rb-gsl 1.16.0.2 → 1.16.0.3.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ChangeLog +5 -0
- data/README +2 -2
- data/Rakefile +2 -3
- data/lib/gsl/version.rb +1 -1
- data/rdoc/alf.rdoc +5 -5
- data/rdoc/blas.rdoc +8 -8
- data/rdoc/bspline.rdoc +16 -16
- data/rdoc/changes.rdoc +4 -9
- data/rdoc/cheb.rdoc +24 -24
- data/rdoc/cholesky_complex.rdoc +21 -21
- data/rdoc/combi.rdoc +36 -36
- data/rdoc/complex.rdoc +21 -21
- data/rdoc/const.rdoc +46 -46
- data/rdoc/dht.rdoc +48 -48
- data/rdoc/diff.rdoc +41 -41
- data/rdoc/ehandling.rdoc +5 -5
- data/rdoc/eigen.rdoc +152 -152
- data/rdoc/fft.rdoc +145 -145
- data/rdoc/fit.rdoc +108 -108
- data/rdoc/function.rdoc +10 -10
- data/rdoc/graph.rdoc +16 -16
- data/rdoc/hist.rdoc +102 -102
- data/rdoc/hist2d.rdoc +41 -41
- data/rdoc/hist3d.rdoc +8 -8
- data/rdoc/index.rdoc +18 -21
- data/rdoc/integration.rdoc +109 -109
- data/rdoc/interp.rdoc +70 -70
- data/rdoc/intro.rdoc +6 -6
- data/rdoc/linalg.rdoc +187 -187
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +57 -57
- data/rdoc/matrix.rdoc +272 -272
- data/rdoc/min.rdoc +56 -56
- data/rdoc/monte.rdoc +21 -21
- data/rdoc/multimin.rdoc +94 -94
- data/rdoc/multiroot.rdoc +79 -79
- data/rdoc/narray.rdoc +31 -31
- data/rdoc/ndlinear.rdoc +53 -53
- data/rdoc/nonlinearfit.rdoc +99 -99
- data/rdoc/ntuple.rdoc +30 -30
- data/rdoc/odeiv.rdoc +87 -87
- data/rdoc/perm.rdoc +89 -89
- data/rdoc/poly.rdoc +65 -65
- data/rdoc/qrng.rdoc +20 -20
- data/rdoc/randist.rdoc +81 -81
- data/rdoc/ref.rdoc +56 -56
- data/rdoc/rng.rdoc +84 -84
- data/rdoc/roots.rdoc +56 -56
- data/rdoc/sf.rdoc +427 -427
- data/rdoc/siman.rdoc +18 -18
- data/rdoc/sort.rdoc +29 -29
- data/rdoc/start.rdoc +8 -8
- data/rdoc/stats.rdoc +51 -51
- data/rdoc/sum.rdoc +11 -11
- data/rdoc/tensor.rdoc +30 -30
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +37 -37
- data/rdoc/vector.rdoc +187 -187
- data/rdoc/vector_complex.rdoc +23 -23
- data/rdoc/wavelet.rdoc +46 -46
- metadata +17 -20
- data/rdoc/rngextra.rdoc +0 -11
- data/rdoc/screenshot.rdoc +0 -40
data/rdoc/siman.rdoc
CHANGED
@@ -1,8 +1,8 @@
|
|
1
1
|
#
|
2
2
|
# = Simulated Annealing
|
3
|
-
# ===
|
3
|
+
# === Library
|
4
4
|
#
|
5
|
-
# ==
|
5
|
+
# == Module and classes
|
6
6
|
# * GSL::
|
7
7
|
# * Siman:: (Module)
|
8
8
|
# * Params (Class)
|
@@ -11,31 +11,31 @@
|
|
11
11
|
# * Metric (Class)
|
12
12
|
# * Print (Class)
|
13
13
|
#
|
14
|
-
# ==
|
15
|
-
# ===
|
14
|
+
# == <tt>Siman</tt> Module
|
15
|
+
# === Singleton method
|
16
16
|
# ---
|
17
17
|
# * GSL::Siman.solve(rng, x0_p, efunc, stepper, metric, printer, params)
|
18
18
|
#
|
19
|
-
# This performs a simulated annealing search through a given space.
|
20
|
-
# The space is specified by providing the functions <tt>efunc</tt> and <tt>metric</tt>.
|
21
|
-
# The simulated annealing steps are generated using the random number generator
|
