rb-gsl 1.16.0.2 → 1.16.0.3.rc1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: f8d84ec677e9881209b3a25a5e78c1254bc29155
4
- data.tar.gz: 1d309471b9bbb6e9776d829e06d6611c817caa31
3
+ metadata.gz: 6cd1daf4ebeac19da26e8f07a1a7f9c98a11f47a
4
+ data.tar.gz: 94b8324c961064d0dc8d41969f0658fcff3a4b35
5
5
  SHA512:
6
- metadata.gz: 246c81e8b4e2bca4861b205f842354b8bc343c34fb0ba69abc7858ffcc9a262482d583290fec85d16924891afb2b45628d03a5128ec34f2d7667f3437b43cfb7
7
- data.tar.gz: 4bc542cb294cc691c0cb3e058af66317ae6c6d77b919b264c7e0446cbe348a27e1692a3a35190c794bd537c135cca56b3f99f3226b24e6b3381dc28880b89d96
6
+ metadata.gz: 979c8f99f5f3f2a6efa2713fcc9180dd080b671aecabc8a4cb91df4d22b3a3c6559fbc238bd8a746f4ba79d5440c33b21158019c1c1004530f2656b62c7e2170
7
+ data.tar.gz: 6dc5252a9bc46a377520bead0a4287a5e5984689afe56909c64c441f282561f2f0eccd15826933039be04a9500f142a646f941f91689207b20804f329a3a9b7a
data/ChangeLog CHANGED
@@ -1,3 +1,8 @@
1
+ Mon Oct 20 2014
2
+ * Ruby/GSL 1.16.0.3
3
+ * Fixed RDoc issues. Issue #6 by @bigtunacan.
4
+ * Fixed $LOAD_PATH problem. Pull request #7 by Takahiro SATOH.
5
+
1
6
  Wed Jul 9 2014
2
7
  * Ruby/GSL 1.16.0.2
3
8
  * Fixed linking problem.
data/README CHANGED
@@ -4,11 +4,11 @@ Ruby/GSL, a ruby interface to GSL (GNU Scientific library)
4
4
 
5
5
  == Installation
6
6
 
7
- See http://blackwinter.github.io/rb-gsl/.
7
+ See http://blackwinter.github.com/rb-gsl.
8
8
 
9
9
  == Reference
10
10
 
11
- See http://blackwinter.github.io/rb-gsl/rdoc/ref_rdoc.
11
+ See http://blackwinter.github.com/rb-gsl/rdoc/ref_rdoc.
12
12
 
13
13
  == Licence
14
14
 
data/Rakefile CHANGED
@@ -17,7 +17,6 @@ begin
17
17
  :homepage => :blackwinter,
18
18
  :dependencies => [['narray', '>= 0.5.9']],
19
19
  :requirements => ['GSL (http://www.gnu.org/software/gsl/)'],
20
- :require_paths => %w[lib lib/gsl lib/ool ext],
21
20
 
22
21
  :extra_files => FileList['examples/**/*', 'rdoc/*'].to_a,
23
22
 
@@ -28,8 +27,8 @@ begin
28
27
  :rdoc => {
29
28
  :title => 'Ruby/GSL{version: (v%s)}',
30
29
  :rdoc_files => FileList['rdoc/*'].to_a,
31
- :exclude => %w[ext lib],
32
- :main => 'rdoc/index.rdoc'
30
+ :main => 'index.rdoc',
31
+ :root => 'rdoc'
33
32
  },
34
33
  :test => {
35
34
  :libs => %w[lib test]
data/lib/gsl/version.rb CHANGED
@@ -1,5 +1,5 @@
1
1
  module GSL
2
2
 
3
- RUBY_GSL_VERSION = RB_GSL_VERSION = '1.16.0.2'
3
+ RUBY_GSL_VERSION = RB_GSL_VERSION = '1.16.0.3.rc1'
4
4
 
5
5
  end
data/rdoc/alf.rdoc CHANGED
@@ -5,18 +5,18 @@
5
5
  #
6
6
  # The class and method descriptions below are based on references from the document of ALF (alf-1.0/doc/alf.texi) by P.Alken.
