rb-gsl 1.16.0.2 → 1.16.0.3.rc1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/diff.rdoc
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
#
|
2
2
|
# = Numerical Differentiation
|
3
|
-
# The functions described in this chapter compute numerical derivatives by
|
4
|
-
# finite differencing. An adaptive algorithm is used to find the best choice
|
5
|
-
# of finite difference and to estimate the error in the derivative.
|
3
|
+
# The functions described in this chapter compute numerical derivatives by
|
4
|
+
# finite differencing. An adaptive algorithm is used to find the best choice
|
5
|
+
# of finite difference and to estimate the error in the derivative.
|
6
6
|
#
|
7
7
|
# Contentes:
|
8
|
-
# 1. {Deriv methods}[link:
|
9
|
-
# 1. {Diff methods}[link:
|
8
|
+
# 1. {Deriv methods}[link:diff_rdoc.html#label-Deriv+methods+%28for+GSL+1.4.90+or+later%29]
|
9
|
+
# 1. {Diff methods}[link:diff_rdoc.html#label-Diff+Methods+%28obsolete%29]
|
10
10
|
#
|
11
|
-
# ==
|
11
|
+
# == Deriv methods (for GSL 1.4.90 or later)
|
12
12
|
# Numerical derivatives should now be calculated using the
|
13
13
|
# <tt>GSL::Deriv.forward, GSL::Deriv.central</tt> and <tt>GSL::Deriv.backward</tt> methods,
|
14
14
|
# which accept a step-size argument in addition to the position x. The
|
@@ -18,78 +18,78 @@
|
|
18
18
|
# * GSL::Deriv.central(f, x, h = 1e-8)
|
19
19
|
# * GSL::Function#deriv_central(x, h = 1e-8)
|
20
20
|
#
|
21
|
-
# These methods compute the numerical derivative of the function <tt>f</tt>
|
22
|
-
# at the point <tt>x</tt> using an adaptive central difference algorithm with a
|
23
|
-
# step-size of <tt>h</tt>. If a scalar <tt>x</tt> is given, the derivative and an
|
21
|
+
# These methods compute the numerical derivative of the function <tt>f</tt>
|
22
|
+
# at the point <tt>x</tt> using an adaptive central difference algorithm with a
|
23
|
+
# step-size of <tt>h</tt>. If a scalar <tt>x</tt> is given, the derivative and an
|
24
24
|
# estimate of its absolute error are returned as an array, [<tt>result, abserr, status</tt>].
|
25
25
|
# If a vector/matrix/array <tt>x</tt> is given, an array of two elements are returned,
|
26
26
|
# [<tt>result, abserr</tt>], here each them is also a vector/matrix/array of the same
|
27
27
|
# dimension of <tt>x</tt>.
|
28
28
|
#
|
29
|
-
# The initial value of <tt>h</tt> is used to estimate an optimal step-size,
|
30
|
-
# based on the scaling of the truncation error and round-off error in the
|
31
|
-
# derivative calculation. The derivative is computed using a 5-point rule for
|
32
|
-
# equally spaced abscissae at x-h, x-h/2, x, x+h/2, x, with an error estimate
|
33
|
-
# taken from the difference between the 5-point rule and the corresponding 3-point
|
34
|
-
# rule x-h, x, x+h. Note that the value of the function at x does not contribute
|
29
|
+
# The initial value of <tt>h</tt> is used to estimate an optimal step-size,
|
30
|
+
# based on the scaling of the truncation error and round-off error in the
|
31
|
+
# derivative calculation. The derivative is computed using a 5-point rule for
|
32
|
+
# equally spaced abscissae at x-h, x-h/2, x, x+h/2, x, with an error estimate
|
33
|
+
# taken from the difference between the 5-point rule and the corresponding 3-point
|
34
|
+
# rule x-h, x, x+h. Note that the value of the function at x does not contribute
|
35
35
|
# to the derivative calculation, so only 4-points are actually used.
|
36
36
|
#
|
37
37
|
# ---
|
38
38
|
# * GSL::Deriv.forward(f, x, h = 1e-8)
|
39
39
|
# * GSL::Function#deriv_forward(x, h = 1e-8)
|
40
40
|
#
|
41
|
-
# These methods compute the numerical derivative of the function <tt>f</tt> at
|
42
|
-
# the point <tt>x</tt> using an adaptive forward difference algorithm with a step-size
|
43
|
-
# of <tt>h</tt>. The function is evaluated only at points greater than <tt>x</tt>,
|
44
|
-
# and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
|
45
|
-
# are returned as an array, [<tt>result, abserr</tt>].
|
46
|
-
# These methods should be used if f(x) has a
|
41
|
+
# These methods compute the numerical derivative of the function <tt>f</tt> at
|
42
|
+
# the point <tt>x</tt> using an adaptive forward difference algorithm with a step-size
|
43
|
+
# of <tt>h</tt>. The function is evaluated only at points greater than <tt>x</tt>,
|
44
|
+
# and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
|
45
|
+
# are returned as an array, [<tt>result, abserr</tt>].
|
46
|
+
# These methods should be used if f(x) has a
|
47
47
|
# discontinuity at <tt>x</tt>, or is undefined for values less than <tt>x</tt>.
|
48
48
|
#
|
49
|
-
# The initial value of <tt>h</tt> is used to estimate an optimal step-size, based on the
|
50
|
-
# scaling of the truncation error and round-off error in the derivative calculation.
|
51
|
-
# The derivative at x is computed using an "open" 4-point rule for equally spaced
|
52
|
-
# abscissae at x+h/4, x+h/2, x+3h/4, x+h, with an error estimate taken from the
|
49
|
+
# The initial value of <tt>h</tt> is used to estimate an optimal step-size, based on the
|
50
|
+
# scaling of the truncation error and round-off error in the derivative calculation.
|
51
|
+
# The derivative at x is computed using an "open" 4-point rule for equally spaced
|
52
|
+
# abscissae at x+h/4, x+h/2, x+3h/4, x+h, with an error estimate taken from the
|
53
53
|
# difference between the 4-point rule and the corresponding 2-point rule x+h/2, x+h.
|
54
54
|
#
|
55
55
|
# ---
|
56
56
|
# * GSL::Deriv.backward(f, x, h)
|
57
57
|
# * GSL::Function#deriv_backward(x, h)
|
58
58
|
#
|
59
|
-
# These methods compute the numerical derivative of the function <tt>f</tt> at the
|
60
|
-
# point <tt>x</tt> using an adaptive backward difference algorithm with a step-size
|
61
|
-
# of <tt>h</tt>. The function is evaluated only at points less than <tt>x</tt>,
|
62
|
-
# and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
|
63
|
-
# are returned as an array, [<tt>result, abserr</tt>].
|
64
|
-
# This function should be used if f(x) has a discontinuity at <tt>x</tt>,
|
59
|
+
# These methods compute the numerical derivative of the function <tt>f</tt> at the
|
60
|
+
# point <tt>x</tt> using an adaptive backward difference algorithm with a step-size
|
61
|
+
# of <tt>h</tt>. The function is evaluated only at points less than <tt>x</tt>,
|
62
|
+
# and never at <tt>x</tt> itself. The derivative and an estimate of its absolute error
|
63
|
+
# are returned as an array, [<tt>result, abserr</tt>].
|
64
|
+
# This function should be used if f(x) has a discontinuity at <tt>x</tt>,
|
65
65
|
# or is undefined for values greater than <tt>x</tt>.
|
66
66
|
#
|
67
|
-
# These methods are equivalent to calling the method <tt>forward</tt>
|
67
|
+
# These methods are equivalent to calling the method <tt>forward</tt>
|
68
68
|
# with a negative step-size.
|
69
69
|
#
|
70
|
-
# ==
|
70
|
+
# == Diff Methods (obsolete)
|
71
71
|
#
|
72
72
|
# ---
|
73
73
|
# * GSL::Diff.central(f, x)
|
74
74
|
# * GSL::Function#diff_central(x)
|
75
75
|
#
|
76
|
-
# These compute the numerical derivative of the function <tt>f</tt> ( {GSL::Function}[link:
|
77
|
-
# using an adaptive central difference algorithm. The result is returned as an array
|
76
|
+
# These compute the numerical derivative of the function <tt>f</tt> ( {GSL::Function}[link:function_rdoc.html] object) at the point <tt>x</tt>
