rb-gsl 1.16.0.2 → 1.16.0.3.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. checksums.yaml +4 -4
  2. data/ChangeLog +5 -0
  3. data/README +2 -2
  4. data/Rakefile +2 -3
  5. data/lib/gsl/version.rb +1 -1
  6. data/rdoc/alf.rdoc +5 -5
  7. data/rdoc/blas.rdoc +8 -8
  8. data/rdoc/bspline.rdoc +16 -16
  9. data/rdoc/changes.rdoc +4 -9
  10. data/rdoc/cheb.rdoc +24 -24
  11. data/rdoc/cholesky_complex.rdoc +21 -21
  12. data/rdoc/combi.rdoc +36 -36
  13. data/rdoc/complex.rdoc +21 -21
  14. data/rdoc/const.rdoc +46 -46
  15. data/rdoc/dht.rdoc +48 -48
  16. data/rdoc/diff.rdoc +41 -41
  17. data/rdoc/ehandling.rdoc +5 -5
  18. data/rdoc/eigen.rdoc +152 -152
  19. data/rdoc/fft.rdoc +145 -145
  20. data/rdoc/fit.rdoc +108 -108
  21. data/rdoc/function.rdoc +10 -10
  22. data/rdoc/graph.rdoc +16 -16
  23. data/rdoc/hist.rdoc +102 -102
  24. data/rdoc/hist2d.rdoc +41 -41
  25. data/rdoc/hist3d.rdoc +8 -8
  26. data/rdoc/index.rdoc +18 -21
  27. data/rdoc/integration.rdoc +109 -109
  28. data/rdoc/interp.rdoc +70 -70
  29. data/rdoc/intro.rdoc +6 -6
  30. data/rdoc/linalg.rdoc +187 -187
  31. data/rdoc/linalg_complex.rdoc +1 -1
  32. data/rdoc/math.rdoc +57 -57
  33. data/rdoc/matrix.rdoc +272 -272
  34. data/rdoc/min.rdoc +56 -56
  35. data/rdoc/monte.rdoc +21 -21
  36. data/rdoc/multimin.rdoc +94 -94
  37. data/rdoc/multiroot.rdoc +79 -79
  38. data/rdoc/narray.rdoc +31 -31
  39. data/rdoc/ndlinear.rdoc +53 -53
  40. data/rdoc/nonlinearfit.rdoc +99 -99
  41. data/rdoc/ntuple.rdoc +30 -30
  42. data/rdoc/odeiv.rdoc +87 -87
  43. data/rdoc/perm.rdoc +89 -89
  44. data/rdoc/poly.rdoc +65 -65
  45. data/rdoc/qrng.rdoc +20 -20
  46. data/rdoc/randist.rdoc +81 -81
  47. data/rdoc/ref.rdoc +56 -56
  48. data/rdoc/rng.rdoc +84 -84
  49. data/rdoc/roots.rdoc +56 -56
  50. data/rdoc/sf.rdoc +427 -427
  51. data/rdoc/siman.rdoc +18 -18
  52. data/rdoc/sort.rdoc +29 -29
  53. data/rdoc/start.rdoc +8 -8
  54. data/rdoc/stats.rdoc +51 -51
  55. data/rdoc/sum.rdoc +11 -11
  56. data/rdoc/tensor.rdoc +30 -30
  57. data/rdoc/tut.rdoc +1 -1
  58. data/rdoc/use.rdoc +37 -37
  59. data/rdoc/vector.rdoc +187 -187
  60. data/rdoc/vector_complex.rdoc +23 -23
  61. data/rdoc/wavelet.rdoc +46 -46
  62. metadata +17 -20
  63. data/rdoc/rngextra.rdoc +0 -11
  64. data/rdoc/screenshot.rdoc +0 -40
@@ -1,60 +1,60 @@
1
1
  #
2
2
  # = Nonlinear Least-Squares Fitting
3
- # This chapter describes functions for multidimensional nonlinear least-squares
4
- # fitting. The library provides low level components for a variety of iterative
5
- # solvers and convergence tests. These can be combined by the user to achieve
6
- # the desired solution, with full access to the intermediate steps of the
7
- # iteration. Each class of methods uses the same framework, so that you can
8
- # switch between solvers at runtime without needing to recompile your program.
9
- # Each instance of a solver keeps track of its own state, allowing the solvers
10
- # to be used in multi-threaded programs.
3
+ # This chapter describes functions for multidimensional nonlinear least-squares
4
+ # fitting. The library provides low level components for a variety of iterative
5
+ # solvers and convergence tests. These can be combined by the user to achieve
6
+ # the desired solution, with full access to the intermediate steps of the
7
+ # iteration. Each class of methods uses the same framework, so that you can
8
+ # switch between solvers at runtime without needing to recompile your program.
9
+ # Each instance of a solver keeps track of its own state, allowing the solvers
10
+ # to be used in multi-threaded programs.
11
11
  #
12
12
  # Contents:
13
- # 1. {Overview}[link:rdoc/nonlinearfit_rdoc.html#1]
14
- # 1. {Initializing the Solver}[link:rdoc/nonlinearfit_rdoc.html#2]
15
- # 1. {GSL::MultiFit::FdfSolver class}[link:rdoc/nonlinearfit_rdoc.html#2.1]
16
- # 1. {Providing the function to be minimized}[link:rdoc/nonlinearfit_rdoc.html#3]
17
- # 1. {GSL::MultiFit::Function_fdf class}[link:rdoc/nonlinearfit_rdoc.html#3.1]
18
- # 1. {Iteration}[link:rdoc/nonlinearfit_rdoc.html#4]
19
- # 1. {Search Stopping Parameters}[link:rdoc/nonlinearfit_rdoc.html#5]
20
- # 1. {Computing the covariance matrix of best fit parameters}[link:rdoc/nonlinearfit_rdoc.html#6]
21
- # 1. {Higher level interfaces}[link:rdoc/nonlinearfit_rdoc.html#7]
22
- # 1. {Examples}[link:rdoc/nonlinearfit_rdoc.html#8]
23
- # 1. {Fitting to user-defined functions}[link:rdoc/nonlinearfit_rdoc.html#8.1]
24
- # 1. {Fitting to built-in functions}[link:rdoc/nonlinearfit_rdoc.html#8.2]
25
- #
26
- # == {}[link:index.html"name="1] Overview
27
- # The problem of multidimensional nonlinear least-squares fitting requires the
28
- # minimization of the squared residuals of n functions, f_i, in p parameters,
29
- # x_i, All algorithms proceed from an initial guess using the linearization,
30
- # where x is the initial point, p is the proposed step and J is the Jacobian
31
- # matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the
32
- # region of convergence. These include requiring a decrease in the norm ||F||
33
- # on each step or using a trust region to avoid steps which fall outside the
34
- # linear regime.