7
7
  #
8
- # == {}[link:index.html"name="1] Module structure
8
+ # == Module structure
9
9
  # * GSL::ALF (module)
10
10
  # * GSL::ALF::Workspace (Class)
11
11
  #
12
- # == {}[link:index.html"name="2] Creating ALF workspace
12
+ # == Creating ALF workspace
13
13
  # ---
14
14
  # * GSL::ALF::Workspace.alloc(lmax)
15
15
  # * GSL::ALF.alloc(lmax)
16
16
  #
17
17
  # Creates a workspace for computing associated Legendre polynomials (ALFs). The maximum ALF degree is specified by lmax. The size of this workspace is O(lmax).
18
18
  #
19
- # == {}[link:index.html"name="3] Methods
19
+ # == Methods
20
20
  # ---
21
21
  # * GSL::ALF::Workspace#params(csphase, cnorm, norm)
22
22
  #
@@ -49,7 +49,7 @@
49
49
  # must have enough length to store all the values for the polynomial
50
50
  # P_l^m(x), and the length required can be known using
51
51
  # <tt>ALF::array_size(lmax)</tt>. If a vector is not given, a new vector is
52
- # created and returned.
52
+ # created and returned.
53
53
  #
54
54
  # The indices of <tt>result</tt> (and <tt>deriv</tt> corresponding to the
55
55
  # associated Legendre function of degree <tt>l</tt> and order <tt>m</tt> can
@@ -61,7 +61,7 @@
61
61
  # * GSL::ALF::Workspace#Plm_deriv_array(lmax, x, result, deriv)
62
62
  #
63
63
  # Compute all associated Legendre polynomials P_l^m(x) and their first
64
- # derivatives dP_l^m(x)/dx for 0 <= l <= lmax, 0 <= m <= l.
64
+ # derivatives dP_l^m(x)/dx for 0 <= l <= lmax, 0 <= m <= l.
65
65
  #
66
66
  # ---
67
67
  # * GSL::ALF::array_size(lmax)
data/rdoc/blas.rdoc CHANGED
@@ -1,9 +1,9 @@
1
1
  #
2
2
  # = BLAS Support
3
3
  # The following is the list of the methods defined in <tt>GSL::Blas</tt> module.
4
- # See {GSL reference}[http://www.gnu.org/software/gsl/manual/gsl-ref_12.html#SEC212"target="_top] for details.
4
+ # See {GSL reference}[https://gnu.org/software/gsl/manual/gsl-ref_12.html#SEC212] for details.
5
5
  #
6
- # == {}[link:index.html"name="1] Level 1
6
+ # == Level 1
7
7
  # ---
8
8
  # * GSL::Blas::ddot(x, y)
9
9
  # * GSL::Vector#blas_ddot(y)
@@ -134,7 +134,7 @@
134
134
  # * GSL::Blas::drotm!(x, y, p)
135
135
  #
136
136
  #
137
- # == {}[link:index.html"name="2] Level 2
137
+ # == Level 2
138
138
  # ---
139
139
  # * GSL::Blas::dgemv(trans, a, A, x, b, y)
140
140
  # * GSL::Blas::dgemv!(trans, a, A, x, b, y)
@@ -186,7 +186,7 @@
186
186
  # * GSL::Blas::zher2!(uplo, a, x, y, A)
187
187
  #
188
188
  #
189
- # == {}[link:index.html"name="3] Level 3
189
+ # == Level 3
190
190
  # ---
191
191
  # * GSL::Blas::dgemm(transA, transB, alpha, A, B, beta, C)
192
192
  # * GSL::Blas::dgemm(A, B)
@@ -234,7 +234,7 @@
234
234
  # * GSL::Blas::zher2k(uplo, trans, diag, alpha, A, B, beta, C)
235
235
  #
236
236
  #
237
- # == {}[link:index.html"name="4] Constants
237
+ # == Constants
238
238
  # ---
239
239
  # * GSL::Blas::CblasRowMajor
240
240
  # * GSL::Blas::RowMajor
@@ -260,10 +260,10 @@
260
260
  # * GSL::Blas::Right
261
261
  #
262
262
  #
263
- # {prev}[link:rdoc/sort_rdoc.html]
264
- # {next}[link:rdoc/linalg_rdoc.html]
263
+ # {prev}[link:sort_rdoc.html]
264
+ # {next}[link:linalg_rdoc.html]
265
265
  #
266
- # {Reference index}[link:rdoc/ref_rdoc.html]
266
+ # {Reference index}[link:ref_rdoc.html]
267
267
  # {top}[link:index.html]
268
268
  #
269
269
  #
data/rdoc/bspline.rdoc CHANGED
@@ -2,24 +2,24 @@
2
2
  # = Basis Splines
3
3
  # This chapter describes functions for the computation of smoothing basis splines (B-splines). This is only for GSL-1.9 or later.