|
77
|
+
# using an adaptive central difference algorithm. The result is returned as an array
|
78
78
|
# which contains the derivative and an estimate of its absolute error.
|
79
79
|
#
|
80
80
|
# ---
|
81
81
|
# * GSL::Diff.forward(f, x)
|
82
82
|
# * GSL::Function#diff_forward(x)
|
83
83
|
#
|
84
|
-
# These compute the numerical derivative of the function at the point x using an adaptive forward difference algorithm.
|
84
|
+
# These compute the numerical derivative of the function at the point x using an adaptive forward difference algorithm.
|
85
85
|
#
|
86
86
|
# ---
|
87
87
|
# * GSL::Diff.backward(f, x)
|
88
88
|
# * GSL::Function#diff_backward(x)
|
89
89
|
#
|
90
|
-
# These compute the numerical derivative of the function at the point x using an adaptive backward difference algorithm.
|
90
|
+
# These compute the numerical derivative of the function at the point x using an adaptive backward difference algorithm.
|
91
91
|
#
|
92
|
-
# ==
|
92
|
+
# == Example
|
93
93
|
#
|
94
94
|
# #!/usr/bin/env ruby
|
95
95
|
# require "gsl"
|
@@ -124,10 +124,10 @@
|
|
124
124
|
# f'(x) = 0.0000000160 +/- 0.0000000339
|
125
125
|
# exact = 0.0000000000
|
126
126
|
#
|
127
|
-
# {prev}[link:
|
128
|
-
# {next}[link:
|
127
|
+
# {prev}[link:interp_rdoc.html]
|
128
|
+
# {next}[link:cheb_rdoc.html]
|
129
129
|
#
|
130
|
-
# {Reference index}[link:
|
130
|
+
# {Reference index}[link:ref_rdoc.html]
|
131
131
|
# {top}[link:index.html]
|
132
132
|
#
|
133
133
|
#
|
data/rdoc/ehandling.rdoc
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
#
|
2
2
|
# = Error Handling
|
3
3
|
#
|
4
|
-
# ==
|
4
|
+
# == Error codes
|
5
5
|
# The GSL routines report an error whenever they cannot perform the task
|
6
6
|
# requested of them. For example, a root-finding function would return a
|
7
7
|
# non-zero error code if could not converge to the requested accuracy,
|
@@ -30,7 +30,7 @@
|
|
30
30
|
# kinds of problems with passing the wrong argument to a library function
|
31
31
|
# (like <tt>EINVAL</tt> in the C library).
|
32
32
|
#
|
33
|
-
# ==
|
33
|
+
# == Error handler
|
34
34
|
# In Ruby/GSL, the default GSL error handler is replaced by an other one which calls
|
35
35
|
# <tt>rb_raise()</tt>. Thus whenever a GSL routine reports a fatal error,
|
36
36
|
# a Ruby Exception is generated.
|
@@ -42,9 +42,9 @@
|
|
42
42
|
# This replaces the Ruby/GSL default error handler by a user-defined handler
|
43
43
|
# given by a Proc object <tt>proc</tt> or a block.
|
44
44
|
#
|
45
|
-
# {prev}[link:
|
46
|
-
# {next}[link:
|
45
|
+
# {prev}[link:use_rdoc.html]
|
46
|
+
# {next}[link:math_rdoc.html]
|
47
47
|
#
|
48
|
-
# {Reference index}[link:
|
48
|
+
# {Reference index}[link:ref_rdoc.html]
|
49
49
|
# {top}[link:index.html]
|
50
50
|
#
|
data/rdoc/eigen.rdoc
CHANGED
@@ -1,16 +1,16 @@
|
|
1
1
|
#
|
2
2
|
# = Eigensystems
|
3
|
-
# ===
|
4
|
-
# 1. {Modules and classes}[link:
|
5
|
-
# 1. {Real Symmetric Matrices}[link:
|
6
|
-
# 1. {Complex Hermitian Matrices}[link:
|
7
|
-
# 1. {Real Nonsymmetric Matrices}[link:
|
8
|
-
# 1. {Real Generalized Symmetric-Definite Eigensystems}[link:
|
9
|
-
# 1. {Complex Generalized Hermitian-Definite Eigensystems}[link:
|
10
|
-
# 1. {Real Generalized Nonsymmetric Eigensystems}[link:
|
11
|
-
# 1. {Sorting Eigenvalues and Eigenvectors }[link:
|
12
|
-
#
|
13
|
-
# ==
|
3
|
+
# === Contentes
|
4
|
+
# 1. {Modules and classes}[link:eigen_rdoc.html#label-Modules+and+classes]
|
5
|
+
# 1. {Real Symmetric Matrices}[link:eigen_rdoc.html#label-Real+Symmetric+Matrices]
|
6
|
+
# 1. {Complex Hermitian Matrices}[link:eigen_rdoc.html#label-Complex+Hermitian+Matrices]
|
7
|
+
# 1. {Real Nonsymmetric Matrices}[link:eigen_rdoc.html#label-Real+Nonsymmetric+Matrices+%28%3E%3D+GSL-1.9%29] (>= GSL-1.9)
|
8
|
+
# 1. {Real Generalized Symmetric-Definite Eigensystems}[link:eigen_rdoc.html#label-Real+Generalized+Symmetric-Definite+Eigensystems+%28GSL-1.10%29] (>= GSL-1.10)
|
9
|
+
# 1. {Complex Generalized Hermitian-Definite Eigensystems}[link:eigen_rdoc.html#label-Complex+Generalized+Hermitian-Definite+Eigensystems+%28%3E%3D+GSL-1.10%29] (>= GSL-1.10)
|
10
|
+
# 1. {Real Generalized Nonsymmetric Eigensystems}[link:eigen_rdoc.html#label-Real+Generalized+Nonsymmetric+Eigensystems+%28%3E%3D+GSL-1.10%29] (>= GSL-1.10)
