rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/sf.rdoc
CHANGED
@@ -1,51 +1,51 @@
|
|
1
1
|
#
|
2
2
|
# = Special Functions
|
3
3
|
#
|
4
|
-
# ===
|
5
|
-
# 1. {Usage:}[link:
|
6
|
-
# 1. {GSL::Sf::Result class}[link:
|
7
|
-
# 1. {Modes}[link:
|
8
|
-
# 1. {Airy functions}[link:
|
9
|
-
# 1. {Bessel functins}[link:
|
10
|
-
# 1. {Clausen functins}[link:
|
11
|
-
# 1. {Coulomb functins}[link:
|
12
|
-
# 1. {Coupling coefficients}[link:
|
13
|
-
# 1. {Dawson coefficients}[link:
|
14
|
-
# 1. {Debye coefficients}[link:
|
15
|
-
# 1. {Dilogarithm}[link:
|
16
|
-
# 1. {Elementary operations}[link:
|
17
|
-
# 1. {Elliptic integrals}[link:
|
18
|
-
# 1. {Elliptic functions}[link:
|
19
|
-
# 1. {Error functions}[link:
|
20
|
-
# 1. {Exponential functions}[link:
|
21
|
-
# 1. {Exponential integrals}[link:
|
22
|
-
# 1. {Fermi-Dirac function}[link:
|
23
|
-
# 1. {Gamma function}[link:
|
24
|
-
# 1. {Gegenbauer functions}[link:
|
25
|
-
# 1. {Hypergeometric functions}[link:
|
26
|
-
# 1. {Laguerre functions}[link:
|
27
|
-
# 1. {Lambert W functions}[link:
|
28
|
-
# 1. {Legendre functions and spherical harmonics}[link:
|
29
|
-
# 1. {Logarithm and related functions}[link:
|
30
|
-
# 1. {Mathieu functions}[link:
|
31
|
-
# 1. {Power function}[link:
|
32
|
-
# 1. {Psi (digamma) function}[link:
|
33
|
-
# 1. {Synchrotron functions}[link:
|
34
|
-
# 1. {Transport functions}[link:
|
35
|
-
# 1. {Trigonometric functions}[link:
|
36
|
-
# 1. {Zeta functions}[link:
|
37
|
-
#
|
38
|
-
# ==
|
4
|
+
# === Contents:
|
5
|
+
# 1. {Usage:}[link:sf_rdoc.html#label-Usage]
|
6
|
+
# 1. {GSL::Sf::Result class}[link:sf_rdoc.html#label-Result+class]
|
7
|
+
# 1. {Modes}[link:sf_rdoc.html#label-Modes]
|
8
|
+
# 1. {Airy functions}[link:sf_rdoc.html#label-Airy+Functions+and+Derivatives]
|
9
|
+
# 1. {Bessel functins}[link:sf_rdoc.html#label-Bessel+Functions]
|
10
|
+
# 1. {Clausen functins}[link:sf_rdoc.html#label-Clausen+Functions]
|
11
|
+
# 1. {Coulomb functins}[link:sf_rdoc.html#label-Coulomb+Functions]
|
12
|
+
# 1. {Coupling coefficients}[link:sf_rdoc.html#label-Coupling+Coefficients]
|
13
|
+
# 1. {Dawson coefficients}[link:sf_rdoc.html#label-Dawson+Function]
|
14
|
+
# 1. {Debye coefficients}[link:sf_rdoc.html#label-Debye+Functions]
|
15
|
+
# 1. {Dilogarithm}[link:sf_rdoc.html#label-Dilogarithm]
|
16
|
+
# 1. {Elementary operations}[link:sf_rdoc.html#label-Elementary+Operations]
|
17
|
+
# 1. {Elliptic integrals}[link:sf_rdoc.html#label-Elliptic+Integrals]
|
18
|
+
# 1. {Elliptic functions}[link:sf_rdoc.html#label-Elliptic+Functions+%28Jacobi%29]
|
19
|
+
# 1. {Error functions}[link:sf_rdoc.html#label-Error+Functions]
|
20
|
+
# 1. {Exponential functions}[link:sf_rdoc.html#label-Exponential+Functions]
|
21
|
+
# 1. {Exponential integrals}[link:sf_rdoc.html#label-Exponential+Integrals]
|
22
|
+
# 1. {Fermi-Dirac function}[link:sf_rdoc.html#label-Fermi-Dirac+Functions]
|
23
|
+
# 1. {Gamma function}[link:sf_rdoc.html#label-Gamma+Function]
|
24
|
+
# 1. {Gegenbauer functions}[link:sf_rdoc.html#label-Gegenbauer+Functions]
|
25
|
+
# 1. {Hypergeometric functions}[link:sf_rdoc.html#label-Hypergeometric+Functions]
|
26
|
+
# 1. {Laguerre functions}[link:sf_rdoc.html#label-Laguerre+Functions]
|
27
|
+
# 1. {Lambert W functions}[link:sf_rdoc.html#label-Lambert+W+Functions]
|
28
|
+
# 1. {Legendre functions and spherical harmonics}[link:sf_rdoc.html#label-Legendre+Functions+and+Spherical+Harmonics]
|
29
|
+
# 1. {Logarithm and related functions}[link:sf_rdoc.html#label-Logarithm+and+Related+Functions]
|
30
|
+
# 1. {Mathieu functions}[link:sf_rdoc.html#label-Mathieu+functions]
|
31
|
+
# 1. {Power function}[link:sf_rdoc.html#label-Power+Functions]
|
32
|
+
# 1. {Psi (digamma) function}[link:sf_rdoc.html#label-Psi+%28Digamma%29+Function]
|
33
|
+
# 1. {Synchrotron functions}[link:sf_rdoc.html#label-Synchrotron+Functions]
|
34
|
+
# 1. {Transport functions}[link:sf_rdoc.html#label-Transport+Functions]
|
35
|
+
# 1. {Trigonometric functions}[link:sf_rdoc.html#label-Trigonometric+Functions]
|
36
|
+
# 1. {Zeta functions}[link:sf_rdoc.html#label-Zeta+Functions]
|
37
|
+
#
|
38
|
+
# == Usage
|
39
39
|
# Ruby/GSL provides all the (documented) GSL special functions as module functions
|
40
|
-
# under the <tt>GSL::Sf</tt> module.
|
40
|
+
# under the <tt>GSL::Sf</tt> module.
|
41
41
|
# The prefix <tt>gsl_sf_</tt> in C functions is replaced by the module
|
42
42
|
# identifier <tt>GSL::Sf::</tt>. For example, the regular Bessel function of 0-th order
|
43
|
-
# is evaluated as
|
43
|
+
# is evaluated as
|
44
44
|
# y = GSL::Sf::bessel_J0(x)
|
45
45
|
# or
|
46
46
|
# include GSL::Sf
|
47
47
|
# y = bessel_J0(x)
|
48
|
-
# where the argument <tt>x</tt> can be a <tt>Numeric</tt>, <tt>GSL::Vector</tt>,
|
48
|
+
# where the argument <tt>x</tt> can be a <tt>Numeric</tt>, <tt>GSL::Vector</tt>,
|
49
49
|
# <tt>GSL::Matrix</tt>, or an <tt>NArray</tt> object.
|
50
50
|
#
|
51
51
|
# Example:
|
@@ -63,26 +63,26 @@
|
|
63
63
|
# [ 7.652e-01 2.239e-01 -2.601e-01 -3.971e-01 ]
|
64
64
|
# >> x = Matrix[1..4, 2, 2]
|
65
65
|
# => GSL::Matrix
|
66
|
-
# [ 1.000e+00 2.000e+00
|
66
|
+
# [ 1.000e+00 2.000e+00
|
67
67
|
# 3.000e+00 4.000e+00 ]
|
68
68
|
# >> Sf::bessel_J0(x)
|
69
69
|
# => GSL::Matrix
|
70
|
-
# [ 7.652e-01 2.239e-01
|
70
|
+
# [ 7.652e-01 2.239e-01
|
71
71
|
# -2.601e-01 -3.971e-01 ]
|
72
72
|
# >> x = NArray[1.0, 2, 3, 4]
|
73
|
-
# => NArray.float(4):
|
73
|
+
# => NArray.float(4):
|
74
74
|
# [ 1.0, 2.0, 3.0, 4.0 ]
|
75
75
|
# >> Sf::bessel_J0(x)
|
76
|
-
# => NArray.float(4):
|
76
|
+
# => NArray.float(4):
|
77
77
|
# [ 0.765198, 0.223891, -0.260052, -0.39715 ]
|
78
78
|
#
|
79
|
-
# ==
|
79
|
+
# == <tt>Result</tt> class
|
80
80
|
# The Ruby methods as wrappers of GSL functions with the suffix "<tt>_e</tt>" return
|
81
81
|
# <tt>GSL::Sf::Result</tt> objects which contain the function values as well as
|
82
82
|
# error information.
|
83
83
|
#
|
84
|
-
# === <tt>
|
85
|
-
#
|
84
|
+
# === <tt>Result</tt> instance methods
|
85
|
+
#
|
86
86
|
# ---
|
87
87
|
# * GSL::Sf::Result#val
|
88
88
|
# Returns the value.
|
@@ -96,12 +96,12 @@
|
|
96
96
|
# * GSL::Sf::Result_e10#err
|
97
97
|
# Returns the error.
|
98
98
|
#
|
99
|
-
# ==
|
100
|
-
# The goal of the library is to achieve double precision accuracy wherever possible.
|
101
|
-
# However the cost of evaluating some special functions to double precision can
|
102
|
-
# be significant, particularly where very high order terms are required.
|
103
|
-
# In these cases a <tt>mode</tt> argument allows the accuracy of the function
|
104
|
-
# to be reduced in order to improve performance.
|
99
|
+
# == Modes
|
100
|
+
# The goal of the library is to achieve double precision accuracy wherever possible.
|
101
|
+
# However the cost of evaluating some special functions to double precision can
|
102
|
+
# be significant, particularly where very high order terms are required.
|
103
|
+
# In these cases a <tt>mode</tt> argument allows the accuracy of the function
|
104
|
+
# to be reduced in order to improve performance.
|
105
105
|
# The following precision levels are available for the mode argument,
|
106
106
|
# given by Fixnum constants under the <tt>GSL</tt> module,
|
107
107
|
# * <tt>GSL::PREC_DOUBLE</tt>
|
@@ -113,7 +113,7 @@
|
|
113
113
|
#
|
114
114
|
# The approximate mode provides the fastest evaluation at the lowest accuracy.
|
115
115
|
#
|
116
|
-
# ==
|
116
|
+
# == Airy Functions and Derivatives
|
117
117
|
# ---
|
118
118
|
# * GSL::Sf::airy_Ai(x, mode = GSL::PREC_DOUBLE)
|
119
119
|
#
|
@@ -125,24 +125,24 @@
|
|
125
125
|
# ---
|
126
126
|
# * GSL::Sf::airy_Ai_scaled(x, mode = GSL::PREC_DOUBLE)
|
127
127
|
#
|
128
|
-
# Computes a scaled version of the Airy function S_A(x) Ai(x).
|
128
|
+
# Computes a scaled version of the Airy function S_A(x) Ai(x).
|
129
129
|
# For x>0 the scaling factor S_A(x) is exp(+(2/3) x^(3/2)), and is 1 for x<0.
|
130
130
|
# ---
|
131
131
|
# * GSL::Sf::airy_Bi_scaled(x, mode = GSL::PREC_DOUBLE)
|
132
132
|
#
|
133
|
-
# Computes a scaled version of the Airy function S_B(x) Bi(x).
|
133
|
+
# Computes a scaled version of the Airy function S_B(x) Bi(x).
|
134
134
|
# For x>0 the scaling factor S_B(x) is exp(-(2/3) x^(3/2)), and is 1 for x<0.
|
135
135
|
#
|
136
|
-
# ===
|
136
|
+
# === Derivatives of Airy Functions
|
137
137
|
# ---
|
138
138
|
# * GSL::Sf::airy_Ai_deriv(x, mode = GSL::PREC_DOUBLE)
|
139
139
|
#
|
140
|
-
# Computes the Airy function derivative Ai'(x) with an accuracy
|
140
|
+
# Computes the Airy function derivative Ai'(x) with an accuracy
|
141
141
|
# specified by <tt>mode</tt>.
|
142
142
|
# ---
|
143
143
|
# * GSL::Sf::airy_Bi_deriv(x, mode = GSL::PREC_DOUBLE)
|
144
144
|
#
|
145
|
-
# Computes the Airy function derivative Bi'(x) with an accuracy
|
145
|
+
# Computes the Airy function derivative Bi'(x) with an accuracy
|
146
146
|
# specified by <tt>mode</tt>.
|
147
147
|
# ---
|
148
148
|
# * GSL::Sf::airy_Ai_deriv_scaled(x, mode = GSL::PREC_DOUBLE)
|
@@ -153,7 +153,7 @@
|
|
153
153
|
#
|
154
154
|
# Computes the derivative of the scaled Airy function S_B(x) Bi(x).
|
155
155
|
#
|
156
|
-
# ===
|
156
|
+
# === Zeros of Airy Functions
|
157
157
|
# ---
|
158
158
|
# * GSL::Sf::airy_zero_Ai(s)
|
159
159
|
#
|
@@ -163,21 +163,21 @@
|
|
163
163
|
#
|
164
164
|
# Computes the location of the <tt>s</tt>-th zero of the Airy function Bi(x).
|
165
165
|
#
|
166
|
-
# ===
|
166
|
+
# === Zeros of Derivatives of Airy Functions
|
167
167
|
# ---
|
168
168
|
# * GSL::Sf::airy_zero_Ai_deriv(s)
|
169
169
|
#
|
170
|
-
# Computes the location of the <tt>s</tt>-th zero of the Airy function
|
170
|
+
# Computes the location of the <tt>s</tt>-th zero of the Airy function
|
171
171
|
# derivative Ai'(x).
|
172
172
|
# ---
|
173
173
|
# * GSL::Sf::airy_zero_Bi_deriv(s)
|
174
174
|
#
|
175
|
-
# Computes the location of the <tt>s</tt>-th zero of the Airy function
|
175
|
+
# Computes the location of the <tt>s</tt>-th zero of the Airy function
|
176
176
|
# derivative Bi'(x).
|
177
177
|
#
|
178
178
|
#
|
179
|
-
# ==
|
180
|
-
# ===
|
179
|
+
# == Bessel Functions
|
180
|
+
# === Regular Cylindrical Bessel Functions
|
181
181
|
# ---
|
182
182
|
# * GSL::Sf::bessel_J0(x)
|
183
183
|
#
|
@@ -193,12 +193,12 @@
|
|
193
193
|
# ---
|
194
194
|
# * GSL::Sf::bessel_Jn_array(nmin, nmax, x)
|
195
195
|
#
|
196
|
-
# Computes the values of the regular cylindrical Bessel functions J_n(x)
|
197
|
-
# for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
196
|
+
# Computes the values of the regular cylindrical Bessel functions J_n(x)
|
197
|
+
# for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
198
198
|
# results as a <tt>GSL::Vector</tt> object.
|
199
|
-
# The values are computed using recurrence relations, for efficiency,
|
199
|
+
# The values are computed using recurrence relations, for efficiency,
|
200
200
|
# and therefore may differ slightly from the exact values.
|
201
|
-
# ===
|
201
|
+
# === Irregular Cylindrical Bessel Functions
|
202
202
|
# ---
|
203
203
|
# * GSL::Sf::bessel_Y0(x)
|
204
204
|
#
|
@@ -214,114 +214,114 @@
|
|
214
214
|
# ---
|
215
215
|
# * GSL::Sf::bessel_Yn_array(nmin, nmax, x)
|
216
216
|
#
|
217
|
-
# Computes the values of the irregular cylindrical Bessel functions Y_n(x)
|
218
|
-
# for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
217
|
+
# Computes the values of the irregular cylindrical Bessel functions Y_n(x)
|
218
|
+
# for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
219
219
|
# results as a <tt>GSL::Vector</tt> object.
|
220
|
-
# The values are computed using recurrence relations, for efficiency,
|
220
|
+
# The values are computed using recurrence relations, for efficiency,
|
221
221
|
# and therefore may differ slightly from the exact values.
|
222
222
|
#
|
223
|
-
# ===
|
223
|
+
# === Regular Modified Cylindrical Bessel Functions
|
224
224
|
# ---
|
225
225
|