4
4
  #
5
- # 1. {Overview}[link:rdoc/bspline_rdoc.html#1]
6
- # 1. {Initializing the B-splines solver}[link:rdoc/bspline_rdoc.html#2]
7
- # 1. {Constructing the knots vector}[link:rdoc/bspline_rdoc.html#3]
8
- # 1. {Evaluation of B-splines}[link:rdoc/bspline_rdoc.html#4]
5
+ # 1. {Overview}[link:bspline_rdoc.html#label-Overview]
6
+ # 1. {Initializing the B-splines solver}[link:bspline_rdoc.html#label-Initializing+the+B-splines+solver]
7
+ # 1. {Constructing the knots vector}[link:bspline_rdoc.html#label-Constructing+the+knots+vector]
8
+ # 1. {Evaluation of B-splines}[link:bspline_rdoc.html#label-Evaluation+of+B-splines]
9
9
  #
10
- # == {}[link:index.html"name="1] Overview
10
+ # == Overview
11
11
  #
12
- # B-splines are commonly used as basis functions to fit smoothing curves to large data sets. To do this, the abscissa axis is broken up into some number of intervals, where the endpoints of each interval are called breakpoints. These breakpoints are then converted to knots by imposing various continuity and smoothness conditions at each interface. Given a nondecreasing knot vector t = \{t_0, t_1, \dots, t_{n+k-1\, the n basis splines of order k are defined by for i = 0, \dots, n-1. The common case of cubic B-splines is given by k = 4. The above recurrence relation can be evaluated in a numerically stable way by the de Boor algorithm.
12
+ # B-splines are commonly used as basis functions to fit smoothing curves to large data sets. To do this, the abscissa axis is broken up into some number of intervals, where the endpoints of each interval are called breakpoints. These breakpoints are then converted to knots by imposing various continuity and smoothness conditions at each interface. Given a nondecreasing knot vector t = \{t_0, t_1, \dots, t_{n+k-1\, the n basis splines of order k are defined by for i = 0, \dots, n-1. The common case of cubic B-splines is given by k = 4. The above recurrence relation can be evaluated in a numerically stable way by the de Boor algorithm.
13
13
  #
14
- # If we define appropriate knots on an interval [a,b] then the B-spline basis functions form a complete set on that interval. Therefore we can expand a smoothing function as given enough (x_j, f(x_j)) data pairs. The c_i can be readily obtained from a least-squares fit.
14
+ # If we define appropriate knots on an interval [a,b] then the B-spline basis functions form a complete set on that interval. Therefore we can expand a smoothing function as given enough (x_j, f(x_j)) data pairs. The c_i can be readily obtained from a least-squares fit.
15
15
  #
16
- # == {}[link:index.html"name="2] Initializing the B-splines solver
16
+ # == Initializing the B-splines solver
17
17
  # ---
18
18
  # * GSL::BSpline.alloc(k, nbreak)
19
19
  #
20
- # This method creates a workspace for computing B-splines of order <tt>k</tt>. The number of breakpoints is given by <tt>nbreak</tt>. This leads to <tt>n = nbreak + k - 2</tt> basis functions. Cubic B-splines are specified by <tt>k = 4</tt>. The size of the workspace is <tt>O(5k + nbreak)</tt>.
20
+ # This method creates a workspace for computing B-splines of order <tt>k</tt>. The number of breakpoints is given by <tt>nbreak</tt>. This leads to <tt>n = nbreak + k - 2</tt> basis functions. Cubic B-splines are specified by <tt>k = 4</tt>. The size of the workspace is <tt>O(5k + nbreak)</tt>.