22
|
-
# <tt>rng</tt> and the function <tt>stepper</tt>. The starting configuration of the
|
19
|
+
# This performs a simulated annealing search through a given space.
|
20
|
+
# The space is specified by providing the functions <tt>efunc</tt> and <tt>metric</tt>.
|
21
|
+
# The simulated annealing steps are generated using the random number generator
|
22
|
+
# <tt>rng</tt> and the function <tt>stepper</tt>. The starting configuration of the
|
23
23
|
# system should be given by a <tt>Vector</tt> object <tt>x0_p</tt>.
|
24
|
-
#
|
25
|
-
# The parameter <tt>params</tt> controls the run by providing the temperature
|
24
|
+
#
|
25
|
+
# The parameter <tt>params</tt> controls the run by providing the temperature
|
26
26
|
# schedule and other tunable parameters to the algorithm.
|
27
27
|
#
|
28
|
-
# On exit the best result achieved during the search is placed in <tt>x0_p</tt>.
|
29
|
-
# If the annealing process has been successful this should be a good approximation
|
28
|
+
# On exit the best result achieved during the search is placed in <tt>x0_p</tt>.
|
29
|
+
# If the annealing process has been successful this should be a good approximation
|
30
30
|
# to the optimal point in the space.
|
31
31
|
#
|
32
|
-
# If the function <tt>printer</tt> is not <tt>nil</tt>, a debugging log will be printed
|
32
|
+
# If the function <tt>printer</tt> is not <tt>nil</tt>, a debugging log will be printed
|
33
33
|
# to stdout with the following columns:
|
34
34
|
# number_of_iterations temperature x x-(x0_p) efunc(x)
|
35
|
-
# and the output of <tt>printer</tt> itself. If <tt>printer</tt> is <tt>nil</tt>
|
35
|
+
# and the output of <tt>printer</tt> itself. If <tt>printer</tt> is <tt>nil</tt>
|
36
36
|
# then no information is printed.
|
37
37
|
#
|
38
|
-
# ==
|
38
|
+
# == Example
|
39
39
|
#
|
40
40
|
# #!/usr/bin/env ruby
|
41
41
|
# require("gsl")
|
@@ -81,9 +81,9 @@
|
|
81
81
|
# Siman::solve(rng, x, efunc, step, metric, nil, params)
|
82
82
|
# p x
|
83
83
|
#
|
84
|
-
# {prev}[link:
|
85
|
-
# {next}[link:
|
84
|
+
# {prev}[link:monte_rdoc.html]
|
85
|
+
# {next}[link:odeiv_rdoc.html]
|
86
86
|
#
|
87
|
-
# {Reference index}[link:
|
87
|
+
# {Reference index}[link:ref_rdoc.html]
|
88
88
|
# {top}[link:index.html]
|
89
89
|
#
|
data/rdoc/sort.rdoc
CHANGED
@@ -1,18 +1,18 @@
|
|
1
1
|
#
|
2
2
|
# = Sorting
|
3
3
|
# Contents:
|
4
|
-
# 1. {Heapsort of vectors}[link:
|
5
|
-
# 1. {Sorting vectors}[link:
|
6
|
-
# 1. {Selecting the k smallest or largest elements}[link:
|
4
|
+
# 1. {Heapsort of vectors}[link:sort_rdoc.html#label-Heapsort]
|
5
|
+
# 1. {Sorting vectors}[link:sort_rdoc.html#label-Sorting+vectors]
|
6
|
+
# 1. {Selecting the k smallest or largest elements}[link:sort_rdoc.html#label-Selecting+the+k+smallest+or+largest+elements]
