gphys 1.2.2.1 → 1.4.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +8 -17
- data/.rspec +2 -0
- data/.travis.yml +3 -0
- data/ChangeLog +5762 -753
- data/LICENSE.txt +30 -18
- data/Rakefile +1 -0
- data/bin/console +14 -0
- data/bin/gpcat +43 -2
- data/bin/gpcut +16 -0
- data/bin/gpvect +167 -15
- data/bin/gpview +254 -51
- data/bin/setup +7 -0
- data/dim_op.c +1220 -0
- data/doc/attribute.html +19 -0
- data/doc/attributenetcdf.html +15 -0
- data/doc/axis.html +387 -0
- data/doc/coordmapping.html +111 -0
- data/doc/coordtransform.html +36 -0
- data/doc/dclext.html +821 -0
- data/doc/derivative/gphys-derivative.html +100 -0
- data/doc/derivative/index.html +21 -0
- data/doc/derivative/index.rd +14 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +158 -0
- data/doc/derivative/math-doc/document/document.css +30 -0
- data/doc/derivative/math-doc/document/document.html +57 -0
- data/doc/derivative/math-doc/document/images.aux +1 -0
- data/doc/derivative/math-doc/document/images.log +385 -0
- data/doc/derivative/math-doc/document/images.pl +186 -0
- data/doc/derivative/math-doc/document/images.tex +364 -0
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +57 -0
- data/doc/derivative/math-doc/document/labels.pl +13 -0
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +238 -0
- data/doc/derivative/math-doc/document/node2.html +75 -0
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/numru-derivative.html +158 -0
- data/doc/ep_flux/ep_flux.html +469 -0
- data/doc/ep_flux/ggraph_on_merdional_section.html +71 -0
- data/doc/ep_flux/index.html +31 -0
- data/doc/ep_flux/index.rd +24 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +2018 -0