|
11
|
+
# 1. {Sorting Eigenvalues and Eigenvectors }[link:eigen_rdoc.html#label-Sorting+Eigenvalues+and+Eigenvectors]
|
12
|
+
#
|
13
|
+
# == Modules and classes
|
14
14
|
#
|
15
15
|
# * GSL
|
16
16
|
# * Eigen
|
@@ -42,8 +42,8 @@
|
|
42
42
|
# * Genv (Module, >= GSL-1.10)
|
43
43
|
# * Workspace (Class)
|
44
44
|
#
|
45
|
-
# ==
|
46
|
-
# ===
|
45
|
+
# == Real Symmetric Matrices
|
46
|
+
# === Workspace classes
|
47
47
|
# ---
|
48
48
|
# * GSL::Eigen::Symm::Workspace.alloc(n)
|
49
49
|
# * GSL::Eigen::Symmv::Workspace.alloc(n)
|
@@ -51,24 +51,24 @@
|
|
51
51
|
# * GSL::Eigen::Hermv::Workspace.alloc(n)
|
52
52
|
#
|
53
53
|
#
|
54
|
-
# ===
|
54
|
+
# === Methods to solve eigensystems
|
55
55
|
# ---
|
56
56
|
# * GSL::Eigen::symm(A)
|
57
57
|
# * GSL::Eigen::symm(A, workspace)
|
58
58
|
# * GSL::Matrix#eigen_symm
|
59
59
|
# * GSL::Matrix#eigen_symm(workspace)
|
60
60
|
#
|
61
|
-
# These methods compute the eigenvalues of the real symmetric matrix.
|
61
|
+
# These methods compute the eigenvalues of the real symmetric matrix.
|
62
62
|
# The workspace object <tt>workspace</tt> can be omitted.
|
63
63
|
#
|
64
64
|
# ---
|
65
65
|
# * GSL::Eigen::symmv(A)
|
66
66
|
# * GSL::Matrix#eigen_symmv
|
67
67
|
#
|
68
|
-
# These methods compute the eigenvalues and eigenvectors of the real symmetric
|
68
|
+
# These methods compute the eigenvalues and eigenvectors of the real symmetric
|
69
69
|
# matrix, and return an array of two elements:
|
70
|
-
# The first is a <tt>GSL::Vector</tt> object which stores all the eigenvalues.
|
71
|
-
# The second is a <tt>GSL::Matrix object</tt>, whose columns contain
|
70
|
+
# The first is a <tt>GSL::Vector</tt> object which stores all the eigenvalues.
|
71
|
+
# The second is a <tt>GSL::Matrix object</tt>, whose columns contain
|
72
72
|
# eigenvectors.
|
73
73
|
#
|
74
74
|
# 1. Singleton method of the <tt>GSL::Eigen</tt> module, <tt>GSL::Eigen::symm</tt>
|
@@ -81,14 +81,14 @@
|
|
81
81
|
#
|
82
82
|
# eigval, eigvec = m.eigen_symmv
|
83
83
|
#
|
84
|
-
# ==
|
84
|
+
# == Complex Hermitian Matrices
|
85
85
|
# ---
|
86
86
|
# * GSL::Eigen::herm(A)
|
87
87
|
# * GSL::Eigen::herm(A, workspace)
|
88
88
|
# * GSL::Matrix::Complex#eigen_herm
|
89
89
|
# * GSL::Matrix::Complex#eigen_herm(workspace)
|
90
90
|
#
|
91
|
-
# These methods compute the eigenvalues of the complex hermitian matrix.
|
91
|
+
# These methods compute the eigenvalues of the complex hermitian matrix.
|
92
92
|
#
|
93
93
|
# ---
|
94
94
|
# * GSL::Eigen::hermv(A)
|
@@ -97,38 +97,38 @@
|
|
97
97
|
# * GSL::Matrix::Complex#eigen_hermv(workspace
|
98
98
|
#
|
99
99
|
#
|
100
|
-
# ==
|
100
|
+
# == Real Nonsymmetric Matrices (>= GSL-1.9)
|
101
101
|
#
|
102
102
|
# ---
|
103
103
|
# * GSL::Eigen::Nonsymm.alloc(n)
|
104
104
|
#
|
105
|
-
# This allocates a workspace for computing eigenvalues of n-by-n real
|
105
|
+
# This allocates a workspace for computing eigenvalues of n-by-n real
|
106
106
|
# nonsymmetric matrices. The size of the workspace is O(2n).
|
107
107
|
#
|
108
108
|
# ---
|
109
109
|
# * GSL::Eigen::Nonsymm::params(compute_t, balance, wspace)
|
110
110
|
# * GSL::Eigen::Nonsymm::Workspace#params(compute_t, balance)
|
111
111
|
#
|
112
|
-
# This method sets some parameters which determine how the eigenvalue
|
112
|
+
# This method sets some parameters which determine how the eigenvalue
|
113
113
|
# problem is solved in subsequent calls to <tt>GSL::Eigen::nonsymm</tt>.
|
114
|
-
# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will be
|
115
|
-
# computed by gsl_eigen_nonsymm. If it is set to 0, <tt>T</tt> will not be
|
116
|
-
# computed (this is the default setting).
|
117
|
-
# Computing the full Schur form <tt>T</tt> requires approximately 1.5-2 times
|
114
|
+
# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will be
|
115
|
+
# computed by gsl_eigen_nonsymm. If it is set to 0, <tt>T</tt> will not be
|
116
|
+
# computed (this is the default setting).
|
117
|
+
# Computing the full Schur form <tt>T</tt> requires approximately 1.5-2 times
|
118
118
|
# the number of flops.
|
119
119
|
#
|
120
|
-
# If <tt>balance</tt> is set to 1, a balancing transformation is applied to
|
121
|
-
# the matrix prior to computing eigenvalues. This transformation is designed
|
122
|
-
# to make the rows and columns of the matrix have comparable norms, and can
|
123
|
-
# result in more accurate eigenvalues for matrices whose entries vary widely
|
120
|
+
# If <tt>balance</tt> is set to 1, a balancing transformation is applied to
|
121
|
+
# the matrix prior to computing eigenvalues. This transformation is designed
|