|
7
7
|
#
|
8
|
-
# ==
|
8
|
+
# == Heapsort
|
9
9
|
#
|
10
10
|
# ---
|
11
11
|
# * GSL::Vector#heapsort
|
12
12
|
# * GSL::Vector::Complex#heapsort
|
13
13
|
# * GSL.heapsort(v)
|
14
14
|
#
|
15
|
-
# These method sort the elements of the vector <tt>self</tt>
|
15
|
+
# These method sort the elements of the vector <tt>self</tt>
|
16
16
|
# using the comparison function given by a block, and return the result
|
17
17
|
# as a new vector object. The vector <tt>self</tt> is not changed.
|
18
18
|
#
|
@@ -34,61 +34,61 @@
|
|
34
34
|
# * GSL::Vector::Complex#heapsort_index
|
35
35
|
# * GSL.heapsort_index(v)
|
36
36
|
#
|
37
|
-
# These method indirectly sort the elements of the vector <tt>self</tt>
|
38
|
-
# using the comparison
|
37
|
+
# These method indirectly sort the elements of the vector <tt>self</tt>
|
38
|
+
# using the comparison
|
39
39
|
# function given by a block, and return the result
|
40
40
|
# as a permutation object. The vector itself is not changed.
|
41
|
-
#
|
42
|
-
# ==
|
41
|
+
#
|
42
|
+
# == Sorting vectors
|
43
43
|
# ---
|
44
44
|
# * GSL::Vector#sort!
|
45
45
|
#
|
46
|
-
# This method sorts the elements of the vector <tt>self</tt> into
|
46
|
+
# This method sorts the elements of the vector <tt>self</tt> into
|
47
47
|
# ascending numerical order. The vector itself is changed.
|
48
48
|
#
|
49
49
|
# ---
|
50
50
|
# * GSL::Vector#sort
|
51
51
|
#
|
52
|
-
# This returns a new vector whose elements are sorted into ascending
|
52
|
+
# This returns a new vector whose elements are sorted into ascending
|
53
53
|
# numerical order. The vector <tt>self</tt> is not changed.
|
54
54
|
#
|
55
55
|
# ---
|
56
56
|
# * GSL::Vector#sort_index
|
57
57
|
#
|
58
|
-
# This method indirectly sorts the elements of the vector <tt>self</tt>
|
59
|
-
# into ascending order,
|
60
|
-
# and returns the result as a <tt>GSL::Permutation</tt> object.
|
61
|
-
# The elements of the returned permutation give the index of the vector
|
58
|
+
# This method indirectly sorts the elements of the vector <tt>self</tt>
|
59
|
+
# into ascending order,
|
60
|
+
# and returns the result as a <tt>GSL::Permutation</tt> object.
|
61
|
+
# The elements of the returned permutation give the index of the vector
|
62
62
|
# element which would
|
63
|
-
# have been stored in that position if the vector had been sorted in place.
|
64
|
-
# The first element of the permutation gives the index of the least element
|
65
|
-
# in <tt>self</tt>, and the last element of the permutation gives the index
|
66
|
-
# of the greatest element in
|
63
|
+
# have been stored in that position if the vector had been sorted in place.
|
64
|
+
# The first element of the permutation gives the index of the least element
|
65
|
+
# in <tt>self</tt>, and the last element of the permutation gives the index
|
66
|
+
# of the greatest element in
|
67
67
|
# <tt>self</tt>. The vector <tt>self</tt> is not changed.
|