- data/doc/ep_flux/math-doc/document/WARNINGS +1 -0
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +30 -0
- data/doc/ep_flux/math-doc/document/document.html +101 -0
- data/doc/ep_flux/math-doc/document/images.aux +1 -0
- data/doc/ep_flux/math-doc/document/images.log +1375 -0
- data/doc/ep_flux/math-doc/document/images.pl +1328 -0
- data/doc/ep_flux/math-doc/document/images.tex +1471 -0
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +101 -0
- data/doc/ep_flux/math-doc/document/internals.pl +258 -0
- data/doc/ep_flux/math-doc/document/labels.pl +265 -0
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +104 -0
- data/doc/ep_flux/math-doc/document/node10.html +164 -0
- data/doc/ep_flux/math-doc/document/node11.html +86 -0
- data/doc/ep_flux/math-doc/document/node12.html +166 -0
- data/doc/ep_flux/math-doc/document/node13.html +897 -0
- data/doc/ep_flux/math-doc/document/node14.html +1065 -0
- data/doc/ep_flux/math-doc/document/node15.html +72 -0
- data/doc/ep_flux/math-doc/document/node16.html +81 -0
- data/doc/ep_flux/math-doc/document/node2.html +82 -0
- data/doc/ep_flux/math-doc/document/node3.html +91 -0
- data/doc/ep_flux/math-doc/document/node4.html +149 -0
- data/doc/ep_flux/math-doc/document/node5.html +330 -0
- data/doc/ep_flux/math-doc/document/node6.html +99 -0
- data/doc/ep_flux/math-doc/document/node7.html +98 -0
- data/doc/ep_flux/math-doc/document/node8.html +83 -0
- data/doc/ep_flux/math-doc/document/node9.html +140 -0
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/gdir.html +412 -0
- data/doc/gdir_client.html +16 -0
- data/doc/gdir_connect_ftp-like.html +61 -0
- data/doc/gdir_server.html +45 -0
- data/doc/ggraph.html +1119 -0
- data/doc/gpcat.html +45 -0
- data/doc/gpcut.html +47 -0
- data/doc/gphys.html +624 -0
- data/doc/gphys_fft.html +324 -0
- data/doc/gphys_grads_io.html +69 -0
- data/doc/gphys_grib_io.html +82 -0
- data/doc/gphys_io.html +183 -0
- data/doc/gphys_io_common.html +18 -0
- data/doc/gphys_netcdf_io.html +283 -0
- data/doc/gplist.html +24 -0
- data/doc/gpmath.html +52 -0
- data/doc/gpmaxmin.html +32 -0
- data/doc/gpprint.html +35 -0
- data/doc/gpview.html +349 -0
- data/doc/grads2nc_with_gphys.html +21 -0
- data/doc/grads_gridded.html +307 -0
- data/doc/grib.html +149 -0
- data/doc/grid.html +224 -0
- data/doc/index.html +145 -0
- data/doc/index.rd +138 -0
- data/doc/netcdf_convention.html +136 -0
- data/doc/unumeric.html +176 -0
- data/doc/update +69 -0
- data/doc/update_rdoc +8 -0
- data/doc/varray.html +299 -0
- data/doc/varraycomposite.html +67 -0
- data/ext_init.c +1 -0
- data/extconf.rb +16 -6
- data/gphys.gemspec +33 -26
- data/interpo.c +1 -1
- data/lib/numru/dclext.rb +718 -546
- data/lib/numru/derivative.rb +2 -0
- data/lib/numru/ganalysis.rb +38 -0
- data/lib/numru/ganalysis/beta_plane.rb +103 -0
- data/lib/numru/ganalysis/eof.rb +3 -2
- data/lib/numru/ganalysis/fitting.rb +559 -0
- data/lib/numru/ganalysis/histogram.rb +36 -19
- data/lib/numru/ganalysis/log_p.rb +130 -0
- data/lib/numru/ganalysis/met.rb +396 -2
- data/lib/numru/ganalysis/met_z.rb +300 -0
- data/lib/numru/ganalysis/planet.rb +17 -7
- data/lib/numru/ganalysis/qg.rb +685 -0
- data/lib/numru/ganalysis/sigma_coord.rb +90 -0
- data/lib/numru/gdir.rb +2 -1
- data/lib/numru/ggraph.rb +204 -60
- data/lib/numru/ggraph_on_merdional_section.rb +1 -1
- data/lib/numru/gphys.rb +6 -0
- data/lib/numru/gphys/assoccoords.rb +18 -3
- data/lib/numru/gphys/axis.rb +209 -8
- data/lib/numru/gphys/derivative.rb +11 -0
- data/lib/numru/gphys/gphys.rb +539 -48
- data/lib/numru/gphys/gphys_dim_op.rb +331 -0
- data/lib/numru/gphys/gphys_fft.rb +48 -2
- data/lib/numru/gphys/gphys_io.rb +241 -13
- data/lib/numru/gphys/gphys_netcdf_io.rb +77 -39
- data/lib/numru/gphys/gphys_nusdas_io.rb +3 -0
- data/lib/numru/gphys/grib.rb +133 -54
- data/lib/numru/gphys/grib_params.rb +26 -3
- data/lib/numru/gphys/grid.rb +75 -34
- data/lib/numru/gphys/interpolate.rb +24 -10
- data/lib/numru/gphys/mdstorage.rb +160 -0
- data/lib/numru/gphys/netcdf_convention.rb +4 -2