21
21
  #
22
- # == {}[link:index.html"name="3] Constructing the knots vector
22
+ # == Constructing the knots vector
23
23
  # ---
24
24
  # * GSL::BSpline#knots(breakpts)
25
25
  #
@@ -27,16 +27,16 @@
27
27
  # ---
28
28
  # * GSL::BSpline#knots_uniform(a, b)
29
29
  #
30
- # This method assumes uniformly spaced breakpoints on [<tt>a,b</tt>] and constructs the corresponding knot vector using the previously specified <tt>nbreak</tt> parameter.
31
- # == {}[link:index.html"name="4] Evaluation of B-splines
30
+ # This method assumes uniformly spaced breakpoints on [<tt>a,b</tt>] and constructs the corresponding knot vector using the previously specified <tt>nbreak</tt> parameter.
31
+ # == Evaluation of B-splines
32
32
  # ---
33
33
  # * GSL::BSpline#eval(x[, B])
34
34
  #
35
- # This method evaluates all B-spline basis functions at the position <tt>x</tt> and stores them in <tt>B</tt> (if given), so that the ith element of <tt>B</tt> is <tt>B_i(x)</tt>. <tt>B</tt> must be of length <tt>n = nbreak + k - 2</tt>. If <tt>B</tt> is not given, a newly created vector is returned.It is far more efficient to compute all of the basis functions at once than to compute them individually, due to the nature of the defining recurrence relation.
35
+ # This method evaluates all B-spline basis functions at the position <tt>x</tt> and stores them in <tt>B</tt> (if given), so that the ith element of <tt>B</tt> is <tt>B_i(x)</tt>. <tt>B</tt> must be of length <tt>n = nbreak + k - 2</tt>. If <tt>B</tt> is not given, a newly created vector is returned.It is far more efficient to compute all of the basis functions at once than to compute them individually, due to the nature of the defining recurrence relation.
36
36
  #
37
- # {prev}[link:rdoc/nonlinearfit_rdoc.html]
38
- # {next}[link:rdoc/const_rdoc.html]
37
+ # {prev}[link:nonlinearfit_rdoc.html]
38
+ # {next}[link:const_rdoc.html]
39
39
  #
40
- # {Reference index}[link:rdoc/ref_rdoc.html]
40
+ # {Reference index}[link:ref_rdoc.html]
41
41
  # {top}[link:index.html]
42
42
  #
data/rdoc/changes.rdoc CHANGED
@@ -10,12 +10,7 @@
10
10
  # The changes that could break old scripts are described below. They are
11
11
  # followed by highlights of the other enhancements and new features.
12
12
  #
13
- # A complete log of changes since Ruby/GSL version 1.10.3 can be obtained by
14
- # using Subversion's log command to look at the repository...
15
- #
16
- # svn log http://rb-gsl.rubyforge.org/svn/trunk/rb-gsl
17
- #
18
- # == {}[link:index.html"name="1] Backwards incompatibilities introduced in Ruby/GSL 1.11.2
13
+ # == Backwards incompatibilities introduced in Ruby/GSL 1.11.2
19
14
  #
20
15
  # * FFT interface has been extensively changed.
21
16
  #
@@ -39,13 +34,13 @@
39
34
  #
40
35
  # * GSL::Complex objects are now immutable.
41
36
  #
42
- # == {}[link:index.html"name="2] Enhancements and features introduced in Ruby/GSL 1.11.2
37
+ # == Enhancements and features introduced in Ruby/GSL 1.11.2
43
38
  #
44
39
  # * Now distributed and installable as a Ruby Gem.
45
40
  #
46
41
  # * Allow nil for real and/or imag in GSL::Vector::Complex#set(i,re,im) to NOT
47
- # set that component. For example, "z=GSL::Vector::Complex[1]; z[0] = [nil,
48
- # 1]" will set z[0] to GSL::Complex[0,1].
42
+ # set that component. For example, <tt>z=GSL::Vector::Complex[1]; z[0] = [nil,
43
+ # 1]</tt> will set \z[0] to \GSL::Complex[0,1].
49
44
  #
50
45
  # * Added GSL::Vector::Complex#to_s method.
51
46
  #
data/rdoc/cheb.rdoc CHANGED
@@ -1,24 +1,24 @@
1
1
  #
2
2
  # = Chebyshev Approximations
3
- # This chapter describes routines for computing Chebyshev approximations to
4
- # univariate functions. A Chebyshev approximation is a truncation of the series
5
- # f(x) = \sum c_n T_n(x),
6
- # where the Chebyshev polynomials T_n(x) = \cos(n \arccos x)
7
- # provide an orthogonal basis of polynomials on the interval [-1,1]
8
- # with the weight function 1 / \sqrt{1-x^2}.