# * GSL::Sf::bessel_I0(x)
|
226
226
|
#
|
227
|
-
# Computes the regular modified cylindrical Bessel function of zeroth order,
|
227
|
+
# Computes the regular modified cylindrical Bessel function of zeroth order,
|
228
228
|
# I_0(x).
|
229
229
|
# ---
|
230
230
|
# * GSL::Sf::bessel_I1(x)
|
231
231
|
#
|
232
|
-
# Computes the regular modified cylindrical Bessel function of first order,
|
232
|
+
# Computes the regular modified cylindrical Bessel function of first order,
|
233
233
|
# I_1(x).
|
234
234
|
# ---
|
235
235
|
# * GSL::Sf::bessel_In(n, x)
|
236
236
|
#
|
237
|
-
# Computes the regular modified cylindrical Bessel function of order <tt>n</tt>,
|
237
|
+
# Computes the regular modified cylindrical Bessel function of order <tt>n</tt>,
|
238
238
|
# I_n(x).
|
239
239
|
# ---
|
240
240
|
# * GSL::Sf::bessel_In_array(nmin, nmax, x)
|
241
241
|
#
|
242
|
-
# Computes the values of the regular modified cylindrical Bessel functions
|
243
|
-
# I_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
244
|
-
# results as a <tt>GSL::Vector</tt> object. The start of the range <tt>nmin</tt>
|
245
|
-
# must be positive or zero. The values are computed using recurrence relations,
|
242
|
+
# Computes the values of the regular modified cylindrical Bessel functions
|
243
|
+
# I_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and returns the
|
244
|
+
# results as a <tt>GSL::Vector</tt> object. The start of the range <tt>nmin</tt>
|
245
|
+
# must be positive or zero. The values are computed using recurrence relations,
|
246
246
|
# for efficiency, and therefore may differ slightly from the exact values.
|
247
247
|
# ---
|
248
248
|
# * GSL::Sf::bessel_I0_scaled(x)
|
249
249
|
#
|
250
|
-
# Computes the scaled regular modified cylindrical Bessel function of
|
250
|
+
# Computes the scaled regular modified cylindrical Bessel function of
|
251
251
|
# zeroth order, exp(-|x|) I_0(x).
|
252
252
|
# ---
|
253
253
|
# * GSL::Sf::bessel_I1_scaled(x)
|
254
254
|
#
|
255
|
-
# Computes the scaled regular modified cylindrical Bessel function of first
|
255
|
+
# Computes the scaled regular modified cylindrical Bessel function of first
|
256
256
|
# order, exp(-|x|)I_1(x).
|
257
257
|
# ---
|
258
258
|
# * GSL::Sf::bessel_In_scaled(n, x)
|
259
259
|
#
|
260
|
-
# Computes the scaled regular modified cylindrical Bessel function of order
|
260
|
+
# Computes the scaled regular modified cylindrical Bessel function of order
|
261
261
|
# <tt>n</tt>, exp(-|x|) I_n(x).
|
262
262
|
# ---
|
263
263
|
# * GSL::Sf::bessel_In_scaled_array(nmin, nmax, x)
|
264
264
|
#
|
265
|
-
# Computes the values of the scaled regular modified cylindrical Bessel
|
266
|
-
# functions exp(-|x|) I_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
267
|
-
# and returns the results as a <tt>GSL::Vector</tt> object. The start of the range
|
268
|
-
# <tt>nmin</tt> must be positive or zero. The values are computed using
|
269
|
-
# recurrence relations, for efficiency, and therefore may differ slightly
|
265
|
+
# Computes the values of the scaled regular modified cylindrical Bessel
|
266
|
+
# functions exp(-|x|) I_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
267
|
+
# and returns the results as a <tt>GSL::Vector</tt> object. The start of the range
|
268
|
+
# <tt>nmin</tt> must be positive or zero. The values are computed using
|
269
|
+
# recurrence relations, for efficiency, and therefore may differ slightly
|
270
270
|
# from the exact values.
|
271
271
|
#
|
272
|
-
# ===
|
272
|
+
# === Irregular Modified Cylindrical Bessel Functions
|
273
273
|
# ---
|
274
274
|
# * GSL::Sf::bessel_K0(x)
|
275
275
|
#
|
276
|
-
# Computes the irregular modified cylindrical Bessel function
|
276
|
+
# Computes the irregular modified cylindrical Bessel function
|
277
277
|
# of zeroth order, K_0(x), for x > 0.
|
278
278
|
# ---
|
279
279
|
# * GSL::Sf::bessel_K1(x)
|
280
280
|
#
|
281
|
-
# Computes the irregular modified cylindrical Bessel function
|
281
|
+
# Computes the irregular modified cylindrical Bessel function
|
282
282
|
# of first order, K_1(x), for x > 0.
|
283
283
|
# ---
|
284
284
|
# * GSL::Sf::bessel_Kn(n, x)
|
285
285
|
#
|
286
|
-
# Computes the irregular modified cylindrical Bessel function
|
286
|
+
# Computes the irregular modified cylindrical Bessel function
|
287
287
|
# of order <tt>n</tt>, K_n(x), for x > 0.
|
288
288
|
# ---
|
289
289
|
# * GSL::Sf::bessel_Kn_array(nmin, nmax, x)
|
290
290
|
#
|
291
|
-
# Computes the values of the irregular modified cylindrical Bessel
|
292
|
-
# functions K_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
293
|
-
# and returns the results as a <tt>GSL::Vector</tt> object.
|
294
|
-
# The start of the range <tt>nmin</tt> must be positive or zero.
|
295
|
-
# The domain of the function is <tt>x>0</tt>.
|
296
|
-
# The values are computed using recurrence relations, for efficiency,
|
291
|
+
# Computes the values of the irregular modified cylindrical Bessel
|
292
|
+
# functions K_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
293
|
+
# and returns the results as a <tt>GSL::Vector</tt> object.
|
294
|
+
# The start of the range <tt>nmin</tt> must be positive or zero.
|
295
|
+
# The domain of the function is <tt>x>0</tt>.
|
296
|
+
# The values are computed using recurrence relations, for efficiency,
|
297
297
|
# and therefore may differ slightly from the exact values.
|
298
298
|
# ---
|
299
299
|
# * GSL::Sf::bessel_K0_scaled(x)
|
300
300
|
#
|
301
|
-
# Computes the scaled irregular modified cylindrical Bessel function
|
301
|
+
# Computes the scaled irregular modified cylindrical Bessel function
|
302
302
|
# of zeroth order exp(x) K_0(x) for x>0.
|
303
303
|
# ---
|
304
304
|
# * GSL::Sf::bessel_K1_scaled(x)
|
305
305
|
#
|
306
|
-
# Computes the scaled irregular modified cylindrical Bessel function
|
306
|
+
# Computes the scaled irregular modified cylindrical Bessel function
|
307
307
|
# of first order exp(x) K_1(x) for x>0
|
308
308
|
# ---
|
309
309
|
# * GSL::Sf::bessel_Kn_scaled(n, x)
|
310
310
|
#
|
311
|
-
# Computes the scaled irregular modified cylindrical Bessel function
|
311
|
+
# Computes the scaled irregular modified cylindrical Bessel function
|
312
312
|
# of order <tt>n</tt>, exp(x) K_n(x), for x>0.
|
313
313
|
# ---
|
314
314
|
# * GSL::Sf::bessel_Kn_scaled_array(nmin, nmax, x)
|
315
315
|
#
|
316
|
-
# Computes the values of the scaled irregular cylindrical Bessel functions
|
317
|
-
# exp(x) K_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
318
|
-
# and returns the results as a <tt>GSL::Vector</tt> object.
|
319
|
-
# The start of the range nmin must be positive or zero.
|
320
|
-
# The domain of the function is x>0. The values are computed
|
321
|
-
# using recurrence relations, for efficiency,
|
316
|
+
# Computes the values of the scaled irregular cylindrical Bessel functions
|
317
|
+
# exp(x) K_n(x) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive,
|
318
|
+
# and returns the results as a <tt>GSL::Vector</tt> object.
|
319
|
+
# The start of the range nmin must be positive or zero.
|
320
|
+
# The domain of the function is x>0. The values are computed
|
321
|
+
# using recurrence relations, for efficiency,
|
322
322
|
# and therefore may differ slightly from the exact values.
|
323
323
|
#
|
324
|
-
# ===
|
324
|
+
# === Regular Spherical Bessel Functions
|
325
325
|
# ---
|
326
326
|
# * GSL::Sf::bessel_j0(x)
|
327
327
|
#
|
@@ -330,71 +330,71 @@
|
|
330
330
|
# ---
|
331
331
|
# * GSL::Sf::bessel_j1(x)
|
332
332
|
#
|
333
|
-
# Computes the regular spherical Bessel function of first order,
|
333
|
+
# Computes the regular spherical Bessel function of first order,
|
334
334
|
# j1(x) = (sin(x)/x - cos(x))/x.
|
335
335
|
# ---
|
336
336
|
# * GSL::Sf::bessel_j2(x)
|
337
337
|
#
|
338
|
-
# Computes the regular spherical Bessel function of second order,
|
338
|
+
# Computes the regular spherical Bessel function of second order,
|
339
339
|
# j2(x) = ((3/x^2 - 1)sin(x) - 3cos(x)/x)/x.
|
340
340
|
# ---
|
341
341
|
# * GSL::Sf::bessel_jl(l, x)
|
342
342
|
#
|
343
|
-
# Computes the regular spherical Bessel function of order l,
|
343
|
+
# Computes the regular spherical Bessel function of order l,
|
344
344
|
# j_l(x), for l >= 0 and x >= 0.
|
345
345
|
# ---
|
346
346
|
# * GSL::Sf::bessel_jl_array(lmax, x)
|
347
347
|
#
|
348
|
-
# Computes the values of the regular spherical Bessel functions j_l(x)
|
349
|
-
# for l from 0 to <tt>lmax</tt> inclusive for lmax >= 0 and x >= 0,
|
350
|
-
# and returns the results as a <tt>GSL::Vector</tt> object.
|
351
|
-
# The values are computed using recurrence relations, for efficiency,
|
348
|
+
# Computes the values of the regular spherical Bessel functions j_l(x)
|
349
|
+
# for l from 0 to <tt>lmax</tt> inclusive for lmax >= 0 and x >= 0,
|
350
|
+
# and returns the results as a <tt>GSL::Vector</tt> object.
|
351
|
+
# The values are computed using recurrence relations, for efficiency,
|
352
352
|
# and therefore may differ slightly from the exact values.
|
353
353
|
# ---
|
354
354
|
# * GSL::Sf::bessel_jl_steed_array(lmax, x)
|
355
355
|
#
|
356
|
-
# This method uses Steed's method to compute the values of the regular
|
357
|
-
# spherical Bessel functions j_l(x) for l from 0 to <tt>lmax</tt> inclusive
|
358
|
-
# for <tt>lmax</tt> >= 0 and x >= 0, and returns the results as a <tt>GSL::Vector</tt>
|
359
|
-
# object. The Steed/Barnett algorithm is described in
|
360
|
-
# Comp. Phys. Comm. 21, 297 (1981). Steed's method is more stable than the
|
356
|
+
# This method uses Steed's method to compute the values of the regular
|
357
|
+
# spherical Bessel functions j_l(x) for l from 0 to <tt>lmax</tt> inclusive
|
358
|
+
# for <tt>lmax</tt> >= 0 and x >= 0, and returns the results as a <tt>GSL::Vector</tt>
|
359
|
+
# object. The Steed/Barnett algorithm is described in
|
360
|
+
# Comp. Phys. Comm. 21, 297 (1981). Steed's method is more stable than the
|
361
361
|
# recurrence used in the other functions but is also slower.
|
362
362
|
#
|
363
|
-
# ===
|
363
|
+
# === Irregular Spherical Bessel Functions
|
364
364
|
# ---
|
365
365
|
# * GSL::Sf::bessel_y0(x)
|
366
366
|
#
|
367
|
-
# Computes the irregular spherical Bessel function of zeroth order,
|
367
|
+
# Computes the irregular spherical Bessel function of zeroth order,
|
368
368
|
# y_0(x) = -cos(x)/x.
|
369
369
|
# ---
|
370
370
|
# * GSL::Sf::bessel_y1(x)
|
371
371
|
#
|
372
|
-
# Computes the irregular spherical Bessel function of first order,
|
372
|
+
# Computes the irregular spherical Bessel function of first order,
|
373
373
|
# y_1(x) = -(cos(x)/x + sin(x))/x.
|
374
374
|
# ---
|
375
375
|
# * GSL::Sf::bessel_y2(x)
|
376
376
|
#
|
377
|
-
# Computes the irregular spherical Bessel function of second order,
|
377
|
+
# Computes the irregular spherical Bessel function of second order,
|
378
378
|
# y_2(x) = (-3/x^3 + 1/x)cos(x) - (3/x^2)sin(x).
|
379
379
|
# ---
|
380
380
|
# * GSL::Sf::bessel_yl(l, x)
|
381
381
|
#
|
382
|
-
# Computes the irregular spherical Bessel function of order <tt>l</tt>,
|
382
|
+
# Computes the irregular spherical Bessel function of order <tt>l</tt>,
|
383
383
|
# y_l(x), for l >= 0.
|
384
384
|
# ---
|
385
385
|
# * GSL::Sf::bessel_yl_array(lmax, x)
|
386
386
|
#
|
387
|
-
# This method computes the values of the irregular spherical Bessel functions
|
388
|
-
# y_l(x) for l from 0 to <tt>lmax</tt> inclusive for <tt>lmax >= 0</tt>),
|
389
|
-
# and returns the results as a <tt>GSL::Vector</tt> object.
|
390
|
-
# The values are computed using recurrence relations, for efficiency,
|
387
|
+
# This method computes the values of the irregular spherical Bessel functions
|
388
|
+
# y_l(x) for l from 0 to <tt>lmax</tt> inclusive for <tt>lmax >= 0</tt>),
|
389
|
+
# and returns the results as a <tt>GSL::Vector</tt> object.
|
390
|
+
# The values are computed using recurrence relations, for efficiency,
|
