rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/multiroot.rdoc
CHANGED
@@ -1,71 +1,71 @@
|
|
1
1
|
#
|
2
2
|
# = Multidimensional Root-Finding
|
3
|
-
# This chapter describes functions for multidimensional root-finding
|
4
|
-
# (solving nonlinear systems with n equations in n unknowns).
|
5
|
-
# The library provides low level components for a variety of iterative solvers
|
6
|
-
# and convergence tests. These can be combined by the user to achieve the
|
7
|
-
# desired solution, with full access to the intermediate steps of the iteration.
|
8
|
-
# Each class of methods uses the same framework, so that you can switch between
|
9
|
-
# solvers at runtime without needing to recompile your program. Each instance of
|
10
|
-
# a solver keeps track of its own state, allowing the solvers to be used in
|
3
|
+
# This chapter describes functions for multidimensional root-finding
|
4
|
+
# (solving nonlinear systems with n equations in n unknowns).
|
5
|
+
# The library provides low level components for a variety of iterative solvers
|
6
|
+
# and convergence tests. These can be combined by the user to achieve the
|
7
|
+
# desired solution, with full access to the intermediate steps of the iteration.
|
8
|
+
# Each class of methods uses the same framework, so that you can switch between
|
9
|
+
# solvers at runtime without needing to recompile your program. Each instance of
|
10
|
+
# a solver keeps track of its own state, allowing the solvers to be used in
|
11
11
|
# multi-threaded programs.
|
12
12
|
#
|
13
|
-
# 1. {Overview}[link:
|
14
|
-
# 1. {Initializing the Solver}[link:
|
15
|
-
# 1. {Providing the function to solve}[link:
|
16
|
-
# 1. {Iteration}[link:
|
17
|
-
# 1. {Search Stopping Parameters}[link:
|
18
|
-
# 1. {Higher Level Interface}[link:
|
19
|
-
# 1. {Examples}[link:
|
20
|
-
# 1. {FSolver}[link:
|
21
|
-
# 1. {FdfSolver}[link:
|
22
|
-
#
|
23
|
-
#
|
24
|
-
# ==
|
25
|
-
# The problem of multidimensional root finding requires the simultaneous
|
26
|
-
# solution of n equations, f_i, in n variables, x_i, In general there are no
|
27
|
-
# bracketing methods available for n dimensional systems, and no way of knowing
|
28
|
-
# whether any solutions exist. All algorithms proceed from an initial guess
|
29
|
-
# using a variant of the Newton iteration, where x, f are vector quantities and
|
30
|
-
# J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies can be
|
31
|
-
# used to enlarge the region of convergence. These include requiring a decrease
|
32
|
-
# in the norm |f| on each step proposed by Newton's method, or taking
|
33
|
-
# steepest-descent steps in the direction of the negative gradient of |f|.
|
34
|
-
#
|
35
|
-
# Several root-finding algorithms are available within a single framework.
|
36
|
-
# The user provides a high-level driver for the algorithms, and the library
|
37
|
-
# provides the individual functions necessary for each of the steps. There are
|
38
|
-
# three main phases of the iteration. The steps are,
|
13
|
+
# 1. {Overview}[link:multiroot_rdoc.html#label-Overview]
|
14
|
+
# 1. {Initializing the Solver}[link:multiroot_rdoc.html#label-Initializing+the+Solver]
|
15
|
+
# 1. {Providing the function to solve}[link:multiroot_rdoc.html#label-Providing+the+function+to+solve]
|
16
|
+
# 1. {Iteration}[link:multiroot_rdoc.html#label-Iteration]
|
17
|
+
# 1. {Search Stopping Parameters}[link:multiroot_rdoc.html#label-Search+Stopping+Parameters]
|
18
|
+
# 1. {Higher Level Interface}[link:multiroot_rdoc.html#label-Higher+Level+Interface]
|
19
|
+
# 1. {Examples}[link:multiroot_rdoc.html#label-Example]
|
20
|
+
# 1. {FSolver}[link:multiroot_rdoc.html#label-FSolver]
|
21
|
+
# 1. {FdfSolver}[link:multiroot_rdoc.html#label-FdfSolver]
|
22