122
|
+
# to make the rows and columns of the matrix have comparable norms, and can
|
123
|
+
# result in more accurate eigenvalues for matrices whose entries vary widely
|
124
124
|
# in magnitude. See section Balancing for more information. Note that the
|
125
|
-
# balancing transformation does not preserve the orthogonality of the Schur
|
126
|
-
# vectors, so if you wish to compute the Schur vectors with
|
127
|
-
# <tt>GSL::Eigen::nonsymm_Z</tt> you will obtain the Schur vectors of the
|
128
|
-
# balanced matrix instead of the original matrix. The relationship will be
|
129
|
-
# where Q is the matrix of Schur vectors for the balanced matrix, and <tt>D</tt>
|
130
|
-
# is the balancing transformation. Then <tt>GSL::Eigen::nonsymm_Z</tt> will
|
131
|
-
# compute a matrix <tt>Z</tt> which satisfies with <tt>Z = D Q</tt>.
|
125
|
+
# balancing transformation does not preserve the orthogonality of the Schur
|
126
|
+
# vectors, so if you wish to compute the Schur vectors with
|
127
|
+
# <tt>GSL::Eigen::nonsymm_Z</tt> you will obtain the Schur vectors of the
|
128
|
+
# balanced matrix instead of the original matrix. The relationship will be
|
129
|
+
# where Q is the matrix of Schur vectors for the balanced matrix, and <tt>D</tt>
|
130
|
+
# is the balancing transformation. Then <tt>GSL::Eigen::nonsymm_Z</tt> will
|
131
|
+
# compute a matrix <tt>Z</tt> which satisfies with <tt>Z = D Q</tt>.
|
132
132
|
# Note that <tt>Z</tt> will not be orthogonal. For this reason, balancing is
|
133
133
|
# not performed by default.
|
134
134
|
#
|
@@ -139,12 +139,12 @@
|
|
139
139
|
# * GSL::Matrix#eigen_nonsymm(wspace)
|
140
140
|
# * GSL::Matrix#eigen_nonsymm(eval, wspace)
|
141
141
|
#
|
142
|
-
# These methods compute the eigenvalues of the real nonsymmetric matrix <tt>m</tt>
|
143
|
-
# and return them, or store in the vector <tt>eval</tt> if it given.
|
144
|
-
# If <tt>T</tt> is desired, it is stored in <tt>m</tt> on output, however the lower
|
145
|
-
# triangular portion will not be zeroed out. Otherwise, on output, the diagonal
|
146
|
-
# of <tt>m</tt> will contain the 1-by-1 real eigenvalues and 2-by-2 complex
|
147
|
-
# conjugate eigenvalue systems, and the rest of <tt>m</tt> is destroyed.
|
142
|
+
# These methods compute the eigenvalues of the real nonsymmetric matrix <tt>m</tt>
|
143
|
+
# and return them, or store in the vector <tt>eval</tt> if it given.
|
144
|
+
# If <tt>T</tt> is desired, it is stored in <tt>m</tt> on output, however the lower
|
145
|
+
# triangular portion will not be zeroed out. Otherwise, on output, the diagonal
|
146
|
+
# of <tt>m</tt> will contain the 1-by-1 real eigenvalues and 2-by-2 complex
|
147
|
+
# conjugate eigenvalue systems, and the rest of <tt>m</tt> is destroyed.
|
148
148
|
#
|
149
149
|
# ---
|
150
150
|
# * GSL::Eigen::nonsymm_Z(m, eval, Z, wspace)
|
@@ -152,13 +152,13 @@
|
|
152
152
|
# * GSL::Matrix#eigen_nonsymm_Z()
|
153
153
|
# * GSL::Matrix#eigen_nonsymm(eval, Z, wspace)
|
154
154
|
#
|
155
|
-
# These methods are identical to <tt>GSL::Eigen::nonsymm</tt> except they also
|
155
|
+
# These methods are identical to <tt>GSL::Eigen::nonsymm</tt> except they also
|
156
156
|
# compute the Schur vectors and return them (or store into <tt>Z</tt>).
|
157
157
|
#
|
158
158
|
# ---
|
159
159
|
# * GSL::Eigen::Nonsymmv.alloc(n)
|
160
160
|
#
|
161
|
-
# Allocates a workspace for computing eigenvalues and eigenvectors
|
161
|
+
# Allocates a workspace for computing eigenvalues and eigenvectors
|
162
162
|
# of n-by-n real nonsymmetric matrices. The size of the workspace is O(5n).
|
163
163
|
# ---
|
164
164
|
# * GSL::Eigen::nonsymm(m)
|
@@ -170,81 +170,81 @@
|
|
170
170
|
# * GSL::Matrix#eigen_nonsymmv(eval, evec)
|
171
171
|
# * GSL::Matrix#eigen_nonsymmv(eval, evec, wspace)
|
172
172
|
#
|
173
|
-
# Compute eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
|
173
|
+
# Compute eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
|
174
174
|
# matrix. The computed eigenvectors are normalized to have Euclidean norm 1.
|
175
|
-
# On output, the upper portion of <tt>m</tt> contains the Schur form <tt>T</tt>.
|
175
|
+
# On output, the upper portion of <tt>m</tt> contains the Schur form <tt>T</tt>.
|
176
176
|
#
|
177
|
-
# ==
|
178
|
-
# The real generalized symmetric-definite eigenvalue problem is to
|
179
|
-
# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
|
180
|
-
# where <tt>A</tt> and <tt>B</tt> are symmetric matrices, and <tt>B</tt>
|
177
|
+
# == Real Generalized Symmetric-Definite Eigensystems (GSL-1.10)
|
178
|
+