391
391
|
# and therefore may differ slightly from the exact values.
|
392
392
|
#
|
393
|
-
# ===
|
393
|
+
# === Regular Modified Spherical Bessel Functions
|
394
394
|
# ---
|
395
395
|
# * GSL::Sf::bessel_i0_scaled(x)
|
396
396
|
#
|
397
|
-
# Computes the scaled regular modified spherical Bessel function of zeroth
|
397
|
+
# Computes the scaled regular modified spherical Bessel function of zeroth
|
398
398
|
# order, exp(-|x|) i_0(x).
|
399
399
|
# ---
|
400
400
|
# * GSL::Sf::bessel_i1_scaled(x)
|
@@ -409,22 +409,22 @@
|
|
409
409
|
# ---
|
410
410
|
# * GSL::Sf::bessel_il_scaled(l, x)
|
411
411
|
#
|
412
|
-
# Computes the scaled regular modified spherical Bessel function of
|
412
|
+
# Computes the scaled regular modified spherical Bessel function of
|
413
413
|
# order <tt>l</tt>, exp(-|x|) i_l(x).
|
414
414
|
# ---
|
415
415
|
# * GSL::Sf::bessel_il_scaled_array(lmax, x)
|
416
416
|
#
|
417
|
-
# This routine computes the values of the scaled regular modified cylindrical
|
418
|
-
# Bessel functions exp(-|x|) i_l(x) for l from 0 to <tt>lmax</tt> inclusive for
|
419
|
-
# <tt>lmax >= 0</tt>, and returns the results as a <tt>GSL::Vector</tt> object.
|
420
|
-
# The values are computed using recurrence relations, for efficiency,
|
417
|
+
# This routine computes the values of the scaled regular modified cylindrical
|
418
|
+
# Bessel functions exp(-|x|) i_l(x) for l from 0 to <tt>lmax</tt> inclusive for
|
419
|
+
# <tt>lmax >= 0</tt>, and returns the results as a <tt>GSL::Vector</tt> object.
|
420
|
+
# The values are computed using recurrence relations, for efficiency,
|
421
421
|
# and therefore may differ slightly from the exact values.
|
422
422
|
#
|
423
|
-
# ===
|
423
|
+
# === Irregular Modified Spherical Bessel Functions
|
424
424
|
# ---
|
425
425
|
# * GSL::Sf::bessel_k0_scaled(x)
|
426
426
|
#
|
427
|
-
# Computes the scaled irregular modified spherical Bessel function of zeroth
|
427
|
+
# Computes the scaled irregular modified spherical Bessel function of zeroth
|
428
428
|
# order, exp(-|x|) k_0(x).
|
429
429
|
# ---
|
430
430
|
# * GSL::Sf::bessel_k1_scaled(x)
|
@@ -439,69 +439,69 @@
|
|
439
439
|
# ---
|
440
440
|
# * GSL::Sf::bessel_kl_scaled(l, x)
|
441
441
|
#
|
442
|
-
# Computes the scaled irregular modified spherical Bessel function of
|
442
|
+
# Computes the scaled irregular modified spherical Bessel function of
|
443
443
|
# order <tt>l</tt>, exp(-|x|) k_l(x).
|
444
444
|
# ---
|
445
445
|
# * GSL::Sf::bessel_kl_scaled_array(lmax, x)
|
446
446
|
#
|
447
|
-
# This routine computes the values of the scaled irregular modified cylindrical
|
448
|
-
# Bessel functions exp(-|x|) k_l(x) for l from 0 to <tt>lmax</tt> inclusive for
|
449
|
-
# <tt>lmax >= 0</tt>, and returns the results as a <tt>GSL::Vector</tt> object.
|
450
|
-
# The values are computed using recurrence relations, for efficiency,
|
447
|
+
# This routine computes the values of the scaled irregular modified cylindrical
|
448
|
+
# Bessel functions exp(-|x|) k_l(x) for l from 0 to <tt>lmax</tt> inclusive for
|
449
|
+
# <tt>lmax >= 0</tt>, and returns the results as a <tt>GSL::Vector</tt> object.
|
450
|
+
# The values are computed using recurrence relations, for efficiency,
|
451
451
|
# and therefore may differ slightly from the exact values.
|
452
452
|
#
|
453
|
-
# ===
|
453
|
+
# === Regular Bessel Function - Fractional Order
|
454
454
|
# ---
|
455
455
|
# * GSL::Sf::bessel_Jnu(nu, x)
|
456
456
|
#
|
457
|
-
# Computes the regular cylindrical Bessel function of fractional
|
457
|
+
# Computes the regular cylindrical Bessel function of fractional
|
458
458
|
# order <tt>nu</tt>, J_nu(x).
|
459
459
|
# ---
|
460
460
|
# * GSL::Sf::bessel_sequence_Jnu_e(nu, v)
|
461
461
|
# * GSL::Sf::bessel_sequence_Jnu_e(nu, mode, v)
|
462
462
|
#
|
463
|
-
# These compute the regular cylindrical Bessel function of fractional order nu, J_nu(x),
|
464
|
-
# evaluated at a series of x values. The <tt>GSL::Vector</tt> object <tt>v</tt>
|
465
|
-
# contains the x values. They are assumed to be strictly ordered and positive.
|
463
|
+
# These compute the regular cylindrical Bessel function of fractional order nu, J_nu(x),
|
464
|
+
# evaluated at a series of x values. The <tt>GSL::Vector</tt> object <tt>v</tt>
|
465
|
+
# contains the x values. They are assumed to be strictly ordered and positive.
|
466
466
|
# The vector is over-written with the values of J_nu(x_i).
|
467
467
|
#
|
468
|
-
# ===
|
468
|
+
# === Irregular Bessel Functions - Fractional Order
|
469
469
|
# ---
|
470
470
|
# * GSL::Sf::bessel_Ynu(nu, x)
|
471
471
|
#
|
472
|
-
# Computes the irregular cylindrical Bessel function of fractional order <tt>nu</tt>,
|
472
|
+
# Computes the irregular cylindrical Bessel function of fractional order <tt>nu</tt>,
|
473
473
|
# Y_nu(x).
|
474
474
|
#
|
475
|
-
# ===
|
475
|
+
# === Regular Modified Bessel Functions - Fractional Order
|
476
476
|
# ---
|
477
477
|
# * GSL::Sf::bessel_Inu(nu, x)
|
478
478
|
#
|
479
|
-
# Computes the regular modified Bessel function of fractional order <tt>nu</tt>,
|
479
|
+
# Computes the regular modified Bessel function of fractional order <tt>nu</tt>,
|
480
480
|
# I_nu(x) for x>0, nu>0.
|
481
481
|
# ---
|
482
482
|
# * GSL::Sf::bessel_Inu_scaled(nu, x)
|
483
483
|
#
|
484
|
-
# Computes the scaled regular modified Bessel function of fractional order <tt>nu</tt>,
|
484
|
+
# Computes the scaled regular modified Bessel function of fractional order <tt>nu</tt>,
|
485
485
|
# exp(-|x|) I_nu(x) for x>0, nu>0.
|
486
486
|
#
|
487
|
-
# ===
|
487
|
+
# === Irregular Modified Bessel Functions - Fractional Order
|
488
488
|
# ---
|
489
489
|
# * GSL::Sf::bessel_Knu(nu, x)
|
490
490
|
#
|
491
|
-
# Computes the irregular modified Bessel function of fractional order <tt>nu</tt>,
|
491
|
+
# Computes the irregular modified Bessel function of fractional order <tt>nu</tt>,
|
492
492
|
# K_nu(x) for x>0, nu>0.
|
493
493
|
# ---
|
494
494
|
# * GSL::Sf::bessel_lnKnu(nu, x)
|
495
495
|
#
|
496
|
-
# Computes the logarithm of the irregular modified Bessel function of fractional
|
496
|
+
# Computes the logarithm of the irregular modified Bessel function of fractional
|
497
497
|
# order <tt>nu</tt>, ln(K_nu(x)) for x>0, nu>0
|
498
498
|
# ---
|
499
499
|
# * GSL::Sf::bessel_Knu_scaled(nu, x)
|
500
500
|
#
|
501
|
-
# Computes the scaled irregular modified Bessel function of fractional order <tt>nu</tt>,
|
501
|
+
# Computes the scaled irregular modified Bessel function of fractional order <tt>nu</tt>,
|
502
502
|
# exp(+|x|) K_nu(x) for x>0, nu>0.
|
503
503
|
#
|
504
|
-
# ===
|
504
|
+
# === Zeros of Regular Bessel Functions
|
505
505
|
# ---
|
506
506
|
# * GSL::Sf::bessel_zero_J0(s)
|
507
507
|
#
|
@@ -513,10 +513,10 @@
|
|
513
513
|
# ---
|
514
514
|
# * GSL::Sf::bessel_zero_Jnu(nu, s)
|
515
515
|
#
|
516
|
-
# Computes the location of the <tt>s</tt>-th positive zero of the Bessel function
|
516
|
+
# Computes the location of the <tt>s</tt>-th positive zero of the Bessel function
|
517
517
|
# J_nu(x). The current implementation does not support negative values of <tt>nu</tt>.
|
518
518
|
#
|
519
|
-
# ==
|
519
|
+
# == Clausen Functions
|
520
520
|
# ---
|
521
521
|
# * GSL::Sf::clausen(x)
|
522
522
|
#
|
@@ -525,55 +525,55 @@
|
|
525
525
|
# It is related to the dilogarithm by Cl_2(theta) = Im Li_2(exp(i theta)).
|
526
526
|
#
|
527
527
|
#
|
528
|
-
# ==
|
528
|
+
# == Coulomb Functions
|
529
529
|
# ---
|
530
530
|
# * GSL::Sf::hydrogenicR_1(Z, r)
|
531
531
|
#
|
532
|
-
# Computes the lowest-order normalized hydrogenic bound state
|
532
|
+
# Computes the lowest-order normalized hydrogenic bound state
|
533
533
|
# radial wavefunction R_1 := 2Z sqrt{Z} exp(-Z r).
|
534
534
|
# ---
|
535
535
|
# * GSL::Sf::hydrogenicR(n, l, Z, r)
|
536
536
|
#
|
537
537
|
# Computes the <tt>n</tt>-th normalized hydrogenic bound state radial wavefunction,
|
538
|
-
# R_n := 2 (Z^{3/2}/n^2) sqrt{(n-l-1)!/(n+l)!}exp(-Z r/n) (2Z/n)^l L^{2l+1}_{n-l-1}(2Z/n r).
|
539
|
-
# The normalization is chosen such that the wavefunction psi is given by
|
538
|
+
# R_n := 2 (Z^{3/2}/n^2) sqrt{(n-l-1)!/(n+l)!}exp(-Z r/n) (2Z/n)^l L^{2l+1}_{n-l-1}(2Z/n r).
|
539
|
+
# The normalization is chosen such that the wavefunction psi is given by
|
540
540
|
# psi(n,l,r) = R_n Y_{lm}.
|
541
541
|
#
|
542
|
-
# ===
|
542
|
+
# === Coulomb Wave Functions
|
543
543
|
# ---
|
544
544
|
# * GSL::Sf::coulomb_wave_FG_e(eta, x, L, k)
|
545
545
|
#
|
546
|
-
# This method computes the coulomb wave functions
|
547
|
-
# F_L(eta,x), G_{L-k}(eta,x) and their derivatives with respect to x,
|
548
|
-
# F'_L(eta,x) G'_{L-k}(eta,x).
|
549
|
-
# The parameters are restricted to <tt>L</tt>, <tt>L-k > -1/2</tt>, <tt>x > 0</tt>
|
550
|
-
# and integer <tt>k</tt>. Note that <tt>L</tt> itself is not restricted to being
|
546
|
+
# This method computes the coulomb wave functions
|
547
|
+
# F_L(eta,x), G_{L-k}(eta,x) and their derivatives with respect to x,
|
548
|
+
# F'_L(eta,x) G'_{L-k}(eta,x).
|
549
|
+
# The parameters are restricted to <tt>L</tt>, <tt>L-k > -1/2</tt>, <tt>x > 0</tt>
|
550
|
+
# and integer <tt>k</tt>. Note that <tt>L</tt> itself is not restricted to being
|
551
551
|
# an integer. The results are returned as an array of 7 elements,
|
552
552
|
# <tt>[F, G, Fp, Gp, exp_F, exp_G, status]</tt>,
|
553
|
-
# as <tt>F, G</tt> for the function values, <tt>Fp, Gp</tt>
|
553
|
+
# as <tt>F, G</tt> for the function values, <tt>Fp, Gp</tt>
|
554
554
|
# for the derivative values, and <tt>exp_F, exp_G</tt> for scaling exponents
|
555
555
|
# in the case of overflow occurs.
|
556
556
|
# ---
|
557
557
|
# * GSL::Sf::coulomb_wave_F_array(Lmin, kmax, eta, x)
|
558
558
|
#
|
559
|
-
# This method computes the function F_L(eta,x) for
|
560
|
-
# L = <tt>Lmin ... Lmin + kmax</tt> and returns the results
|
561
|
-
# as an array of 3 elements,
|
562
|
-
# <tt>[fc_array, F_exponent, status]</tt>.
|
559
|
+
# This method computes the function F_L(eta,x) for
|
560
|
+
# L = <tt>Lmin ... Lmin + kmax</tt> and returns the results
|
561
|
+
# as an array of 3 elements,
|
562
|
+
# <tt>[fc_array, F_exponent, status]</tt>.
|
563
563
|
# In the case of overflow, the exponent is returned in <tt>F_exponent</tt>.
|
564
564
|
# ---
|
565
565
|
# * GSL::Sf::coulomb_wave_FG_array(Lmin, kmax, eta, x)
|
566
566
|
#
|
567
567
|
# This method computes the functions F_L(eta,x), G_L(eta,x) for L = <tt>Lmin</tt>
|
568
|
-
# ... <tt>Lmin + kmax</tt> and returns the results as an array of
|
569
|
-
# 5 elements, <tt>[fc_array, gc_array, F_exponent, G_exponent, status]</tt>.
|
570
|
-
# In the case of overflow the exponents are stored in <tt>F_exponent</tt>
|
568
|
+
# ... <tt>Lmin + kmax</tt> and returns the results as an array of
|
569
|
+
# 5 elements, <tt>[fc_array, gc_array, F_exponent, G_exponent, status]</tt>.
|
570
|
+
# In the case of overflow the exponents are stored in <tt>F_exponent</tt>
|
571
571
|
# and <tt>G_exponent</tt>.
|
572
572
|
# ---
|
573
573
|
# * GSL::Sf::coulomb_wave_FGp_array(Lmin, kmax, eta, x)
|
574
574
|
#
|
575
|
-
# This method computes the functions F_L(eta,x), G_L(eta,x) and
|
576
|
-
# their derivatives F'_L(eta,x), G'_L(eta,x) for L = <tt>Lmin</tt> ...
|
575
|
+
# This method computes the functions F_L(eta,x), G_L(eta,x) and
|
576
|
+
# their derivatives F'_L(eta,x), G'_L(eta,x) for L = <tt>Lmin</tt> ...
|
577
577
|
# <tt>Lmin + kmax</tt> and returns the results as an array of 7 elements,
|
578
578
|
# <tt>[fc_array, gc_array, fcp_array, gcp_array, F_exponent, G_exponent, status]</tt>.
|
579
579
|
# In the case of overflow the exponents are stored in <tt>F_exponent</tt>
|
@@ -581,33 +581,33 @@
|
|
581
581
|
# ---
|
582
582
|
# * GSL::Sf::coulomb_wave_sphF_array(Lmin, kmax, eta, x)
|
583
583
|
#
|
584
|
-
# This method computes the Coulomb wave function divided by the argument
|
584
|
+