9
- # The first few Chebyshev polynomials are,
10
- # T_0(x) = 1, T_1(x) = x, T_2(x) = 2 x^2 - 1.
11
- # For further information see Abramowitz & Stegun, Chapter 22.
12
- #
13
- # 1. {GSL::Cheb class}[link:rdoc/cheb_rdoc.html#1]
14
- # 1. {Chebyshev Series Evaluation}[link:rdoc/cheb_rdoc.html#2]
15
- # 1. {Derivatives and Integrals}[link:rdoc/cheb_rdoc.html#3]
16
- # 1. {Examples}[link:rdoc/cheb_rdoc.html#4]
17
- #
18
- # == {}[link:index.html"name="1] <tt>GSL::Cheb</tt> class
3
+ # This chapter describes routines for computing Chebyshev approximations to
4
+ # univariate functions. A Chebyshev approximation is a truncation of the series
5
+ # f(x) = \sum c_n T_n(x),
6
+ # where the Chebyshev polynomials T_n(x) = \cos(n \arccos x)
7
+ # provide an orthogonal basis of polynomials on the interval [-1,1]
8
+ # with the weight function 1 / \sqrt{1-x^2}.
9
+ # The first few Chebyshev polynomials are,
10
+ # T_0(x) = 1, T_1(x) = x, T_2(x) = 2 x^2 - 1.
11
+ # For further information see Abramowitz & Stegun, Chapter 22.
12
+ #
13
+ # 1. {GSL::Cheb class}[link:cheb_rdoc.html#label-Cheb+class]
14
+ # 1. {Chebyshev Series Evaluation}[link:cheb_rdoc.html#label-Chebyshev+Series+Evaluation]
15
+ # 1. {Derivatives and Integrals}[link:cheb_rdoc.html#label-Derivatives+and+Integrals]
16
+ # 1. {Examples}[link:cheb_rdoc.html#label-Example]
17
+ #
18
+ # == <tt>Cheb</tt> class
19
19
  #
20
20
  # ---
21
- # * GSL::Cheb.alloc(n)
21
+ # * GSL::Cheb.alloc(n)
22
22
  #
23
23
  # This create an instance of the GSL::Cheb class for a Chebyshev series of order n.
24
24
  #
@@ -26,7 +26,7 @@
26
26
  # ---
27
27
  # * GSL::Cheb#init(f, a, b)
28
28
  #
29
- # This computes the Chebyshev approximation the function <tt>f</tt> over the range (<tt>a,b</tt>) to the previously specified order. Where <tt>f</tt> is a {GSL::Function}[link:rdoc/function_rdoc.html] object. The computation of the Chebyshev approximation is an O(n^2) process, and requires <tt>n</tt> function evaluations.
29
+ # This computes the Chebyshev approximation the function <tt>f</tt> over the range (<tt>a,b</tt>) to the previously specified order. Where <tt>f</tt> is a {GSL::Function}[link:function_rdoc.html] object. The computation of the Chebyshev approximation is an O(n^2) process, and requires <tt>n</tt> function evaluations.
30
30
  #
31
31
  # * ex: Approximate a step function defined in (0, 1) by a Chebyshev series of order 40.
32
32
  # f = GSL::Function.alloc { |x|
@@ -40,7 +40,7 @@
40
40
  # cs = GSL::Cheb.alloc(40)
41
41
  # cs.init(f, 0, 1)
42
42
  #
43
- # == {}[link:index.html"name="2] Chebyshev Series Evaluation
43
+ # == Chebyshev Series Evaluation
44
44
  # ---
45
45
  # * GSL::Cheb#eval(x)
46
46
  #
@@ -51,7 +51,7 @@
51
51
  #
52
52
  # This evaluates the Chebyshev series at a given point <tt>x</tt>, to (at most) the given order <tt>n</tt>.
53
53
  #
54
- # == {}[link:index.html"name="3] Derivatives and Integrals
54
+ # == Derivatives and Integrals
55
55
  #
56
56
  # ---
57
57
  # * GSL::Cheb#calc_deriv()
@@ -65,7 +65,7 @@
65
65
  #
66
66
  # This computes the integral of the series, and returns a new GSL::Cheb object which contains the computed integral coefficients. The reciever is not changed.