# The real generalized symmetric-definite eigenvalue problem is to
|
179
|
+
# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
|
180
|
+
# where <tt>A</tt> and <tt>B</tt> are symmetric matrices, and <tt>B</tt>
|
181
181
|
# is positive-definite. This problem reduces to the standard symmetric eigenvalue
|
182
|
-
# problem by applying the Cholesky decomposition to <tt>B</tt>:
|
183
|
-
# Therefore, the problem becomes <tt>C y = lambda y</tt>
|
184
|
-
# where <tt>C = L^{-1} A L^{-t}</tt> is symmetric, and <tt>y = L^t x</tt>.
|
185
|
-
# The standard symmetric eigensolver can be applied to the matrix <tt>C</tt>.
|
186
|
-
# The resulting eigenvectors are backtransformed to find the vectors of the
|
187
|
-
# original problem. The eigenvalues and eigenvectors of the generalized
|
188
|
-
# symmetric-definite eigenproblem are always real.
|
182
|
+
# problem by applying the Cholesky decomposition to <tt>B</tt>:
|
183
|
+
# Therefore, the problem becomes <tt>C y = lambda y</tt>
|
184
|
+
# where <tt>C = L^{-1} A L^{-t}</tt> is symmetric, and <tt>y = L^t x</tt>.
|
185
|
+
# The standard symmetric eigensolver can be applied to the matrix <tt>C</tt>.
|
186
|
+
# The resulting eigenvectors are backtransformed to find the vectors of the
|
187
|
+
# original problem. The eigenvalues and eigenvectors of the generalized
|
188
|
+
# symmetric-definite eigenproblem are always real.
|
189
189
|
#
|
190
190
|
# ---
|
191
191
|
# * GSL::Eigen::Gensymm.alloc(n)
|
192
192
|
# * GSL::Eigen::Gensymm::Workspace.alloc(n)
|
193
193
|
#
|
194
|
-
# Allocates a workspace for computing eigenvalues of n-by-n real
|
195
|
-
# generalized symmetric-definite eigensystems.
|
196
|
-
# The size of the workspace is O(2n).
|
194
|
+
# Allocates a workspace for computing eigenvalues of n-by-n real
|
195
|
+
# generalized symmetric-definite eigensystems.
|
196
|
+
# The size of the workspace is O(2n).
|
197
197
|
# ---
|
198
198
|
# * GSL::Eigen::gensymm(A, B, w)
|
199
199
|
#
|
200
|
-
# Computes the eigenvalues of the real generalized symmetric-definite matrix
|
201
|
-
# pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
|
200
|
+
# Computes the eigenvalues of the real generalized symmetric-definite matrix
|
201
|
+
# pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
|
202
202
|
# using the method outlined above. On output, B contains its Cholesky
|
203
203
|
# decomposition.
|
204
204
|
# ---
|
205
205
|
# * GSL::Eigen::gensymmv(A, B, w)
|
206
206
|
#
|
207
|
-
# Computes the eigenvalues and eigenvectors of the real generalized
|
208
|
-
# symmetric-definite matrix pair <tt>A, B</tt>, and returns
|
209
|
-
# them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix</tt>.
|
210
|
-
# The computed eigenvectors are normalized to have unit magnitude.
|
207
|
+
# Computes the eigenvalues and eigenvectors of the real generalized
|
208
|
+
# symmetric-definite matrix pair <tt>A, B</tt>, and returns
|
209
|
+
# them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix</tt>.
|
210
|
+
# The computed eigenvectors are normalized to have unit magnitude.
|
211
211
|
# On output, <tt>B</tt> contains its Cholesky decomposition.
|
212
212
|
#
|
213
|
-
# ==
|
214
|
-
# The complex generalized hermitian-definite eigenvalue problem is to
|
215
|
-
# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
|
216
|
-
# where <tt>A</tt> and <tt>B</tt> are hermitian matrices, and <tt>B</tt>
|
217
|
-
# is positive-definite. Similarly to the real case, this can be reduced to
|
218
|
-
# <tt>C y = lambda y</tt> where <tt>C = L^{-1} A L^{-H}</tt> is hermitian,
|
219
|
-
# and <tt>y = L^H x</tt>. The standard hermitian eigensolver can be applied to
|
220
|
-
# the matrix <tt>C</tt>. The resulting eigenvectors are backtransformed
|
221
|
-
# to find the vectors of the original problem.
|
222
|
-
# The eigenvalues of the generalized hermitian-definite eigenproblem are always
|
223
|
-
# real.
|
213
|
+
# == Complex Generalized Hermitian-Definite Eigensystems (>= GSL-1.10)
|
214
|
+
# The complex generalized hermitian-definite eigenvalue problem is to
|
215
|
+
# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
|
216
|
+
# where <tt>A</tt> and <tt>B</tt> are hermitian matrices, and <tt>B</tt>
|
217
|
+
# is positive-definite. Similarly to the real case, this can be reduced to
|
218
|
+
# <tt>C y = lambda y</tt> where <tt>C = L^{-1} A L^{-H}</tt> is hermitian,
|
219
|
+
# and <tt>y = L^H x</tt>. The standard hermitian eigensolver can be applied to
|
220
|
+
# the matrix <tt>C</tt>. The resulting eigenvectors are backtransformed
|
221
|
+
# to find the vectors of the original problem.
|
