rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/nonlinearfit.rdoc
CHANGED
@@ -1,60 +1,60 @@
|
|
1
1
|
#
|
2
2
|
# = Nonlinear Least-Squares Fitting
|
3
|
-
# This chapter describes functions for multidimensional nonlinear least-squares
|
4
|
-
# fitting. The library provides low level components for a variety of iterative
|
5
|
-
# solvers and convergence tests. These can be combined by the user to achieve
|
6
|
-
# the desired solution, with full access to the intermediate steps of the
|
7
|
-
# iteration. Each class of methods uses the same framework, so that you can
|
8
|
-
# switch between solvers at runtime without needing to recompile your program.
|
9
|
-
# Each instance of a solver keeps track of its own state, allowing the solvers
|
10
|
-
# to be used in multi-threaded programs.
|
3
|
+
# This chapter describes functions for multidimensional nonlinear least-squares
|
4
|
+
# fitting. The library provides low level components for a variety of iterative
|
5
|
+
# solvers and convergence tests. These can be combined by the user to achieve
|
6
|
+
# the desired solution, with full access to the intermediate steps of the
|
7
|
+
# iteration. Each class of methods uses the same framework, so that you can
|
8
|
+
# switch between solvers at runtime without needing to recompile your program.
|
9
|
+
# Each instance of a solver keeps track of its own state, allowing the solvers
|
10
|
+
# to be used in multi-threaded programs.
|
11
11
|
#
|
12
12
|
# Contents:
|
13
|
-
# 1. {Overview}[link:
|
14
|
-
# 1. {Initializing the Solver}[link:
|
15
|
-
# 1. {GSL::MultiFit::FdfSolver class}[link:
|
16
|
-
# 1. {Providing the function to be minimized}[link:
|
17
|
-
# 1. {GSL::MultiFit::Function_fdf class}[link:
|
18
|
-
# 1. {Iteration}[link:
|
19
|
-
# 1. {Search Stopping Parameters}[link:
|
20
|
-
# 1. {Computing the covariance matrix of best fit parameters}[link:
|
21
|
-
# 1. {Higher level interfaces}[link:
|
22
|
-
# 1. {Examples}[link:
|
23
|
-
# 1. {Fitting to user-defined functions}[link:
|
24
|
-
# 1. {Fitting to built-in functions}[link:
|
25
|
-
#
|
26
|
-
# ==
|
27
|
-
# The problem of multidimensional nonlinear least-squares fitting requires the
|
28
|
-
# minimization of the squared residuals of n functions, f_i, in p parameters,
|
29
|
-
# x_i, All algorithms proceed from an initial guess using the linearization,
|
30
|
-
# where x is the initial point, p is the proposed step and J is the Jacobian
|
31
|
-
# matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the
|
32
|
-
# region of convergence. These include requiring a decrease in the norm ||F||
|
33
|
-
# on each step or using a trust region to avoid steps which fall outside the
|
34
|
-
# linear regime.
|
35
|
-
#
|
36
|
-
# To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data
|
37
|
-
# (t_i, y_i) with independent gaussian errors \sigma_i, use function components
|
38
|
-
# of the following form, Note that the model parameters are denoted by x in this
|
39
|
-
# chapter since the non-linear least-squares algorithms are described
|
40
|
-
# geometrically (i.e. finding the minimum of a surface). The independent
|
41
|
-
# variable of any data to be fitted is denoted by t.
|
42
|
-
#
|
43
|
-
# With the definition above the Jacobian is
|
44
|
-
# J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
|
45
|
-
#
|
46
|
-
# ==
|
47
|
-
#
|
48
|
-
# ===
|
13
|
+
# 1. {Overview}[link:nonlinearfit_rdoc.html#label-Overview]
|
14
|
+
# 1. {Initializing the Solver}[link:nonlinearfit_rdoc.html#label-Initializing+the+Solver]
|
15
|
+
# 1. {GSL::MultiFit::FdfSolver class}[link:nonlinearfit_rdoc.html#label-FdfSolver+class]
|
16
|
+
# 1. {Providing the function to be minimized}[link:nonlinearfit_rdoc.html#label-Providing+the+function+to+be+minimized]
|
17
|
+
# 1. {GSL::MultiFit::Function_fdf class}[link:nonlinearfit_rdoc.html#label-Function_fdf+class]
|
18
|
+
# 1. {Iteration}[link:nonlinearfit_rdoc.html#label-Iteration]
|
19
|
+
# 1. {Search Stopping Parameters}[link:nonlinearfit_rdoc.html#label-Search+Stopping+Parameters]
|
20
|
+
# 1. {Computing the covariance matrix of best fit parameters}[link:nonlinearfit_rdoc.html#label-Computing+the+covariance+matrix+of+best+fit+parameters]