|
+
#
|
23
|
+
#
|
24
|
+
# == Overview
|
25
|
+
# The problem of multidimensional root finding requires the simultaneous
|
26
|
+
# solution of n equations, f_i, in n variables, x_i, In general there are no
|
27
|
+
# bracketing methods available for n dimensional systems, and no way of knowing
|
28
|
+
# whether any solutions exist. All algorithms proceed from an initial guess
|
29
|
+
# using a variant of the Newton iteration, where x, f are vector quantities and
|
30
|
+
# J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies can be
|
31
|
+
# used to enlarge the region of convergence. These include requiring a decrease
|
32
|
+
# in the norm |f| on each step proposed by Newton's method, or taking
|
33
|
+
# steepest-descent steps in the direction of the negative gradient of |f|.
|
34
|
+
#
|
35
|
+
# Several root-finding algorithms are available within a single framework.
|
36
|
+
# The user provides a high-level driver for the algorithms, and the library
|
37
|
+
# provides the individual functions necessary for each of the steps. There are
|
38
|
+
# three main phases of the iteration. The steps are,
|
39
39
|
#
|
40
40
|
# * initialize solver state, <tt>s</tt>, for algorithm <tt>T</tt>
|
41
41
|
# * update <tt>s</tt> using the iteration <tt>T</tt>
|
42
|
-
# * test <tt>s</tt> for convergence, and repeat iteration if necessary
|
42
|
+
# * test <tt>s</tt> for convergence, and repeat iteration if necessary
|
43
43
|
#
|
44
|
-
# The evaluation of the Jacobian matrix can be problematic, either because
|
45
|
-
# programming the derivatives is intractable or because computation of the n^2
|
46
|
-
# terms of the matrix becomes too expensive. For these reasons the algorithms
|
47
|
-
# provided by the library are divided into two classes according to whether
|
48
|
-
# the derivatives are available or not.
|
44
|
+
# The evaluation of the Jacobian matrix can be problematic, either because
|
45
|
+
# programming the derivatives is intractable or because computation of the n^2
|
46
|
+
# terms of the matrix becomes too expensive. For these reasons the algorithms
|
47
|
+
# provided by the library are divided into two classes according to whether
|
48
|
+
# the derivatives are available or not.
|
49
49
|
#
|
50
|
-
# The state for solvers with an analytic Jacobian matrix is held in a
|
51
|
-
# <tt>GSL::MultiRoot::FdfSolver</tt> object. The updating procedure requires both
|
52
|
-
# the function and its derivatives to be supplied by the user.
|
50
|
+
# The state for solvers with an analytic Jacobian matrix is held in a
|
51
|
+
# <tt>GSL::MultiRoot::FdfSolver</tt> object. The updating procedure requires both
|
52
|
+
# the function and its derivatives to be supplied by the user.
|
53
53
|
#
|
54
|
-
# The state for solvers which do not use an analytic Jacobian matrix is held in
|
55
|
-
# a <tt>GSL::MultiRoot::FSolver</tt> object. The updating procedure uses only
|
56
|
-
# function evaluations (not derivatives). The algorithms estimate the matrix J
|
57
|
-
# or J^{-1} by approximate methods.
|
54
|
+
# The state for solvers which do not use an analytic Jacobian matrix is held in
|
55
|
+
# a <tt>GSL::MultiRoot::FSolver</tt> object. The updating procedure uses only
|
56
|
+
# function evaluations (not derivatives). The algorithms estimate the matrix J
|
57
|
+
# or J^{-1} by approximate methods.
|
58
58
|
#
|
59
59
|
#
|
60
|
-
# ==
|
61
|
-
# Two types of solvers are available. The solver itself depends only on the
|
60
|
+
# == Initializing the Solver
|
61
|
+
# Two types of solvers are available. The solver itself depends only on the
|
62
62
|
# dimension of the problem and the algorithm and can be reused for different problems.
|
63
63
|