67
67
  #
68
- # == {}[link:index.html"name="4] Example
68
+ # == Example
69
69
  # #!/usr/bin/env ruby
70
70
  # require("gsl")
71
71
  #
@@ -91,9 +91,9 @@
91
91
  #
92
92
  # See also the example scripts in <tt>examples/cheb/</tt>.
93
93
  #
94
- # {prev}[link:rdoc/diff_rdoc.html]
95
- # {next}[link:rdoc/sum_rdoc.html]
94
+ # {prev}[link:diff_rdoc.html]
95
+ # {next}[link:sum_rdoc.html]
96
96
  #
97
- # {Reference index}[link:rdoc/ref_rdoc.html]
97
+ # {Reference index}[link:ref_rdoc.html]
98
98
  # {top}[link:index.html]
99
99
  #
@@ -1,46 +1,46 @@
1
1
  #
2
2
  # === Cholesky decomposition (>= GSL-1.10)
3
- # A symmetric, positive definite square matrix <tt>A</tt> has
4
- # a Cholesky decomposition into a product of a lower triangular matrix
3
+ # A symmetric, positive definite square matrix <tt>A</tt> has
4
+ # a Cholesky decomposition into a product of a lower triangular matrix
5
5
  # <tt>L</tt> and its transpose <tt>L^T</tt>.
6
- # This is sometimes referred to as taking the square-root of a matrix.
7
- # The Cholesky decomposition can only be carried out when all the eigenvalues
8
- # of the matrix are positive. This decomposition can be used to convert the
9
- # linear system <tt>A x = b</tt> into a pair of triangular systems
6
+ # This is sometimes referred to as taking the square-root of a matrix.
7
+ # The Cholesky decomposition can only be carried out when all the eigenvalues
8
+ # of the matrix are positive. This decomposition can be used to convert the
9
+ # linear system <tt>A x = b</tt> into a pair of triangular systems
10
10
  # <tt>L y = b, L^T x = y</tt>,
11
- # which can be solved by forward and back-substitution.
11
+ # which can be solved by forward and back-substitution.
12
12
  #
13
13
  # ---
14
14
  # * GSL::Linalg::Complex::Cholesky::decomp(A)
15
15
  # * GSL::Linalg::Complex::cholesky_decomp(A)
16
16
  #
17
- # Factorize the positive-definite square matrix <tt>A</tt> into the
17
+ # Factorize the positive-definite square matrix <tt>A</tt> into the
18
18
  # Cholesky decomposition <tt>A = L L^H</tt>.
19
- # On input only the diagonal and lower-triangular part of the matrix <tt>A</tt>
19
+ # On input only the diagonal and lower-triangular part of the matrix <tt>A</tt>
20
20
  # are needed. The diagonal and lower triangular part of the returned matrix
21
- # contain the matrix <tt>L</tt>. The upper triangular part of the
21
+ # contain the matrix <tt>L</tt>. The upper triangular part of the
22
22
  # returned matrix contains L^T, and
23
- # the diagonal terms being identical for both L and L^T.
24
- # If the input matrix is not positive-definite then the decomposition
25
- # will fail, returning the error code <tt>GSL::EDOM</tt>.
23
+ # the diagonal terms being identical for both L and L^T.
24
+ # If the input matrix is not positive-definite then the decomposition
25
+ # will fail, returning the error code <tt>GSL::EDOM</tt>.