|
21
|
+
# 1. {Higher level interfaces}[link:nonlinearfit_rdoc.html#label-Higher+level+interfaces]
|
22
|
+
# 1. {Examples}[link:nonlinearfit_rdoc.html#label-Examples]
|
23
|
+
# 1. {Fitting to user-defined functions}[link:nonlinearfit_rdoc.html#label-Fitting+to+user-defined+functions]
|
24
|
+
# 1. {Fitting to built-in functions}[link:nonlinearfit_rdoc.html#label-Fitting+to+built-in+functions]
|
25
|
+
#
|
26
|
+
# == Overview
|
27
|
+
# The problem of multidimensional nonlinear least-squares fitting requires the
|
28
|
+
# minimization of the squared residuals of n functions, f_i, in p parameters,
|
29
|
+
# x_i, All algorithms proceed from an initial guess using the linearization,
|
30
|
+
# where x is the initial point, p is the proposed step and J is the Jacobian
|
31
|
+
# matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the
|
32
|
+
# region of convergence. These include requiring a decrease in the norm ||F||
|
33
|
+
# on each step or using a trust region to avoid steps which fall outside the
|
34
|
+
# linear regime.
|
35
|
+
#
|
36
|
+
# To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data
|
37
|
+
# (t_i, y_i) with independent gaussian errors \sigma_i, use function components
|
38
|
+
# of the following form, Note that the model parameters are denoted by x in this
|
39
|
+
# chapter since the non-linear least-squares algorithms are described
|
40
|
+
# geometrically (i.e. finding the minimum of a surface). The independent
|
41
|
+
# variable of any data to be fitted is denoted by t.
|
42
|
+
#
|
43
|
+
# With the definition above the Jacobian is
|
44
|
+
# J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
|
45
|
+
#
|
46
|
+
# == Initializing the Solver
|
47
|
+
#
|
48
|
+
# === FdfSolver class
|
49
49
|
# ---
|
50
50
|
# * GSL::MultiFit::FdfSolver.alloc(T, n, p)
|
51
51
|
#
|
52
|
-
# This creates an instance of the <tt>GSL::MultiFit::FdfSolver</tt> class of
|
52
|
+
# This creates an instance of the <tt>GSL::MultiFit::FdfSolver</tt> class of
|
53
53
|
# type <tt>T</tt> for <tt>n</tt> observations and <tt>p</tt> parameters. The type <tt>T</tt>
|
54
|
-
# is given by a <tt>Fixnum</tt> constant or a <tt>String</tt>,
|
54
|
+
# is given by a <tt>Fixnum</tt> constant or a <tt>String</tt>,
|
55
55
|
# * <tt>GSL::MultiFit::LMSDER</tt> or <tt>"lmsder"</tt>
|
56
56
|
# * <tt>GSL::MultiFit::LMDER</tt> or <tt>"lmder"</tt>
|
57
|
-
# For example, the following code creates an instance of a Levenberg-Marquardt
|
57
|
+
# For example, the following code creates an instance of a Levenberg-Marquardt
|
58
58
|
# solver for 100 data points and 3 parameters,
|
59
59
|
#
|
60
60
|
# solver = MultiFit::FdfSolver.alloc(MultiFit::LMDER, 100, 3)
|
@@ -62,10 +62,10 @@
|
|
62
62
|
# ---
|
63
63
|
# * GSL::MultiFit::FdfSolver#set(f, x)
|
64
64
|
#
|
65
|
-
# This method initializes, or reinitializes, an existing solver <tt>self</tt>
|
65
|
+
# This method initializes, or reinitializes, an existing solver <tt>self</tt>
|
66
66
|
# to use the function <tt>f</tt> and the initial guess <tt>x</tt>. The function <tt>f</tt>
|
67
67
|
# is an instance of the <tt>GSL::MultiFit::Function_fdf</tt> class (see below). The
|
68
|
-
# initial guess of the parameters <tt>x</tt> is given by a {GSL::Vector}[link:
|
68
|
+
# initial guess of the parameters <tt>x</tt> is given by a {GSL::Vector}[link:vector_rdoc.html] object.
|
69
69
|
#
|
70
70
|
# ---
|
71
71
|
# * GSL::MultiFit::FdfSolver#name
|
@@ -83,16 +83,16 @@
|
|
83
83
|
#
|
84
84
|
# Access to the members (see <tt>gsl_multifit_nlin.h</tt>)
|
85
85
|
#
|
86
|
-
# ==
|
87
|
-
# ===
|
86
|
+
# == Providing the function to be minimized
|
87
|
+
# === Function_fdf class
|
88
88
|
# ---
|
89
89
|
# * GSL::MultiFit::Function_fdf.alloc()
|
90
90
|
# * GSL::MultiFit::Function_fdf.alloc(f, df, p)
|
91
91
|
# * GSL::MultiFit::Function_fdf.alloc(f, df, fdf, p)
|
92
92
|
#
|
93
93
|
# Constructor for the <tt>Function_fdf</tt> class, to a
|
94
|
-
# function with <tt>p</tt> parameters, The first two or three arguments are Ruby Proc objects
|
95
|
-
# to evaluate the function to minimize and its derivative (Jacobian).
|
94
|
+
# function with <tt>p</tt> parameters, The first two or three arguments are Ruby Proc objects
|
95
|
+
# to evaluate the function to minimize and its derivative (Jacobian).
|
96
96
|
#
|
97
97
|
# ---
|
98
98
|
# * GSL::MultiFit::Function_fdf#set_procs(f, df, p)
|
@@ -106,24 +106,24 @@
|
|
106
106
|
# * GSL::MultiFit::Function_fdf#set_data(t, y, sigma)
|
107
107
|
#
|
108
108
|
# This sets the data <tt>t, y, sigma</tt> of length <tt>n</tt>, to the function <tt>self</tt>.
|
109
|
-
#
|
110
|
-
# ==
|
109
|
+
#
|
110
|
+
# == Iteration
|
111
111
|
# ---
|
112
112
|
# * GSL::MultiFit::FdfSolver#iterate
|
113
113
|
#
|
114
|
-
# THis performs a single iteration of the solver <tt>self</tt>. If the iteration
|
115
|
-
# encounters an unexpected problem then an error code will be returned.
|
116
|
-
# The solver maintains a current estimate of the best-fit parameters at all
|
114
|
+
# THis performs a single iteration of the solver <tt>self</tt>. If the iteration
|
115
|
+
# encounters an unexpected problem then an error code will be returned.
|
116
|
+
# The solver maintains a current estimate of the best-fit parameters at all
|
117
117
|
# times. This information can be accessed with the method <tt>position</tt>.
|
118
118
|
#
|
119
119
|
# ---
|
120
120
|
# * GSL::MultiFit::FdfSolver#position
|
121
121
|
#
|
122
|
-
# This returns the current position (i.e. best-fit parameters) of the solver
|
122
|
+
# This returns the current position (i.e. best-fit parameters) of the solver
|
123
123
|
# <tt>self</tt>, as a <tt>GSL::Vector</tt> object.
|
124
124
|
#
|
125
125
|
#
|
126
|
-
# ==
|
126
|
+
# == Search Stopping Parameters
|
127
127
|
# A minimization procedure should stop when one of the following conditions is true:
|