# The <tt>FdfSolver</tt> requires derivatives of the function to solve.
|
64
64
|
#
|
65
65
|
# ---
|
66
66
|
# * GSL::MultiRoot::FSolver.alloc(T, n)
|
67
67
|
#
|
68
|
-
# This creates an instance of the <tt>FSolver</tt> class of type <tt>T</tt>
|
68
|
+
# This creates an instance of the <tt>FSolver</tt> class of type <tt>T</tt>
|
69
69
|
# for a system of <tt>n</tt> dimensions. The type is given by a constant or a string,
|
70
70
|
# * GSL::MultiRoot:FSolver::HYBRIDS, or "hybrids"
|
71
71
|
# * GSL::MultiRoot:FSolver::HYBRID, or "hybrid"
|
@@ -75,7 +75,7 @@
|
|
75
75
|
# ---
|
76
76
|
# * GSL::MultiRoot::FdfSolver.alloc(T, n)
|
77
77
|
#
|
78
|
-
# This creates an instance of the <tt>FdfSolver</tt> class of type <tt>T</tt>
|
78
|
+
# This creates an instance of the <tt>FdfSolver</tt> class of type <tt>T</tt>
|
79
79
|
# for a system of <tt>n</tt> dimensions. The type is given by a constant,
|
80
80
|
# * GSL::MultiRoot:FdfSolver::HYBRIDSJ, or "hybridsj"
|
81
81
|
# * GSL::MultiRoot:FdfSolver::HYBRIDJ, or "hybridj",
|
@@ -85,16 +85,16 @@
|
|
85
85
|
# ---
|
86
86
|
# * GSL::MultiRoot::FSolver#set(func, x)
|
87
87
|
#
|
88
|
-
# This method sets, or resets, an existing solver <tt>self</tt>
|
88
|
+
# This method sets, or resets, an existing solver <tt>self</tt>
|
89
89
|
# to use the function <tt>func</tt> and the initial guess <tt>x</tt>.
|
90
|
-
# Here <tt>x</tt> is a <tt>Vector</tt>, and <tt>func</tt>
|
90
|
+
# Here <tt>x</tt> is a <tt>Vector</tt>, and <tt>func</tt>
|
91
91
|
# is a <tt>MultiRoot:Function</tt> object.
|
92
92
|
# ---
|
93
93
|
# * GSL::MultiRoot::FdfSolver#set(func_fdf, x)
|
94
94
|
#
|
95
|
-
# This method sets, or resets, an existing solver <tt>self</tt>
|
95
|
+
# This method sets, or resets, an existing solver <tt>self</tt>
|
96
96
|
# to use the function <tt>func_fdf</tt> and the initial guess <tt>x</tt>.
|
97
|
-
# Here <tt>x</tt> is a <tt>Vector</tt>, and <tt>func_fdf</tt>
|
97
|
+
# Here <tt>x</tt> is a <tt>Vector</tt>, and <tt>func_fdf</tt>
|
98
98
|
# is a <tt>MultiRoot:Function_fdf</tt> object.
|
99
99
|
#
|
100
100
|
# ---
|
@@ -102,7 +102,7 @@
|
|
102
102
|
# * GSL::MultiRoot::FdfSolver#name
|
103
103
|
#
|
104
104
|
#
|
105
|
-
# ==
|
105
|
+
# == Providing the function to solve
|
106
106
|
# ---
|
107
107
|
# * GSL::MultiRoot:Function.alloc(proc, dim, params)
|
108
108
|
#
|
@@ -128,7 +128,7 @@
|
|
128
128
|
# * GSL::MultiRoot:Function_fdf.alloc(proc, dim, params)
|
129
129
|
#
|
130
130
|
# See the example below:
|
131
|
-
#
|
131
|
+
#
|
132
132
|
# procf = Proc.new { |x, params, f|
|
133
133
|
# a = params[0]; b = params[1]
|
134
134
|
# x0 = x[0]; x1 = x[1]
|
@@ -151,19 +151,19 @@
|
|
151
151
|
# x = [-10.0, -5.0]
|
152
152
|
# fdfsolver.set(func_fdf, x)
|
153
153
|
#
|
154
|
-
# ==
|
154
|
+
# == Iteration
|
155
155
|
# ---
|
156
156
|
# * GSL::MultiRoot::FSolver#interate
|
157
157
|
# * GSL::MultiRoot::FdfSolver#interate
|
158
158
|
#
|
159
|
-
# These methods perform a single iteration of the solver <tt>self</tt>.
|
160
|
-
# If the iteration encounters an unexpected problem then an error code will
|
159
|
+
# These methods perform a single iteration of the solver <tt>self</tt>.
|
160
|
+
# If the iteration encounters an unexpected problem then an error code will
|
161
161
|
# be returned,
|
162
|
-
# * GSL_EBADFUNC: the iteration encountered a singular point where the function
|
162
|
+
# * GSL_EBADFUNC: the iteration encountered a singular point where the function
|
163
163
|
# or its derivative evaluated to Inf or NaN.
|
164
|
-
# * GSL_ENOPROG: the iteration is not making any progress, preventing the
|
164
|
+
# * GSL_ENOPROG: the iteration is not making any progress, preventing the
|
165
165
|
# algorithm from continuing.
|
166
|
-