68
68
|
#
|
69
|
-
# ==
|
69
|
+
# == Selecting the k smallest or largest elements
|
70
70
|
# ---
|
71
71
|
# * GSL::Vector#sort_smallest(k)
|
72
72
|
# * GSL::Vector#sort_largest(k)
|
73
73
|
#
|
74
|
-
# These functions return a new vector of the <tt>k</tt> smallest or
|
75
|
-
# largest elements of the vector <tt>self</tt>.
|
76
|
-
# The argument <tt>k</tt> must be less than or equal to the length
|
77
|
-
# of the vector <tt>self</tt>.
|
74
|
+
# These functions return a new vector of the <tt>k</tt> smallest or
|
75
|
+
# largest elements of the vector <tt>self</tt>.
|
76
|
+
# The argument <tt>k</tt> must be less than or equal to the length
|
77
|
+
# of the vector <tt>self</tt>.
|
78
78
|
#
|
79
79
|
# ---
|
80
80
|
# * GSL::Vector#sort_smallest_index(k)
|
81
81
|
# * GSL::Vector#sort_largest_index(k)
|
82
82
|
#
|
83
|
-
# These functions return a new <tt>GSL::Permutation</tt> object of the indices of the
|
84
|
-
# <tt>k</tt> smallest or largest elements of the vector <tt>self</tt>.
|
83
|
+
# These functions return a new <tt>GSL::Permutation</tt> object of the indices of the
|
84
|
+
# <tt>k</tt> smallest or largest elements of the vector <tt>self</tt>.
|
85
85
|
# <tt>k</tt> must be less than or equal to the length of the vector.
|
86
86
|
#
|
87
87
|
#
|
88
|
-
# {prev}[link:
|
89
|
-
# {next}[link:
|
88
|
+
# {prev}[link:combi_rdoc.html]
|
89
|
+
# {next}[link:blas_rdoc.html]
|
90
90
|
#
|
91
|
-
# {Reference index}[link:
|
91
|
+
# {Reference index}[link:ref_rdoc.html]
|
92
92
|
# {top}[link:index.html]
|
93
93
|
#
|
94
94
|
#
|
data/rdoc/start.rdoc
CHANGED
@@ -1,16 +1,16 @@
|
|
1
1
|
#
|
2
2
|
# = Getting started
|
3
3
|
#
|
4
|
-
# The GNU Scientific Library ({GSL}[
|
5
|
-
# is a collection of routines for numerical computing.
|
6
|
-
# The routines have been written from scratch in C, and present a modern Applications
|
7
|
-
# Programming Interface (API) for C programmers, allowing wrappers to be
|
8
|
-
# written for very high level languages. The source code is distributed
|
4
|
+
# The GNU Scientific Library ({GSL}[https://gnu.org/software/gsl/])
|
5
|
+
# is a collection of routines for numerical computing.
|
6
|
+
# The routines have been written from scratch in C, and present a modern Applications
|
7
|
+
# Programming Interface (API) for C programmers, allowing wrappers to be
|
8
|
+
# written for very high level languages. The source code is distributed
|
9
9
|
# under the GNU General Public License.
|
10
10
|
#
|
11
|
-
# The {Ruby/GSL}[
|
12
|
-
#
|
13
|
-
# See {here}[link:
|
11
|
+
# The {Ruby/GSL}[https://blackwinter.github.com/rb-gsl] is Ruby
|
12
|
+
# bindings for GSL. This provides higher-level interfaces to the GSL functions.
|
13
|
+
# See {here}[link:use_rdoc.html] for installation. To use the library , just put at the head of your scripts <tt>require("gsl")</tt>, or type it from the command line of <tt>irb</tt>.