# This method computes the Coulomb wave function divided by the argument
|
585
585
|
# F_L(eta, x)/x for L = <tt>Lmin</tt> ... <tt>Lmin + kmax</tt>,
|
586
586
|
# and returns the results as an array of 3 elememnts,
|
587
|
-
# <tt>[fc_array, F_exponent, status]</tt>.
|
588
|
-
# In the case of overflow the exponent is stored in <tt>F_exponent</tt>.
|
589
|
-
# This function reduces to spherical Bessel functions in the limit
|
587
|
+
# <tt>[fc_array, F_exponent, status]</tt>.
|
588
|
+
# In the case of overflow the exponent is stored in <tt>F_exponent</tt>.
|
589
|
+
# This function reduces to spherical Bessel functions in the limit
|
590
590
|
# <tt>eta</tt> to 0.
|
591
591
|
#
|
592
|
-
# ===
|
592
|
+
# === Coulomb Wave Function Normalization Constant
|
593
593
|
# ---
|
594
594
|
# * GSL::Sf::coulomb_CL_e(L, eta)
|
595
595
|
#
|
596
|
-
# This method computes the Coulomb wave function normalization
|
596
|
+
# This method computes the Coulomb wave function normalization
|
597
597
|
# constant C_L(eta) for L > -1.
|
598
598
|
# ---
|
599
599
|
# * GSL::Sf::gsl_sf_coulomb_CL_array(Lmin, kmax, eta)
|
600
600
|
#
|
601
|
-
# This method computes the coulomb wave function normalization constant
|
601
|
+
# This method computes the coulomb wave function normalization constant
|
602
602
|
# C_L(eta) for L = Lmin ... Lmin + kmax, Lmin > -1.
|
603
603
|
#
|
604
|
-
# ==
|
605
|
-
# The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients
|
606
|
-
# for combined angular momentum vectors. Since the arguments of the standard
|
607
|
-
# coupling coefficient functions are integer or half-integer, the arguments
|
608
|
-
# of the following functions are, by convention, integers equal to twice the
|
609
|
-
# actual spin value. For information on the 3-j coefficients
|
610
|
-
# see Abramowitz & Stegun, Section 27.9.
|
604
|
+
# == Coupling Coefficients
|
605
|
+
# The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients
|
606
|
+
# for combined angular momentum vectors. Since the arguments of the standard
|
607
|
+
# coupling coefficient functions are integer or half-integer, the arguments
|
608
|
+
# of the following functions are, by convention, integers equal to twice the
|
609
|
+
# actual spin value. For information on the 3-j coefficients
|
610
|
+
# see Abramowitz & Stegun, Section 27.9.
|
611
611
|
#
|
612
612
|
# ---
|
613
613
|
# * GSL::Sf::coupling_3j(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc)
|
@@ -615,7 +615,7 @@
|
|
615
615
|
# Computes the Wigner 3-j coefficient,
|
616
616
|
# ja jb jc
|
617
617
|
# ma mb mc
|
618
|
-
# where the arguments are given in half-integer units,
|
618
|
+
# where the arguments are given in half-integer units,
|
619
619
|
# <tt>ja = two_ja/2, ma = two_ma/2</tt>, etc.
|
620
620
|
#
|
621
621
|
# ---
|
@@ -624,7 +624,7 @@
|
|
624
624
|
# Computes the Wigner 6-j coefficient,
|
625
625
|
# ja jb jc
|
626
626
|
# jd je jf
|
627
|
-
# where the arguments are given in half-integer units,
|
627
|
+
# where the arguments are given in half-integer units,
|
628
628
|
# <tt>ja = two_ja/2, ma = two_ma/2</tt>, etc.
|
629
629
|
#
|
630
630
|
# ---
|
@@ -634,21 +634,21 @@
|
|
634
634
|
# ja jb jc
|
635
635
|
# jd je jf
|
636
636
|
# jg jh ji
|
637
|
-
# where the arguments are given in half-integer units,
|
637
|
+
# where the arguments are given in half-integer units,
|
638
638
|
# <tt>ja = two_ja/2, ma = two_ma/2</tt>, etc.
|
639
639
|
#
|
640
|
-
# ==
|
641
|
-
# The Dawson integral is defined by exp(-x^2) int_0^x dt exp(t^2).
|
640
|
+
# == Dawson Function
|
641
|
+
# The Dawson integral is defined by exp(-x^2) int_0^x dt exp(t^2).
|
642
642
|
# A table of Dawson's integral can be found in Abramowitz & Stegun, Table 7.5.
|
643
643
|
# ---
|
644
644
|
# * GSL::Sf::dawson(x)
|
645
645
|
#
|
646
646
|
# This method computes the value of Dawson's integral for <tt>x</tt>.
|
647
647
|
#
|
648
|
-
# ==
|
649
|
-
# The Debye functions are defined by the integral
|
650
|
-
# D_n(x) = n/x^n int_0^x dt (t^n/(e^t - 1)).
|
651
|
-
# For further information see Abramowitz & Stegun, Section 27.1.
|
648
|
+
# == Debye Functions
|
649
|
+
# The Debye functions are defined by the integral
|
650
|
+
# D_n(x) = n/x^n int_0^x dt (t^n/(e^t - 1)).
|
651
|
+
# For further information see Abramowitz & Stegun, Section 27.1.
|
652
652
|
# ---
|
653
653
|
# * GSL::Sf::debye_1(x)
|
654
654
|
# * GSL::Sf::debye_2(x)
|
@@ -657,102 +657,102 @@
|
|
657
657
|
#
|
658
658
|
# These methods Compute the n-th order Debye functions.
|
659
659
|
#
|
660
|
-
# ==
|
661
|
-
# ===
|
660
|
+
# == Dilogarithm
|
661
|
+
# === Real Argument
|
662
662
|
# ---
|
663
663
|
# * GSL::Sf::dilog(x)
|
664
664
|
#
|
665
|
-
# Computes the dilogarithm for a real argument. In Lewin's notation this
|
666
|
-
# is Li_2(x), the real part of the dilogarithm of a real <tt>x</tt>.
|
665
|
+
# Computes the dilogarithm for a real argument. In Lewin's notation this
|
666
|
+
# is Li_2(x), the real part of the dilogarithm of a real <tt>x</tt>.
|
667
667
|
# It is defined by the integral representation
|
668
|
-
# Li_2(x) = - Re int_0^x ds log(1-s) / s.
|
668
|
+
# Li_2(x) = - Re int_0^x ds log(1-s) / s.
|
669
669
|
# Note that Im(Li_2(x)) = 0 for x <= 1, and -pi log(x) for x > 1.
|
670
670
|
#
|
671
|
-
# ===
|
671
|
+
# === Complex Argument
|
672
672
|
# ---
|
673
673
|
# * GSL::Sf::complex_dilog_e(r, theta)
|
674
674
|
#
|
675
|
-
# This method computes the full complex-valued dilogarithm for
|
676
|
-
# the complex argument z = r exp(i theta).
|
675
|
+
# This method computes the full complex-valued dilogarithm for
|
676
|
+
# the complex argument z = r exp(i theta).
|
677
677
|
# The result is returned as an array of 2 elements, <tt>[re, im]</tt>,
|
678
678
|
# each of them is a <tt>GSL::Sf::Result</tt> object.
|
679
679
|
#
|
680
|
-
# ==
|
681
|
-
# The following methods allow for the propagation of errors when
|
682
|
-
# combining quantities by multiplication.
|
680
|
+
# == Elementary Operations
|
681
|
+
# The following methods allow for the propagation of errors when
|
682
|
+
# combining quantities by multiplication.
|
683
683
|
# ---
|
684
684
|
# * GSL::Sf::multiply_e(x, y)
|
685
685
|
#
|
686
|
-
# This method multiplies <tt>x</tt> and <tt>y</tt> and returns
|
686
|
+
# This method multiplies <tt>x</tt> and <tt>y</tt> and returns
|
687
687
|
# the product as a <tt>GSL::Sf::Result</tt> object.
|
688
688
|
# ---
|
689
689
|
# * GSL::Sf::multiply_err_e(x, dx, y, dy)
|
690
690
|
#
|
691
|
-
# This method multiplies <tt>x</tt> and <tt>y</tt> with associated absolute
|
692
|
-
# errors <tt>dx</tt> and <tt>dy</tt>, and returns
|
691
|
+
# This method multiplies <tt>x</tt> and <tt>y</tt> with associated absolute
|
692
|
+
# errors <tt>dx</tt> and <tt>dy</tt>, and returns
|
693
693
|
# the product as a <tt>GSL::Sf::Result</tt> object.
|
694
694
|
#
|
695
|
-
# ==
|
696
|
-
# ===
|
695
|
+
# == Elliptic Integrals
|
696
|
+
# === Legendre Form of Complete Elliptic Integrals
|
697
697
|
# ---
|
698
698
|
# * GSL::Sf::ellint_Kcomp(k, mode = GSL::PREC_DOUBLE)
|
699
699
|
#
|
700
|
-
# Computes the complete elliptic integral K(k)
|
700
|
+
# Computes the complete elliptic integral K(k)
|
701
701
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
702
702
|
# ---
|
703
703
|
# * GSL::Sf::ellint_Ecomp(k, mode = GSL::PREC_DOUBLE)
|
704
704
|
#
|
705
|
-
# Computes the complete elliptic integral E(k)
|
705
|
+
# Computes the complete elliptic integral E(k)
|
706
706
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
707
|
-
# ===
|
707
|
+
# === Legendre Form of Incomplete Elliptic Integrals
|
708
708
|
# ---
|
709
709
|
# * GSL::Sf::ellint_F(phi, k, mode = GSL::PREC_DOUBLE)
|
710
710
|
#
|
711
|
-
# Computes the incomplete elliptic integral E(phi, k)
|
711
|
+
# Computes the incomplete elliptic integral E(phi, k)
|
712
712
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
713
713
|
# ---
|
714
714
|
# * GSL::Sf::ellint_P(phi, k, n, mode = GSL::PREC_DOUBLE)
|
715
715
|
#
|
716
|
-
# Computes the incomplete elliptic integral P(phi, k, n)
|
716
|
+
# Computes the incomplete elliptic integral P(phi, k, n)
|
717
717
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
718
718
|
# ---
|
719
719
|
# * GSL::Sf::ellint_D(phi, k, n, mode = GSL::PREC_DOUBLE)
|
720
720
|
#
|
721
|
-
# Computes the incomplete elliptic integral D(phi, k, n)
|
721
|
+
# Computes the incomplete elliptic integral D(phi, k, n)
|
722
722
|
# which is defined through the Carlson form RD(x, y, z) by the following relation,
|
723
723
|
# D(phi, k, n) = RD (1-sin^2(phi), 1-k^2 sin^2(phi), 1).
|
724
|
-
# ===
|
724
|
+
# === Carlson Forms
|
725
725
|
# ---
|
726
726
|
# * GSL::Sf::ellint_RC(x, y, mode = GSL::PREC_DOUBLE)
|
727
727
|
#
|
728
|
-
# Computes the incomplete elliptic integral RC(x, y)
|
728
|
+
# Computes the incomplete elliptic integral RC(x, y)
|
729
729
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
730
730
|
# ---
|
731
731
|
# * GSL::Sf::ellint_RD(x, y, z, mode = GSL::PREC_DOUBLE)
|
732
732
|
#
|
733
|
-
# Computes the incomplete elliptic integral RD(x, y, z)
|
733
|
+
# Computes the incomplete elliptic integral RD(x, y, z)
|
734
734
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
735
735
|
# ---
|
736
736
|
# * GSL::Sf::ellint_RF(x, y, z, mode = GSL::PREC_DOUBLE)
|
737
737
|
#
|
738
|
-
# Computes the incomplete elliptic integral RF(x, y, z)
|
738
|
+
# Computes the incomplete elliptic integral RF(x, y, z)
|
739
739
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
740
740
|
# ---
|
741
741
|
# * GSL::Sf::ellint_RJ(x, y, z, p, mode = GSL::PREC_DOUBLE)
|
742
742
|
#
|
743
|
-
# Computes the incomplete elliptic integral RJ(x, y, z, p)
|
743
|
+
# Computes the incomplete elliptic integral RJ(x, y, z, p)
|
744
744
|
# to the accuracy specified by the mode variable <tt>mode</tt>.
|
745
745
|
#
|
746
|
-
# ==
|
746
|
+
# == Elliptic Functions (Jacobi)
|
747
747
|
# ---
|
748
748
|
# * GSL::Sf::gsl_sf_elljac(u, m)
|
749
749
|
# * GSL::Sf::gsl_sf_elljac_e(u, m)
|
750
750
|
#
|
751
|
-
# These methods compute the Jacobian elliptic functions
|
751
|
+
# These methods compute the Jacobian elliptic functions
|
752
752
|
# sn(u|m), cn(u|m), dn(u|m) by descending Landen transformations,
|
753
753
|
# and returns the result as an array of 3 elements.
|
754
754
|
#
|
755
|
-
# ==
|
755
|
+
# == Error Functions
|
756
756
|
# ---
|
757
757
|
# * GSL::Sf::erf(x)
|
758
758
|
#
|
@@ -765,7 +765,7 @@
|
|
765
765
|
# * GSL::Sf::log_erfc(x)
|
766
766
|
#
|
767
767
|
# Computes the logarithm of the complementary error function log(erfc(x)).
|
768
|
-
# ===
|
768
|
+
# === Probability functions
|
769
769
|
# ---
|
770
770
|
# * GSL::Sf::erf_Z(x)
|
771
771
|
#
|
@@ -774,70 +774,70 @@
|
|
774
774
|
# ---
|
775
775
|
# * GSL::Sf::erf_Q(x)
|
776
776
|
#
|
777
|
-
# Computes the upper tail of the Gaussian probability function
|
777
|
+
# Computes the upper tail of the Gaussian probability function
|
778
778
|
# Q(x) = (1/sqrt{2 pi}) int_x^infty dt exp(-t^2/2).
|
779
779
|
# ---
|
780
780
|
# * GSL::Sf::hazard(x)
|
781
781
|
#
|
782
782
|
# The hazard function for the normal distribution, also known as
|
783
|
-
# the inverse Mill's ratio, is defined as
|
784
|
-
# h(x) = Z(x)/Q(x) = sqrt{2/pi exp(-x^2 / 2) / erfc(x/sqrt 2)}.
|
785
|
-
# It decreases rapidly as x approaches -infty and asymptotes to h(x) sim x
|
783
|
+
# the inverse Mill's ratio, is defined as
|
784
|
+
# h(x) = Z(x)/Q(x) = sqrt{2/pi exp(-x^2 / 2) / erfc(x/sqrt 2)}.
|
785
|
+
# It decreases rapidly as x approaches -infty and asymptotes to h(x) sim x
|
786
786
|
# as x approaches +infty.
|
787
787
|
#
|
788
|
-
# ==
|
788
|
+
# == Exponential Functions
|
789
789
|
# ---
|
790
790
|
# * GSL::Sf::exp(x)
|
791
791
|
# * GSL::Sf::exp_e(x)
|
792
792
|
#
|
793
|
-
# These methods provide an exponential function exp(x)
|
793
|
+
# These methods provide an exponential function exp(x)
|
794
794
|