128
128
|
# * A minimum has been found to within the user-specified precision.
|
129
129
|
# * A user-specified maximum number of iterations has been reached.
|
@@ -134,9 +134,9 @@
|
|
134
134
|
# ---
|
135
135
|
# * GSL::MultiFit::FdfSolver#test_delta(epsabs, epsrel)
|
136
136
|
#
|
137
|
-
# This method tests for the convergence of the sequence by comparing the last
|
138
|
-
# step with the absolute error <tt>epsabs</tt> and relative error (<tt>epsrel</tt>
|
139
|
-
# to the current position. The test returns <tt>GSL::SUCCESS</tt> if the following
|
137
|
+
# This method tests for the convergence of the sequence by comparing the last
|
138
|
+
# step with the absolute error <tt>epsabs</tt> and relative error (<tt>epsrel</tt>
|
139
|
+
# to the current position. The test returns <tt>GSL::SUCCESS</tt> if the following
|
140
140
|
# condition is achieved,
|
141
141
|
# |dx_i| < epsabs + epsrel |x_i|
|
142
142
|
# for each component of <tt>x</tt> and returns <tt>GSL::CONTINUE</tt> otherwise.
|
@@ -145,19 +145,19 @@
|
|
145
145
|
# * GSL::MultiFit::FdfSolver#test_gradient(g, epsabs)
|
146
146
|
# * GSL::MultiFit::FdfSolver#test_gradient(epsabs)
|
147
147
|
#
|
148
|
-
# This function tests the residual gradient <tt>g</tt> against the absolute error
|
149
|
-
# bound <tt>epsabs</tt>. If <tt>g</tt> is not given, it is calculated internally.
|
150
|
-
# Mathematically, the gradient should be exactly zero at the minimum.
|
148
|
+
# This function tests the residual gradient <tt>g</tt> against the absolute error
|
149
|
+
# bound <tt>epsabs</tt>. If <tt>g</tt> is not given, it is calculated internally.
|
150
|
+
# Mathematically, the gradient should be exactly zero at the minimum.
|
151
151
|
# The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
|
152
152
|
# \sum_i |g_i| < epsabs
|
153
|
-
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
154
|
-
# situations where the precise location of the minimum, x, is unimportant provided
|
153
|
+
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
154
|
+
# situations where the precise location of the minimum, x, is unimportant provided
|
155
155
|
# a value can be found where the gradient is small enough.
|
156
156
|
#
|
157
157
|
# ---
|
158
158
|
# * GSL::MultiFit::FdfSolver#gradient
|
159
159
|
#
|
160
|
-
# This method returns the gradient g of \Phi(x) = (1/2) ||F(x)||^2 from the
|
160
|
+
# This method returns the gradient g of \Phi(x) = (1/2) ||F(x)||^2 from the
|
161
161
|
# Jacobian matrix and the function values, using the formula g = J^T f.
|
162
162
|
#
|
163
163
|
# ---
|
@@ -170,71 +170,71 @@
|
|
170
170
|
# Singleton methods of the <tt>GSL::MultiFit</tt> module.
|
171
171
|
#
|
172
172
|
#
|
173
|
-
# ==
|
173
|
+
# == Computing the covariance matrix of best fit parameters
|
174
174
|
# ---
|
175
175
|
# * GSL::MultiFit.covar(J, epsrel)
|
176
176
|
# * GSL::MultiFit.covar(J, epsrel, covar)
|
177
177
|
#
|
178
|
-
# This method uses the Jacobian matrix <tt>J</tt> to compute the covariance
|
178
|
+
# This method uses the Jacobian matrix <tt>J</tt> to compute the covariance
|
179
179
|
# matrix of the best-fit parameters. If an existing matrix <tt>covar</tt> is given,
|
180
|
-
# it is overwritten, and if not, this method returns a new matrix.
|
181
|
-
# The parameter <tt>epsrel</tt> is used to remove linear-dependent columns when
|
180
|
+
# it is overwritten, and if not, this method returns a new matrix.
|
181
|
+
# The parameter <tt>epsrel</tt> is used to remove linear-dependent columns when
|
182
182
|
# <tt>J</tt> is rank deficient.
|
183
183
|
#
|
184
184
|
# The covariance matrix is given by,
|
185
185
|
# covar = (J^T J)^{-1}
|
186
|
-
# and is computed by QR decomposition of <tt>J</tt> with column-pivoting.
|
186
|
+
# and is computed by QR decomposition of <tt>J</tt> with column-pivoting.
|
187
187
|
# Any columns of R which satisfy
|
188
188
|
# |R_{kk}| <= epsrel |R_{11}|
|
189
|
-
# are considered linearly-dependent and are excluded from the covariance matrix
|
189
|
+
# are considered linearly-dependent and are excluded from the covariance matrix
|
190
190
|
# (the corresponding rows and columns of the covariance matrix are set to zero).
|
191
191
|
#
|
192
|
-
# ==
|
192
|
+
# == Higher level interfaces
|
193
193
|
# ---
|
194
194
|
# * GSL::MultiFit::FdfSolver.fit(x, y, type[, guess])
|
195
195
|
# * GSL::MultiFit::FdfSolver.fit(x, w, y, type[, guess])
|
196
196
|
#
|
197
197
|
# This method uses <tt>FdfSolver</tt> with the LMSDER algorithm to fit the data
|
198
|
-
# <tt>[x, y]</tt> to a function of type <tt>type</tt>. The returned value is
|
198
|
+
# <tt>[x, y]</tt> to a function of type <tt>type</tt>. The returned value is
|
199
199
|
# an array of 4 elements, <tt>[coef, err, chisq, dof]</tt>,
|
200
200
|
# where <tt>coef</tt> is an array of the fitting coefficients, <tt>err</tt> contains
|
201
|
-
# errors in estimating <tt>coef</tt>, <tt>chisq</tt> is the
|
202
|
-
# chi-squared, and <tt>dof</tt> is the degree-of-freedom in the fitting
|
201
|
+
# errors in estimating <tt>coef</tt>, <tt>chisq</tt> is the
|
202
|
+
# chi-squared, and <tt>dof</tt> is the degree-of-freedom in the fitting
|
203
203
|
# which equals to (data length - number of fitting coefficients). The optional
|
204
204
|
# argument <tt>guess</tt> is an array of initial guess of the coefficients.
|
205
205
|
# The fitting type <tt>type</tt> is given by a <tt>String</tt> as follows.
|
206
|
-
# * <tt>"gaussian"</tt>: Gaussian fit,
|
206
|
+
# * <tt>"gaussian"</tt>: Gaussian fit,
|
207
207
|
# <tt>y = y0 + A exp(-(x-x0)^2/2/var)</tt>, <tt>coef = [y0, A, x0, var]</tt>
|
208
208
|
# * <tt>"gaussian_2peaks"</tt>: 2-peak Gaussian fit,
|
209
209
|
# <tt>y = y0 + A1 exp(-(x-x1)^2/2/var1) + A2 exp(-(x-x2)^2/2/var2)</tt>, <tt>coef = [y0, A1, x1, var1, A2, x2, var2]</tt>