|
14
14
|
#
|
15
15
|
#
|
16
16
|
#
|
data/rdoc/stats.rdoc
CHANGED
@@ -1,17 +1,17 @@
|
|
1
1
|
#
|
2
2
|
# = Statistics
|
3
|
-
# 1. {Mean, Standard Deviation and Variance}[link:
|
4
|
-
# 1. {Absolute deviation}[link:
|
5
|
-
# 1. {Higher moments (skewness and kurtosis)}[link:
|
6
|
-
# 1. {Autocorrelation}[link:
|
7
|
-
# 1. {Covariance}[link:
|
8
|
-
# 1. {Correlation}[link:
|
9
|
-
# 1. {Weighted samples}[link:
|
10
|
-
# 1. {Maximum and minimum values}[link:
|
11
|
-
# 1. {Median and percentiles}[link:
|
12
|
-
# 1. {Examples}[link:
|
3
|
+
# 1. {Mean, Standard Deviation and Variance}[link:stats_rdoc.html#label-Mean%2C+Standard+Deviation+and+Variance]
|
4
|
+
# 1. {Absolute deviation}[link:stats_rdoc.html#label-Absolute+deviation]
|
5
|
+
# 1. {Higher moments (skewness and kurtosis)}[link:stats_rdoc.html#label-Higher+moments+%28skewness+and+kurtosis%29]
|
6
|
+
# 1. {Autocorrelation}[link:stats_rdoc.html#label-Autocorrelation]
|
7
|
+
# 1. {Covariance}[link:stats_rdoc.html#label-Covariance]
|
8
|
+
# 1. {Correlation}[link:stats_rdoc.html#label-Correlation]
|
9
|
+
# 1. {Weighted samples}[link:stats_rdoc.html#label-Weighted+samples]
|
10
|
+
# 1. {Maximum and minimum values}[link:stats_rdoc.html#label-Maximum+and+Minimum+values]
|
11
|
+
# 1. {Median and percentiles}[link:stats_rdoc.html#label-Median+and+Percentiles]
|
12
|
+
# 1. {Examples}[link:stats_rdoc.html#label-Example]
|
13
13
|
#
|
14
|
-
# ==
|
14
|
+
# == Mean, Standard Deviation and Variance
|
15
15
|
#
|
16
16
|
# ---
|
17
17
|
# * GSL::Stats::mean(v)
|
@@ -23,7 +23,7 @@
|
|
23
23
|
# >> require("gsl")
|
24
24
|
# => true
|
25
25
|
# >> v = Vector[1..7]
|
26
|
-
# => GSL::Vector:
|
26
|
+
# => GSL::Vector:
|
27
27
|
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 ]
|
28
28
|
# >> v.mean
|
29
29
|
# => 4.0
|
@@ -43,27 +43,27 @@
|
|
43
43
|
#
|
44
44
|
# ---
|
45
45
|
# * GSL::Stats::variance_m(v[, mean])
|
46
|
-
# * GSL::Vector#variance_m([mean])
|
46
|
+
# * \GSL::Vector#variance_m([mean])
|
47
47
|
#
|
48
48
|
# Variance of <tt>v</tt> relative to the given value of <tt>mean</tt>.
|
49
49
|
#
|
50
50
|
# ---
|
51
51
|
# * GSL::Stats::sd(v[, mean])
|
52
|
-
# * GSL::Vector#sd([mean])
|
52
|
+
# * \GSL::Vector#sd([mean])
|
53
53
|
#
|
54
54
|
# Standard deviation.
|
55
55
|
#
|
56
56
|
# ---
|
57
57
|
# * GSL::Stats::tss(v[, mean])
|
58
|
-
# * GSL::Vector#tss([mean])
|
58
|
+
# * \GSL::Vector#tss([mean])
|
59
59
|
#
|
60
|
-
# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean.
|
60
|
+
# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean.