35
- #
36
- # To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data
37
- # (t_i, y_i) with independent gaussian errors \sigma_i, use function components
38
- # of the following form, Note that the model parameters are denoted by x in this
39
- # chapter since the non-linear least-squares algorithms are described
40
- # geometrically (i.e. finding the minimum of a surface). The independent
41
- # variable of any data to be fitted is denoted by t.
42
- #
43
- # With the definition above the Jacobian is
44
- # J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
45
- #
46
- # == {}[link:index.html"name="2] Initializing the Solver
47
- #
48
- # === {}[link:index.html"name="2.1] GSL::MultiFit::FdfSolver class
13
+ # 1. {Overview}[link:nonlinearfit_rdoc.html#label-Overview]
14
+ # 1. {Initializing the Solver}[link:nonlinearfit_rdoc.html#label-Initializing+the+Solver]
15
+ # 1. {GSL::MultiFit::FdfSolver class}[link:nonlinearfit_rdoc.html#label-FdfSolver+class]
16
+ # 1. {Providing the function to be minimized}[link:nonlinearfit_rdoc.html#label-Providing+the+function+to+be+minimized]
17
+ # 1. {GSL::MultiFit::Function_fdf class}[link:nonlinearfit_rdoc.html#label-Function_fdf+class]
18
+ # 1. {Iteration}[link:nonlinearfit_rdoc.html#label-Iteration]
19
+ # 1. {Search Stopping Parameters}[link:nonlinearfit_rdoc.html#label-Search+Stopping+Parameters]
20
+ # 1. {Computing the covariance matrix of best fit parameters}[link:nonlinearfit_rdoc.html#label-Computing+the+covariance+matrix+of+best+fit+parameters]
21
+ # 1. {Higher level interfaces}[link:nonlinearfit_rdoc.html#label-Higher+level+interfaces]
22
+ # 1. {Examples}[link:nonlinearfit_rdoc.html#label-Examples]
23
+ # 1. {Fitting to user-defined functions}[link:nonlinearfit_rdoc.html#label-Fitting+to+user-defined+functions]
24
+ # 1. {Fitting to built-in functions}[link:nonlinearfit_rdoc.html#label-Fitting+to+built-in+functions]
25
+ #
26
+ # == Overview
27
+ # The problem of multidimensional nonlinear least-squares fitting requires the
28
+ # minimization of the squared residuals of n functions, f_i, in p parameters,
29
+ # x_i, All algorithms proceed from an initial guess using the linearization,
30
+ # where x is the initial point, p is the proposed step and J is the Jacobian
31
+ # matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the
32
+ # region of convergence. These include requiring a decrease in the norm ||F||
33
+ # on each step or using a trust region to avoid steps which fall outside the
34
+ # linear regime.
35
+ #
36
+ # To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data
37
+ # (t_i, y_i) with independent gaussian errors \sigma_i, use function components
38
+ # of the following form, Note that the model parameters are denoted by x in this
39
+ # chapter since the non-linear least-squares algorithms are described
40
+ # geometrically (i.e. finding the minimum of a surface). The independent
41
+ # variable of any data to be fitted is denoted by t.
42
+ #
43
+ # With the definition above the Jacobian is
44
+ # J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
45
+ #
46
+ # == Initializing the Solver
47
+ #
48
+ # === FdfSolver class
49
49
  # ---
50
50
  # * GSL::MultiFit::FdfSolver.alloc(T, n, p)
51
51
  #
52
- # This creates an instance of the <tt>GSL::MultiFit::FdfSolver</tt> class of
52
+ # This creates an instance of the <tt>GSL::MultiFit::FdfSolver</tt> class of
53
53
  # type <tt>T</tt> for <tt>n</tt> observations and <tt>p</tt> parameters. The type <tt>T</tt>
54
- # is given by a <tt>Fixnum</tt> constant or a <tt>String</tt>,
54
+ # is given by a <tt>Fixnum</tt> constant or a <tt>String</tt>,
55
55
  # * <tt>GSL::MultiFit::LMSDER</tt> or <tt>"lmsder"</tt>
56
56
  # * <tt>GSL::MultiFit::LMDER</tt> or <tt>"lmder"</tt>
57
- # For example, the following code creates an instance of a Levenberg-Marquardt
57
+ # For example, the following code creates an instance of a Levenberg-Marquardt
58
58
  # solver for 100 data points and 3 parameters,
59
59
  #
60
60
  # solver = MultiFit::FdfSolver.alloc(MultiFit::LMDER, 100, 3)
@@ -62,10 +62,10 @@
62
62
  # ---
63
63
  # * GSL::MultiFit::FdfSolver#set(f, x)
64
64
  #
65
- # This method initializes, or reinitializes, an existing solver <tt>self</tt>
65
+ # This method initializes, or reinitializes, an existing solver <tt>self</tt>
66
66
  # to use the function <tt>f</tt> and the initial guess <tt>x</tt>. The function <tt>f</tt>
67
67
  # is an instance of the <tt>GSL::MultiFit::Function_fdf</tt> class (see below). The
68
- # initial guess of the parameters <tt>x</tt> is given by a {GSL::Vector}[link:rdoc/vector_rdoc.html] object.
68
+ # initial guess of the parameters <tt>x</tt> is given by a {GSL::Vector}[link:vector_rdoc.html] object.
69
69
  #
70
70
  # ---
71
71
  # * GSL::MultiFit::FdfSolver#name
@@ -83,16 +83,16 @@
83
83
  #
84
84
  # Access to the members (see <tt>gsl_multifit_nlin.h</tt>)
85
85
  #
86
- # == {}[link:index.html"name="3] Providing the function to be minimized
87
- # === {}[link:index.html"name="3.1] GSL::MultiFit::Function_fdf class
86
+ # == Providing the function to be minimized
87
+ # === Function_fdf class
88
88
  # ---
89
89
  # * GSL::MultiFit::Function_fdf.alloc()
90
90
  # * GSL::MultiFit::Function_fdf.alloc(f, df, p)
91
91
  # * GSL::MultiFit::Function_fdf.alloc(f, df, fdf, p)
92
92
  #
93
93
  # Constructor for the <tt>Function_fdf</tt> class, to a
94
- # function with <tt>p</tt> parameters, The first two or three arguments are Ruby Proc objects
95
- # to evaluate the function to minimize and its derivative (Jacobian).
94
+ # function with <tt>p</tt> parameters, The first two or three arguments are Ruby Proc objects
95
+ # to evaluate the function to minimize and its derivative (Jacobian).