# The solver maintains a current best estimate of the root at all times.
|
166
|
+
# The solver maintains a current best estimate of the root at all times.
|
167
167
|
# This information can be accessed with the following auxiliary methods.
|
168
168
|
#
|
169
169
|
# ---
|
@@ -176,7 +176,7 @@
|
|
176
176
|
# * GSL::MultiRoot::FSolver#f
|
177
177
|
# * GSL::MultiRoot::FdfSolver#f
|
178
178
|
#
|
179
|
-
# These methds return the function value <tt>f(x)</tt> (Vector) at the current estimate
|
179
|
+
# These methds return the function value <tt>f(x)</tt> (Vector) at the current estimate
|
180
180
|
# of the root for the solver <tt>self</tt>.
|
181
181
|
#
|
182
182
|
# ---
|
@@ -185,14 +185,14 @@
|
|
185
185
|
#
|
186
186
|
# These method return the last step <tt>dx</tt> (Vector) taken by the solver <tt>self</tt>.
|
187
187
|
#
|
188
|
-
# ==
|
188
|
+
# == Search Stopping Parameters
|
189
189
|
# ---
|
190
190
|
# * GSL::MultiRoot::FSolver#test_delta(epsabs, epsrel)
|
191
191
|
# * GSL::MultiRoot::FdfSolver#test_delta(epsabs, epsrel)
|
192
192
|
#
|
193
|
-
# This method tests for the convergence of the sequence by comparing the last step
|
194
|
-
# <tt>dx</tt> with the absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>
|
195
|
-
# to the current position <tt>x</tt>.
|
193
|
+
# This method tests for the convergence of the sequence by comparing the last step
|
194
|
+
# <tt>dx</tt> with the absolute error <tt>epsabs</tt> and relative error <tt>epsrel</tt>
|
195
|
+
# to the current position <tt>x</tt>.
|
196
196
|
# The test returns <tt>GSL::SUCCESS</tt> if the following condition is achieved,
|
197
197
|
# |dx_i| < epsabs + epsrel |x_i|
|
198
198
|
# for each component of <tt>x</tt> and returns <tt>GSL::CONTINUE</tt> otherwise.
|
@@ -201,15 +201,15 @@
|
|
201
201
|
# * GSL::MultiRoot::FSolver#test_residual(epsabs)
|
202
202
|
# * GSL::MultiRoot::FdfSolver#test_residual(epsabs)
|
203
203
|
#
|
204
|
-
# This method tests the residual value <tt>f</tt> against the absolute error
|
205
|
-
# bound <tt>epsabs</tt>. The test returns <tt>GSL::SUCCESS</tt> if the following
|
204
|
+
# This method tests the residual value <tt>f</tt> against the absolute error
|
205
|
+
# bound <tt>epsabs</tt>. The test returns <tt>GSL::SUCCESS</tt> if the following
|
206
206
|
# condition is achieved,
|
207
207
|
# sum_i |f_i| < epsabs
|
208
|
-
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
209
|
-
# situations where the precise location of the root, <tt>x</tt>, is unimportant
|
208
|
+
# and returns <tt>GSL::CONTINUE</tt> otherwise. This criterion is suitable for
|
209
|
+
# situations where the precise location of the root, <tt>x</tt>, is unimportant
|
210
210
|
# provided a value can be found where the residual is small enough.
|
211
211
|
#
|
212
|
-
# ==
|
212
|
+
# == Higher Level Interface
|
213
213
|
# ---
|
214
214
|
# * GSL::MultiRoot::Function#solve(x0, max_iter = 1000, eps = 1e-7, type = "hybrids")
|
215
215
|
# * GSL::MultiRoot::FSolver#solve(max_iter = 1000, eps = 1e-7)
|
@@ -217,9 +217,9 @@
|
|
217
217
|
#
|
218
218
|
# See sample script <tt>examples/multiroot/fsolver3.rb</tt>.
|
219
219
|
#
|
220
|
-
# ==
|
220
|
+
# == Example
|
221
221
|
#
|
222
|
-
# ===
|
222
|
+
# === FSolver
|
223
223
|
#
|
224
224
|
# proc = Proc.new { |x, params, f|
|
225
225
|
# a = params[0]; b = params[1]
|
@@ -246,7 +246,7 @@
|
|
246
246
|
# status = fsolver.test_residual(1e-7)
|
247
247
|
# end while status == GSL::CONTINUE and iter < 1000
|
248
248
|
#
|
249
|
-
# ===
|
249
|
+
# === FdfSolver
|
250
250
|
# n = 2
|
251
251
|
#
|
252
252
|
# procf = Proc.new { |x, params, f|
|
@@ -284,10 +284,10 @@
|
|
284
284
|
# status = fdfsolver.test_residual(1e-7)
|
285
285
|
# end while status == GSL::CONTINUE and iter < 1000
|
286
286