# using GSL semantics and error checking.
|
795
795
|
# ---
|
796
796
|
# * GSL::Sf::exp_e10_e(x)
|
797
797
|
#
|
798
|
-
# This method computes the exponential exp(x) using the
|
799
|
-
# <tt>GSL::Sf::Result_e10</tt> type to return a result with extended range.
|
800
|
-
# This may be useful if the value of exp(x) would overflow the numeric
|
798
|
+
# This method computes the exponential exp(x) using the
|
799
|
+
# <tt>GSL::Sf::Result_e10</tt> type to return a result with extended range.
|
800
|
+
# This may be useful if the value of exp(x) would overflow the numeric
|
801
801
|
# range of <tt>double</tt>.
|
802
802
|
# ---
|
803
803
|
# * GSL::Sf::exp_mult(x, y)
|
804
804
|
# * GSL::Sf::exp_mult_e(x, y)
|
805
805
|
# * GSL::Sf::exp_mult_e10_e(x, y)
|
806
806
|
#
|
807
|
-
# Exponentiate <tt>x</tt> and multiply by the factor
|
807
|
+
# Exponentiate <tt>x</tt> and multiply by the factor
|
808
808
|
# <tt>y</tt> to return the product y exp(x).
|
809
809
|
#
|
810
|
-
# ===
|
810
|
+
# === Relative Exponential Functions
|
811
811
|
# ---
|
812
812
|
# * GSL::Sf::expm1(x)
|
813
813
|
#
|
814
|
-
# Computes the quantity exp(x)-1 using an algorithm that is
|
814
|
+
# Computes the quantity exp(x)-1 using an algorithm that is
|
815
815
|
# accurate for small <tt>x</tt>.
|
816
816
|
# ---
|
817
817
|
# * GSL::Sf::exprel(x)
|
818
818
|
#
|
819
|
-
# Computes the quantity (exp(x)-1)/x using an algorithm that is
|
820
|
-
# accurate for small <tt>x</tt>. For small <tt>x</tt> the algorithm is
|
821
|
-
# based on the expansion
|
819
|
+
# Computes the quantity (exp(x)-1)/x using an algorithm that is
|
820
|
+
# accurate for small <tt>x</tt>. For small <tt>x</tt> the algorithm is
|
821
|
+
# based on the expansion
|
822
822
|
# (exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + ... .
|
823
823
|
# ---
|
824
824
|
# * GSL::Sf::exprel_2(x)
|
825
825
|
#
|
826
|
-
# Computes the quantity 2(exp(x)-1-x)/x^2 using an algorithm that is
|
827
|
-
# accurate for small <tt>x</tt>. For small <tt>x</tt> the algorithm is based
|
828
|
-
# on the expansion
|
826
|
+
# Computes the quantity 2(exp(x)-1-x)/x^2 using an algorithm that is
|
827
|
+
# accurate for small <tt>x</tt>. For small <tt>x</tt> the algorithm is based
|
828
|
+
# on the expansion
|
829
829
|
# 2(exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + ... .
|
830
830
|
# ---
|
831
831
|
# * GSL::Sf::exprel_n(n, x)
|
832
832
|
#
|
833
|
-
# Computes the N-relative exponential, which is the <tt>n</tt>-th
|
834
|
-
# generalization of the methods <tt>exprel</tt> and <tt>exprel2</tt>.
|
833
|
+
# Computes the N-relative exponential, which is the <tt>n</tt>-th
|
834
|
+
# generalization of the methods <tt>exprel</tt> and <tt>exprel2</tt>.
|
835
835
|
# The N-relative exponential is given by,
|
836
836
|
# exprel_N(x) = N!/x^N (exp(x) - sum_{k=0}^{N-1} x^k/k!)
|
837
837
|
# = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ...
|
838
838
|
# = 1F1 (1,1+N,x)
|
839
839
|
#
|
840
|
-
# ===
|
840
|
+
# === Exponentiation With Error Estimate
|
841
841
|
# ---
|
842
842
|
# * GSL::Sf::exp_err_e(x, dx)
|
843
843
|
#
|
@@ -845,23 +845,23 @@
|
|
845
845
|
# ---
|
846
846
|
# * GSL::Sf::exp_err_e10_e(x, dx)
|
847
847
|
#
|
848
|
-
# Exponentiates a quantity <tt>x</tt> with an associated absolute error
|
849
|
-
# <tt>dx</tt> using the <tt>GSL::Sf::Result_e10</tt> type
|
848
|
+
# Exponentiates a quantity <tt>x</tt> with an associated absolute error
|
849
|
+
# <tt>dx</tt> using the <tt>GSL::Sf::Result_e10</tt> type
|
850
850
|
# to return a result with extended range.
|
851
851
|
# ---
|
852
852
|
# * GSL::Sf::exp_mult_err_e(x, dx, y, dy)
|
853
853
|
#
|
854
|
-
# Computes the product y exp(x) for the quantities <tt>x, y</tt>
|
854
|
+
# Computes the product y exp(x) for the quantities <tt>x, y</tt>
|
855
855
|
# with associated absolute errors <tt>dx, dy</tt>.
|
856
856
|
# ---
|
857
857
|
# * GSL::Sf::exp_mult_err_e10_e(x, dx, y, dy)
|
858
858
|
#
|
859
|
-
# Computes the product y exp(x) for the quantities <tt>x, y</tt>
|
860
|
-
# with associated absolute errors <tt>dx, dy</tt> using the
|
859
|
+
# Computes the product y exp(x) for the quantities <tt>x, y</tt>
|
860
|
+
# with associated absolute errors <tt>dx, dy</tt> using the
|
861
861
|
# <tt>GSL::Sf::Result_e10</tt> type to return a result with extended range.
|
862
862
|
#
|
863
|
-
# ==
|
864
|
-
# ===
|
863
|
+
# == Exponential Integrals
|
864
|
+
# === Exponential Integral
|
865
865
|
# ---
|
866
866
|
# * GSL::Sf::expint_E1(x)
|
867
867
|
#
|
@@ -877,14 +877,14 @@
|
|
877
877
|
#
|
878
878
|
# Computes the exponential integral E_n(n, x) of order <tt>n</tt>. (>= GSL-1.10)
|
879
879
|
#
|
880
|
-
# ===
|
880
|
+
# === Ei(x)
|
881
881
|
# ---
|
882
882
|
# * GSL::Sf::expint_Ei(x)
|
883
883
|
#
|
884
884
|
# Computes the exponential integral E_i(x),
|
885
885
|
# Ei(x) := - PV(int_{-x}^infty dt exp(-t)/t)
|
886
886
|
# where PV denotes the principal value of the integral.
|
887
|
-
# ===
|
887
|
+
# === Hyperbolic Integrals
|
888
888
|
# ---
|
889
889
|
# * GSL::Sf::Shi(x)
|
890
890
|
#
|
@@ -892,16 +892,16 @@
|
|
892
892
|
# ---
|
893
893
|
# * GSL::Sf::Chi(x)
|
894
894
|
#
|
895
|
-
# Computes the integral
|
896
|
-
# Chi(x) := Re[ gamma_E + log(x) + int_0^x dt (cosh[t]-1)/t] ,
|
897
|
-
# where gamma_E is the Euler constant
|
895
|
+
# Computes the integral
|
896
|
+
# Chi(x) := Re[ gamma_E + log(x) + int_0^x dt (cosh[t]-1)/t] ,
|
897
|
+
# where gamma_E is the Euler constant
|
898
898
|
# (available as the constant <tt>GSL::M_EULER</tt>).
|
899
|
-
# ===
|
899
|
+
# === Ei_3(x)
|
900
900
|
# ---
|
901
901
|
# * GSL::Sf::expint_3(x)
|
902
902
|
#
|
903
903
|
# Computes the exponential integral Ei_3(x) = int_0^x dt exp(-t^3) for x >= 0
|
904
|
-
# ===
|
904
|
+
# === Trigonometric Integrals
|
905
905
|
# ---
|
906
906
|
# * GSL::Sf::Si(x)
|
907
907
|
#
|
@@ -910,41 +910,41 @@
|
|
910
910
|
# * GSL::Sf::Ci(x)
|
911
911
|
#
|
912
912
|
# Computes the Cosine integral Ci(x) = -int_x^infty dt cos(t)/t for x > 0.
|
913
|
-
# ===
|
913
|
+
# === Arctangent Integral
|
914
914
|
# ---
|
915
915
|
# * GSL::Sf::atanint(x)
|
916
916
|
#
|
917
917
|
# Computes the Arctangent integral AtanInt(x) = int_0^x dt arctan(t)/t.
|
918
918
|
#
|
919
|
-
# ==
|
920
|
-
# ===
|
919
|
+
# == Fermi-Dirac Functions
|
920
|
+
# === Complete Fermi-Dirac Integrals
|
921
921
|
# The complete Fermi-Dirac integral F_j(x) is given by,
|
922
922
|
# F_j(x) := (1/r Gamma(j+1)) int_0^infty dt (t^j / (exp(t-x) + 1))
|
923
923
|
#
|
924
924
|
# ---
|
925
925
|
# * GSL::Sf::fermi_dirac_m1(x)
|
926
926
|
#
|
927
|
-
# Computes the complete Fermi-Dirac integral with an index of -1.
|
927
|
+
# Computes the complete Fermi-Dirac integral with an index of -1.
|
928
928
|
# This integral is given by F_{-1}(x) = e^x / (1 + e^x).
|
929
929
|
# ---
|
930
930
|
# * GSL::Sf::fermi_dirac_0(x)
|
931
931
|
#
|
932
|
-
# Computes the complete Fermi-Dirac integral with an index of 0. This
|
932
|
+
# Computes the complete Fermi-Dirac integral with an index of 0. This
|
933
933
|
# integral is given by F_0(x) = ln(1 + e^x).
|
934
934
|
# ---
|
935
935
|
# * GSL::Sf::fermi_dirac_1(x)
|
936
936
|
#
|
937
|
-
# Compute the complete Fermi-Dirac integral with an index of 1,
|
937
|
+
# Compute the complete Fermi-Dirac integral with an index of 1,
|
938
938
|
# F_1(x) = int_0^infty dt (t /(exp(t-x)+1)).
|
939
939
|
# ---
|
940
940
|
# * GSL::Sf::fermi_dirac_2(x)
|
941
941
|
#
|
942
|
-
# Computes the complete Fermi-Dirac integral with an index of 2,
|
942
|
+
# Computes the complete Fermi-Dirac integral with an index of 2,
|
943
943
|
# F_2(x) = (1/2) int_0^infty dt (t^2 /(exp(t-x)+1)).
|
944
944
|
# ---
|
945
945
|
# * GSL::Sf::fermi_dirac_int(j, x)
|
946
946
|
#
|
947
|
-
# Computes the complete Fermi-Dirac integral with an integer index of
|
947
|
+
# Computes the complete Fermi-Dirac integral with an integer index of
|
948
948
|
# <tt>j</tt>, F_j(x) = (1/Gamma(j+1)) int_0^infty dt (t^j /(exp(t-x)+1)).
|
949
949
|
# ---
|
950
950
|
# * GSL::Sf::fermi_dirac_mhalf(x)
|
@@ -958,47 +958,47 @@
|
|
958
958
|
# * GSL::Sf::fermi_dirac_3half(x)
|
959
959
|
#
|
960
960
|
# Computes the complete Fermi-Dirac integral F_{3/2}(x).
|
961
|
-
# ===
|
961
|
+
# === Incomplete Fermi-Dirac Integrals
|
962
962
|
# ---
|
963
963
|
# * GSL::Sf::fermi_dirac_inc_0(x, b)
|
964
964
|
#
|
965
|
-
# Computes the incomplete Fermi-Dirac integral with an index of zero,
|
965
|
+
# Computes the incomplete Fermi-Dirac integral with an index of zero,
|
966
966
|
# F_0(x,b) = ln(1 + e^{b-x}) - (b-x).
|
967
967
|
#
|
968
|
-
# ==
|
968
|
+
# == Gamma Function
|
969
969
|
# The Gamma function is defined by the following integral,
|
970
970
|
# Gamma(x) = int_0^infty dt t^{x-1} exp(-t)
|
971
|
-
# Further information on the Gamma function can be found in
|
972
|
-
# Abramowitz & Stegun, Chapter 6.
|
971
|
+
# Further information on the Gamma function can be found in
|
972
|
+
# Abramowitz & Stegun, Chapter 6.
|
973
973
|
#
|
974
974
|
# ---
|
975
975
|
# * GSL::Sf::gamma(x)
|
976
976
|
#
|
977
|
-
# Computes the Gamma function, subject to <tt>x</tt> not being a
|
978
|
-
# negative integer. The function is computed using the real
|
979
|
-
# Lanczos method. The maximum value of <tt>x</tt> such that Gamma(x) is
|
977
|
+
# Computes the Gamma function, subject to <tt>x</tt> not being a
|
978
|
+
# negative integer. The function is computed using the real
|
979
|
+
# Lanczos method. The maximum value of <tt>x</tt> such that Gamma(x) is
|
980
980
|
# not considered an overflow is given by the constant
|
981
981
|
# <tt>GSL::Sf::GAMMA_XMAX</tt> and is 171.0.
|
982
982
|
# ---
|
983
983
|
# * GSL::Sf::lngamma(x)
|
984
984
|
#
|
985
|
-
# Computes the logarithm of the Gamma function, log(Gamma(x)),
|
986
|
-
# subject to <tt>x</tt> not a being negative integer.
|
987
|
-
# For x<0 the real part of log(Gamma(x)) is returned,
|
988
|
-
# which is equivalent to log(|Gamma(x)|).
|
985
|
+
# Computes the logarithm of the Gamma function, log(Gamma(x)),
|
986
|
+
# subject to <tt>x</tt> not a being negative integer.
|
987
|
+
# For x<0 the real part of log(Gamma(x)) is returned,
|
988
|
+
# which is equivalent to log(|Gamma(x)|).
|
989
989
|
# The function is computed using the real Lanczos method.
|
990
990
|
# ---
|
991
991
|
# * GSL::Sf::lngamma_sgn_e(x)
|
992
992
|
#
|
993
|
-
# Computes the sign of the gamma function and the logarithm its magnitude,
|
993
|
+
# Computes the sign of the gamma function and the logarithm its magnitude,
|
994
994
|
# subject to <tt>x</tt> not being a negative integer, and returns the result
|
995
|
-
# as an array of 2 elements, <tt>[result, sng]</tt>. The function is computed
|
996
|
-
# using the real Lanczos method. The value of the gamma function can be
|
995
|
+
# as an array of 2 elements, <tt>[result, sng]</tt>. The function is computed
|
996
|
+
# using the real Lanczos method. The value of the gamma function can be
|
997
997
|
# reconstructed using the relation Gamma(x) = sgn * exp(result).
|
998
998
|
# ---
|
999
999
|
# * GSL::Sf::gammastar(x)
|
1000
1000
|
#
|
1001
|
-
# Computes the regulated Gamma Function Gamma^*(x) for x > 0.
|
1001
|
+
# Computes the regulated Gamma Function Gamma^*(x) for x > 0.
|
1002
1002
|
# The regulated gamma function is given by,
|
1003
1003
|
# Gamma^*(x) = Gamma(x)/(sqrt{2 pi} x^{(x-1/2)} exp(-x))
|
1004
1004
|
# = (1 + (1/12x) + ...) for x -> infty
|
@@ -1010,13 +1010,13 @@
|
|
1010
1010
|
# ---
|
1011
1011
|
# * GSL::Sf::ngamma_complex_e(zr, zi)
|
1012
1012
|
#
|
1013
|
-
# These method compute log(Gamma(z)) for complex z = zr + i zi and z not a
|
1014
|
-
# negative integer,
|
1015
|
-
# using the complex Lanczos method. The result is returned as an array of
|
1016
|
-
# 2 elements, <tt>[lnr, arg, status]</tt>, where lnr = log|Gamma(z)| and arg = arg(Gamma(z))
|
1017
|
-
# in (-pi,pi]. Note that the phase part (arg) is not well-determined when
|