- data/lib/numru/gphys/subsetmapping.rb +0 -1
- data/lib/numru/gphys/unumeric.rb +50 -5
- data/lib/numru/gphys/varray.rb +15 -30
- data/lib/numru/gphys/varraycomposite.rb +107 -24
- data/lib/numru/gphys/varraynetcdf.rb +9 -3
- data/lib/numru/gphys/version.rb +5 -0
- data/sample/druby_cli1.rb +2 -0
- data/sample/druby_cli2.rb +0 -6
- data/sample/druby_serv2.rb +0 -13
- data/spec/gphys_spec.rb +11 -0
- data/spec/spec_helper.rb +2 -0
- data/test/test_assoccoords.rb +102 -0
- data/test/test_axis.rb +61 -0
- data/test/test_fitting.rb +116 -0
- data/test/test_gphys.rb +20 -0
- data/test/test_met_z.rb +96 -0
- data/test/test_sigma_coord.rb +50 -0
- data/{test → test_old}/eof_slp.rb +0 -0
- data/{test → test_old}/mltbit.dat +0 -0
- data/{test → test_old}/test_ep_flux.rb +0 -0
- data/{test → test_old}/test_multibitIO.rb +0 -0
- metadata +530 -191
- data/README.md +0 -29
- data/lib/gphys.rb +0 -2
- data/lib/numru/dclext_datetime_ax.rb +0 -220
- data/lib/version.rb +0 -3
@@ -0,0 +1,186 @@
|
|
1
|
+
# LaTeX2HTML 2K.1beta (1.48)
|
2
|
+
# Associate images original text with physical files.
|
3
|
+
|
4
|
+
|
5
|
+
$key = q/displaystyle=(s^2+st^2)f'(x_i)+s^2O(t^3)+t^2O(s^3);MSF=1.6;LFS=12;AAT/;
|
6
|
+
$cached_env_img{$key} = q|<IMG
|
7
|
+
WIDTH="314" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
8
|
+
SRC="|."$dir".q|img25.png"
|
9
|
+
ALT="$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$">|;
|
10
|
+
|
11
|
+
$key = q/f(x);MSF=1.6;LFS=12;AAT/;
|
12
|
+
$cached_env_img{$key} = q|<IMG
|
13
|
+
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
14
|
+
SRC="|."$dir".q|img1.png"
|
15
|
+
ALT="$ f(x)$">|;
|
16
|
+
|
17
|
+
$key = q/displaystyleequiv(x_{i}-x_{i-1});MSF=1.6;LFS=12;AAT/;
|
18
|
+
$cached_env_img{$key} = q|<IMG
|
19
|
+
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
20
|
+
SRC="|."$dir".q|img8.png"
|
21
|
+
ALT="$\displaystyle \equiv (x_{i} - x_{i-1})$">|;
|
22
|
+
|
23
|
+
$key = q/t^3;MSF=1.6;LFS=12;AAT/;
|
24
|
+
$cached_env_img{$key} = q|<IMG
|
25
|
+
WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
|
26
|
+
SRC="|."$dir".q|img20.png"
|
27
|
+
ALT="$ t^3$">|;
|
28
|
+
|
29
|
+
$key = q/t;MSF=1.6;LFS=12;AAT/;
|
30
|
+
$cached_env_img{$key} = q|<IMG
|
31
|
+
WIDTH="12" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
32
|
+
SRC="|."$dir".q|img10.png"
|
33
|
+
ALT="$ t$">|;
|
34
|
+
|
35
|
+
$key = q/displaystylef'(x_i);MSF=1.6;LFS=12;AAT/;
|
36
|
+
$cached_env_img{$key} = q|<IMG
|
37
|
+
WIDTH="51" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
38
|
+
SRC="|."$dir".q|img29.png"
|
39
|
+
ALT="$\displaystyle f'(x_i)$">|;
|
40
|
+
|
41
|
+
$key = q/t^2times;MSF=1.6;LFS=12;AAT/;
|
42
|
+
$cached_env_img{$key} = q|<IMG
|
43
|
+
WIDTH="34" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
44
|
+
SRC="|."$dir".q|img23.png"
|
45
|
+
ALT="$ t^2\times$">|;
|
46
|
+
|
47
|
+
$key = q/displaystyle=tf'(x_i)+frac{t^2}{2}f''(x_i)+O(t^3);MSF=1.6;LFS=12;AAT/;
|
48
|
+
$cached_env_img{$key} = q|<IMG
|
49
|
+
WIDTH="235" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
50
|
+
SRC="|."$dir".q|img12.png"
|
51
|
+
ALT="$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$">|;
|
52
|
+
|
53
|
+
$key = q/x_i;MSF=1.6;LFS=12;AAT/;
|
54
|
+
$cached_env_img{$key} = q|<IMG
|
55
|
+
WIDTH="21" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
56
|
+
SRC="|."$dir".q|img16.png"
|
57
|
+
ALT="$ x_i$">|;
|
58
|
+
|
59
|
+
$key = q/f'(x_i),f''(x_i);MSF=1.6;LFS=12;AAT/;
|
60
|
+
$cached_env_img{$key} = q|<IMG
|
61
|
+
WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
62
|
+
SRC="|."$dir".q|img15.png"
|
63
|
+
ALT="$ f'(x_i), f''(x_i)$">|;
|
64
|
+
|
65
|
+
$key = q/s^2times;MSF=1.6;LFS=12;AAT/;
|
66
|
+
$cached_env_img{$key} = q|<IMG
|
67
|
+
WIDTH="36" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
68
|
+
SRC="|."$dir".q|img22.png"
|
69
|
+
ALT="$ s^2\times$">|;
|
70
|
+
|
71
|
+
$key = q/displaystyles^2f_{i+1}+(t^2-s^2)f_i-t^2f_{i-1};MSF=1.6;LFS=12;AAT/;
|
72
|
+
$cached_env_img{$key} = q|<IMG
|
73
|
+
WIDTH="229" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
