algorithm.
|
257
257
|
#
|
258
258
|
# #!/usr/bin/env ruby
|
259
259
|
# require "gsl"
|
260
260
|
#
|
261
|
-
# f = Proc.new { |x, params|
|
261
|
+
# f = Proc.new { |x, params|
|
262
262
|
# a = params[0]; b = params[1]; c = params[2]
|
263
263
|
# (a*x + b)*x + c
|
264
264
|
# }
|
265
265
|
#
|
266
|
-
# df = Proc.new { |x, params|
|
266
|
+
# df = Proc.new { |x, params|
|
267
267
|
# a = params[0]; b = params[1]
|
268
268
|
# 2.0*a*x + b
|
269
269
|
# }
|
@@ -288,7 +288,7 @@
|
|
288
288
|
# x = solver.root
|
289
289
|
#
|
290
290
|
# status = Root::test_delta(x, x0, 0, 1e-3)
|
291
|
-
#
|
291
|
+
#
|
292
292
|
# if status == GSL::SUCCESS
|
293
293
|
# printf("Converged:\n")
|
294
294
|
# end
|
@@ -296,10 +296,10 @@
|
|
296
296
|
# printf("%5d %10.7f %+10.7f %10.7f\n", iter, x, x - expected, x - x0)
|
297
297
|
# end while status != GSL::SUCCESS
|
298
298
|
#
|
299
|
-
# {prev}[link:
|
300
|
-
# {next}[link:
|
299
|
+
# {prev}[link:dht_rdoc.html]
|
300
|
+
# {next}[link:min_rdoc.html]
|
301
301
|
#
|
302
|
-
# {Reference index}[link:
|
302
|
+
# {Reference index}[link:ref_rdoc.html]
|
303
303
|
# {top}[link:index.html]
|
304
304
|
#
|
305
305
|
#
|