|
210
|
-
# * <tt>"exp"</tt>: Exponential fit,
|
210
|
+
# * <tt>"exp"</tt>: Exponential fit,
|
211
211
|
# <tt>y = y0 + A exp(-b x)</tt>, <tt>coef = [y0, A, b]</tt>
|
212
|
-
# * <tt>"dblexp"</tt>: Double exponential fit,
|
212
|
+
# * <tt>"dblexp"</tt>: Double exponential fit,
|
213
213
|
# <tt>y = y0 + A1 exp(-b1 x) + A2 exp(-b2 x)</tt>, <tt>coef = [y0, A1, b1, A2, b2]</tt>
|
214
|
-
# * <tt>"sin"</tt>: Sinusoidal fit,
|
214
|
+
# * <tt>"sin"</tt>: Sinusoidal fit,
|
215
215
|
# <tt>y = y0 + A sin(f x + phi)</tt>, <tt>coef = [y0, A, f, phi]</tt>
|
216
|
-
# * <tt>"lor"</tt>: Lorentzian peak fit,
|
216
|
+
# * <tt>"lor"</tt>: Lorentzian peak fit,
|
217
217
|
# <tt>y = y0 + A/((x-x0)^2 + B)</tt>, <tt>coef = [y0, A, x0, B]</tt>
|
218
|
-
# * <tt>"hill"</tt>: Hill's equation fit,
|
218
|
+
# * <tt>"hill"</tt>: Hill's equation fit,
|
219
219
|
# <tt>y = y0 + (m - y0)/(1 + (xhalf/x)^r)</tt>, <tt>coef = [y0, n, xhalf, r]</tt>
|
220
|
-
# * <tt>"sigmoid"</tt>: Sigmoid (Fermi-Dirac) function fit,
|
220
|
+
# * <tt>"sigmoid"</tt>: Sigmoid (Fermi-Dirac) function fit,
|
221
221
|
# <tt>y = y0 + m/(1 + exp((x0-x)/r))</tt>, <tt>coef = [y0, m, x0, r]</tt>
|
222
|
-
# * <tt>"power"</tt>: Power-law fit,
|
222
|
+
# * <tt>"power"</tt>: Power-law fit,
|
223
223
|
# <tt>y = y0 + A x^r</tt>, <tt>coef = [y0, A, r]</tt>
|
224
|
-
# * <tt>"lognormal"</tt>: Lognormal peak fit,
|
224
|
+
# * <tt>"lognormal"</tt>: Lognormal peak fit,
|
225
225
|
# <tt>y = y0 + A exp[ -(log(x/x0)/width)^2 ]</tt>, <tt>coef = [y0, A, x0, width]</tt>
|
226
226
|
#
|
227
|
-
# See {Linear fitting}[link:
|
227
|
+
# See {Linear fitting}[link:fit_rdoc.html#label-Higer+level+interface] for linear and polynomical fittings.
|
228
228
|
#
|
229
|
-
# ==
|
230
|
-
# ===
|
229
|
+
# == Examples
|
230
|
+
# === Fitting to user-defined functions
|
231
231
|
#
|
232
|
-
# The following example program fits a weighted exponential model with background
|
233
|
-
# to experimental data, Y = A exp(-lambda t) + b. The first part of the program sets
|
234
|
-
# up the functions <tt>procf</tt> and <tt>procdf</tt> to calculate the model and its Jacobian.
|
232
|
+
# The following example program fits a weighted exponential model with background
|
233
|
+
# to experimental data, Y = A exp(-lambda t) + b. The first part of the program sets
|
234
|
+
# up the functions <tt>procf</tt> and <tt>procdf</tt> to calculate the model and its Jacobian.
|
235
235
|
# The appropriate fitting function is given by,
|
236
236
|
# f_i = ((A exp(-lambda t_i) + b) - y_i)/sigma_i
|
237
|
-
# where we have chosen t_i = i. The Jacobian matrix <tt>jac</tt> is the derivative of
|
237
|
+
# where we have chosen t_i = i. The Jacobian matrix <tt>jac</tt> is the derivative of
|
238
238
|
# these functions with respect to the three parameters (A, lambda, b). It is given by,
|
239
239
|
# J_{ij} = d f_i / d x_j
|
240
240
|
# where x_0 = A, x_1 = lambda and x_2 = b.
|
@@ -310,7 +310,7 @@
|
|
310
310
|
# printf("b = %.5f +/- %.5f\n", position[2], Math::sqrt(chi2/dof*covar[2][2]))
|
311
311
|
#
|
312
312
|
#
|
313
|
-
# ===
|
313
|
+
# === Fitting to built-in functions
|
314
314
|
# #!/usr/bin/env ruby
|
315
315
|
# require("gsl")
|
316
316
|
# include MultiFit
|
@@ -338,10 +338,10 @@
|
|
338
338
|
# graph(x, y, y0+amp*Sf::exp(-pow_2(Sf::log(x/x0)/w)))
|
339
339
|
#
|
340
340
|
#
|
341
|
-
# {prev}[link:
|
342
|
-
# {next}[link:
|
341
|
+
# {prev}[link:fit_rdoc.html]
|
342
|
+
# {next}[link:bspline_rdoc.html]
|
343
343
|
#
|
344
|
-
# {Reference index}[link:
|
344
|
+
# {Reference index}[link:ref_rdoc.html]
|
345
345
|
# {top}[link:index.html]
|
346
346
|
#
|
347
347
|
#
|
data/rdoc/ntuple.rdoc
CHANGED
@@ -1,28 +1,28 @@
|
|
1
1
|
#
|
2
2
|
# = N-tuples
|
3
|
-
# This chapter describes functions for creating and manipulating ntuples,
|
4
|
-
# sets of values associated with events. The ntuples are stored in files.
|
5
|
-
# Their values can be extracted in any combination and booked in a histogram using
|
3
|
+
# This chapter describes functions for creating and manipulating ntuples,
|
4
|
+
# sets of values associated with events. The ntuples are stored in files.
|
5
|
+
# Their values can be extracted in any combination and booked in a histogram using
|
6
6
|
# a selection function.
|
7
7
|
#
|
8
|
-
# The values to be stored are held in a {GSL::Vector}[link:
|
9
|
-
# a {GSL::Matrix}[link:
|
10
|
-
# and an ntuple is created associating this object with a file.
|
11
|
-
# The values are then written to the file (normally inside a loop) using
|
8
|
+
# The values to be stored are held in a {GSL::Vector}[link:vector_rdoc.html] or
|
9
|
+