96
96
  #
97
97
  # ---
98
98
  # * GSL::MultiFit::Function_fdf#set_procs(f, df, p)
@@ -106,24 +106,24 @@
106
106
  # * GSL::MultiFit::Function_fdf#set_data(t, y, sigma)
107
107
  #
108
108
  # This sets the data <tt>t, y, sigma</tt> of length <tt>n</tt>, to the function <tt>self</tt>.
109
- #
110
- # == {}[link:index.html"name="4] Iteration
109
+ #
110
+ # == Iteration
111
111
  # ---
112
112
  # * GSL::MultiFit::FdfSolver#iterate
113
113
  #
114
- # THis performs a single iteration of the solver <tt>self</tt>. If the iteration
115
- # encounters an unexpected problem then an error code will be returned.
116
- # The solver maintains a current estimate of the best-fit parameters at all
114
+ # THis performs a single iteration of the solver <tt>self</tt>. If the iteration
115
+ # encounters an unexpected problem then an error code will be returned.
116
+ # The solver maintains a current estimate of the best-fit parameters at all
117
117
  # times. This information can be accessed with the method <tt>position</tt>.
118
118
  #
119
119
  # ---
120
120
  # * GSL::MultiFit::FdfSolver#position
121
121
  #
122
- # This returns the current position (i.e. best-fit parameters) of the solver
122
+ # This returns the current position (i.e. best-fit parameters) of the solver
123
123
  # <tt>self</tt>, as a <tt>GSL::Vector</tt> object.
124
124
  #
125
125
  #
126
- # == {}[link:index.html"name="5] Search Stopping Parameters
126
+ # == Search Stopping Parameters
127
127
  # A minimization procedure should stop when one of the following conditions is true:
128
128
  # * A minimum has been found to within the user-specified precision.
129
129
  # * A user-specified maximum number of iterations has been reached.
@@ -134,9 +134,9 @@
134
134
  # ---
135
135
  # * GSL::MultiFit::FdfSolver#test_delta(epsabs, epsrel)
136
136
  #
137
- # This method tests for the convergence of the sequence by comparing the last
138
- # step with the absolute error <tt>epsabs</tt> and relative error (<tt>epsrel</tt>
139
- # to the current position. The test returns <tt>GSL::SUCCESS</tt> if the following
137
+ # This method tests for the convergence of the sequence by comparing the last
138
+ # step with the absolute error <tt>epsabs</tt> and relative error (<tt>epsrel</tt>
139
+ # to the current position. The test returns <tt>GSL::SUCCESS</tt> if the following
140
140
  # condition is achieved,
141
141
  # |dx_i| < epsabs + epsrel |x_i|
142
142
  # for each component of <tt>x</tt> and returns <tt>GSL::CONTINUE</tt> otherwise.
@@ -145,19 +145,19 @@
145
145
  # * GSL::MultiFit::FdfSolver#test_gradient(g, epsabs)
146
146
  # * GSL::MultiFit::FdfSolver#test_gradient(epsabs)
147
147
  #
148
- # This function tests the residual gradient <tt>g</tt> against the absolute error
149
- # bound <tt>epsabs</tt>. If <tt>g</tt> is not given, it is calculated internally.
150
- # Mathematically, the gradient should be exactly zero at the minimum.
148
+ # This function tests the residual gradient <tt>g</tt> against the absolute error
149
+ # bound <tt>epsabs</tt>. If <tt>g</tt> is not given, it is calculated internally.
150
+ # Mathematically, the gradient should be exactly zero at the minimum.
151
151
  # The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
152
152
  # \sum_i |g_i| < epsabs
153
- # and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
154
- # situations where the precise location of the minimum, x, is unimportant provided
153
+ # and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
154
+ # situations where the precise location of the minimum, x, is unimportant provided
155
155
  # a value can be found where the gradient is small enough.
156
156
  #
157
157
  # ---
158
158
  # * GSL::MultiFit::FdfSolver#gradient
159
159
  #
160
- # This method returns the gradient g of \Phi(x) = (1/2) ||F(x)||^2 from the
160
+ # This method returns the gradient g of \Phi(x) = (1/2) ||F(x)||^2 from the
161
161
  # Jacobian matrix and the function values, using the formula g = J^T f.
162
162
  #
163
163
  # ---
@@ -170,71 +170,71 @@
170
170
  # Singleton methods of the <tt>GSL::MultiFit</tt> module.
171
171
  #
172
172
  #
173
- # == {}[link:index.html"name="6] Computing the covariance matrix of best fit parameters
173
+ # == Computing the covariance matrix of best fit parameters
174
174
  # ---
175
175
  # * GSL::MultiFit.covar(J, epsrel)
176
176
  # * GSL::MultiFit.covar(J, epsrel, covar)
177
177
  #
178
- # This method uses the Jacobian matrix <tt>J</tt> to compute the covariance
178
+ # This method uses the Jacobian matrix <tt>J</tt> to compute the covariance
179
179
  # matrix of the best-fit parameters. If an existing matrix <tt>covar</tt> is given,
180
- # it is overwritten, and if not, this method returns a new matrix.
181
- # The parameter <tt>epsrel</tt> is used to remove linear-dependent columns when
180
+ # it is overwritten, and if not, this method returns a new matrix.
181
+ # The parameter <tt>epsrel</tt> is used to remove linear-dependent columns when
182
182
  # <tt>J</tt> is rank deficient.
183
183
  #
184
184
  # The covariance matrix is given by,
185
185
  # covar = (J^T J)^{-1}
186
- # and is computed by QR decomposition of <tt>J</tt> with column-pivoting.
186
+ # and is computed by QR decomposition of <tt>J</tt> with column-pivoting.