1018
|
-
# |z| is very large, due to inevitable roundoff in restricting to (-pi,pi].
|
1019
|
-
# This will result in a <tt>GSL::ELOSS</tt> error when it occurs.
|
1013
|
+
# These method compute log(Gamma(z)) for complex z = zr + i zi and z not a
|
1014
|
+
# negative integer,
|
1015
|
+
# using the complex Lanczos method. The result is returned as an array of
|
1016
|
+
# 2 elements, <tt>[lnr, arg, status]</tt>, where lnr = log|Gamma(z)| and arg = arg(Gamma(z))
|
1017
|
+
# in (-pi,pi]. Note that the phase part (arg) is not well-determined when
|
1018
|
+
# |z| is very large, due to inevitable roundoff in restricting to (-pi,pi].
|
1019
|
+
# This will result in a <tt>GSL::ELOSS</tt> error when it occurs.
|
1020
1020
|
# The absolute value part (lnr), however, never suffers from loss of precision.
|
1021
1021
|
# ---
|
1022
1022
|
# * GSL::Sf::taylorcoeff(n, x)
|
@@ -1025,7 +1025,7 @@
|
|
1025
1025
|
# ---
|
1026
1026
|
# * GSL::Sf::fact(n)
|
1027
1027
|
#
|
1028
|
-
# Computes the factorial n!. The factorial is related to the
|
1028
|
+
# Computes the factorial n!. The factorial is related to the
|
1029
1029
|
# Gamma function by n! = Gamma(n+1).
|
1030
1030
|
# ---
|
1031
1031
|
# * GSL::Sf::doublefact(n)
|
@@ -1034,8 +1034,8 @@
|
|
1034
1034
|
# ---
|
1035
1035
|
# * GSL::Sf::lnfact(n)
|
1036
1036
|
#
|
1037
|
-
# Computes the logarithm of the factorial of <tt>n</tt>, log(n!).
|
1038
|
-
# The algorithm is faster than computing ln(Gamma(n+1)) via
|
1037
|
+
# Computes the logarithm of the factorial of <tt>n</tt>, log(n!).
|
1038
|
+
# The algorithm is faster than computing ln(Gamma(n+1)) via
|
1039
1039
|
# <tt>GSL::Sf::lngamma</tt> for n < 170, but defers for larger n.
|
1040
1040
|
# ---
|
1041
1041
|
# * GSL::Sf::lndoublefact(n)
|
@@ -1048,18 +1048,18 @@
|
|
1048
1048
|
# ---
|
1049
1049
|
# * GSL::Sf::lnchoose(n, m)
|
1050
1050
|
#
|
1051
|
-
# Computes the logarithm of n choose m.
|
1051
|
+
# Computes the logarithm of n choose m.
|
1052
1052
|
# This is equivalent to the sum log(n!) - log(m!) - log((n-m)!).
|
1053
1053
|
# ---
|
1054
1054
|
# * GSL::Sf::poch(a, x)
|
1055
1055
|
#
|
1056
|
-
# Computes the Pochhammer symbol (a)_x := Gamma(a + x)/Gamma(a),
|
1057
|
-
# subject to <tt>a</tt> and <tt>a+x</tt> not being negative integers.
|
1056
|
+
# Computes the Pochhammer symbol (a)_x := Gamma(a + x)/Gamma(a),
|
1057
|
+
# subject to <tt>a</tt> and <tt>a+x</tt> not being negative integers.
|
1058
1058
|
# The Pochhammer symbol is also known as the Apell symbol.
|
1059
1059
|
# ---
|
1060
1060
|
# * GSL::Sf::lnpoch(a, x)
|
1061
1061
|
#
|
1062
|
-
# Computes the logarithm of the Pochhammer symbol,
|
1062
|
+
# Computes the logarithm of the Pochhammer symbol,
|
1063
1063
|
# log((a)_x) = log(Gamma(a + x)/Gamma(a)) for a > 0, a+x > 0.
|
1064
1064
|
# ---
|
1065
1065
|
# * GSL::Sf::lnpoch_sgn_e(a, x)
|
@@ -1077,19 +1077,19 @@
|
|
1077
1077
|
# ---
|
1078
1078
|
# * GSL::Sf::gamma_inc_Q(a, x)
|
1079
1079
|
#
|
1080
|
-
# Computes the normalized incomplete Gamma Function
|
1080
|
+
# Computes the normalized incomplete Gamma Function
|
1081
1081
|
# Q(a,x) = 1/Gamma(a) int_x^infty dt t^{a-1} exp(-t) for a > 0, x >= 0.
|
1082
1082
|
# ---
|
1083
1083
|
# * GSL::Sf::gamma_inc_P(a, x)
|
1084
1084
|
#
|
1085
|
-
# Computes the complementary normalized incomplete Gamma Function
|
1085
|
+
# Computes the complementary normalized incomplete Gamma Function
|
1086
1086
|
# P(a,x) = 1/Gamma(a) int_0^x dt t^{a-1} exp(-t) for a > 0, x >= 0.
|
1087
1087
|
# Note that Abramowitz & Stegun call P(a,x) the incomplete gamma function (section 6.5).
|
1088
1088
|
# ---
|
1089
1089
|
# * GSL::Sf::gamma_inc(a, x)
|
1090
1090
|
#
|
1091
|
-
# Computes the incomplete Gamma Function the normalization factor included
|
1092
|
-
# in the previously defined functions:
|
1091
|
+
# Computes the incomplete Gamma Function the normalization factor included
|
1092
|
+
# in the previously defined functions:
|
1093
1093
|
# Gamma(a,x) = int_x^infty dt t^{a-1} exp(-t) for a real and x >= 0.
|
1094
1094
|
# ---
|
1095
1095
|
# * GSL::Sf::beta(a, b)
|
@@ -1102,31 +1102,31 @@
|
|
1102
1102
|
# ---
|
1103
1103
|
# * GSL::Sf::beta_inc(a, b, x)
|
1104
1104
|
#
|
1105
|
-
# Computes the normalize incomplete Beta function
|
1105
|
+
# Computes the normalize incomplete Beta function
|
1106
1106
|
# B_x(a,b)/B(a,b) for a > 0, b > 0, and 0 <= x <= 1.
|
1107
1107
|
#
|
1108
|
-
# ==
|
1108
|
+
# == Gegenbauer Functions
|
1109
1109
|
# ---
|
1110
1110
|
# * GSL::Sf::gegenpoly_1(lambda, x)
|
1111
1111
|
# * GSL::Sf::gegenpoly_2(lambda, x)
|
1112
1112
|
# * GSL::Sf::gegenpoly_3(lambda, x)
|
1113
1113
|
#
|
1114
|
-
# These methods evaluate the Gegenbauer polynomials
|
1114
|
+
# These methods evaluate the Gegenbauer polynomials
|
1115
1115
|
# C^{(lambda)}_n(x) using explicit representations for n =1, 2, 3.
|
1116
1116
|
# ---
|
1117
1117
|
# * GSL::Sf::gegenpoly_n(n, lambda, x)
|
1118
1118
|
#
|
1119
|
-
# This evaluates the Gegenbauer polynomial
|
1120
|
-
# C^{(lambda)}_n(x) for a specific value of <tt>n, lambda, x</tt>
|
1119
|
+
# This evaluates the Gegenbauer polynomial
|
1120
|
+
# C^{(lambda)}_n(x) for a specific value of <tt>n, lambda, x</tt>
|
1121
1121
|
# subject to lambda > -1/2, n >= 0.
|
1122
1122
|
# ---
|
1123
1123
|
# * GSL::Sf::gegenpoly_array(nmax, lambda, x)
|
1124
1124
|
#
|
1125
|
-
# This method computes Gegenbauer polynomials C^{(lambda)}_n(x)
|
1125
|
+
# This method computes Gegenbauer polynomials C^{(lambda)}_n(x)
|
1126
1126
|
# for n = 0, 1, 2, ..., nmax, subject to lambda > -1/2, nmax >= 0.
|
1127
1127
|
# The result is returned as a <tt>GSL::Vector</tt> object.
|
1128
1128
|
#
|
1129
|
-
# ==
|
1129
|
+
# == Hypergeometric Functions
|
1130
1130
|
# ---
|
1131
1131
|
# * GSL::Sf::hyperg_0F1(c, x)
|
1132
1132
|
#
|
@@ -1134,23 +1134,23 @@
|
|
1134
1134
|
# ---
|
1135
1135
|
# * GSL::Sf::hyperg_1F1_int(m, n, x)
|
1136
1136
|
#
|
1137
|
-
# Computes the confluent hypergeometric function 1F1(m,n,x) = M(m,n,x)
|
1137
|
+
# Computes the confluent hypergeometric function 1F1(m,n,x) = M(m,n,x)
|
1138
1138
|
# for integer parameters <tt>m, n</tt>.
|
1139
1139
|
# ---
|
1140
1140
|
# * GSL::Sf::hyperg_1F1(a, b, x)
|
1141
1141
|
#
|
1142
|
-
# Computes the confluent hypergeometric function 1F1(a,b,x) = M(a,b,x)
|
1142
|
+
# Computes the confluent hypergeometric function 1F1(a,b,x) = M(a,b,x)
|
1143
1143
|
# for general parameters <tt>a, b</tt>.
|
1144
1144
|
# ---
|
1145
1145
|
# * GSL::Sf::hyperg_U_int(m, n, x)
|
1146
1146
|
#
|
1147
|
-
# Computes the confluent hypergeometric function U(m,n,x) for integer parameters
|
1147
|
+
# Computes the confluent hypergeometric function U(m,n,x) for integer parameters
|
1148
1148
|
# <tt>m, n</tt>.
|
1149
1149
|
# ---
|
1150
1150
|
# * GSL::Sf::hyperg_U_int_e10_e(m, n, x)
|
1151
1151
|
#
|
1152
|
-
# Computes the confluent hypergeometric function U(m,n,x)
|
1153
|
-
# for integer parameters <tt>m, n</tt> using the <tt>GSL::Sf::Result_e10</tt>
|
1152
|
+
# Computes the confluent hypergeometric function U(m,n,x)
|
1153
|
+
# for integer parameters <tt>m, n</tt> using the <tt>GSL::Sf::Result_e10</tt>
|
1154
1154
|
# type to return a result with extended range.
|
1155
1155
|
# ---
|
1156
1156
|
# * GSL::Sf::hyperg_U(a, b, x)
|
@@ -1159,60 +1159,60 @@
|
|
1159
1159
|
# ---
|
1160
1160
|
# * GSL::Sf::hyperg_U_e10_e(a, b, x)
|
1161
1161
|
#
|
1162
|
-
# Computes the confluent hypergeometric function U(a,b,x)
|
1162
|
+
# Computes the confluent hypergeometric function U(a,b,x)
|
1163
1163
|
# using the <tt>GSL::Sf::Result_e10</tt> type to return a result with extended range.
|
1164
1164
|
# ---
|
1165
1165
|
# * GSL::Sf::hyperg_2F1(a, b, c, x)
|
1166
1166
|
# * GSL::Sf::hyperg_2F1_e(a, b, c, x)
|
1167
1167
|
#
|
1168
1168
|
# These methods compute the Gauss hypergeometric function 2F1(a,b,c,x) for |x| < 1.
|
1169
|
-
# If the arguments (a,b,c,x) are too close to a singularity then the
|
1170
|
-
# function can return the error code <tt>GSL::EMAXITER</tt> when the series
|
1171
|
-
# approximation converges too slowly. This occurs in the region of
|
1169
|
+
# If the arguments (a,b,c,x) are too close to a singularity then the
|
1170
|
+
# function can return the error code <tt>GSL::EMAXITER</tt> when the series
|
1171
|
+
# approximation converges too slowly. This occurs in the region of
|
1172
1172
|
# x=1, c - a - b = m for integer m.
|
1173
1173
|
# ---
|
1174
1174
|
# * GSL::Sf::hyperg_2F1_conj(aR, aI, c, x)
|
1175
1175
|
#
|
1176
|
-
# Computes the Gauss hypergeometric function 2F1(a_R + i a_I, a_R - i a_I, c, x)
|
1177
|
-
# with complex parameters for |x| < 1.
|
1176
|
+
# Computes the Gauss hypergeometric function 2F1(a_R + i a_I, a_R - i a_I, c, x)
|
1177
|
+
# with complex parameters for |x| < 1.
|
1178
1178
|
# ---
|
1179
1179
|
# * GSL::Sf::hyperg_2F1_renorm(a, b, c, x)
|
1180
1180
|
#
|
1181
|
-
# Computes the renormalized Gauss hypergeometric function
|
1181
|
+
# Computes the renormalized Gauss hypergeometric function
|
1182
1182
|
# 2F1(a,b,c,x) / Gamma(c) for |x| < 1.
|
1183
1183
|
# ---
|
1184
1184
|
# * GSL::Sf::hyperg_2F1_renorm(aR, aI, c, x)
|
1185
1185
|
#
|
1186
|
-
# Computes the renormalized Gauss hypergeometric function
|
1186
|
+
# Computes the renormalized Gauss hypergeometric function
|
1187
1187
|
# 2F1(a_R + i a_I, a_R - i a_I, c, x) / Gamma(c) for |x| < 1.
|
1188
1188
|
# ---
|
1189
1189
|
# * GSL::Sf::hyperg_2F0(a, b, x)
|
1190
1190
|
#
|
1191
|
-
# Computes the hypergeometric function 2F0(a,b,x).
|
1192
|
-
# The series representation is a divergent hypergeometric series.
|
1191
|
+
# Computes the hypergeometric function 2F0(a,b,x).
|
1192
|
+
# The series representation is a divergent hypergeometric series.
|
1193
1193
|
# However, for x < 0 we have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x).
|
1194
1194
|
#
|
1195
|
-
# ==
|
1196
|
-
# The Laguerre polynomials are defined in terms of confluent hypergeometric
|
1195
|
+
# == Laguerre Functions
|
1196
|
+
# The Laguerre polynomials are defined in terms of confluent hypergeometric
|
1197
1197
|
# functions as L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x).
|
1198
1198
|
# ---
|
1199
1199
|
# * GSL::Sf::laguerre_1(a, x)
|
1200
1200
|
# * GSL::Sf::laguerre_2(a, x)
|
1201
1201
|
# * GSL::Sf::laguerre_3(a, x)
|
1202
1202
|
#
|
1203
|
-
# These methods evaluate the generalized Laguerre polynomials
|
1203
|
+
# These methods evaluate the generalized Laguerre polynomials
|
1204
1204
|
# L^a_1(x), L^a_2(x), L^a_3(x) using explicit representations.
|
1205
1205
|
# ---
|
1206
1206
|
# * GSL::Sf::laguerre_n(n, a, x)
|
1207
1207
|
#
|
1208
1208
|
# This evaluates the generalized Laguerre polynomials L^a_n(x) for a > -1, n >= 0.
|
1209
1209
|
#
|
1210
|
-
# ==
|
1211
|
-
# Lambert's W functions, W(x), are defined to be solutions of the equation
|
1212
|
-
# W(x) exp(W(x)) = x. This function has multiple branches for x < 0;
|
1213
|
-
# however, it has only two real-valued branches.
|
1214
|
-
# We define W_0(x) to be the principal branch,
|
1215
|
-
# where W > -1 for x < 0, and W_{-1}(x) to be the other real branch, where W < -1 for x < 0.
|
1210
|
+
# == Lambert W Functions
|
1211
|
+
# Lambert's W functions, W(x), are defined to be solutions of the equation
|
1212
|
+
# W(x) exp(W(x)) = x. This function has multiple branches for x < 0;
|
1213
|
+
# however, it has only two real-valued branches.
|
1214
|
+
# We define W_0(x) to be the principal branch,
|
1215
|
+
# where W > -1 for x < 0, and W_{-1}(x) to be the other real branch, where W < -1 for x < 0.
|
1216
1216
|
#
|
1217
1217
|
# ---
|
1218
1218
|
# * GSL::Sf::lambert_W0(x)
|
@@ -1223,24 +1223,24 @@
|
|
1223
1223
|
#
|
1224
1224
|
# This computes the secondary real-valued branch of the Lambert W function, W_{-1}(x).
|
1225
1225
|
#
|
1226
|
-
# ==
|
1227
|
-
# ===
|
1226
|
+
# == Legendre Functions and Spherical Harmonics
|