# a {GSL::Matrix}[link:matrix_rdoc.html] object,
|
10
|
+
# and an ntuple is created associating this object with a file.
|
11
|
+
# The values are then written to the file (normally inside a loop) using
|
12
12
|
# the ntuple functions described below.
|
13
13
|
#
|
14
|
-
# A histogram can be created from ntuple data by providing a selection function
|
15
|
-
# and a value function. The selection function specifies whether an event should
|
16
|
-
# be included in the subset to be analyzed or not. The value function computes
|
14
|
+
# A histogram can be created from ntuple data by providing a selection function
|
15
|
+
# and a value function. The selection function specifies whether an event should
|
16
|
+
# be included in the subset to be analyzed or not. The value function computes
|
17
17
|
# the entry to be added to the histogram for each event.
|
18
18
|
#
|
19
|
-
# ==
|
19
|
+
# == The <tt>Ntuple</tt> class
|
20
20
|
# ---
|
21
21
|
# * GSL::Ntuple.create(filename, v)
|
22
22
|
# * GSL::Ntuple.alloc(filename, v)
|
23
23
|
#
|
24
|
-
# These create a new write-only ntuple file <tt>filename</tt> for ntuples.
|
25
|
-
# Any existing file with the same name is truncated to zero length and overwritten.
|
24
|
+
# These create a new write-only ntuple file <tt>filename</tt> for ntuples.
|
25
|
+
# Any existing file with the same name is truncated to zero length and overwritten.
|
26
26
|
# A preexisting <tt>Vector</tt> object <tt>v</tt> for the current ntuple data must be supplied:
|
27
27
|
# this is used to copy ntuples in and out of the file.
|
28
28
|
#
|
@@ -32,7 +32,7 @@
|
|
32
32
|
# This opens an existing ntuple file <tt>filename</tt> for reading. A preexisting
|
33
33
|
# <tt>Vector</tt> object <tt>v</tt> for the current ntuple data must be supplied.
|
34
34
|
#
|
35
|
-
# ==
|
35
|
+
# == Writing and reading ntuples
|
36
36
|
# ---
|
37
37
|
# * GSL::Ntuple#write
|
38
38
|
# * GSL::Ntuple#bookdata
|
@@ -44,11 +44,11 @@
|
|
44
44
|
#
|
45
45
|
# This method reads the current row of the ntuple file.
|
46
46
|
#
|
47
|
-
# ==
|
48
|
-
# Once an ntuple has been created its contents can be histogrammed in various ways using
|
49
|
-
# the function gsl_ntuple_project. Two user-defined functions must be provided, a function
|
50
|
-
# to select events and a function to compute scalar values. The selection function and the
|
51
|
-
# value function both accept the ntuple row as a first argument and other parameters as a
|
47
|
+
# == Histogramming ntuple values
|
48
|
+
# Once an ntuple has been created its contents can be histogrammed in various ways using
|
49
|
+
# the function gsl_ntuple_project. Two user-defined functions must be provided, a function
|
50
|
+
# to select events and a function to compute scalar values. The selection function and the
|
51
|
+
# value function both accept the ntuple row as a first argument and other parameters as a
|
52
52
|
# second argument.
|
53
53
|
#
|
54
54
|
# ---
|
@@ -58,10 +58,10 @@
|
|
58
58
|
# * GSL::Ntuple::ValueFn.alloc(proc)
|
59
59
|
#
|
60
60
|
# Constructors for selection functions and value functions.
|
61
|
-
# The selection function shoud return a non-zero value for each ntuple row that
|
61
|
+
# The selection function shoud return a non-zero value for each ntuple row that
|
62
62
|
# is to be included in the histogram. The value function should return the value to
|
63
63
|
# be added to the histogram for the ntuple row.
|
64
|
-
#
|
64
|
+
#
|
65
65
|
# ---
|
66
66
|
# * GSL::Ntuple::SelectFn#set_params(params)
|
67
67
|
# * GSL::Ntuple::ValueFn#set_params(params)
|
@@ -71,18 +71,18 @@
|
|
71
71
|
# ---
|
72
72
|
# * GSL::Ntuple.project(h, n, valfn, selfn)
|
73
73
|
#
|
74
|
-
# These methods updates the histogram <tt>h</tt> from the ntuple <tt>n</tt> using
|
75
|
-
# the functions <tt>valfn</tt> and <tt>selfn</tt>. For each ntuple row where the selection
|
76
|
-
# function <tt>selen</tt> is non-zero the corresponding value of that row is computed
|
77
|
-
# using the function value_func<tt>valfn</tt> and added to the histogram <tt>h</tt>.
|
78
|
-
# Those ntuple rows where <tt>selfn</tt> returns zero are ignored. New entries are added
|
79
|
-
# to the histogram, so subsequent calls can be used to accumulate further data in the
|
74
|
+
# These methods updates the histogram <tt>h</tt> from the ntuple <tt>n</tt> using
|
75
|
+
# the functions <tt>valfn</tt> and <tt>selfn</tt>. For each ntuple row where the selection
|
76
|
+
# function <tt>selen</tt> is non-zero the corresponding value of that row is computed
|
77
|
+
# using the function value_func<tt>valfn</tt> and added to the histogram <tt>h</tt>.
|