187
187
  # Any columns of R which satisfy
188
188
  # |R_{kk}| <= epsrel |R_{11}|
189
- # are considered linearly-dependent and are excluded from the covariance matrix
189
+ # are considered linearly-dependent and are excluded from the covariance matrix
190
190
  # (the corresponding rows and columns of the covariance matrix are set to zero).
191
191
  #
192
- # == {}[link:index.html"name="7] Higher level interfaces
192
+ # == Higher level interfaces
193
193
  # ---
194
194
  # * GSL::MultiFit::FdfSolver.fit(x, y, type[, guess])
195
195
  # * GSL::MultiFit::FdfSolver.fit(x, w, y, type[, guess])
196
196
  #
197
197
  # This method uses <tt>FdfSolver</tt> with the LMSDER algorithm to fit the data
198
- # <tt>[x, y]</tt> to a function of type <tt>type</tt>. The returned value is
198
+ # <tt>[x, y]</tt> to a function of type <tt>type</tt>. The returned value is
199
199
  # an array of 4 elements, <tt>[coef, err, chisq, dof]</tt>,
200
200
  # where <tt>coef</tt> is an array of the fitting coefficients, <tt>err</tt> contains
201
- # errors in estimating <tt>coef</tt>, <tt>chisq</tt> is the
202
- # chi-squared, and <tt>dof</tt> is the degree-of-freedom in the fitting
201
+ # errors in estimating <tt>coef</tt>, <tt>chisq</tt> is the
202
+ # chi-squared, and <tt>dof</tt> is the degree-of-freedom in the fitting
203
203
  # which equals to (data length - number of fitting coefficients). The optional
204
204
  # argument <tt>guess</tt> is an array of initial guess of the coefficients.
205
205
  # The fitting type <tt>type</tt> is given by a <tt>String</tt> as follows.
206
- # * <tt>"gaussian"</tt>: Gaussian fit,
206
+ # * <tt>"gaussian"</tt>: Gaussian fit,
207
207
  # <tt>y = y0 + A exp(-(x-x0)^2/2/var)</tt>, <tt>coef = [y0, A, x0, var]</tt>
208
208
  # * <tt>"gaussian_2peaks"</tt>: 2-peak Gaussian fit,
209
209
  # <tt>y = y0 + A1 exp(-(x-x1)^2/2/var1) + A2 exp(-(x-x2)^2/2/var2)</tt>, <tt>coef = [y0, A1, x1, var1, A2, x2, var2]</tt>
210
- # * <tt>"exp"</tt>: Exponential fit,
210
+ # * <tt>"exp"</tt>: Exponential fit,
211
211
  # <tt>y = y0 + A exp(-b x)</tt>, <tt>coef = [y0, A, b]</tt>
212
- # * <tt>"dblexp"</tt>: Double exponential fit,
212
+ # * <tt>"dblexp"</tt>: Double exponential fit,
213
213
  # <tt>y = y0 + A1 exp(-b1 x) + A2 exp(-b2 x)</tt>, <tt>coef = [y0, A1, b1, A2, b2]</tt>
214
- # * <tt>"sin"</tt>: Sinusoidal fit,
214
+ # * <tt>"sin"</tt>: Sinusoidal fit,
215
215
  # <tt>y = y0 + A sin(f x + phi)</tt>, <tt>coef = [y0, A, f, phi]</tt>
216
- # * <tt>"lor"</tt>: Lorentzian peak fit,
216
+ # * <tt>"lor"</tt>: Lorentzian peak fit,
217
217
  # <tt>y = y0 + A/((x-x0)^2 + B)</tt>, <tt>coef = [y0, A, x0, B]</tt>
218
- # * <tt>"hill"</tt>: Hill's equation fit,
218
+ # * <tt>"hill"</tt>: Hill's equation fit,
219
219
  # <tt>y = y0 + (m - y0)/(1 + (xhalf/x)^r)</tt>, <tt>coef = [y0, n, xhalf, r]</tt>
220
- # * <tt>"sigmoid"</tt>: Sigmoid (Fermi-Dirac) function fit,
220
+ # * <tt>"sigmoid"</tt>: Sigmoid (Fermi-Dirac) function fit,
221
221
  # <tt>y = y0 + m/(1 + exp((x0-x)/r))</tt>, <tt>coef = [y0, m, x0, r]</tt>
222
- # * <tt>"power"</tt>: Power-law fit,
222
+ # * <tt>"power"</tt>: Power-law fit,
223
223
  # <tt>y = y0 + A x^r</tt>, <tt>coef = [y0, A, r]</tt>
224
- # * <tt>"lognormal"</tt>: Lognormal peak fit,
224
+ # * <tt>"lognormal"</tt>: Lognormal peak fit,
225
225
  # <tt>y = y0 + A exp[ -(log(x/x0)/width)^2 ]</tt>, <tt>coef = [y0, A, x0, width]</tt>
226
226
  #
227
- # See {Linear fitting}[link:rdoc/fit_rdoc.html#2.3] for linear and polynomical fittings.
227
+ # See {Linear fitting}[link:fit_rdoc.html#label-Higer+level+interface] for linear and polynomical fittings.
228
228
  #
229
- # == {}[link:index.html"name="8] Examples
230
- # === {}[link:index.html"name="8.1] Fitting to user-defined functions
229
+ # == Examples
230
+ # === Fitting to user-defined functions
231
231
  #
232
- # The following example program fits a weighted exponential model with background
233
- # to experimental data, Y = A exp(-lambda t) + b. The first part of the program sets
234
- # up the functions <tt>procf</tt> and <tt>procdf</tt> to calculate the model and its Jacobian.
232
+ # The following example program fits a weighted exponential model with background
233
+ # to experimental data, Y = A exp(-lambda t) + b. The first part of the program sets
234
+ # up the functions <tt>procf</tt> and <tt>procdf</tt> to calculate the model and its Jacobian.
235
235
  # The appropriate fitting function is given by,
236
236
  # f_i = ((A exp(-lambda t_i) + b) - y_i)/sigma_i
237
- # where we have chosen t_i = i. The Jacobian matrix <tt>jac</tt> is the derivative of
237
+ # where we have chosen t_i = i. The Jacobian matrix <tt>jac</tt> is the derivative of
238
238
  # these functions with respect to the three parameters (A, lambda, b). It is given by,
239
239
  # J_{ij} = d f_i / d x_j
240
240
  # where x_0 = A, x_1 = lambda and x_2 = b.
@@ -310,7 +310,7 @@
310
310
  # printf("b = %.5f +/- %.5f\n", position[2], Math::sqrt(chi2/dof*covar[2][2]))
311
311
  #
312
312
  #
313
- # === {}[link:index.html"name="8.2] Fitting to built-in functions
313
+ # === Fitting to built-in functions
314
314
  # #!/usr/bin/env ruby
315
315
  # require("gsl")
316
316
  # include MultiFit
@@ -338,10 +338,10 @@
338
338
  # graph(x, y, y0+amp*Sf::exp(-pow_2(Sf::log(x/x0)/w)))
339
339
  #
340
340
  #
341
- # {prev}[link:rdoc/fit_rdoc.html]
342
- # {next}[link:rdoc/bspline_rdoc.html]
341
+ # {prev}[link:fit_rdoc.html]
342
+ # {next}[link:bspline_rdoc.html]
343
343
  #
344
- # {Reference index}[link:rdoc/ref_rdoc.html]
344
+ # {Reference index}[link:ref_rdoc.html]
345
345
  # {top}[link:index.html]
346
346
  #
347
347
  #
data/rdoc/ntuple.rdoc CHANGED
@@ -1,28 +1,28 @@
1
1
  #
2
2
  # = N-tuples
3
- # This chapter describes functions for creating and manipulating ntuples,
4
- # sets of values associated with events. The ntuples are stored in files.