222
|
+
# The eigenvalues of the generalized hermitian-definite eigenproblem are always
|
223
|
+
# real.
|
224
224
|
#
|
225
225
|
# ---
|
226
226
|
# * GSL::Eigen::Genherm.alloc(n)
|
227
227
|
#
|
228
|
-
# Allocates a workspace for computing eigenvalues of n-by-n complex
|
229
|
-
# generalized hermitian-definite eigensystems.
|
230
|
-
# The size of the workspace is O(3n).
|
228
|
+
# Allocates a workspace for computing eigenvalues of n-by-n complex
|
229
|
+
# generalized hermitian-definite eigensystems.
|
230
|
+
# The size of the workspace is O(3n).
|
231
231
|
# ---
|
232
232
|
# * GSL::Eigen::genherm(A, B, w)
|
233
233
|
#
|
234
|
-
# Computes the eigenvalues of the complex generalized hermitian-definite
|
235
|
-
# matrix pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
|
236
|
-
# using the method outlined above.
|
234
|
+
# Computes the eigenvalues of the complex generalized hermitian-definite
|
235
|
+
# matrix pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
|
236
|
+
# using the method outlined above.
|
237
237
|
# On output, <tt>B</tt> contains its Cholesky decomposition.
|
238
238
|
# ---
|
239
239
|
# * GSL::Eigen::genherm(A, B, w)
|
240
240
|
#
|
241
|
-
# Computes the eigenvalues and eigenvectors of the complex generalized
|
242
|
-
# hermitian-definite matrix pair <tt>A, B</tt>,
|
243
|
-
# and returns them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix::Complex</tt>.
|
244
|
-
# The computed eigenvectors are normalized to have unit magnitude.
|
241
|
+
# Computes the eigenvalues and eigenvectors of the complex generalized
|
242
|
+
# hermitian-definite matrix pair <tt>A, B</tt>,
|
243
|
+
# and returns them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix::Complex</tt>.
|
244
|
+
# The computed eigenvectors are normalized to have unit magnitude.
|
245
245
|
# On output, <tt>B</tt> contains its Cholesky decomposition.
|
246
246
|
#
|
247
|
-
# ==
|
247
|
+
# == Real Generalized Nonsymmetric Eigensystems (>= GSL-1.10)
|
248
248
|
#
|
249
249
|
# ---
|
250
250
|
# * GSL::Eigen::Gen.alloc(n)
|
@@ -257,79 +257,79 @@
|
|
257
257
|
# * GSL::Eigen::Gen::params(compute_s, compute_t, balance, w)
|
258
258
|
# * GSL::Eigen::gen_params(compute_s, compute_t, balance, w)
|
259
259
|
#
|
260
|
-
# Set some parameters which determine how the eigenvalue problem is solved
|
260
|
+
# Set some parameters which determine how the eigenvalue problem is solved
|
261
261
|
# in subsequent calls to <tt>GSL::Eigen::gen</tt>.
|
262
262
|
#
|
263
|
-
# If <tt>compute_s</tt> is set to 1, the full Schur form <tt>S</tt> will be
|
264
|
-
# computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>S</tt> will
|
265
|
-
# not be computed (this is the default setting). <tt>S</tt> is a quasi upper
|
266
|
-
# triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal.
|
267
|
-
# 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks
|
268
|
-
# correspond to complex eigenvalues.
|
263
|
+
# If <tt>compute_s</tt> is set to 1, the full Schur form <tt>S</tt> will be
|
264
|
+
# computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>S</tt> will
|
265
|
+
# not be computed (this is the default setting). <tt>S</tt> is a quasi upper
|
266
|
+
# triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal.
|
267
|
+
# 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks
|
268
|
+
# correspond to complex eigenvalues.
|
269
269
|
#
|
270
|
-
# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will
|
271
|
-
# be computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>T</tt>
|
272
|
-
# will not be computed (this is the default setting). <tt>T</tt>
|
273
|
-
# is an upper triangular matrix with non-negative elements on its diagonal.
|
274
|
-
# Any 2-by-2 blocks in <tt>S</tt> will correspond to a 2-by-2 diagonal block
|
275
|
-
# in <tt>T</tt>.
|
270
|
+
# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will
|
271
|
+
# be computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>T</tt>
|
272
|
+
# will not be computed (this is the default setting). <tt>T</tt>
|
273
|
+
# is an upper triangular matrix with non-negative elements on its diagonal.
|
274
|
+
# Any 2-by-2 blocks in <tt>S</tt> will correspond to a 2-by-2 diagonal block
|
275
|
+
# in <tt>T</tt>.
|
276
276
|
#
|
277
|
-
# The <tt>balance</tt> parameter is currently ignored, since generalized
|
278
|
-
# balancing is not yet implemented.
|
277
|
+
# The <tt>balance</tt> parameter is currently ignored, since generalized
|
278
|
+
# balancing is not yet implemented.
|
279
279
|
#
|
280
280
|
# ---
|
281
281
|
# * GSL::Eigen::gen(A, B, w)
|