26
26
  #
27
27
  # ---
28
28
  # * GSL::Linalg::Complex::Cholesky::solve(chol, b, x)
29
29
  # * GSL::Linalg::Complex::cholesky_solve(chol, b, x)
30
30
  #
31
- # Solve the system <tt>A x = b</tt> using the Cholesky decomposition
32
- # of <tt>A</tt> into the matrix <tt>chol</tt> given by
31
+ # Solve the system <tt>A x = b</tt> using the Cholesky decomposition
32
+ # of <tt>A</tt> into the matrix <tt>chol</tt> given by
33
33
  # <tt>GSL::Linalg::Complex::Cholesky::decomp</tt>.
34
34
  #
35
35
  # ---
36
36
  # * GSL::Linalg::Complex::Cholesky::svx(chol, x)
37
37
  # * GSL::Linalg::Complex::cholesky_svx(chol, x)
38
38
  #
39
- # Solve the system <tt>A x = b</tt> in-place using the Cholesky decomposition
40
- # of <tt>A</tt> into the matrix <tt>chol</tt> given by
41
- # <tt>GSL::Linalg::Complex::Cholesky::decomp</tt>. On input <tt>x</tt>
42
- # should contain the right-hand side <tt>b</tt>,
43
- # which is replaced by the solution on output.
39
+ # Solve the system <tt>A x = b</tt> in-place using the Cholesky decomposition
40
+ # of <tt>A</tt> into the matrix <tt>chol</tt> given by
41
+ # <tt>GSL::Linalg::Complex::Cholesky::decomp</tt>. On input <tt>x</tt>
42
+ # should contain the right-hand side <tt>b</tt>,
43
+ # which is replaced by the solution on output.
44
44
  #
45
- # {back}[link:rdoc/linalg_rdoc.html]
45
+ # {back}[link:linalg_rdoc.html]
46
46
  #
data/rdoc/combi.rdoc CHANGED
@@ -1,50 +1,50 @@
1
1
  #
2
2
  # = Combinations
3
3
  # Contents:
4
- # 1. {Combination allocation}[link:rdoc/combi_rdoc.html#1]
5
- # 1. {Methods}[link:rdoc/combi_rdoc.html#2]
6
- # 1. {Accessing combination elements}[link:rdoc/combi_rdoc.html#2.1]
7
- # 1. {Combination properties}[link:rdoc/combi_rdoc.html#2.2]
8
- # 1. {Combination functions}[link:rdoc/combi_rdoc.html#2.3]
9
- # 1. {Reading and writing combinations}[link:rdoc/combi_rdoc.html#2.4]
10
- #
11
- # == {}[link:index.html"name="1] Combination allocation
4
+ # 1. {Combination allocation}[link:combi_rdoc.html#label-Combination+allocation]
5
+ # 1. {Methods}[link:combi_rdoc.html#label-Methods]
6
+ # 1. {Accessing combination elements}[link:combi_rdoc.html#label-Accessing+combination+elements]
7
+ # 1. {Combination properties}[link:combi_rdoc.html#label-Combination+properties]
8
+ # 1. {Combination functions}[link:combi_rdoc.html#label-Combination+functions]
9
+ # 1. {Reading and writing combinations}[link:combi_rdoc.html#label-Reading+and+writing+combinations]
10
+ #
11
+ # == Combination allocation
12
12
  # ---
13
13
  # * GSL::Combination.alloc(n, k)
14
14
  #
15
- # These create a new combination with parameters <tt>n, k</tt>.
16
- # The combination is not initialized and its elements are undefined.
17
- # Use the method <tt>GSL::Combination.calloc</tt> if you want to create a
18
- # combination which is initialized to the lexicographically first combination.
15
+ # These create a new combination with parameters <tt>n, k</tt>.
16
+ # The combination is not initialized and its elements are undefined.
17
+ # Use the method <tt>GSL::Combination.calloc</tt> if you want to create a
18
+ # combination which is initialized to the lexicographically first combination.
19
19
  #
20
20
  # ---
21
21
  # * GSL::Combination.calloc(n, k)
22
22
  #
23
- # This creates a new combination with parameters <tt>n, k</tt> and initializes
24
- # it to the lexicographically first combination.
23
+ # This creates a new combination with parameters <tt>n, k</tt> and initializes
24
+ # it to the lexicographically first combination.