5
- # Their values can be extracted in any combination and booked in a histogram using
3
+ # This chapter describes functions for creating and manipulating ntuples,
4
+ # sets of values associated with events. The ntuples are stored in files.
5
+ # Their values can be extracted in any combination and booked in a histogram using
6
6
  # a selection function.
7
7
  #
8
- # The values to be stored are held in a {GSL::Vector}[link:rdoc/vector_rdoc.html] or
9
- # a {GSL::Matrix}[link:rdoc/matrix_rdoc.html] object,
10
- # and an ntuple is created associating this object with a file.
11
- # The values are then written to the file (normally inside a loop) using
8
+ # The values to be stored are held in a {GSL::Vector}[link:vector_rdoc.html] or
9
+ # a {GSL::Matrix}[link:matrix_rdoc.html] object,
10
+ # and an ntuple is created associating this object with a file.
11
+ # The values are then written to the file (normally inside a loop) using
12
12
  # the ntuple functions described below.
13
13
  #
14
- # A histogram can be created from ntuple data by providing a selection function
15
- # and a value function. The selection function specifies whether an event should
16
- # be included in the subset to be analyzed or not. The value function computes
14
+ # A histogram can be created from ntuple data by providing a selection function
15
+ # and a value function. The selection function specifies whether an event should
16
+ # be included in the subset to be analyzed or not. The value function computes
17
17
  # the entry to be added to the histogram for each event.
18
18
  #
19
- # == {}[link:index.html"name="1] The <tt>GSL::Ntuple</tt> class
19
+ # == The <tt>Ntuple</tt> class
20
20
  # ---
21
21
  # * GSL::Ntuple.create(filename, v)
22
22
  # * GSL::Ntuple.alloc(filename, v)
23
23
  #
24
- # These create a new write-only ntuple file <tt>filename</tt> for ntuples.
25
- # Any existing file with the same name is truncated to zero length and overwritten.
24
+ # These create a new write-only ntuple file <tt>filename</tt> for ntuples.
25
+ # Any existing file with the same name is truncated to zero length and overwritten.
26
26
  # A preexisting <tt>Vector</tt> object <tt>v</tt> for the current ntuple data must be supplied:
27
27
  # this is used to copy ntuples in and out of the file.
28
28
  #
@@ -32,7 +32,7 @@
32
32
  # This opens an existing ntuple file <tt>filename</tt> for reading. A preexisting
33
33
  # <tt>Vector</tt> object <tt>v</tt> for the current ntuple data must be supplied.
34
34
  #
35
- # == {}[link:index.html"name="2] Writing and reading ntuples
35
+ # == Writing and reading ntuples
36
36
  # ---
37
37
  # * GSL::Ntuple#write
38
38
  # * GSL::Ntuple#bookdata
@@ -44,11 +44,11 @@
44
44
  #
45
45
  # This method reads the current row of the ntuple file.
46
46
  #
47
- # == {}[link:index.html"name="3] Histogramming ntuple values
48
- # Once an ntuple has been created its contents can be histogrammed in various ways using
49
- # the function gsl_ntuple_project. Two user-defined functions must be provided, a function
50
- # to select events and a function to compute scalar values. The selection function and the
51
- # value function both accept the ntuple row as a first argument and other parameters as a
47
+ # == Histogramming ntuple values
48
+ # Once an ntuple has been created its contents can be histogrammed in various ways using
49
+ # the function gsl_ntuple_project. Two user-defined functions must be provided, a function
50
+ # to select events and a function to compute scalar values. The selection function and the
51
+ # value function both accept the ntuple row as a first argument and other parameters as a
52
52
  # second argument.
53
53
  #
54
54
  # ---
@@ -58,10 +58,10 @@
58
58
  # * GSL::Ntuple::ValueFn.alloc(proc)
59
59
  #
60
60
  # Constructors for selection functions and value functions.
61
- # The selection function shoud return a non-zero value for each ntuple row that
61
+ # The selection function shoud return a non-zero value for each ntuple row that
62
62
  # is to be included in the histogram. The value function should return the value to
63
63
  # be added to the histogram for the ntuple row.
64
- #
64
+ #
65
65
  # ---
66
66
  # * GSL::Ntuple::SelectFn#set_params(params)
67
67
  # * GSL::Ntuple::ValueFn#set_params(params)
@@ -71,18 +71,18 @@
71
71
  # ---
72
72
  # * GSL::Ntuple.project(h, n, valfn, selfn)
73
73
  #
74
- # These methods updates the histogram <tt>h</tt> from the ntuple <tt>n</tt> using
75
- # the functions <tt>valfn</tt> and <tt>selfn</tt>. For each ntuple row where the selection
76
- # function <tt>selen</tt> is non-zero the corresponding value of that row is computed
77
- # using the function value_func<tt>valfn</tt> and added to the histogram <tt>h</tt>.
78
- # Those ntuple rows where <tt>selfn</tt> returns zero are ignored. New entries are added
79
- # to the histogram, so subsequent calls can be used to accumulate further data in the
74
+ # These methods updates the histogram <tt>h</tt> from the ntuple <tt>n</tt> using
75
+ # the functions <tt>valfn</tt> and <tt>selfn</tt>. For each ntuple row where the selection
76
+ # function <tt>selen</tt> is non-zero the corresponding value of that row is computed
77
+ # using the function value_func<tt>valfn</tt> and added to the histogram <tt>h</tt>.
78
+ # Those ntuple rows where <tt>selfn</tt> returns zero are ignored. New entries are added
79
+ # to the histogram, so subsequent calls can be used to accumulate further data in the
80
80
  # same histogram.
81
81
  #
82
- # {prev}[link:rdoc/hist2d_rdoc.html]
83
- # {next}[link:rdoc/monte_rdoc.html]
82
+ # {prev}[link:hist2d_rdoc.html]
83
+ # {next}[link:monte_rdoc.html]
84
84
  #
85
- # {Reference index}[link:rdoc/ref_rdoc.html]
85
+ # {Reference index}[link:ref_rdoc.html]
86
86
  # {top}[link:index.html]
87
87
  #
88
88
  #
data/rdoc/odeiv.rdoc CHANGED
@@ -1,24 +1,24 @@
1
1
  #
2
2
  # = Ordinary Differential Equations
3
- # This chapter describes functions for solving ordinary differential equation
4
- # (ODE) initial value problems. The library provides a variety of low-level
5
- # methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level
6
- # components for adaptive step-size control. The components can be combined
7
- # by the user to achieve the desired solution, with full access to any
8
- # intermediate steps.