282
282
|
#
|
283
283
|
# Computes the eigenvalues of the real generalized nonsymmetric matrix pair
|
284
|
-
# <tt>A, B</tt>, and returns them as pairs in (alpha, beta),
|
285
|
-
# where alpha is <tt>GSL::Vector::Complex</tt> and beta is <tt>GSL::Vector</tt>.
|
284
|
+
# <tt>A, B</tt>, and returns them as pairs in (alpha, beta),
|
285
|
+
# where alpha is <tt>GSL::Vector::Complex</tt> and beta is <tt>GSL::Vector</tt>.
|
286
286
|
# If beta_i is non-zero, then lambda = alpha_i / beta_i is an eigenvalue.
|
287
|
-
# Likewise, if alpha_i is non-zero, then mu = beta_i / alpha_i is an
|
288
|
-
# eigenvalue of the alternate problem mu A y = B y.
|
289
|
-
# The elements of <tt>beta</tt> are normalized to be non-negative.
|
287
|
+
# Likewise, if alpha_i is non-zero, then mu = beta_i / alpha_i is an
|
288
|
+
# eigenvalue of the alternate problem mu A y = B y.
|
289
|
+
# The elements of <tt>beta</tt> are normalized to be non-negative.
|
290
290
|
#
|
291
|
-
# If <tt>S</tt> is desired, it is stored in <tt>A</tt> on output.
|
292
|
-
# If <tt>T</tt> is desired, it is stored in <tt>B</tt> on output.
|
293
|
-
# The ordering of eigenvalues in <tt>alpha, beta</tt>
|
291
|
+
# If <tt>S</tt> is desired, it is stored in <tt>A</tt> on output.
|
292
|
+
# If <tt>T</tt> is desired, it is stored in <tt>B</tt> on output.
|
293
|
+
# The ordering of eigenvalues in <tt>alpha, beta</tt>
|
294
294
|
# follows the ordering of the diagonal blocks in the Schur forms <tt>S</tt>
|
295
|
-
# and <tt>T</tt>.
|
295
|
+
# and <tt>T</tt>.
|
296
296
|
#
|
297
297
|
# ---
|
298
298
|
# * GSL::Eigen::gen_QZ(A, B, w)
|
299
299
|
#
|
300
|
-
# This method is identical to <tt>GSL::Eigen::gen</tt> except it also computes
|
300
|
+
# This method is identical to <tt>GSL::Eigen::gen</tt> except it also computes
|
301
301
|
# the left and right Schur vectors and returns them.
|
302
302
|
#
|
303
303
|
# ---
|
304
304
|
# * GSL::Eigen::Genv.alloc(n)
|
305
305
|
# * GSL::Eigen::Genv::Workspace.alloc(n)
|
306
306
|
#
|
307
|
-
# Allocatesa workspace for computing eigenvalues and eigenvectors of
|
308
|
-
# n-by-n real generalized nonsymmetric eigensystems.
|
309
|
-
# The size of the workspace is O(7n).
|
307
|
+
# Allocatesa workspace for computing eigenvalues and eigenvectors of
|
308
|
+
# n-by-n real generalized nonsymmetric eigensystems.
|
309
|
+
# The size of the workspace is O(7n).
|
310
310
|
#
|
311
311
|
# ---
|
312
312
|
# * GSL::Eigen::genv(A, B, w)
|
313
313
|
#
|
314
|
-
# Computes eigenvalues and right eigenvectors of the n-by-n real generalized
|
315
|
-
# nonsymmetric matrix pair <tt>A, B</tt>. The eigenvalues and eigenvectors
|
316
|
-
# are returned in <tt>alpha, beta, evec</tt>.
|
317
|
-
# On output, <tt>A, B</tt> contains the generalized Schur form <tt>S, T</tt>.
|
314
|
+
# Computes eigenvalues and right eigenvectors of the n-by-n real generalized
|
315
|
+
# nonsymmetric matrix pair <tt>A, B</tt>. The eigenvalues and eigenvectors
|
316
|
+
# are returned in <tt>alpha, beta, evec</tt>.
|
317
|
+
# On output, <tt>A, B</tt> contains the generalized Schur form <tt>S, T</tt>.
|
318
318
|
#
|
319
319
|
# ---
|
320
320
|
# * GSL::Eigen::genv_QZ(A, B, w)
|
321
321
|
#
|
322
|
-
# This method is identical to <tt>GSL::Eigen::genv</tt> except it also computes
|
322
|
+
# This method is identical to <tt>GSL::Eigen::genv</tt> except it also computes
|
323
323
|
# the left and right Schur vectors and returns them.
|
324
324
|
#
|
325
|
-
# ==
|
325
|
+
# == Sorting Eigenvalues and Eigenvectors
|
326
326
|
# ---
|
327
327
|
# * GSL::Eigen::symmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
328
328
|
# * GSL::Eigen::Symmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
329
329
|
#
|
330
|
-
# These methods simultaneously sort the eigenvalues stored in the vector
|
331
|
-
# <tt>eval</tt> and the corresponding real eigenvectors stored in the
|
332
|
-
# columns of the matrix <tt>evec</tt> into ascending or descending order
|
330
|
+
# These methods simultaneously sort the eigenvalues stored in the vector
|
331
|
+
# <tt>eval</tt> and the corresponding real eigenvectors stored in the
|
332
|
+
# columns of the matrix <tt>evec</tt> into ascending or descending order
|
333
333
|
# according to the value of the parameter <tt>type</tt>,
|
334
334
|
#
|
335
335
|
# * <tt>GSL::Eigen::SORT_VAL_ASC</tt>
|
@@ -347,55 +347,55 @@
|
|
347
347
|
# * GSL::Eigen::hermv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
348
348
|
# * GSL::Eigen::Hermv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
349
349
|
#
|
350
|
-