|
61
61
|
#
|
62
62
|
# ---
|
63
63
|
# * GSL::Stats::variance_with_fixed_mean(v, mean)
|
64
64
|
# * GSL::Vector#variance_with_fixed_mean(mean)
|
65
65
|
#
|
66
|
-
# Unbiased estimate of the variance of <tt>v</tt> when the population mean
|
66
|
+
# Unbiased estimate of the variance of <tt>v</tt> when the population mean
|
67
67
|
# <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
|
68
68
|
#
|
69
69
|
# ---
|
@@ -72,51 +72,51 @@
|
|
72
72
|
# * GSL::Stats::sd_with_fixed_mean(v, mean)
|
73
73
|
# * GSL::Vector#sd_with_fixed_mean(mean)
|
74
74
|
#
|
75
|
-
# Unbiased estimate of the variance of <tt>v</tt> when the population mean
|
75
|
+
# Unbiased estimate of the variance of <tt>v</tt> when the population mean
|
76
76
|
# <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
|
77
77
|
#
|
78
|
-
# ==
|
78
|
+
# == Absolute deviation
|
79
79
|
# ---
|
80
80
|
# * GSL::Stats::absdev(v[, mean])
|
81
|
-
# * GSL::Vector#absdev([mean])
|
81
|
+
# * \GSL::Vector#absdev([mean])
|
82
82
|
#
|
83
83
|
# Compute the absolute deviation (from the mean <tt>mean</tt> if given).
|
84
84
|
#
|
85
|
-
# ==
|
85
|
+
# == Higher moments (skewness and kurtosis)
|
86
86
|
#
|
87
87
|
# ---
|
88
88
|
# * GSL::Stats::skew(v[, mean, sd])
|
89
|
-
# * GSL::Vector#skew([mean, sd])
|
89
|
+
# * \GSL::Vector#skew([mean, sd])
|
90
90
|
#
|
91
91
|
# Skewness
|
92
92
|
#
|
93
93
|
# ---
|
94
94
|
# * GSL::Stats::kurtosis(v[, mean, sd])
|
95
|
-
# * GSL::Vector#kurtosis([mean, sd])
|
95
|
+
# * \GSL::Vector#kurtosis([mean, sd])
|
96
96
|
#
|
97
97
|
# Kurtosis
|
98
98
|
#
|
99
|
-
# ==
|
99
|
+
# == Autocorrelation
|
100
100
|
# ---
|
101
101
|
# * GSL::Stats::lag1_autocorrelation(v[, mean])
|
102
|
-
# * GSL::Vector#lag1_autocorrelation([mean])
|
102
|
+
# * \GSL::Vector#lag1_autocorrelation([mean])
|
103
103
|
#
|
104
104
|
# The lag-1 autocorrelation
|
105
105
|
#
|
106
|
-
# ==
|
106
|
+
# == Covariance
|
107
107
|
# ---
|
108
108
|
# * GSL::Stats::covariance(v1, v2)
|
109
109
|
# * GSL::Stats::covariance_m(v1, v2, mean1, mean2)
|
110
110
|
#
|
111
111
|
# Covariance of vectors <tt>v1, v2</tt>.
|
112
112
|
#
|
113
|
-
# ==
|
113
|
+
# == Correlation
|
114
114
|
# ---
|
115
115
|
# * GSL::Stats::correlation(v1, v2)
|
116
116
|
#
|
117
117
|
# This efficiently computes the Pearson correlation coefficient between the vectors <tt>v1, v2</tt>. (>= GSL-1.10)
|
118
118
|
#
|
119
|
-
# ==
|
119
|
+
# == Weighted samples
|
120
120
|
# ---
|
121
121
|
# * GSL::Vector#wmean(w)
|
122
122
|
# * GSL::Vector#wvariance(w)
|
@@ -126,7 +126,7 @@
|
|
126
126
|
# * GSL::Vector#wkurtosis(w)
|
127
127
|
#
|
128
128
|
#
|
129
|
-
# ==
|
129
|
+
# == Maximum and Minimum values
|
130
130
|
# ---
|
131
131
|
# * GSL::Stats::max(data)
|
132
132
|
# * GSL::Vector#max
|
@@ -149,49 +149,49 @@
|
|
149
149
|
# * GSL::Stats::max_index(data)
|
150
150
|
# * GSL::Vector#max_index
|
151
151
|
#
|
152
|
-
# Return the index of the maximum value in <tt>data</tt>.
|
153
|
-
# The maximum value is defined as the value of the element x_i
|
154
|
-
# which satisfies x_i >= x_j for all j.
|