|
#
|
287
|
-
# {prev}[link:
|
288
|
-
# {next}[link:
|
287
|
+
# {prev}[link:min_rdoc.html]
|
288
|
+
# {next}[link:multimin_rdoc.html]
|
289
289
|
#
|
290
|
-
# {Reference index}[link:
|
290
|
+
# {Reference index}[link:ref_rdoc.html]
|
291
291
|
# {top}[link:index.html]
|
292
292
|
#
|
293
293
|
#
|
data/rdoc/narray.rdoc
CHANGED
@@ -1,11 +1,11 @@
|
|
1
1
|
#
|
2
2
|
# = NArray compatibilities
|
3
|
-
# ===
|
4
|
-
# 1. {Data type conversions}[link:
|
5
|
-
# 1. {Methods which accepts NArray}[link:
|
3
|
+
# === Contents:
|
4
|
+
# 1. {Data type conversions}[link:narray_rdoc.html#label-Data+type+conversions]
|
5
|
+
# 1. {Methods which accepts NArray}[link:narray_rdoc.html#label-Methods+which+accepts+NArray]
|
6
6
|
#
|
7
|
-
# ==
|
8
|
-
# ===
|
7
|
+
# == Data type conversions
|
8
|
+
# === GSL to NArray
|
9
9
|
#
|
10
10
|
# ---
|
11
11
|
# * GSL::Vector#to_na
|
@@ -34,7 +34,7 @@
|
|
34
34
|
# => GSL::Vector::Int
|
35
35
|
# [ 0 1 2 3 4 5 ]
|
36
36
|
# >> na = v.to_nvector_ref
|
37
|
-
# => NVector(ref).int(6):
|
37
|
+
# => NVector(ref).int(6):
|
38
38
|
# [ 0, 1, 2, 3, 4, 5 ]
|
39
39
|
# >> na[3] = 999
|
40
40
|
# => 999
|
@@ -42,7 +42,7 @@
|
|
42
42
|
# => GSL::Vector::Int
|
43
43
|
# [ 0 1 2 999 4 5 ]
|
44
44
|
#
|
45
|
-
# ===
|
45
|
+
# === NArray to GSL
|
46
46
|
# ---
|
47
47
|
# * NArray#to_gv
|
48
48
|
# * NArray#to_gm
|
@@ -56,12 +56,12 @@
|
|
56
56
|
# * NArray#to_gv_view
|
57
57
|
# * NArray#to_gm_view
|
58
58
|
#
|
59
|
-
# Create <tt>GSL::Vector::View</tt> or <tt>GSL::Matrix::View</tt> objects from NArray.
|
59
|
+
# Create <tt>GSL::Vector::View</tt> or <tt>GSL::Matrix::View</tt> objects from NArray.
|
60
60
|
# The memory block of the NArray objects are shared with the View objects.
|
61
61
|
#
|
62
62
|
# Example:
|
63
63
|
# >> na = NArray[0, 1, 2, 3, 4, 5]
|
64
|
-
# => NArray.int(6):
|
64
|
+
# => NArray.int(6):
|
65
65
|
# [ 0, 1, 2, 3, 4, 5 ]
|
66
66
|
# >> b = na.to_gv_int_view
|
67
67
|
# => GSL::Vector::Int::View
|
@@ -69,11 +69,11 @@
|
|
69
69
|
# >> b[2] = -99
|
70
70
|
# => -99
|
71
71
|
# >> na
|
72
|
-
# => NArray.int(6):
|
72
|
+
# => NArray.int(6):
|
73
73
|
# [ 0, 1, -99, 3, 4, 5 ]
|
74
74
|
#
|
75
|
-
# ==
|
76
|
-
# ===
|
75
|
+
# == Methods which accepts NArray
|
76
|
+
# === <tt>GSL</tt> module
|
77
77
|
# ---
|
78
78
|
# * GSL::graph()
|
79
79
|
# * GSL::log1p(x)
|
@@ -87,11 +87,11 @@
|
|
87
87
|
# * GSL::pow_2(x), ..., GSL::pow_9(x)
|
88
88
|
#
|
89
89
|
#
|
90
|
-
# ===
|
90
|
+
# === <tt>Sf</tt> module
|
91
91
|
# ---
|
92
|
-
# * {Any}[link:
|
92
|
+
# * {Any}[link:sf_rdoc.html]
|
93
93
|
#
|
94
|
-
# ===
|
94
|
+
# === <tt>Linalg</tt> module
|
95
95
|
# ---
|
96
96
|
# * GSL::Linalg::LU.decomp(na)
|
97
97
|
# * GSL::Linalg::LU.solve(lu, b)
|
@@ -100,7 +100,7 @@
|
|
100
100
|
# * GSL::Linalg::LU.lndet(lu)
|
101
101
|
# * GSL::Linalg::LU.invert(lu, perm)
|
102
102
|
# * GSL::Linalg::QR.decomp(m)
|
103
|
-
# * GSL::Linalg::QR.solve(qr, tau, b)
|
103
|
+
# * GSL::Linalg::QR.solve(qr, tau, b)
|
104
104
|
# * GSL::Linalg::QR.svx(qr, tau, bx)
|
105
105
|
# * GSL::Linalg::SV.decomp(m)
|
106
106
|
# * GSL::Linalg::SV.solve(u, v, s, b)
|
@@ -112,17 +112,17 @@
|
|
112
112
|
# * GSL::Linalg::HH.svx(m, bx)
|
113
113
|
#
|
114
114
|
#
|
115
|
-
# ===
|
115
|
+
# === <tt>Eigen</tt> module
|
116
116
|
# ---
|
117
117
|
# * GSL::Eigen::symm(na)
|
118
118
|
# * GSL::Eigen::symmv(na)
|
119
119
|
#
|
120
120
|
#
|
121
|
-
# ===
|
121
|
+
# === <tt>FFT</tt> module
|
122
122
|
# ---
|
123
|
-
# * {Many}[link:
|
123
|
+
# * {Many}[link:fft_rdoc.html]
|
124
124
|
#
|
125
|
-
# ===
|
125
|
+
# === <tt>Function</tt> class
|
126
126
|
# ---
|
127
127
|
# * GSL::Function#eval
|
128
128
|
# * GSL::Function#deriv_central(x, h)
|
@@ -133,15 +133,15 @@
|
|
133