1227
|
+
# === Legendre Polynomials
|
1228
1228
|
# ---
|
1229
1229
|
# * GSL::Sf::legendre_P1(x)
|
1230
1230
|
# * GSL::Sf::legendre_P2(x)
|
1231
1231
|
# * GSL::Sf::legendre_P3(x)
|
1232
1232
|
#
|
1233
|
-
# These methods evaluate the Legendre polynomials P_l(x) using explicit
|
1233
|
+
# These methods evaluate the Legendre polynomials P_l(x) using explicit
|
1234
1234
|
# representations for l=1, 2, 3.
|
1235
1235
|
# ---
|
1236
1236
|
# * GSL::Sf::legendre_Pl(l, x)
|
1237
1237
|
#
|
1238
|
-
# This evaluates the Legendre polynomial P_l(x) for a specific value of <tt>l, x</tt>,
|
1238
|
+
# This evaluates the Legendre polynomial P_l(x) for a specific value of <tt>l, x</tt>,
|
1239
1239
|
# subject to l >= 0, |x| <= 1.
|
1240
1240
|
# ---
|
1241
1241
|
# * GSL::Sf::legendre_Pl_array(lmax, x)
|
1242
1242
|
#
|
1243
|
-
# This function computes Legendre polynomials P_l(x) for l = 0, ..., lmax,
|
1243
|
+
# This function computes Legendre polynomials P_l(x) for l = 0, ..., lmax,
|
1244
1244
|
# and returns the result as a <tt>GSL::Vector</tt> object.
|
1245
1245
|
# ---
|
1246
1246
|
# * GSL::Sf::legendre_Q0(x)
|
@@ -1255,62 +1255,62 @@
|
|
1255
1255
|
#
|
1256
1256
|
# This computes the Legendre function Q_l(x) for x > -1, x != 1 and l >= 0.
|
1257
1257
|
#
|
1258
|
-
# ===
|
1259
|
-
# The following functions compute the associated Legendre Polynomials P_l^m(x).
|
1260
|
-
# Note that this function grows combinatorially with <tt>l</tt> and can overflow for
|
1261
|
-
# <tt>l</tt> larger than about 150. There is no trouble for small <tt>m</tt>,
|
1262
|
-
# but overflow occurs when <tt>m</tt> and <tt>l</tt> are both large.
|
1263
|
-
# Rather than allow overflows, these functions refuse to calculate P_l^m(x)
|
1258
|
+
# === Associated Legendre Polynomials and Spherical Harmonics
|
1259
|
+
# The following functions compute the associated Legendre Polynomials P_l^m(x).
|
1260
|
+
# Note that this function grows combinatorially with <tt>l</tt> and can overflow for
|
1261
|
+
# <tt>l</tt> larger than about 150. There is no trouble for small <tt>m</tt>,
|
1262
|
+
# but overflow occurs when <tt>m</tt> and <tt>l</tt> are both large.
|
1263
|
+
# Rather than allow overflows, these functions refuse to calculate P_l^m(x)
|
1264
1264
|
# and return <tt>GSL::EOVRFLW</tt> when they can sense that <tt>l</tt> and <tt>m</tt> are too big.
|
1265
|
-
# If you want to calculate a spherical harmonic, then do not use these functions.
|
1266
|
-
# Instead use <tt>GSL::Sf::legendre_sphPlm()</tt> below,
|
1265
|
+
# If you want to calculate a spherical harmonic, then do not use these functions.
|
1266
|
+
# Instead use <tt>GSL::Sf::legendre_sphPlm()</tt> below,
|
1267
1267
|
# which uses a similar recursion, but with the normalized functions.
|
1268
1268
|
#
|
1269
1269
|
# ---
|
1270
1270
|
# * GSL::Sf::legendre_Plm(l, m, x)
|
1271
1271
|
# * GSL::Sf::legendre_Plm_e(l, m, x)
|
1272
1272
|
#
|
1273
|
-
# These methods compute the associated Legendre polynomial
|
1273
|
+
# These methods compute the associated Legendre polynomial
|
1274
1274
|
# P_l^m(x) for m >= 0, l >= m, |x| <= 1.
|
1275
1275
|
# ---
|
1276
1276
|
# * GSL::Sf::legendre_Plm_array(lmax, m, x)
|
1277
1277
|
#
|
1278
|
-
# This method computes Legendre polynomials P_l^m(x) for m >= 0, l = |m|, ..., lmax,
|
1278
|
+
# This method computes Legendre polynomials P_l^m(x) for m >= 0, l = |m|, ..., lmax,
|
1279
1279
|
# |x| <= 1, and returns the result as a <tt>GSL::Vector</tt> object.
|
1280
1280
|
# ---
|
1281
1281
|
# * GSL::Sf::legendre_sphPlm(l, m, x)
|
1282
1282
|
# * GSL::Sf::legendre_sphPlm_e(l, m, x)
|
1283
1283
|
#
|
1284
|
-
# These methods compute the normalized associated Legendre polynomial
|
1285
|
-
# sqrt{(2l+1)/(4pi)} sqrt{(l-m)!/(l+m)!} P_l^m(x)
|
1286
|
-
# suitable for use in spherical harmonics. The parameters must satisfy
|
1287
|
-
# m >= 0, l >= m, |x| <= 1. Theses routines avoid the overflows that
|
1284
|
+
# These methods compute the normalized associated Legendre polynomial
|
1285
|
+
# sqrt{(2l+1)/(4pi)} sqrt{(l-m)!/(l+m)!} P_l^m(x)
|
1286
|
+
# suitable for use in spherical harmonics. The parameters must satisfy
|
1287
|
+
# m >= 0, l >= m, |x| <= 1. Theses routines avoid the overflows that
|
1288
1288
|
# occur for the standard normalization of P_l^m(x).
|
1289
1289
|
# ---
|
1290
1290
|
# * GSL::Sf::legendre_sphPlm_array(lmax, m, x)
|
1291
1291
|
#
|
1292
|
-
# This method computes an array of normalized associated Legendre functions
|
1293
|
-
# sqrt{(2l+1)/(4pi)} sqrt{(l-m)!/(l+m)!} P_l^m(x)$ for m >= 0, l = |m|, ..., lmax,
|
1292
|
+
# This method computes an array of normalized associated Legendre functions
|
1293
|
+
# sqrt{(2l+1)/(4pi)} sqrt{(l-m)!/(l+m)!} P_l^m(x)$ for m >= 0, l = |m|, ..., lmax,
|
1294
1294
|
# |x| <= 1.0, and returns the result as a <tt>GSL::Vector</tt> object.
|
1295
1295
|
# ---
|
1296
1296
|
# * GSL::Sf::legendre_array_size(lmax, m)
|
1297
1297
|
#
|
1298
|
-
# This returns the size of resulting array needed for the array versions
|
1298
|
+
# This returns the size of resulting array needed for the array versions
|
1299
1299
|
# of P_l^m(x), lmax - m + 1.
|
1300
1300
|
#
|
1301
|
-
# ===
|
1302
|
-
# The Conical Functions P^mu_{-(1/2)+i lambda}(x), Q^mu_{-(1/2)+i lambda}
|
1301
|
+
# === Conical Functions
|
1302
|
+
# The Conical Functions P^mu_{-(1/2)+i lambda}(x), Q^mu_{-(1/2)+i lambda}
|
1303
1303
|
# are described in Abramowitz & Stegun, Section 8.12.
|
1304
1304
|
#
|
1305
1305
|
# ---
|
1306
1306
|
# * GSL::Sf::conicalP_half(lambda, x)
|
1307
1307
|
#
|
1308
|
-
# Computes the irregular Spherical Conical Function
|
1308
|
+
# Computes the irregular Spherical Conical Function
|
1309
1309
|
# P^{1/2}_{-1/2 + i lambda}(x) for x > -1.
|
1310
1310
|
# ---
|
1311
1311
|
# * GSL::Sf::conicalP_mhalf(lambda, x)
|
1312
1312
|
#
|
1313
|
-
# Computes the regular Spherical Conical Function
|
1313
|
+
# Computes the regular Spherical Conical Function
|
1314
1314
|
# P^{-1/2}_{-1/2 + i lambda}(x) for x > -1.
|
1315
1315
|
# ---
|
1316
1316
|
# * GSL::Sf::conicalP_0(lambda, x)
|
@@ -1321,7 +1321,7 @@
|
|
1321
1321
|
# ---
|
1322
1322
|
# * GSL::Sf::conicalP_sph_reg(l, lambda, x)
|
1323
1323
|
#
|
1324
|
-
# Computes the Regular Spherical Conical Function
|
1324
|
+
# Computes the Regular Spherical Conical Function
|
1325
1325
|
# P^{-1/2-l}_{-1/2 + i lambda}(x) for x > -1, l >= -1.
|
1326
1326
|
# ---
|
1327
1327
|
# * GSL::Sf::conicalP_cyc_reg(m, lambda, x)
|
@@ -1329,29 +1329,29 @@
|
|
1329
1329
|
# Computes the Regular Cylindrical Conical Function
|
1330
1330
|
# P^{-m}_{-1/2 + i lambda}(x) for x > -1, m >= -1.
|
1331
1331
|
#
|
1332
|
-
# ===
|
1333
|
-
# The following spherical functions are specializations of Legendre functions which
|
1334
|
-
# give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space
|
1332
|
+
# === Radial Functions for Hyperbolic Space
|
1333
|
+
# The following spherical functions are specializations of Legendre functions which
|
1334
|
+
# give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space
|
1335
1335
|
# H3d. Of particular interest is the flat limit, lambda to infty, eta to 0, lambda eta fixed.
|
1336
1336
|
# ---
|
1337
1337
|
# * GSL::Sf::legendre_H3d_0(lambda, eta)
|
1338
1338
|
#
|
1339
|
-
# Computes the zeroth radial eigenfunction of the Laplacian on the 3-dimensional
|
1340
|
-
# hyperbolic space, L^{H3d}_0(lambda,eta) := sin(lambda eta)/(lambda sinh(eta))
|
1341
|
-
# for eta >= 0. In the flat limit this takes the form
|
1339
|
+
# Computes the zeroth radial eigenfunction of the Laplacian on the 3-dimensional
|
1340
|
+
# hyperbolic space, L^{H3d}_0(lambda,eta) := sin(lambda eta)/(lambda sinh(eta))
|
1341
|
+
# for eta >= 0. In the flat limit this takes the form
|
1342
1342
|
# L^{H3d}_0(lambda, eta) = j_0( lambda eta).
|
1343
1343
|
# ---
|
1344
1344
|
# * GSL::Sf::legendre_H3d_1(lambda, eta)
|
1345
1345
|
#
|
1346
|
-
# Computes the first radial eigenfunction of the Laplacian on the 3-dimensional
|
1347
|
-
# hyperbolic space,
|
1348
|
-
# L^{H3d}_1(lambda, eta) := 1/sqrt{lambda^2 + 1} sin(lambda eta)/(lambda sinh(eta)) (coth(eta) - lambda cot(lambda eta)) for eta >= 0.
|
1346
|
+
# Computes the first radial eigenfunction of the Laplacian on the 3-dimensional
|
1347
|
+
# hyperbolic space,
|
1348
|
+
# L^{H3d}_1(lambda, eta) := 1/sqrt{lambda^2 + 1} sin(lambda eta)/(lambda sinh(eta)) (coth(eta) - lambda cot(lambda eta)) for eta >= 0.
|
1349
1349
|
# In the flat limit this takes the form L^{H3d}_1(lambda, eta) = j_1( lambda eta).
|
1350
1350
|
# ---
|
1351
1351
|
# * GSL::Sf::legendre_H3d(l, lambda, eta)
|
1352
1352
|
#
|
1353
|
-
# Computes the <tt>l</tt>-th radial eigenfunction of the Laplacian on the
|
1354
|
-
# 3-dimensional hyperbolic space eta >= 0, l >= 0.
|
1353
|
+
# Computes the <tt>l</tt>-th radial eigenfunction of the Laplacian on the
|
1354
|
+
# 3-dimensional hyperbolic space eta >= 0, l >= 0.
|
1355
1355
|
# In the flat limit this takes the form L^{H3d}_l(lambda, eta) = j_l(lambda eta).
|
1356
1356
|
# ---
|
1357
1357
|
# * GSL::Sf::legendre_H3d_array(lmax, lambda, eta)
|
@@ -1359,7 +1359,7 @@
|
|
1359
1359
|
# This method computes radial eigenfunctions L^{H3d}_l(lambda, eta) for 0 <= l <= lmax,
|
1360
1360
|
# and returns the result as a <tt>GSL::Vector</tt> object.
|
1361
1361
|
#
|
1362
|
-
# ==
|
1362
|
+
# == Logarithm and Related Functions
|
1363
1363
|
# ---
|
1364
1364
|
# * GSL::Sf::log(x)
|
1365
1365
|
#
|
@@ -1372,8 +1372,8 @@
|
|
1372
1372
|
# * GSL::Sf::complex_log_e(zr, zi)
|
1373
1373
|
# * GSL::Sf::complex_log_e(z)
|
1374
1374
|
#
|
1375
|
-
# This method computes the complex logarithm of z = z_r + i z_i.
|
1376
|
-
# The results are returned as an array <tt>[lnr, theta]</tt> such that
|
1375
|
+
# This method computes the complex logarithm of z = z_r + i z_i.
|
1376
|
+
# The results are returned as an array <tt>[lnr, theta]</tt> such that
|
1377
1377
|
# exp(lnr + i theta) = z_r + i z_i, where theta lies in the range [-pi, pi].
|
1378
1378
|
# ---
|
1379
1379
|
# * GSL::Sf::log_1plusx(x)
|
@@ -1384,28 +1384,28 @@
|
|
1384
1384
|
#
|
1385
1385
|
# Computes log(1 + x) - x for x > -1 using an algorithm that is accurate for small x.
|
1386
1386
|
#
|
1387
|
-
# ==
|
1388
|
-
# The methods described in this section compute the angular and radial Mathieu functions, and their characteristic values. Mathieu functions are the solutions of the following two differential equations: The angular Mathieu functions ce_r(x,q), se_r(x,q) are the even and odd periodic solutions of the first equation, which is known as Mathieu's equation. These exist only for the discrete sequence of characteristic values a=a_r(q) (even-periodic) and a=b_r(q) (odd-periodic).
|
1387
|
+
# == Mathieu functions
|
1388
|
+
# The methods described in this section compute the angular and radial Mathieu functions, and their characteristic values. Mathieu functions are the solutions of the following two differential equations: The angular Mathieu functions ce_r(x,q), se_r(x,q) are the even and odd periodic solutions of the first equation, which is known as Mathieu's equation. These exist only for the discrete sequence of characteristic values a=a_r(q) (even-periodic) and a=b_r(q) (odd-periodic).
|
1389
1389
|
#
|
1390
|
-
# The radial Mathieu functions Mc^{(j)}_{r}(z,q), Ms^{(j)}_{r}(z,q) are the solutions of the second equation, which is referred to as Mathieu's modified equation. The radial Mathieu functions of the first, second, third and fourth kind are denoted by the parameter <tt>j</tt>, which takes the value 1, 2, 3 or 4.
|
1390
|
+
# The radial Mathieu functions Mc^{(j)}_{r}(z,q), Ms^{(j)}_{r}(z,q) are the solutions of the second equation, which is referred to as Mathieu's modified equation. The radial Mathieu functions of the first, second, third and fourth kind are denoted by the parameter <tt>j</tt>, which takes the value 1, 2, 3 or 4.