25
25
  #
26
- # == {}[link:index.html"name="2] Methods
26
+ # == Methods
27
27
  #
28
28
  # ---
29
29
  # * GSL::Combination#init_first
30
30
  #
31
- # This method initializes the combination <tt>self</tt> to the lexicographically
31
+ # This method initializes the combination <tt>self</tt> to the lexicographically
32
32
  # first combination, i.e. (0,1,2,...,k-1).
33
33
  #
34
34
  # ---
35
35
  # * GSL::Combination#init_last
36
36
  #
37
- # This method initializes the combination <tt>self</tt> to the lexicographically last
37
+ # This method initializes the combination <tt>self</tt> to the lexicographically last
38
38
  # combination, i.e. (n-k,n-k+1,...,n-1).
39
39
  #
40
- # === {}[link:index.html"name="2.1] Accessing combination elements
40
+ # === Accessing combination elements
41
41
  # ---
42
42
  # * GSL::Combination#get(i)
43
- # * GSL::Combination#[i]
43
+ # * \GSL::Combination#[i]
44
44
  #
45
- # This returns the value of the <tt>i</tt>-th element of the combination <tt>self</tt>.
45
+ # This returns the value of the <tt>i</tt>-th element of the combination <tt>self</tt>.
46
46
  #
47
- # === {}[link:index.html"name="2.2] Combination properties
47
+ # === Combination properties
48
48
  # ---
49
49
  # * GSL::Combination#n
50
50
  #
@@ -63,8 +63,8 @@
63
63
  # ---
64
64
  # * GSL::Combination#valid
65
65
  #
66
- # This method checks that the combination <tt>self</tt> is valid.
67
- # The <tt>k</tt> elements should contain numbers from range 0 .. n-1,
66
+ # This method checks that the combination <tt>self</tt> is valid.
67
+ # The <tt>k</tt> elements should contain numbers from range 0 .. n-1,
68
68
  # each number at most once. The numbers have to be in increasing order.
69
69
  #
70
70
  # ---
@@ -72,25 +72,25 @@
72
72
  #
73
73
  # Thie returns true if the combination is valid, and false otherwise.
74
74
  #
75
- # === {}[link:index.html"name="2.3] Combination functions
75
+ # === Combination functions
76
76
  # ---
77
77
  # * GSL::Combination#next
78
78
  #
79
- # This method advances the combination <tt>self</tt> to the next combination in
80
- # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further combinations are
81
- # available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
82
- # Starting with the first combination and repeatedly applying this function will
79
+ # This method advances the combination <tt>self</tt> to the next combination in
80
+ # lexicographic order and returns <tt>GSL::SUCCESS</tt>. If no further combinations are
81
+ # available it returns <tt>GSL::FAILURE</tt> and leaves <tt>self</tt> unmodified.
82
+ # Starting with the first combination and repeatedly applying this function will
83
83
  # iterate through all possible combinations of a given order.
84
84
  #
85
85
  # ---
86
86
  # * GSL::Combination#prev
87
87
  #
88
- # This method steps backwards from the combination <tt>self</tt> to the previous
89
- # combination in lexicographic order, returning <tt>GSL::SUCCESS</tt>.
90
- # If no previous combination is available it returns <tt>GSL::FAILURE</tt>
88
+ # This method steps backwards from the combination <tt>self</tt> to the previous
89
+ # combination in lexicographic order, returning <tt>GSL::SUCCESS</tt>.
90
+ # If no previous combination is available it returns <tt>GSL::FAILURE</tt>
91
91
  # and leaves <tt>self</tt> unmodified.
92
92
  #
93
- # === {}[link:index.html"name="2.4] Reading and writing combinations
93
+ # === Reading and writing combinations
94
94
  # ---
95
95
  # * GSL::Combination#fwrite(filename)
96
96
  # * GSL::Combination#fwrite(io)
@@ -102,7 +102,7 @@
102
102
  # * GSL::Combination#fscanf(io)
103
103
  #
104
104
  #
105
- # == {}[link:index.html"name="3] Example
105
+ # == Example
106
106
  # #!/usr/bin/env ruby
107
107
  # require("gsl")
108
108
  #
@@ -116,10 +116,10 @@
116
116
  # end while c.next == GSL::SUCCESS
117
117
  # end
118
118
  #
119
- # {prev}[link:rdoc/perm_rdoc.html]
120
- # {next}[link:rdoc/multiset_rdoc.html]
119
+ # {prev}[link:perm_rdoc.html]
120
+ # {next}[link:sort_rdoc.html]
121
121
  #
122
- # {Reference index}[link:rdoc/ref_rdoc.html]
122
+ # {Reference index}[link:ref_rdoc.html]
123
123
  # {top}[link:index.html]
124
124
  #
125
125
  #