78
|
+
# Those ntuple rows where <tt>selfn</tt> returns zero are ignored. New entries are added
|
79
|
+
# to the histogram, so subsequent calls can be used to accumulate further data in the
|
80
80
|
# same histogram.
|
81
81
|
#
|
82
|
-
# {prev}[link:
|
83
|
-
# {next}[link:
|
82
|
+
# {prev}[link:hist2d_rdoc.html]
|
83
|
+
# {next}[link:monte_rdoc.html]
|
84
84
|
#
|
85
|
-
# {Reference index}[link:
|
85
|
+
# {Reference index}[link:ref_rdoc.html]
|
86
86
|
# {top}[link:index.html]
|
87
87
|
#
|
88
88
|
#
|
data/rdoc/odeiv.rdoc
CHANGED
@@ -1,24 +1,24 @@
|
|
1
1
|
#
|
2
2
|
# = Ordinary Differential Equations
|
3
|
-
# This chapter describes functions for solving ordinary differential equation
|
4
|
-
# (ODE) initial value problems. The library provides a variety of low-level
|
5
|
-
# methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level
|
6
|
-
# components for adaptive step-size control. The components can be combined
|
7
|
-
# by the user to achieve the desired solution, with full access to any
|
8
|
-
# intermediate steps.
|
3
|
+
# This chapter describes functions for solving ordinary differential equation
|
4
|
+
# (ODE) initial value problems. The library provides a variety of low-level
|
5
|
+
# methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level
|
6
|
+
# components for adaptive step-size control. The components can be combined
|
7
|
+
# by the user to achieve the desired solution, with full access to any
|
8
|
+
# intermediate steps.
|
9
9
|
#
|
10
10
|
#
|
11
11
|
# Contents:
|
12
|
-
# 1. {Classes for ODE solver}[link:
|
13
|
-
# 1. {Class Descriptions}[link:
|
14
|
-
# 1. {GSL::Odeiv::System : Defining the ODE System}[link:
|
15
|
-
# 1. {GSL::Odeiv::Step : Stepping Algorithms}[link:
|
16
|
-
# 1. {GSL::Odeiv::Control : Adaptive Step-size Control}[link:
|
17
|
-
# 1. {GSL::Odeiv::Evolve : Evolution}[link:
|
18
|
-
# 1. {GSL::Odeiv::Solver : Higher level interface}[link:
|
19
|
-
# 1. {Examples}[link:
|
12
|
+
# 1. {Classes for ODE solver}[link:odeiv_rdoc.html#label-Classes+for+ODE+solver]
|
13
|
+
# 1. {Class Descriptions}[link:odeiv_rdoc.html#label-Class+Descriptions]
|
14
|
+
# 1. {GSL::Odeiv::System : Defining the ODE System}[link:odeiv_rdoc.html#label-System]
|
15
|
+
# 1. {GSL::Odeiv::Step : Stepping Algorithms}[link:odeiv_rdoc.html#label-Step]
|
16
|
+
# 1. {GSL::Odeiv::Control : Adaptive Step-size Control}[link:odeiv_rdoc.html#label-Control]
|
17
|
+
# 1. {GSL::Odeiv::Evolve : Evolution}[link:odeiv_rdoc.html#label-Evolve]
|
18
|
+
# 1. {GSL::Odeiv::Solver : Higher level interface}[link:odeiv_rdoc.html#label-Solver]
|
19
|
+
# 1. {Examples}[link:odeiv_rdoc.html#label-Example]
|
20
20
|
#
|
21
|
-
# ==
|
21
|
+
# == Classes for ODE solver
|
22
22
|
#
|
23
23
|
# ---
|
24
24
|
# * GSL::Odeiv::System
|
@@ -33,20 +33,20 @@
|
|
33
33
|
#
|
34
34
|
# Another higher-level interface to ODE system classes.
|
35
35
|
#
|
36
|
-
# ==
|
36
|
+
# == Class Descriptions
|
37
37
|
#
|
38
|
-
# ===
|
38
|
+
# === System
|
39
39
|
# ---
|
40
40
|
# * GSL::Odeiv::System.alloc(func, jac, dim)
|
41
41
|
# * GSL::Odeiv::System.alloc(func, dim)
|
42
42
|
#
|
43
43
|
# Constructor. This defines a general ODE system with the dimension <tt>dim</tt>.
|
44
|
-
#
|
44
|
+
#
|
45
45
|
# # t: variable (scalar)
|
46
46
|
# # y: vector
|
47
47
|
# # dydt: vector
|
48
48
|
# # params: scalar or an array
|
49
|
-
#
|
49
|
+
#
|
50
50
|
# func = Proc.new { |t, y, dydt, params|
|
51
51
|
# mu = params
|
52
52
|
# dydt[0] = y[1]
|
@@ -66,12 +66,12 @@
|
|
66
66
|
# dfdy.set(1, 1, -mu*(y[0]*y[0] - 1.0))
|
67
67
|
# dfdt[0] = 0.0
|
68
68
|
# dfdt[1] = 0.0
|
69
|
-
# }
|
69
|
+
# }
|
70
70
|
#
|
71
71
|
# sys = GSL:Odeiv::System.alloc(func, jac, dim) # for "BSIMP" algorithm
|
72
72
|
#
|
73
|
-
# Note that some of the simpler solver algorithms do not make use of the
|
74
|
-
# Jacobian matrix, so it is not always strictly necessary to provide it.
|
73
|
+
# Note that some of the simpler solver algorithms do not make use of the
|
74
|
+
# Jacobian matrix, so it is not always strictly necessary to provide it.
|
75
75
|
# Thus the constructor is as
|
76
76
|
# sys = GSL:Odeiv::System.alloc(func, nil, dim) # for others, replaced by nil
|
77
77
|
# sys = GSL:Odeiv::System.alloc(func, dim) # or omit
|
@@ -99,14 +99,14 @@
|
|
99
99
|
# * GSL::Odeiv::System#dim
|
100
100
|
#
|
101
101
|
#
|
102
|
-
# ===
|
102
|
+
# === Step
|
103
103
|
# The lowest level components are the stepping functions which advance a solution from time <tt>t</tt> to <tt>t+h</tt> for a fixed step-size <tt>h</tt> and estimate the resulting local error.