|
1391
1391
|
#
|
1392
|
-
# For more information on the Mathieu functions, see Abramowitz and Stegun, Chapter 20.
|
1392
|
+
# For more information on the Mathieu functions, see Abramowitz and Stegun, Chapter 20.
|
1393
1393
|
#
|
1394
|
-
# ===
|
1394
|
+
# === Mathieu Function Workspace
|
1395
1395
|
# The Mathieu functions can be computed for a single order or for multiple orders, using array-based routines.
|
1396
1396
|
# ---
|
1397
1397
|
# * GSL::Sf::Mathieu.alloc(n, qmax)
|
1398
1398
|
#
|
1399
|
-
# This method returns a workspace for the array versions of the Mathieu routines. The arguments <tt>n</tt> and <tt>qmax</tt> specify the maximum order and q-value of Mathieu functions which can be computed with this workspace.
|
1399
|
+
# This method returns a workspace for the array versions of the Mathieu routines. The arguments <tt>n</tt> and <tt>qmax</tt> specify the maximum order and q-value of Mathieu functions which can be computed with this workspace.
|
1400
1400
|
#
|
1401
|
-
# ===
|
1401
|
+
# === Mathieu Function Characteristic Values
|
1402
1402
|
# ---
|
1403
1403
|
# * GSL::Sf::mathieu_a(n, q)
|
1404
1404
|
# * GSL::Sf::mathieu_a_e(n, q)
|
1405
1405
|
# * GSL::Sf::mathieu_b(n, q)
|
1406
1406
|
# * GSL::Sf::mathieu_b_e(n, q)
|
1407
1407
|
#
|
1408
|
-
# These methodss compute the characteristic values a_n(q), b_n(q) of the Mathieu functions ce_n(q,x) and se_n(q,x), respectively.
|
1408
|
+
# These methodss compute the characteristic values a_n(q), b_n(q) of the Mathieu functions ce_n(q,x) and se_n(q,x), respectively.
|
1409
1409
|
#
|
1410
1410
|
# ---
|
1411
1411
|
# * GSL::Sf::mathieu_a_array(nmin, nmax, q, work)
|
@@ -1413,31 +1413,31 @@
|
|
1413
1413
|
#
|
1414
1414
|
# These methods compute a series of Mathieu characteristic values a_n(q), b_n(q) for n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and return the results as a <tt>GSL::Vector</tt> object.
|
1415
1415
|
#
|
1416
|
-
# ===
|
1416
|
+
# === Angular Mathieu Functions
|
1417
1417
|
# ---
|
1418
1418
|
# * GSL::Sf::mathieu_ce(n, q, x)
|
1419
1419
|
# * GSL::Sf::mathieu_ce_e(n, q, x)
|
1420
1420
|
# * GSL::Sf::mathieu_se(n, q, x)
|
1421
1421
|
# * GSL::Sf::mathieu_se_e(n, q, x)
|
1422
1422
|
#
|
1423
|
-
# These methods compute the angular Mathieu functions ce_n(q,x) and se_n(q,x), respectively.
|
1423
|
+
# These methods compute the angular Mathieu functions ce_n(q,x) and se_n(q,x), respectively.
|
1424
1424
|
#
|
1425
1425
|
# ---
|
1426
1426
|
# * GSL::Sf::mathieu_ce_array(nmin, nmax, q, x, work)
|
1427
1427
|
# * GSL::Sf::mathieu_se_array(nmin, nmax, q, x, work)
|
1428
1428
|
#
|
1429
1429
|
# These methods compute a series of the angular Mathieu functions ce_n(q,x) and se_n(q,x) of order n from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and return the results as a <tt>GSL::Vector</tt> object.
|
1430
|
-
#
|
1431
|
-
# ===
|
1430
|
+
#
|
1431
|
+
# === Radial Mathieu Functions
|
1432
1432
|
# ---
|
1433
1433
|
# * GSL::Sf::mathieu_Mc(j, n, q, x)
|
1434
1434
|
# * GSL::Sf::mathieu_Mc_e(j, n, q, x)
|
1435
1435
|
# * GSL::Sf::mathieu_Ms(j, n, q, x)
|
1436
1436
|
# * GSL::Sf::mathieu_Ms_e(j, n, q, x)
|
1437
1437
|
#
|
1438
|
-
# These methods compute the radial <tt>j</tt>-th kind Mathieu functions Mc_n^{(j)}(q,x) and Ms_n^{(j)}(q,x) of order <tt>n</tt>.
|
1438
|
+
# These methods compute the radial <tt>j</tt>-th kind Mathieu functions Mc_n^{(j)}(q,x) and Ms_n^{(j)}(q,x) of order <tt>n</tt>.
|
1439
1439
|
#
|
1440
|
-
# The allowed values of <tt>j</tt> are 1 and 2. The functions for <tt>j = 3,4</tt> can be computed as M_n^{(3)} = M_n^{(1)} + iM_n^{(2)} and M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}, where M_n^{(j)} = Mc_n^{(j)} or Ms_n^{(j)}.
|
1440
|
+
# The allowed values of <tt>j</tt> are 1 and 2. The functions for <tt>j = 3,4</tt> can be computed as M_n^{(3)} = M_n^{(1)} + iM_n^{(2)} and M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}, where M_n^{(j)} = Mc_n^{(j)} or Ms_n^{(j)}.
|
1441
1441
|
#
|
1442
1442
|
# ---
|
1443
1443
|
# * GSL::Sf::mathieu_Mc_array(j, nmin, nmax, q, x, work)
|
@@ -1445,26 +1445,26 @@
|
|
1445
1445
|
#
|
1446
1446
|
# These methods compute a series of the radial Mathieu functions of kind <tt>j</tt>, with order from <tt>nmin</tt> to <tt>nmax</tt> inclusive, and return the results as a <tt>GSL::Vector</tt> object.
|
1447
1447
|
#
|
1448
|
-
# ==
|
1448
|
+
# == Power Functions
|
1449
1449
|
# ---
|
1450
1450
|
# * GSL::Sf::pow_int(x, n)
|
1451
1451
|
# * GSL::Sf::pow_int_e(x, n)
|
1452
1452
|
#
|
1453
|
-
# These methods compute the power x^n for integer n. The power is computed using
|
1454
|
-
# the minimum number of multiplications. For example, x^8 is computed as
|
1455
|
-
# ((x^2)^2)^2, requiring only 3 multiplications. For reasons of efficiency,
|
1453
|
+
# These methods compute the power x^n for integer n. The power is computed using
|
1454
|
+
# the minimum number of multiplications. For example, x^8 is computed as
|
1455
|
+
# ((x^2)^2)^2, requiring only 3 multiplications. For reasons of efficiency,
|
1456
1456
|
# these functions do not check for overflow or underflow conditions.
|
1457
1457
|
#
|
1458
|
-
# ==
|
1459
|
-
# The polygamma functions of order <tt>m</tt> defined by
|
1460
|
-
# psi^{(m)}(x) = (d/dx)^m psi(x) = (d/dx)^{m+1} log(Gamma(x)),
|
1458
|
+
# == Psi (Digamma) Function
|
1459
|
+
# The polygamma functions of order <tt>m</tt> defined by
|
1460
|
+
# psi^{(m)}(x) = (d/dx)^m psi(x) = (d/dx)^{m+1} log(Gamma(x)),
|
1461
1461
|
# where psi(x) = Gamma'(x)/Gamma(x) is known as the digamma function.
|
1462
1462
|
#
|
1463
|
-
# ===
|
1463
|
+
# === Digamma Function
|
1464
1464
|
# ---
|
1465
1465
|
# * GSL::Sf::psi_int(n)
|
1466
1466
|
#
|
1467
|
-
# Computes the digamma function psi(n) for positive integer <tt>n</tt>.
|
1467
|
+
# Computes the digamma function psi(n) for positive integer <tt>n</tt>.
|
1468
1468
|
# The digamma function is also called the Psi function.
|
1469
1469
|
# ---
|
1470
1470
|
# * GSL::Sf::psi(x)
|
@@ -1475,7 +1475,7 @@
|
|
1475
1475
|
#
|
1476
1476
|
# Computes the real part of the digamma function on the line 1+i y, Re[psi(1 + i y)].
|
1477
1477
|
#
|
1478
|
-
# ===
|
1478
|
+
# === Trigamma Function
|
1479
1479
|
# ---
|
1480
1480
|
# * GSL::Sf::psi_1_int(n)
|
1481
1481
|
#
|
@@ -1485,13 +1485,13 @@
|
|
1485
1485
|
#
|
1486
1486
|
# Computes the Trigamma function psi'(x) for general <tt>x</tt>.
|
1487
1487
|
#
|
1488
|
-
# ===
|
1488
|
+
# === Polygamma Function
|
1489
1489
|
# ---
|
1490
1490
|
# * GSL::Sf::psi_n(m, x)
|
1491
1491
|
#
|
1492
1492
|
# Computes the polygamma function psi^{(m)}(x) for m >= 0, x > 0.
|
1493
1493
|
#
|
1494
|
-
# ==
|
1494
|
+
# == Synchrotron Functions
|
1495
1495
|
# ---
|
1496
1496
|
# * GSL::Sf::synchrotron_1(x)
|
1497
1497
|
#
|
@@ -1502,8 +1502,8 @@
|
|
1502
1502
|
#
|
1503
1503
|
# Computes the second synchrotron function x K_{2/3}(x) for x >= 0.
|
1504
1504
|
#
|
1505
|
-
# ==
|
1506
|
-
# The transport functions J(n,x) are defined by the integral representations
|
1505
|
+
# == Transport Functions
|
1506
|
+
# The transport functions J(n,x) are defined by the integral representations
|
1507
1507
|
# J(n,x) := int_0^x dt t^n e^t /(e^t - 1)^2.
|
1508
1508
|
#
|
1509
1509
|
# ---
|
@@ -1514,8 +1514,8 @@
|
|
1514
1514
|
#
|
1515
1515
|
# These methods compute the transport function J(n, x), for n = 2, 3, 4, and 5.
|
1516
1516
|
#
|
1517
|
-
# ==
|
1518
|
-
# ===
|
1517
|
+
# == Trigonometric Functions
|
1518
|
+
# === Circular Trigonometric Functions
|
1519
1519
|
# ---
|
1520
1520
|
# * GSL::Sf::sin(x)
|
1521
1521
|
# * GSL::Sf::cos(x)
|
@@ -1527,7 +1527,7 @@
|
|
1527
1527
|
#
|
1528
1528
|
# sinc(x) = sin(pi x) / (pi x)
|
1529
1529
|
#
|
1530
|
-
# ===
|
1530
|
+
# === Trigonometric Functions for Complex Arguments
|
1531
1531
|
# ---
|
1532
1532
|
# * GSL::Sf::complex_sin_e(zr, zi)
|
1533
1533
|
# * GSL::Sf::complex_sin_e(z)
|
@@ -1537,19 +1537,19 @@
|
|
1537
1537
|
# * GSL::Sf::complex_logsin_e(z)
|
1538
1538
|
#
|
1539
1539
|
#
|
1540
|
-
# ===
|
1540
|
+
# === Hyperbolic Trigonometric Functions
|
1541
1541
|
# ---
|
1542
1542
|
# * GSL::Sf::lnsinh(x)
|
1543
1543
|
# * GSL::Sf::lncosh(x)
|
1544
1544
|
#
|
1545
1545
|
#
|
1546
|
-
# ===
|
1546
|
+
# === Conversion Functions
|
1547
1547
|
# ---
|
1548
1548
|
# * GSL::Sf::polar_to_rect(r, theta)
|
1549
1549
|
# * GSL::Sf::rect_to_polar(x, y)
|
1550
1550
|
#
|
1551
1551
|
#
|
1552
|
-
# ===
|
1552
|
+
# === Restriction Functions
|
1553
1553
|
# ---
|
1554
1554
|
# * GSL::Sf::angle_restrict_symm(theta)
|
1555
1555
|
#
|
@@ -1559,21 +1559,21 @@
|
|
1559
1559
|
#
|
1560
1560
|
# This forces the angle <tt>theta</tt> to lie in the range [0, 2pi).
|
1561
1561
|
#
|
1562
|
-
# ===
|
1562
|
+
# === Trigonometric Functions With Error Estimates
|
1563
1563
|
# ---
|
1564
1564
|
# * GSL::Sf::sin_err(x, dx)
|
1565
1565
|
#
|
1566
|
-
# Computes the sine of an angle <tt>x</tt> with an associated absolute error <tt>dx</tt>,
|
1566
|
+
# Computes the sine of an angle <tt>x</tt> with an associated absolute error <tt>dx</tt>,
|
1567
1567
|
# sin(x +- dx).
|
1568
1568
|
# ---
|
1569
1569
|
# * GSL::Sf::cos_err(x, dx)
|
1570
1570
|
#
|
1571
|
-
# Computes the cosine of an angle <tt>x</tt> with an associated absolute error <tt>dx</tt>,
|
1571
|
+
# Computes the cosine of an angle <tt>x</tt> with an associated absolute error <tt>dx</tt>,
|
1572
1572
|
# cos(x +- dx).
|
1573
1573
|
#
|
1574
|
-
# ==
|
1575
|
-
# ===
|
1576
|
-
# The Riemann zeta function is defined by the infinite sum
|
1574
|
+
# == Zeta Functions
|
1575
|
+
# === Riemann Zeta Function
|
1576
|
+
# The Riemann zeta function is defined by the infinite sum
|
1577
1577
|
# zeta(s) = sum_{k=1}^infty k^{-s}.
|
1578
1578
|
#
|
1579
1579
|
# ---
|
@@ -1585,7 +1585,7 @@
|
|
1585
1585
|
#
|
1586
1586
|
# Computes the Riemann zeta function zeta(s) for arbitrary s, s != 1.
|
1587
1587
|
#
|
1588
|
-
# ===
|
1588
|
+
# === Riemann Zeta Function Minus One
|
1589
1589
|
# ---
|
1590
1590
|
# * GSL::Sf::zetam1_int(n)
|
1591
1591
|
#
|
@@ -1595,14 +1595,14 @@
|
|
1595
1595
|
#
|
1596
1596
|
# Computes zeta(s) - 1 for arbitrary s, s != 1.
|
1597
1597
|
#
|
1598
|
-
# ===
|
1598
|
+
# === Hurwitz Zeta Function
|
1599
1599
|
# The Hurwitz zeta function is defined by zeta(s,q) = sum_0^infty (k+q)^{-s}.
|
1600
1600
|
# ---
|
1601
1601
|
# * GSL::Sf::hzeta(s, q)
|
1602
1602
|
#
|
1603
1603
|
# Computes the Hurwitz zeta function zeta(s,q) for s > 1, q > 0.
|
1604
1604
|
#
|
1605
|
-
# ===
|
1605
|
+
# === Eta Function
|
1606
1606
|
# The eta function is defined by eta(s) = (1-2^{1-s}) zeta(s).
|
1607
1607
|
# ---
|
1608
1608
|
# * GSL::Sf::eta_int(n)
|
@@ -1613,10 +1613,10 @@
|
|
1613
1613
|
#
|
1614
1614
|
# Computes the eta function eta(s) for arbitrary s.
|
1615
1615
|
#
|
1616
|
-
# {prev}[link:
|
1617
|
-
# {next}[link:
|
1616
|
+
# {prev}[link:poly_rdoc.html]
|
1617
|
+
# {next}[link:vector_rdoc.html]
|
1618
1618
|
#
|
1619
|
-
# {Reference index}[link:
|
1619
|
+
# {Reference index}[link:ref_rdoc.html]
|
1620
1620
|
# {top}[link:index.html]
|
1621
1621
|
#
|
1622
1622
|
#
|