# These methods simultaneously sort the eigenvalues stored in the vector
|
351
|
-
# <tt>eval</tt> and the corresponding complex eigenvectors stored in the columns
|
352
|
-
# of the matrix <tt>evec</tt> into ascending or descending order according
|
350
|
+
# These methods simultaneously sort the eigenvalues stored in the vector
|
351
|
+
# <tt>eval</tt> and the corresponding complex eigenvectors stored in the columns
|
352
|
+
# of the matrix <tt>evec</tt> into ascending or descending order according
|
353
353
|
# to the value of the parameter <tt>type</tt> as shown above.
|
354
354
|
#
|
355
355
|
# ---
|
356
356
|
# * GSL::Eigen::nonsymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
357
357
|
# * GSL::Eigen::Nonsymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
358
358
|
#
|
359
|
-
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the corresponding
|
360
|
-
# complex eigenvectors stored in the columns of the matrix <tt>evec</tt>
|
361
|
-
# into ascending or descending order according to the value of the
|
362
|
-
# parameter <tt>type</tt> as shown above.
|
363
|
-
# Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt> and <tt>GSL::EIGEN_SORT_ABS_DESC</tt>
|
364
|
-
# are supported due to the eigenvalues being complex.
|
359
|
+
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the corresponding
|
360
|
+
# complex eigenvectors stored in the columns of the matrix <tt>evec</tt>
|
361
|
+
# into ascending or descending order according to the value of the
|
362
|
+
# parameter <tt>type</tt> as shown above.
|
363
|
+
# Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt> and <tt>GSL::EIGEN_SORT_ABS_DESC</tt>
|
364
|
+
# are supported due to the eigenvalues being complex.
|
365
365
|
#
|
366
366
|
# ---
|
367
367
|
# * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
368
368
|
# * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
369
369
|
#
|
370
|
-
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
|
371
|
-
# corresponding real eigenvectors stored in the columns of the matrix
|
372
|
-
# <tt>evec</tt> into ascending or descending order according to the value of
|
373
|
-
# the parameter <tt>type</tt> as shown above.
|
370
|
+
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
|
371
|
+
# corresponding real eigenvectors stored in the columns of the matrix
|
372
|
+
# <tt>evec</tt> into ascending or descending order according to the value of
|
373
|
+
# the parameter <tt>type</tt> as shown above.
|
374
374
|
#
|
375
375
|
# ---
|
376
376
|
# * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
377
377
|
# * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
378
378
|
#
|
379
|
-
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
|
380
|
-
# corresponding complex eigenvectors stored in the columns of the matrix
|
381
|
-
# <tt>evec</tt> into ascending or descending order according to the value of
|
382
|
-
# the parameter <tt>type</tt> as shown above.
|
379
|
+
# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
|
380
|
+
# corresponding complex eigenvectors stored in the columns of the matrix
|
381
|
+
# <tt>evec</tt> into ascending or descending order according to the value of
|
382
|
+
# the parameter <tt>type</tt> as shown above.
|
383
383
|
#
|
384
384
|
# ---
|
385
385
|
# * GSL::Eigen::genv_sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
386
386
|
# * GSL::Eigen::Genv::sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
|
387
387
|
#
|
388
|
-
# Sorts the eigenvalues stored in the vectors <tt>alpha, beta</tt> and the
|
389
|
-
# corresponding complex eigenvectors stored in the columns of the matrix
|
390
|
-
# <tt>evec</tt> into ascending or descending order according to the value of
|
388
|
+
# Sorts the eigenvalues stored in the vectors <tt>alpha, beta</tt> and the
|
389
|
+
# corresponding complex eigenvectors stored in the columns of the matrix
|
390
|
+
# <tt>evec</tt> into ascending or descending order according to the value of
|
391
391
|
# the parameter <tt>type</tt> as shown above. Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt>
|
392
|
-
# and <tt>GSL::EIGEN_SORT_ABS_DESC</tt> are supported due to the eigenvalues
|
393
|
-
# being complex.
|
392
|
+
# and <tt>GSL::EIGEN_SORT_ABS_DESC</tt> are supported due to the eigenvalues
|
393
|
+
# being complex.
|
394
394
|
#
|
395
|
-
# {prev}[link:
|
396
|
-
# {next}[link:
|
395
|
+
# {prev}[link:linalg_rdoc.html]
|
396
|
+
# {next}[link:fft_rdoc.html]
|
397
397
|
#
|
398
|
-
# {Reference index}[link:
|
398
|
+
# {Reference index}[link:ref_rdoc.html]
|
399
399
|
# {top}[link:index.html]
|
400
400
|
#
|
401
401
|
#
|