|
104
104
|
#
|
105
105
|
# ---
|
106
106
|
# * GSL::Odeiv::Step.alloc(T, dim)
|
107
107
|
#
|
108
|
-
# Constructor for a stepping function of an algorithm type <tt>T</tt> for a system of
|
109
|
-
# dimension <tt>dim</tt>. The algorithms are specified by one of the constants under the
|
108
|
+
# Constructor for a stepping function of an algorithm type <tt>T</tt> for a system of
|
109
|
+
# dimension <tt>dim</tt>. The algorithms are specified by one of the constants under the
|
110
110
|
# <tt>GSL::Odeiv::Step</tt> class, as
|
111
111
|
#
|
112
112
|
# 1. <tt>GSL::Odeiv::Step::RK2</tt>, Embedded 2nd order Runge-Kutta with 3rd order error estimate.
|
@@ -121,7 +121,7 @@
|
|
121
121
|
# 1. <tt>GSL::Odeiv::Step::GEAR2</tt>, M=2 implicit Gear method
|
122
122
|
# 1. <tt>GSL::Odeiv::Step::RK2SIMP</tt> (GSL-1.6)
|
123
123
|
#
|
124
|
-
# * Ex:
|
124
|
+
# * Ex:
|
125
125
|
# step = Odeiv::Step.alloc(Odeiv::Step::RKF45, 2)
|
126
126
|
#
|
127
127
|
# The algorithm types can also be given by a String, same as the C struct name,
|
@@ -138,14 +138,14 @@
|
|
138
138
|
# 1. "<tt>gear2</tt>" or "<tt>gsl_odeiv_step_gear2</tt>"
|
139
139
|
# 1. "<tt>rk2simp</tt>" or "<tt>gsl_odeiv_step_rk2simp</tt>" (GSL-1.6)
|
140
140
|
#
|
141
|
-
# * Ex:
|
141
|
+
# * Ex:
|
142
142
|
# step = Odeiv::Step.alloc("bsimp", 4)
|
143
143
|
# step2 = Odeiv::Step.alloc("gsl_odeiv_step_rkck", 3)
|
144
144
|
#
|
145
145
|
# ---
|
146
146
|
# * GSL::Odeiv::Step#reset
|
147
147
|
#
|
148
|
-
# This method resets the stepper. It should be used whenever the next use
|
148
|
+
# This method resets the stepper. It should be used whenever the next use
|
149
149
|
# of s will not be a continuation of a previous step.
|
150
150
|
#
|
151
151
|
# ---
|
@@ -163,7 +163,7 @@
|
|
163
163
|
# ---
|
164
164
|
# * GSL::Odeiv::Step#order
|
165
165
|
#
|
166
|
-
# Returns the order of the stepper on the previous step.
|
166
|
+
# Returns the order of the stepper on the previous step.
|
167
167
|
# This order can vary if the stepper itself is adaptive.
|
168
168
|
#
|
169
169
|
# ---
|
@@ -171,86 +171,86 @@
|
|
171
171
|
# * GSL::Odeiv::Step#apply(t, h, y, yerr, dydt_in, sys)
|
172
172
|
# * GSL::Odeiv::Step#apply(t, h, y, yerr, sys)
|
173
173
|
#
|
174
|
-
# This method applies the stepper to the system of equations defined by
|
175
|
-
# <tt>dydt</tt>, using the step size <tt>h</tt> to advance the system from time
|
176
|
-
# <tt>t</tt> and state <tt>y</tt> to time <tt>t+h</tt>. The new state of the system
|
177
|
-
# is stored in <tt>y</tt> on output, with an estimate of the absolute error in
|
178
|
-
# each component stored in <tt>yerr</tt>. If the argument <tt>dydt_in</tt> is not
|
179
|
-
# <tt>nil</tt> it should be a {GSL::Vector}[link:
|
180
|
-
# containing the derivatives for the system at time <tt>t</tt> on input.
|
181
|
-
# This is optional as the derivatives will be computed internally if they
|
182
|
-
# are not provided, but allows the reuse of existing derivative information.
|
183
|
-
# On output the new derivatives of the system at time <tt>t+h</tt> will be
|
174
|
+
# This method applies the stepper to the system of equations defined by
|
175
|
+
# <tt>dydt</tt>, using the step size <tt>h</tt> to advance the system from time
|
176
|
+
# <tt>t</tt> and state <tt>y</tt> to time <tt>t+h</tt>. The new state of the system
|
177
|
+
# is stored in <tt>y</tt> on output, with an estimate of the absolute error in
|
178
|
+
# each component stored in <tt>yerr</tt>. If the argument <tt>dydt_in</tt> is not
|
179
|
+
# <tt>nil</tt> it should be a {GSL::Vector}[link:vector_rdoc.html] object
|
180
|
+
# containing the derivatives for the system at time <tt>t</tt> on input.
|
181
|
+
# This is optional as the derivatives will be computed internally if they
|
182
|
+
# are not provided, but allows the reuse of existing derivative information.
|
183
|
+
# On output the new derivatives of the system at time <tt>t+h</tt> will be
|
184
184
|
# stored in <tt>dydt_out</tt> if it is not nil.
|
185
185
|
#
|
186
|
-
# ===
|
186
|
+
# === Control
|
187
187
|
# ---
|
188
188
|
# * GSL::Odeiv::Control.standard_new(epsabs, epsrel, a_y, a_dydt)
|
189
189
|
# * GSL::Odeiv::Control.alloc(epsabs, epsrel, a_y, a_dydt)
|
190
190
|
#
|
191
|
-
# The standard control object is a four parameter heuristic based on
|
192
|
-
# absolute and relative errors <tt>epsabs</tt> and <tt>epsrel</tt>, and
|
193
|
-
# scaling factors <tt>a_y</tt> and <tt>a_dydt</tt> for the system state
|
191
|
+
# The standard control object is a four parameter heuristic based on
|
192
|
+
# absolute and relative errors <tt>epsabs</tt> and <tt>epsrel</tt>, and
|
193
|
+
# scaling factors <tt>a_y</tt> and <tt>a_dydt</tt> for the system state
|
194
194
|
# <tt>y(t)</tt> and derivatives <tt>y'(t)</tt> respectively.
|
195
195
|
#
|
196
196
|
# ---
|
197
197
|
# * GSL::Odeiv::Control.y_new(epsabs, epsrel)
|
198
198
|
#
|
199
|
-
# This method creates a new control object which will keep the local error
|
200
|
-
# on each step within an absolute error of <tt>epsabs</tt> and relative error
|
201
|
-
# of <tt>epsrel</tt> with respect to the solution <tt>y_i(t)</tt>.
|
202
|
-
# This is equivalent to the standard control object with <tt>a_y=1</tt>
|
199
|
+
# This method creates a new control object which will keep the local error
|
200
|
+
# on each step within an absolute error of <tt>epsabs</tt> and relative error
|
201
|
+
# of <tt>epsrel</tt> with respect to the solution <tt>y_i(t)</tt>.
|
202
|
+
# This is equivalent to the standard control object with <tt>a_y=1</tt>
|
203
203
|
# and <tt>a_dydt=0</tt>.
|
204
204
|
#
|
205
205
|
# ---
|
206
206
|
# * GSL::Odeiv::Control.yp_new(epsabs, epsrel)
|
207
207
|
#
|
208
|
-
# This method creates a new control object which will keep the local
|
209
|
-
# error on each step within an absolute error of <tt>epsabs</tt> and
|
210
|
-
# relative error of <tt>epsrel</tt> with respect to the derivatives of the
|
211
|
-
# solution <tt>y'_i(t)</tt>.
|
212
|
-
# This is equivalent to the standard control object with <tt>a_y=0</tt>
|
208
|
+
# This method creates a new control object which will keep the local
|
209
|
+
# error on each step within an absolute error of <tt>epsabs</tt> and
|
210
|
+
# relative error of <tt>epsrel</tt> with respect to the derivatives of the
|
211
|
+
# solution <tt>y'_i(t)</tt>.
|
212
|
+
# This is equivalent to the standard control object with <tt>a_y=0</tt>
|
213
213
|
# and <tt>a_dydt=1</tt>.
|
214
214
|
#
|
215
215
|
# ---
|
216
216
|
# * GSL::Odeiv::Control.alloc(epsabs, epsrel, a_y, a_dydt, vscale, dim)
|
217
217
|
#
|
218
|
-
# This creates a new control object which uses the same algorithm as
|
219
|
-
# <tt>GSL::Odeiv::Control.standard_new</tt> but with an absolute error which
|
218
|
+
# This creates a new control object which uses the same algorithm as
|
219
|
+
# <tt>GSL::Odeiv::Control.standard_new</tt> but with an absolute error which
|
220
220
|
# is scaled for each component by the <tt>GSL::Vector</tt> object <tt>vscale</tt>.
|
221
221
|
#
|
222
222
|
# ---
|
223
223
|