3
+ # This chapter describes functions for solving ordinary differential equation
4
+ # (ODE) initial value problems. The library provides a variety of low-level
5
+ # methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level
6
+ # components for adaptive step-size control. The components can be combined
7
+ # by the user to achieve the desired solution, with full access to any
8
+ # intermediate steps.
9
9
  #
10
10
  #
11
11
  # Contents:
12
- # 1. {Classes for ODE solver}[link:rdoc/odeiv_rdoc.html#1]
13
- # 1. {Class Descriptions}[link:rdoc/odeiv_rdoc.html#2]
14
- # 1. {GSL::Odeiv::System : Defining the ODE System}[link:rdoc/odeiv_rdoc.html#2.1]
15
- # 1. {GSL::Odeiv::Step : Stepping Algorithms}[link:rdoc/odeiv_rdoc.html#2.2]
16
- # 1. {GSL::Odeiv::Control : Adaptive Step-size Control}[link:rdoc/odeiv_rdoc.html#2.3]
17
- # 1. {GSL::Odeiv::Evolve : Evolution}[link:rdoc/odeiv_rdoc.html#2.4]
18
- # 1. {GSL::Odeiv::Solver : Higher level interface}[link:rdoc/odeiv_rdoc.html#2.5]
19
- # 1. {Examples}[link:rdoc/odeiv_rdoc.html#3]
12
+ # 1. {Classes for ODE solver}[link:odeiv_rdoc.html#label-Classes+for+ODE+solver]
13
+ # 1. {Class Descriptions}[link:odeiv_rdoc.html#label-Class+Descriptions]
14
+ # 1. {GSL::Odeiv::System : Defining the ODE System}[link:odeiv_rdoc.html#label-System]
15
+ # 1. {GSL::Odeiv::Step : Stepping Algorithms}[link:odeiv_rdoc.html#label-Step]
16
+ # 1. {GSL::Odeiv::Control : Adaptive Step-size Control}[link:odeiv_rdoc.html#label-Control]
17
+ # 1. {GSL::Odeiv::Evolve : Evolution}[link:odeiv_rdoc.html#label-Evolve]
18
+ # 1. {GSL::Odeiv::Solver : Higher level interface}[link:odeiv_rdoc.html#label-Solver]
19
+ # 1. {Examples}[link:odeiv_rdoc.html#label-Example]
20
20
  #
21
- # == {}[link:index.html"name="1] Classes for ODE solver
21
+ # == Classes for ODE solver
22
22
  #
23
23
  # ---
24
24
  # * GSL::Odeiv::System
@@ -33,20 +33,20 @@
33
33
  #
34
34
  # Another higher-level interface to ODE system classes.
35
35
  #
36
- # == {}[link:index.html"name="2] Class Descriptions
36
+ # == Class Descriptions
37
37
  #
38
- # === {}[link:index.html"name="2.1] GSL::Odeiv::System
38
+ # === System
39
39
  # ---
40
40
  # * GSL::Odeiv::System.alloc(func, jac, dim)
41
41
  # * GSL::Odeiv::System.alloc(func, dim)
42
42
  #
43
43
  # Constructor. This defines a general ODE system with the dimension <tt>dim</tt>.
44
- #
44
+ #
45
45
  # # t: variable (scalar)
46
46
  # # y: vector
47
47
  # # dydt: vector
48
48
  # # params: scalar or an array
49
- #
49
+ #
50
50
  # func = Proc.new { |t, y, dydt, params|
51
51
  # mu = params
52
52
  # dydt[0] = y[1]
@@ -66,12 +66,12 @@
66
66
  # dfdy.set(1, 1, -mu*(y[0]*y[0] - 1.0))
67
67
  # dfdt[0] = 0.0
68
68
  # dfdt[1] = 0.0
69
- # }
69
+ # }
70
70
  #
71
71
  # sys = GSL:Odeiv::System.alloc(func, jac, dim) # for "BSIMP" algorithm
72
72
  #
73
- # Note that some of the simpler solver algorithms do not make use of the
74
- # Jacobian matrix, so it is not always strictly necessary to provide it.
73
+ # Note that some of the simpler solver algorithms do not make use of the
74
+ # Jacobian matrix, so it is not always strictly necessary to provide it.
75
75
  # Thus the constructor is as
76
76
  # sys = GSL:Odeiv::System.alloc(func, nil, dim) # for others, replaced by nil
77
77
  # sys = GSL:Odeiv::System.alloc(func, dim) # or omit
@@ -99,14 +99,14 @@
99
99
  # * GSL::Odeiv::System#dim
100
100
  #
101
101
  #
102
- # === {}[link:index.html"name="2.2] GSL::Odeiv::Step
102
+ # === Step
103
103
  # The lowest level components are the stepping functions which advance a solution from time <tt>t</tt> to <tt>t+h</tt> for a fixed step-size <tt>h</tt> and estimate the resulting local error.
104
104
  #
105
105
  # ---
106
106
  # * GSL::Odeiv::Step.alloc(T, dim)
107
107
  #
108
- # Constructor for a stepping function of an algorithm type <tt>T</tt> for a system of
109
- # dimension <tt>dim</tt>. The algorithms are specified by one of the constants under the
108
+ # Constructor for a stepping function of an algorithm type <tt>T</tt> for a system of
109
+ # dimension <tt>dim</tt>. The algorithms are specified by one of the constants under the
110
110
  # <tt>GSL::Odeiv::Step</tt> class, as
111
111
  #
112
112
  # 1. <tt>GSL::Odeiv::Step::RK2</tt>, Embedded 2nd order Runge-Kutta with 3rd order error estimate.
@@ -121,7 +121,7 @@
121
121
  # 1. <tt>GSL::Odeiv::Step::GEAR2</tt>, M=2 implicit Gear method
122
122
  # 1. <tt>GSL::Odeiv::Step::RK2SIMP</tt> (GSL-1.6)
123
123
  #
124
- # * Ex:
124
+ # * Ex:
125
125
  # step = Odeiv::Step.alloc(Odeiv::Step::RKF45, 2)
126
126
  #
127
127
  # The algorithm types can also be given by a String, same as the C struct name,
@@ -138,14 +138,14 @@
138
138
  # 1. "<tt>gear2</tt>" or "<tt>gsl_odeiv_step_gear2</tt>"
139
139
  # 1. "<tt>rk2simp</tt>" or "<tt>gsl_odeiv_step_rk2simp</tt>" (GSL-1.6)
140
140
  #
141
- # * Ex:
141
+ # * Ex:
142
142
  # step = Odeiv::Step.alloc("bsimp", 4)
143
143
  # step2 = Odeiv::Step.alloc("gsl_odeiv_step_rkck", 3)
144
144
  #
145
145
  # ---
146
146
  # * GSL::Odeiv::Step#reset
147
147
  #
148
- # This method resets the stepper. It should be used whenever the next use
148
+ # This method resets the stepper. It should be used whenever the next use
149
149
  # of s will not be a continuation of a previous step.
150
150
  #
151
151
  # ---
@@ -163,7 +163,7 @@
163
163
  # ---
164
164
  # * GSL::Odeiv::Step#order
165
165
  #
166
- # Returns the order of the stepper on the previous step.