133
|
# * GSL::Function#diff_backward(x, h)
|
134
134
|
#
|
135
135
|
#
|
136
|
-
# ===
|
136
|
+
# === <tt>Ran</tt> and <tt>Cdf</tt> module
|
137
137
|
# ---
|
138
|
-
# * {Many}[link:
|
138
|
+
# * {Many}[link:randist_rdoc.html]
|
139
139
|
#
|
140
|
-
# ===
|
140
|
+
# === <tt>Stats</tt> module
|
141
141
|
# ---
|
142
|
-
# * {Any}[link:
|
142
|
+
# * {Any}[link:stats_rdoc.html]
|
143
143
|
#
|
144
|
-
# ===
|
144
|
+
# === <tt>Interp</tt> and <tt>Spline</tt> class
|
145
145
|
# ---
|
146
146
|
# * GSL::Interp#init
|
147
147
|
# * GSL::Interp#eval
|
@@ -149,7 +149,7 @@
|
|
149
149
|
# * GSL::Spline#eval
|
150
150
|
#
|
151
151
|
#
|
152
|
-
# ===
|
152
|
+
# === <tt>Deriv</tt> and <tt>Diff</tt> module
|
153
153
|
# ---
|
154
154
|
# * GSL::Deriv.central(f, x, h)
|
155
155
|
# * GSL::Deriv.forward(f, x, h)
|
@@ -159,19 +159,19 @@
|
|
159
159
|
# * GSL::Diff.backward(f, x, h)
|
160
160
|
#
|
161
161
|
#
|
162
|
-
# ===
|
162
|
+
# === <tt>Cheb</tt> class
|
163
163
|
# ---
|
164
164
|
# * GSL::Cheb#eval(x)
|
165
165
|
# * GSL::Cheb#eval_n(n, x)
|
166
166
|
#
|
167
167
|
#
|
168
|
-
# ===
|
168
|
+
# === <tt>Wavelet</tt> class
|
169
169
|
# ---
|
170
|
-
# * {Many}[link:
|
170
|
+
# * {Many}[link:wavelet_rdoc.html]
|
171
171
|
#
|
172
|
-
# {prev}[link:
|
172
|
+
# {prev}[link:tensor_rdoc.html]
|
173
173
|
#
|
174
|
-
# {Reference index}[link:
|
174
|
+
# {Reference index}[link:ref_rdoc.html]
|
175
175
|
# {top}[link:index.html]
|
176
176
|
#
|
177
177
|
#
|
data/rdoc/ndlinear.rdoc
CHANGED
@@ -1,56 +1,56 @@
|
|
1
1
|
#
|
2
|
-
# = NDLINAR: multi-linear, multi-parameter least squares fitting
|
2
|
+
# = NDLINAR: multi-linear, multi-parameter least squares fitting
|
3
3
|
#
|
4
4
|
# The multi-dimension fitting library NDLINEAR is not included in GSL,
|
5
5
|
# but is provided as an extension library. This is available at the
|
6
|
-
# {
|
6
|
+
# {Patrick Alken's page}[http://ucsu.colorado.edu/~alken/gsl/].
|
7
7
|
#
|
8
8
|
# Contents:
|
9
|
-
# 1. {Introduction}[link:
|
10
|
-
# 1. {Class and methods}[link:
|
11
|
-
# 1. {Examples}[link:
|
12
|
-
#
|
13
|
-
# ==
|
14
|
-
# The NDLINEAR extension provides support for general linear least squares
|
15
|
-
# fitting to data which is a function of more than one variable (multi-linear or
|
16
|
-
# multi-dimensional least squares fitting). This model has the form where
|
17
|
-
# <tt>x</tt> is a vector of independent variables, a_i are the fit coefficients,
|
18
|
-
# and F_i are the basis functions of the fit. This GSL extension computes the
|
19
|
-
# design matrix X_{ij = F_j(x_i) in the special case that the basis functions
|
20
|
-
# separate: Here the superscript value j indicates the basis function
|
21
|
-
# corresponding to the independent variable x_j. The subscripts (i_1, i_2, i_3,
|
9
|
+
# 1. {Introduction}[link:ndlinear_rdoc.html#label-Introduction]
|
10
|
+
# 1. {Class and methods}[link:ndlinear_rdoc.html#label-Class+and+Methods]
|
11
|
+
# 1. {Examples}[link:ndlinear_rdoc.html#label-Examples]
|
12
|
+
#
|
13
|
+
# == Introduction
|
14
|
+
# The NDLINEAR extension provides support for general linear least squares
|
15
|
+
# fitting to data which is a function of more than one variable (multi-linear or
|
16
|
+
# multi-dimensional least squares fitting). This model has the form where
|
17
|
+
# <tt>x</tt> is a vector of independent variables, a_i are the fit coefficients,
|
18
|
+
# and F_i are the basis functions of the fit. This GSL extension computes the
|
19
|
+
# design matrix X_{ij = F_j(x_i) in the special case that the basis functions
|
20
|
+
# separate: Here the superscript value j indicates the basis function
|
21
|
+
# corresponding to the independent variable x_j. The subscripts (i_1, i_2, i_3,
|
22
22
|