# * GSL::Odeiv::Control#init(epsabs, epsrel, a_y, a_dydt)
|
224
224
|
#
|
225
|
-
# This method initializes the controler with the parameters <tt>epsabs</tt>
|
226
|
-
# (absolute error), <tt>epsrel</tt> (relative error), <tt>a_y</tt>
|
225
|
+
# This method initializes the controler with the parameters <tt>epsabs</tt>
|
226
|
+
# (absolute error), <tt>epsrel</tt> (relative error), <tt>a_y</tt>
|
227
227
|
# (scaling factor for y) and <tt>a_dydt</tt> (scaling factor for derivatives).
|
228
228
|
#
|
229
229
|
# ---
|
230
230
|
# * GSL::Odeiv::Control#name
|
231
231
|
# * GSL::Odeiv::Control#hadjust(step, y0, yerr, dydt, h)
|
232
232
|
#
|
233
|
-
# This method adjusts the step-size <tt>h</tt> using the control function
|
234
|
-
# object, and the current values of <tt>y</tt>, <tt>yerr</tt> and <tt>dydt</tt>.
|
235
|
-
# The stepping function <tt>step</tt> is also needed to determine the order
|
233
|
+
# This method adjusts the step-size <tt>h</tt> using the control function
|
234
|
+
# object, and the current values of <tt>y</tt>, <tt>yerr</tt> and <tt>dydt</tt>.
|
235
|
+
# The stepping function <tt>step</tt> is also needed to determine the order
|
236
236
|
# of the method. On output, an array of two elements [<tt>hadj, status</tt>]
|
237
|
-
# is returned: If the error in the y-values <tt>yerr</tt> is found to be
|
238
|
-
# too large then the step-size <tt>h</tt> is reduced and the method returns
|
239
|
-
# [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_DEC</tt>].
|
240
|
-
# If the error is sufficiently small then
|
241
|
-
# <tt>h</tt> may be increased and [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_INC</tt>]
|
242
|
-
# is returned.
|
243
|
-
# The method returns [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_NIL</tt>] if the step-size is
|
244
|
-
# unchanged. The goal of the method is to estimate the largest step-size
|
245
|
-
# which satisfies the user-specified accuracy requirements for the current
|
237
|
+
# is returned: If the error in the y-values <tt>yerr</tt> is found to be
|
238
|
+
# too large then the step-size <tt>h</tt> is reduced and the method returns
|
239
|
+
# [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_DEC</tt>].
|
240
|
+
# If the error is sufficiently small then
|
241
|
+
# <tt>h</tt> may be increased and [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_INC</tt>]
|
242
|
+
# is returned.
|
243
|
+
# The method returns [<tt>hadj, status</tt>=<tt>GSL::ODEIV::HADJ_NIL</tt>] if the step-size is
|
244
|
+
# unchanged. The goal of the method is to estimate the largest step-size
|
245
|
+
# which satisfies the user-specified accuracy requirements for the current
|
246
246
|
# point.
|
247
247
|
#
|
248
|
-
# ===
|
249
|
-
# The higher level of the system is the <tt>GSL::Evolve</tt> class which combines the
|
250
|
-
# results of a stepper and controler to reliably advance the solution forward
|
251
|
-
# over an interval <tt>(t_0, t_1)</tt>. If the controler signals that the step-size
|
252
|
-
# should be decreased the <tt>GSL::Evolve</tt> object backs out of the current step and
|
253
|
-
# tries the proposed smaller step-size. This process is continued until an
|
248
|
+
# === Evolve
|
249
|
+
# The higher level of the system is the <tt>GSL::Evolve</tt> class which combines the
|
250
|
+
# results of a stepper and controler to reliably advance the solution forward
|
251
|
+
# over an interval <tt>(t_0, t_1)</tt>. If the controler signals that the step-size
|
252
|
+
# should be decreased the <tt>GSL::Evolve</tt> object backs out of the current step and
|
253
|
+
# tries the proposed smaller step-size. This process is continued until an
|
254
254
|
# acceptable step-size is found.
|
255
255
|
#
|
256
256
|
# ---
|
@@ -261,28 +261,28 @@
|
|
261
261
|
# ---
|
262
262
|
# * GSL::Odeiv::Evolve#reset
|
263
263
|
#
|
264
|
-
# This method resets the GSL::Evolve object. It should be used whenever
|
264
|
+
# This method resets the GSL::Evolve object. It should be used whenever
|
265
265
|
# the next use of e will not be a continuation of a previous step.
|
266
266
|
#
|
267
267
|
# ---
|
268
268
|
# * GSL::Odeiv::Evolve#apply(evolve, control, step, sys, t, t1, h, y)
|
269
269
|
#
|
270
|
-
# This method advances the system <tt>sys</tt> from time <tt>t</tt> and position
|
271
|
-
# <tt>y</tt> using the stepping function <tt>step</tt>. The initial step-size is
|
272
|
-
# taken as <tt>h</tt>. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by
|
270
|
+
# This method advances the system <tt>sys</tt> from time <tt>t</tt> and position
|
271
|
+
# <tt>y</tt> using the stepping function <tt>step</tt>. The initial step-size is
|
272
|
+
# taken as <tt>h</tt>. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by
|
273
273
|
# the time-step. On output, an array of three elements is returned,
|
274
|
-
# [<tt>tnext, hnext, status</tt>], where <tt>tnext</tt> is the time advanced,
|
274
|
+
# [<tt>tnext, hnext, status</tt>], where <tt>tnext</tt> is the time advanced,
|
275
275
|
# <tt>hnext</tt> is the step-size
|
276
276
|
# for the next step, and <tt>status</tt> is an error code retunred by <tt>gsl_odeiv_evolve_apply()</tt> function.
|
277
|
-
# On the final time-step the value of <tt>tnext</tt> will be set to
|
277
|
+
# On the final time-step the value of <tt>tnext</tt> will be set to
|
278
278
|
# <tt>t1</tt> exactly.
|
279
279
|
#
|
280
280
|
# ---
|
281
281
|
# * GSL::Odeiv::Evolve#count
|
282
282
|
#
|
283
283
|
#
|
284
|
-
# ===
|
285
|
-
# This is the highest level interface to solve ODE system,
|
284
|
+
# === Solver
|
285
|
+
# This is the highest level interface to solve ODE system,
|
286
286
|
# which contains System, Step, Control, and Evolve classes.
|
287
287
|
#
|
288
288
|
# ---
|
@@ -329,10 +329,10 @@
|
|
329
329
|
#
|
330
330
|
# This method advances the system from time <tt>t</tt> and position <tt>y</tt> (<tt>GSL::Vector</tt> object) using the stepping function. On output, the new time and position are returned as an array [<tt>tnext, hnext, status</tt>], i.e. <tt>t, y</tt> themselves are not modified by this method. The maximum time <tt>t1</tt> is guaranteed not to be exceeded by the time-step. On the final time-step the value of <tt>tnext</tt> will be set to <tt>t1</tt> exactly.
|
331
331
|
#
|
332
|
-
# ==
|
332
|
+
# == Example
|
333
333
|
#
|
334
334
|
# The following program solves the second-order nonlinear Van der Pol oscillator equation,
|
335
|
-
# as found in the GSL manual, x"(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0,
|
335
|
+
# as found in the GSL manual, x"(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0,
|
336
336
|
#
|
337
337
|
# This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, y = x'(t),
|
338
338
|
#
|
@@ -369,10 +369,10 @@
|
|
369
369
|
# end
|
370
370
|
#
|
371
371
|
#
|
372
|
-
# {prev}[link:
|
373
|
-
# {next}[link:
|
372
|
+
# {prev}[link:siman_rdoc.html]
|
373
|
+
# {next}[link:interp_rdoc.html]
|
374
374
|
#
|
375
|
-
# {Reference index}[link:
|
375
|
+
# {Reference index}[link:ref_rdoc.html]
|
376
376
|
# {top}[link:index.html]
|
377
377
|
#
|
378
378
|
#
|