155
|
-
# When there are several equal maximum elements then the first one is chosen.
|
152
|
+
# Return the index of the maximum value in <tt>data</tt>.
|
153
|
+
# The maximum value is defined as the value of the element x_i
|
154
|
+
# which satisfies x_i >= x_j for all j.
|
155
|
+
# When there are several equal maximum elements then the first one is chosen.
|
156
156
|
# ---
|
157
157
|
# * GSL::Stats::min_index(data)
|
158
158
|
# * GSL::Vector#min_index
|
159
159
|
#
|
160
|
-
# Returns the index of the minimum value in <tt>data</tt>.
|
161
|
-
# The minimum value is defined as the value of the element x_i
|
162
|
-
# which satisfies x_i >= x_j for all j.
|
163
|
-
# When there are several equal minimum elements then the first one is
|
164
|
-
# chosen.
|
160
|
+
# Returns the index of the minimum value in <tt>data</tt>.
|
161
|
+
# The minimum value is defined as the value of the element x_i
|
162
|
+
# which satisfies x_i >= x_j for all j.
|
163
|
+
# When there are several equal minimum elements then the first one is
|
164
|
+
# chosen.
|
165
165
|
#
|
166
166
|
# ---
|
167
167
|
# * GSL::Stats::minmax_index(data)
|
168
168
|
# * GSL::Vector#minmax_index
|
169
169
|
#
|
170
|
-
# Return the indexes of the minimum and maximum values in <tt>data</tt>
|
171
|
-
# in a single pass.
|
170
|
+
# Return the indexes of the minimum and maximum values in <tt>data</tt>
|
171
|
+
# in a single pass.
|
172
172
|
#
|
173
173
|
#
|
174
|
-
# ==
|
174
|
+
# == Median and Percentiles
|
175
175
|
#
|
176
176
|
# ---
|
177
177
|
# * GSL::Stats::median_from_sorted_data(v)
|
178
178
|
# * GSL::Vector#median_from_sorted_data
|
179
179
|
#
|
180
|
-
# Return the median value. The elements of the data must be
|
181
|
-
# in ascending numerical order. There are no checks to see whether
|
182
|
-
# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
|
180
|
+
# Return the median value. The elements of the data must be
|
181
|
+
# in ascending numerical order. There are no checks to see whether
|
182
|
+
# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
|
183
183
|
# should always be used first.
|
184
184
|
#
|
185
185
|
# ---
|
186
186
|
# * GSL::Stats::quantile_from_sorted_data(v)
|
187
187
|
# * GSL::Vector#quantile_from_sorted_data
|
188
188
|
#
|
189
|
-
# Return the quantile value. The elements of the data must be
|
190
|
-
# in ascending numerical order. There are no checks to see whether
|
191
|
-
# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
|
189
|
+
# Return the quantile value. The elements of the data must be
|
190
|
+
# in ascending numerical order. There are no checks to see whether
|
191
|
+
# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
|
192
192
|
# should always be used first.
|
193
193
|
#
|
194
|
-
# ==
|
194
|
+
# == Example
|
195
195
|
#
|
196
196
|
# #!/usr/bin/env ruby
|
197
197
|
# require 'gsl'
|
@@ -211,9 +211,9 @@
|
|
211
211
|
# printf("The largest value is %g\n", largest);
|
212
212
|
# printf("The smallest value is %g\n", smallest);
|
213
213
|
#
|
214
|
-
# {prev}[link:
|
215
|
-