166
+ # Returns the order of the stepper on the previous step.
167
167
  # This order can vary if the stepper itself is adaptive.
168
168
  #
169
169
  # ---
@@ -171,86 +171,86 @@
171
171
  # * GSL::Odeiv::Step#apply(t, h, y, yerr, dydt_in, sys)
172
172
  # * GSL::Odeiv::Step#apply(t, h, y, yerr, sys)
173
173
  #
174
- # This method applies the stepper to the system of equations defined by
175
- # <tt>dydt</tt>, using the step size <tt>h</tt> to advance the system from time
176
- # <tt>t</tt> and state <tt>y</tt> to time <tt>t+h</tt>. The new state of the system
177
- # is stored in <tt>y</tt> on output, with an estimate of the absolute error in
178
- # each component stored in <tt>yerr</tt>. If the argument <tt>dydt_in</tt> is not
179
- # <tt>nil</tt> it should be a {GSL::Vector}[link:rdoc/vector_rdoc.html] object
180
- # containing the derivatives for the system at time <tt>t</tt> on input.
181
- # This is optional as the derivatives will be computed internally if they
182
- # are not provided, but allows the reuse of existing derivative information.
183
- # On output the new derivatives of the system at time <tt>t+h</tt> will be
174
+ # This method applies the stepper to the system of equations defined by
175
+ # <tt>dydt</tt>, using the step size <tt>h</tt> to advance the system from time
176
+ # <tt>t</tt> and state <tt>y</tt> to time <tt>t+h</tt>. The new state of the system
177
+ # is stored in <tt>y</tt> on output, with an estimate of the absolute error in
178
+ # each component stored in <tt>yerr</tt>. If the argument <tt>dydt_in</tt> is not
179
+ # <tt>nil</tt> it should be a {GSL::Vector}[link:vector_rdoc.html] object
180
+ # containing the derivatives for the system at time <tt>t</tt> on input.
181
+ # This is optional as the derivatives will be computed internally if they
182
+ # are not provided, but allows the reuse of existing derivative information.
183
+ # On output the new derivatives of the system at time <tt>t+h</tt> will be
184
184
  # stored in <tt>dydt_out</tt> if it is not nil.
185
185
  #
186
- # === {}[link:index.html"name="2.3] GSL::Odeiv::Control
186
+ # === Control
187
187
  # ---
188
188
  # * GSL::Odeiv::Control.standard_new(epsabs, epsrel, a_y, a_dydt)
189
189
  # * GSL::Odeiv::Control.alloc(epsabs, epsrel, a_y, a_dydt)
190
190
  #
191
- # The standard control object is a four parameter heuristic based on
192
- # absolute and relative errors <tt>epsabs</tt> and <tt>epsrel</tt>, and
193
- # scaling factors <tt>a_y</tt> and <tt>a_dydt</tt> for the system state
191
+ # The standard control object is a four parameter heuristic based on
192
+ # absolute and relative errors <tt>epsabs</tt> and <tt>epsrel</tt>, and
193
+ # scaling factors <tt>a_y</tt> and <tt>a_dydt</tt> for the system state
194
194
  # <tt>y(t)</tt> and derivatives <tt>y'(t)</tt> respectively.
195
195
  #
196
196
  # ---
197
197
  # * GSL::Odeiv::Control.y_new(epsabs, epsrel)
198
198
  #
199
- # This method creates a new control object which will keep the local error
200
- # on each step within an absolute error of <tt>epsabs</tt> and relative error
201
- # of <tt>epsrel</tt> with respect to the solution <tt>y_i(t)</tt>.
202
- # This is equivalent to the standard control object with <tt>a_y=1</tt>
199
+ # This method creates a new control object which will keep the local error
200
+ # on each step within an absolute error of <tt>epsabs</tt> and relative error
201
+ # of <tt>epsrel</tt> with respect to the solution <tt>y_i(t)</tt>.
202
+ # This is equivalent to the standard control object with <tt>a_y=1</tt>
203
203
  # and <tt>a_dydt=0</tt>.
204
204
  #
205
205
  # ---
206
206
  # * GSL::Odeiv::Control.yp_new(epsabs, epsrel)
207
207
  #
208
- # This method creates a new control object which will keep the local
209
- # error on each step within an absolute error of <tt>epsabs</tt> and
210
- # relative error of <tt>epsrel</tt> with respect to the derivatives of the
211
- # solution <tt>y'_i(t)</tt>.
212
- # This is equivalent to the standard control object with <tt>a_y=0</tt>
208
+ # This method creates a new control object which will keep the local
209
+ # error on each step within an absolute error of <tt>epsabs</tt> and
210
+ # relative error of <tt>epsrel</tt> with respect to the derivatives of the
211
+ # solution <tt>y'_i(t)</tt>.
212
+ # This is equivalent to the standard control object with <tt>a_y=0</tt>
213
213
  # and <tt>a_dydt=1</tt>.
214
214
  #
215
215
  # ---
216
216
  # * GSL::Odeiv::Control.alloc(epsabs, epsrel, a_y, a_dydt, vscale, dim)
217
217
  #
218
- # This creates a new control object which uses the same algorithm as
219
- # <tt>GSL::Odeiv::Control.standard_new</tt> but with an absolute error which
218
+ # This creates a new control object which uses the same algorithm as
219
+ # <tt>GSL::Odeiv::Control.standard_new</tt> but with an absolute error which
220
220
  # is scaled for each component by the <tt>GSL::Vector</tt> object <tt>vscale</tt>.
221
221
  #
222
222
  # ---
223
223
  # * GSL::Odeiv::Control#init(epsabs, epsrel, a_y, a_dydt)
224
224
  #
225
- # This method initializes the controler with the parameters <tt>epsabs</tt>
226
- # (absolute error), <tt>epsrel</tt> (relative error), <tt>a_y</tt>
225
+ # This method initializes the controler with the parameters <tt>epsabs</tt>
226
+ # (absolute error), <tt>epsrel</tt> (relative error), <tt>a_y</tt>
227
227
  # (scaling factor for y) and <tt>a_dydt</tt> (scaling factor for derivatives).
228
228
  #
229
229
  # ---
230
230
  # * GSL::Odeiv::Control#name
231
231
  # * GSL::Odeiv::Control#hadjust(step, y0, yerr, dydt, h)
232
232
  #
233
- # This method adjusts the step-size <tt>h</tt> using the control function
234
- # object, and the current values of <tt>y</tt>, <tt>yerr</tt> and <tt>dydt</tt>.