# ...) refer to which basis function to use from the complete set. These
|
23
|
-
# subscripts are related to the index i in a complex way, which is the main
|
24
|
-
# problem this extension addresses. The model then becomes where n is the
|
25
|
-
# dimension of the fit and N_i is the number of basis functions for the variable
|
26
|
-
# x_i. Computationally, it is easier to supply the individual basis functions
|
27
|
-
# u^{(j) than the total basis functions F_i(x). However the design matrix X is
|
28
|
-
# easiest to construct given F_i(x). Therefore the routines below allow the user
|
29
|
-
# to specify the individual basis functions u^{(j) and then automatically
|
30
|
-
# construct the design matrix X.
|
23
|
+
# subscripts are related to the index i in a complex way, which is the main
|
24
|
+
# problem this extension addresses. The model then becomes where n is the
|
25
|
+
# dimension of the fit and N_i is the number of basis functions for the variable
|
26
|
+
# x_i. Computationally, it is easier to supply the individual basis functions
|
27
|
+
# u^{(j) than the total basis functions F_i(x). However the design matrix X is
|
28
|
+
# easiest to construct given F_i(x). Therefore the routines below allow the user
|
29
|
+
# to specify the individual basis functions u^{(j) and then automatically
|
30
|
+
# construct the design matrix X.
|
31
31
|
#
|
32
32
|
#
|
33
|
-
# ==
|
33
|
+
# == Class and Methods
|
34
34
|
# ---
|
35
35
|
# * GSL::MultiFit::Ndlinear.alloc(n_dim, N, u, params)
|
36
36
|
# * GSL::MultiFit::Ndlinear::Workspace.alloc(n_dim, N, u, params)
|
37
37
|
#
|
38
|
-
# Creates a workspace for solving multi-parameter, multi-dimensional linear
|
39
|
-
# least squares problems. <tt>n_dim</tt> specifies the dimension of the fit
|
40
|
-
# (the number of independent variables in the model). The array <tt>N</tt> of
|
41
|
-
# length <tt>n_dim</tt> specifies the number of terms in each sum, so that
|
38
|
+
# Creates a workspace for solving multi-parameter, multi-dimensional linear
|
39
|
+
# least squares problems. <tt>n_dim</tt> specifies the dimension of the fit
|
40
|
+
# (the number of independent variables in the model). The array <tt>N</tt> of
|
41
|
+
# length <tt>n_dim</tt> specifies the number of terms in each sum, so that
|
42
42
|
# <tt>N[i]</tt>
|
43
|
-
# specifies the number of terms in the sum of the i-th independent variable.
|
44
|
-
# The array of <tt>Proc</tt> objects <tt>u</tt> of length <tt>n_dim</tt> specifies
|
45
|
-
# the basis functions for each independent fit variable, so that <tt>u[i]</tt>
|
46
|
-
# is a procedure to calculate the basis function for the i-th
|
43
|
+
# specifies the number of terms in the sum of the i-th independent variable.
|
44
|
+
# The array of <tt>Proc</tt> objects <tt>u</tt> of length <tt>n_dim</tt> specifies
|
45
|
+
# the basis functions for each independent fit variable, so that <tt>u[i]</tt>
|
46
|
+
# is a procedure to calculate the basis function for the i-th
|
47
47
|
# independent variable.
|
48
|
-
# Each of the procedures <tt>u</tt> takes three block parameters: a point
|
49
|
-
# <tt>x</tt> at which to evaluate the basis function, an array y of length
|
50
|
-
# <tt>N[i]</tt> which is filled on output with the basis function values at
|
51
|
-
# <tt>x</tt> for all i, and a params argument which contains parameters needed
|
48
|
+
# Each of the procedures <tt>u</tt> takes three block parameters: a point
|
49
|
+
# <tt>x</tt> at which to evaluate the basis function, an array y of length
|
50
|
+
# <tt>N[i]</tt> which is filled on output with the basis function values at
|
51
|
+
# <tt>x</tt> for all i, and a params argument which contains parameters needed
|
52
52
|