# {next}[link:
|
214
|
+
# {prev}[link:randist_rdoc.html]
|
215
|
+
# {next}[link:hist_rdoc.html]
|
216
216
|
#
|
217
|
-
# {Reference index}[link:
|
217
|
+
# {Reference index}[link:ref_rdoc.html]
|
218
218
|
# {top}[link:index.html]
|
219
219
|
#
|
data/rdoc/sum.rdoc
CHANGED
@@ -2,15 +2,15 @@
|
|
2
2
|
# = Series Acceleration
|
3
3
|
# In Ruby/GSL, series acceleration functions are provided as singleton methods
|
4
4
|
# for the <tt>GSL::Sum::Levin_u, Levin_utrunc</tt> classes, and methods of
|
5
|
-
# an object of the {GSL::Vector}[link:
|
5
|
+
# an object of the {GSL::Vector}[link:vector_rdoc.html] class.
|
6
6
|
#
|
7
|
-
# ==
|
7
|
+
# == Modules and classes
|
8
8
|
# * GSL
|
9
9
|
# * Sum (Module)
|
10
10
|
# * Levin_u (Class)
|
11
11
|
# * Levin_utrunc (Class)
|
12
12
|
#
|
13
|
-
# ==
|
13
|
+
# == Methods
|
14
14
|
#
|
15
15
|
# ---
|
16
16
|
# * GSL::Sum::Levin_u.alloc(size)
|
@@ -20,16 +20,16 @@
|
|
20
20
|
# ---
|
21
21
|
# * GSL::Sum::Levin_u.accel(v)
|
22
22
|
#
|
23
|
-
# This method takes the terms of a series in vector <tt>v</tt> and computes
|
23
|
+
# This method takes the terms of a series in vector <tt>v</tt> and computes
|
24
24
|
# the extrapolated limit of the series using a Levin u-transform. This returns
|
25
25
|
# an array of <tt>[sum, abserr, sum_plain, terms_used]</tt>,
|
26
|
-
# where <tt>sum</tt> is the extrapolated sum, <tt>abserr</tt> is an estimate of the
|
26
|
+
# where <tt>sum</tt> is the extrapolated sum, <tt>abserr</tt> is an estimate of the
|
27
27
|
# absolute error, and <tt>sum_plain</tt> is the actual term-by-term sum.
|
28
28
|
#
|
29
29
|
# ---
|
30
30
|
# * GSL::Sum::Levin_utrunc.accel(v)
|
31
31
|
#
|
32
|
-
# This method takes the terms of a series in vector <tt>v</tt> and computes
|
32
|
+
# This method takes the terms of a series in vector <tt>v</tt> and computes
|
33
33
|
# the extrapolated limit of the series using a Levin u-transform. This returns
|
34
34
|
# an array of <tt>[sum, abserr_trunc, sum_plain, terms_used]</tt>.
|
35
35
|
#
|
@@ -48,17 +48,17 @@
|
|
48
48
|
# * GSL::Vector#sum_accel
|
49
49
|
# * GSL::Vector#sum
|
50
50
|
#
|
51
|
-
# These calculate the "extrapolated" sum of the terms contained in a
|
52
|
-
# GSL::Vector object, using a Levin u-transform. The returned values is a
|
51
|
+
# These calculate the "extrapolated" sum of the terms contained in a
|
52
|
+
# GSL::Vector object, using a Levin u-transform. The returned values is a
|
53
53
|
# Ruby array with 4 elements, as [<tt>sum_accel, err, sum_plain, terms_used</tt>],
|
54
54
|
# where <tt>sum_accel</tt> is the extraplated sum, <tt>err</tt> is the absolute error,
|
55
55
|
# <tt>sum_plain</tt> is the term-by-term sum, and <tt>terms_used</tt> is the number of
|
56
56
|
# terms actually used in the calculation.
|
57
57
|
#
|
58
|
-
# {prev}[link:
|
59
|
-
# {next}[link:
|
58
|
+
# {prev}[link:cheb_rdoc.html]
|
59
|
+
# {next}[link:dht_rdoc.html]
|
60
60
|
#
|
61
|
-
# {Reference index}[link:
|
61
|
+
# {Reference index}[link:ref_rdoc.html]
|
62
62
|
# {top}[link:index.html]
|
63
63
|
#
|
64
64
|
#
|