235
- # The stepping function <tt>step</tt> is also needed to determine the order
233
+ # This method adjusts the step-size <tt>h</tt> using the control function
234
+ # object, and the current values of <tt>y</tt>, <tt>yerr</tt> and <tt>dydt</tt>.
235
+ # The stepping function <tt>step</tt> is also needed to determine the order
236
236
  # of the method. On output, an array of two elements [<tt>hadj, status</tt>]
237
- # is returned: If the error in the y-values <tt>yerr</tt> is found to be
238
- # too large then the step-size <tt>h</tt> is reduced and the method returns
239
- # [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_DEC</tt>].
240
- # If the error is sufficiently small then
241
- # <tt>h</tt> may be increased and [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_INC</tt>]
242
- # is returned.
243
- # The method returns [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_NIL</tt>] if the step-size is
244
- # unchanged. The goal of the method is to estimate the largest step-size
245
- # which satisfies the user-specified accuracy requirements for the current
237
+ # is returned: If the error in the y-values <tt>yerr</tt> is found to be
238
+ # too large then the step-size <tt>h</tt> is reduced and the method returns
239
+ # [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_DEC</tt>].
240
+ # If the error is sufficiently small then
241
+ # <tt>h</tt> may be increased and [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_INC</tt>]
242
+ # is returned.
243
+ # The method returns [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_NIL</tt>] if the step-size is
244
+ # unchanged. The goal of the method is to estimate the largest step-size
245
+ # which satisfies the user-specified accuracy requirements for the current
246
246
  # point.
247
247
  #
248
- # === {}[link:index.html"name="2.4] GSL::Odeiv::Evolve
249
- # The higher level of the system is the <tt>GSL::Evolve</tt> class which combines the
250
- # results of a stepper and controler to reliably advance the solution forward
251
- # over an interval <tt>(t_0, t_1)</tt>. If the controler signals that the step-size
252
- # should be decreased the <tt>GSL::Evolve</tt> object backs out of the current step and
253
- # tries the proposed smaller step-size. This process is continued until an
248
+ # === Evolve
249
+ # The higher level of the system is the <tt>GSL::Evolve</tt> class which combines the
250
+ # results of a stepper and controler to reliably advance the solution forward
251
+ # over an interval <tt>(t_0, t_1)</tt>. If the controler signals that the step-size
252
+ # should be decreased the <tt>GSL::Evolve</tt> object backs out of the current step and
253
+ # tries the proposed smaller step-size. This process is continued until an
254
254
  # acceptable step-size is found.
255
255
  #
256
256
  # ---
@@ -261,28 +261,28 @@
261
261
  # ---
262
262
  # * GSL::Odeiv::Evolve#reset
263
263
  #
264
- # This method resets the GSL::Evolve object. It should be used whenever
264
+ # This method resets the GSL::Evolve object. It should be used whenever
265
265
  # the next use of e will not be a continuation of a previous step.
266
266
  #
267
267
  # ---
268
268
  # * GSL::Odeiv::Evolve#apply(evolve, control, step, sys, t, t1, h, y)
269
269
  #
270
- # This method advances the system <tt>sys</tt> from time <tt>t</tt> and position
271
- # <tt>y</tt> using the stepping function <tt>step</tt>. The initial step-size is
272
- # taken as <tt>h</tt>. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by
270
+ # This method advances the system <tt>sys</tt> from time <tt>t</tt> and position
271
+ # <tt>y</tt> using the stepping function <tt>step</tt>. The initial step-size is
272
+ # taken as <tt>h</tt>. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by
273
273
  # the time-step. On output, an array of three elements is returned,
274
- # [<tt>tnext, hnext, status</tt>], where <tt>tnext</tt> is the time advanced,
274
+ # [<tt>tnext, hnext, status</tt>], where <tt>tnext</tt> is the time advanced,
275
275
  # <tt>hnext</tt> is the step-size
276
276
  # for the next step, and <tt>status</tt> is an error code retunred by <tt>gsl_odeiv_evolve_apply()</tt> function.
277
- # On the final time-step the value of <tt>tnext</tt> will be set to
277
+ # On the final time-step the value of <tt>tnext</tt> will be set to
278
278
  # <tt>t1</tt> exactly.
279
279
  #
280
280
  # ---
281
281
  # * GSL::Odeiv::Evolve#count
282
282
  #
283
283
  #
284
- # === {}[link:index.html"name="2.5] GSL::Odeiv::Solver
285
- # This is the highest level interface to solve ODE system,
284
+ # === Solver
285
+ # This is the highest level interface to solve ODE system,
286
286
  # which contains System, Step, Control, and Evolve classes.
287
287
  #
288
288
  # ---
@@ -329,10 +329,10 @@
329
329
  #
330
330
  # This method advances the system from time <tt>t</tt> and position <tt>y</tt> (<tt>GSL::Vector</tt> object) using the stepping function. On output, the new time and position are returned as an array [<tt>tnext, hnext, status</tt>], i.e. <tt>t, y</tt> themselves are not modified by this method. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by the time-step. On the final time-step the value of <tt>tnext</tt> will be set to <tt>t1</tt> exactly.
331
331
  #
332
- # == {}[link:index.html"name="3] Example
332
+ # == Example
333
333
  #
334
334
  # The following program solves the second-order nonlinear Van der Pol oscillator equation,
335
- # as found in the GSL manual, x"(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0,
335
+ # as found in the GSL manual, x"(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0,
336
336
  #
337
337
  # This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, y = x'(t),
338
338
  #
@@ -369,10 +369,10 @@
369
369
  # end
370
370
  #
371
371
  #
372
- # {prev}[link:rdoc/siman_rdoc.html]
373
- # {next}[link:rdoc/interp_rdoc.html]
372
+ # {prev}[link:siman_rdoc.html]
373
+ # {next}[link:interp_rdoc.html]
374
374
  #
375
- # {Reference index}[link:rdoc/ref_rdoc.html]
375
+ # {Reference index}[link:ref_rdoc.html]
376
376
  # {top}[link:index.html]
377
377
  #
378
378
  #