# by the basis function. These parameters are supplied in the <tt>params</tt>
|
53
|
-
# argument to this method.
|
53
|
+
# argument to this method.
|
54
54
|
#
|
55
55
|
# Ex)
|
56
56
|
#
|
@@ -93,18 +93,18 @@
|
|
93
93
|
# * GSL::MultiFit::Ndlinear::Workspace#design(vars)
|
94
94
|
#
|
95
95
|
# Construct the least squares design matrix <tt>X</tt> from the input <tt>vars</tt>
|
96
|
-
# and the previously specified basis functions. vars is a ndata-by-n_dim
|
97
|
-
# matrix where the ith row specifies the n_dim independent variables for the
|
98
|
-
# ith observation.
|
96
|
+
# and the previously specified basis functions. vars is a ndata-by-n_dim
|
97
|
+
# matrix where the ith row specifies the n_dim independent variables for the
|
98
|
+
# ith observation.
|
99
99
|
#
|
100
100
|
# ---
|
101
101
|
# * GSL::MultiFit::Ndlinear.est(x, c, cov, w)
|
102
102
|
# * GSL::MultiFit::Ndlinear::Workspace#est(x, c, cov)
|
103
103
|
#
|
104
|
-
# After the least squares problem is solved via <tt>GSL::MultiFit::linear</tt>,
|
105
|
-
# this method can be used to evaluate the model at the data point <tt>x</tt>.
|
106
|
-
# The coefficient vector <tt>c</tt> and covariance matrix <tt>cov</tt> are
|
107
|
-
# outputs from <tt>GSL::MultiFit::linear</tt>. The model output value and
|
104
|
+
# After the least squares problem is solved via <tt>GSL::MultiFit::linear</tt>,
|
105
|
+
# this method can be used to evaluate the model at the data point <tt>x</tt>.
|
106
|
+
# The coefficient vector <tt>c</tt> and covariance matrix <tt>cov</tt> are
|
107
|
+
# outputs from <tt>GSL::MultiFit::linear</tt>. The model output value and
|
108
108
|
# its error [<tt>y, yerr</tt>] are returned as an array.
|
109
109
|
#
|
110
110
|
# ---
|
@@ -116,12 +116,12 @@
|
|
116
116
|
# <tt>x</tt> using the coefficient vector <tt>c</tt> and returns the model
|
117
117
|
# value.
|
118
118
|
#
|
119
|
-
# ==
|
120
|
-
# This example program generates data from the 3D isotropic harmonic oscillator
|
121
|
-
# wavefunction (real part) and then fits a model to the data using B-splines in
|
122
|
-
# the r coordinate, Legendre polynomials in theta, and sines/cosines in phi.
|
123
|
-
# The exact form of the solution is (neglecting the normalization constant for
|
124
|
-
# simplicity) The example program models psi by default.
|
119
|
+
# == Examples
|
120
|
+
# This example program generates data from the 3D isotropic harmonic oscillator
|
121
|
+
# wavefunction (real part) and then fits a model to the data using B-splines in
|
122
|
+
# the r coordinate, Legendre polynomials in theta, and sines/cosines in phi.
|
123
|
+
# The exact form of the solution is (neglecting the normalization constant for
|
124
|
+
# simplicity) The example program models psi by default.
|
125
125
|
#
|
126
126
|
# #!/usr/bin/env ruby
|
127
127
|
# require("gsl")
|
@@ -133,7 +133,7 @@
|
|
133
133
|
# R_MAX = 3.0
|
134
134
|
#
|
135
135
|
# def psi_real_exact(k, l, m, r, theta, phi)
|
136
|
-
# rr = GSL::pow(r, l)*Math::exp(-r*r)*GSL::Sf::laguerre_n(k, l + 0.5, 2 * r * r)
|
136
|
+
# rr = GSL::pow(r, l)*Math::exp(-r*r)*GSL::Sf::laguerre_n(k, l + 0.5, 2 * r * r)
|
137
137
|
# tt = GSL::Sf::legendre_sphPlm(l, m, Math::cos(theta))
|
138
138
|
# pp = Math::cos(m*phi)
|
139
139
|
# rr*tt*pp
|
@@ -191,7 +191,7 @@
|
|
191
191
|
#
|
192
192
|
# vars[i][0] = r
|
193
193
|
# vars[i][1] = theta
|
194
|
-
# vars[i][2] = phi
|
194
|
+
# vars[i][2] = phi
|
195
195
|
#
|
196
196
|
# data[i] = psi + dpsi
|
197
197
|
# end
|
@@ -244,7 +244,7 @@
|
|
244
244
|
# STDERR.printf("rms error over all parameter space = %e\n", eps_rms)
|
245
245
|
#
|
246
246
|
#
|
247
|
-
# {Reference index}[link:
|
247
|
+
# {Reference index}[link:ref_rdoc.html]
|
248
248
|
# {top}[link:index.html]
|
249
249
|
#
|
250
250
|
#
|