74
|
+
SRC="|."$dir".q|img24.png"
|
75
|
+
ALT="$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$">|;
|
76
|
+
|
77
|
+
$key = q/displaystyle=frac{s^2f_{i+1}+(t^2-s^2)f_i-t^2f_{i-1}}{st(s+t)};MSF=1.6;LFS=12;AAT/;
|
78
|
+
$cached_env_img{$key} = q|<IMG
|
79
|
+
WIDTH="252" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
80
|
+
SRC="|."$dir".q|img30.png"
|
81
|
+
ALT="$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$">|;
|
82
|
+
|
83
|
+
$key = q/f;MSF=1.6;LFS=12;AAT/;
|
84
|
+
$cached_env_img{$key} = q|<IMG
|
85
|
+
WIDTH="16" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
86
|
+
SRC="|."$dir".q|img17.png"
|
87
|
+
ALT="$ f$">|;
|
88
|
+
|
89
|
+
$key = q/displaystyle=f'(x_i)+frac{O(s^2t^3)+O(t^2s^3)}{st(s+t)};MSF=1.6;LFS=12;AAT/;
|
90
|
+
$cached_env_img{$key} = q|<IMG
|
91
|
+
WIDTH="241" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
92
|
+
SRC="|."$dir".q|img27.png"
|
93
|
+
ALT="$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$">|;
|
94
|
+
|
95
|
+
$key = q/displaystyle=O(t^2).;MSF=1.6;LFS=12;AAT/;
|
96
|
+
$cached_env_img{$key} = q|<IMG
|
97
|
+
WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
98
|
+
SRC="|."$dir".q|img28.png"
|
99
|
+
ALT="$\displaystyle = O(t^2).$">|;
|
100
|
+
|
101
|
+
$key = q/displaystylet;MSF=1.6;LFS=12;AAT/;
|
102
|
+
$cached_env_img{$key} = q|<IMG
|
103
|
+
WIDTH="12" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
104
|
+
SRC="|."$dir".q|img5.png"
|
105
|
+
ALT="$\displaystyle t$">|;
|
106
|
+
|
107
|
+
$key = q/displaystyle=-sf'(x_i)+frac{s^2}{2}f''(x_i)+O(s^3);MSF=1.6;LFS=12;AAT/;
|
108
|
+
$cached_env_img{$key} = q|<IMG
|
109
|
+
WIDTH="256" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
110
|
+
SRC="|."$dir".q|img14.png"
|
111
|
+
ALT="$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$">|;
|
112
|
+
|
113
|
+
$key = q/s;MSF=1.6;LFS=12;AAT/;
|
114
|
+
$cached_env_img{$key} = q|<IMG
|
115
|
+
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
116
|
+
SRC="|."$dir".q|img9.png"
|
117
|
+
ALT="$ s$">|;
|
118
|
+
|
119
|
+
$key = q/displaystylefrac{s^2f_{i+1}+(t^2-s^2)f_i-t^2f_{i-1}}{st(s+t)};MSF=1.6;LFS=12;AAT/;
|
120
|
+
$cached_env_img{$key} = q|<IMG
|
121
|
+
WIDTH="233" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
122
|
+
SRC="|."$dir".q|img26.png"
|
123
|
+
ALT="$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$">|;
|
124
|
+
|
125
|
+
$key = q/displaystyleequiv(x_{i+1}-x_{i});MSF=1.6;LFS=12;AAT/;
|
126
|
+
$cached_env_img{$key} = q|<IMG
|
127
|
+
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
128
|
+
SRC="|."$dir".q|img6.png"
|
129
|
+
ALT="$\displaystyle \equiv (x_{i+1} - x_{i})$">|;
|
130
|
+
|
131
|
+
$key = q/displaystylef(x_{i-1})-f(x_{i});MSF=1.6;LFS=12;AAT/;
|
132
|
+
$cached_env_img{$key} = q|<IMG
|
133
|
+
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
134
|
+
SRC="|."$dir".q|img13.png"
|
135
|
+
ALT="$\displaystyle f(x_{i-1}) - f(x_{i})$">|;
|
136
|
+
|
137
|
+
$key = q/displaystylef(x_{i+1})-f(x_{i});MSF=1.6;LFS=12;AAT/;
|
138
|
+
$cached_env_img{$key} = q|<IMG
|
139
|
+
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
140
|
+
SRC="|."$dir".q|img11.png"
|
141
|
+
ALT="$\displaystyle f(x_{i+1}) - f(x_{i})$">|;
|
142
|
+
|
143
|
+
$key = q/x_n(x_0,x_1,...,x_{i},...,x_{n});MSF=1.6;LFS=12;AAT/;
|
144
|
+
$cached_env_img{$key} = q|<IMG
|
145
|
+
WIDTH="184" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
146
|
+
SRC="|."$dir".q|img2.png"
|
147
|
+
ALT="$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$">|;
|
148
|
+
|
149
|
+
$key = q/x;MSF=1.6;LFS=12;AAT/;
|
150
|
+
$cached_env_img{$key} = q|<IMG
|
151
|
+
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
152
|
+
SRC="|."$dir".q|img18.png"
|
153
|
+
ALT="$ x$">|;
|
154
|
+
|
155
|
+
$key = q/displaystylef_i;MSF=1.6;LFS=12;AAT/;
|
156
|
+
$cached_env_img{$key} = q|<IMG
|
157
|
+
WIDTH="19" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
158
|
+
SRC="|."$dir".q|img3.png"
|
159
|
+
ALT="$\displaystyle f_i$">|;
|
160
|
+
|
161
|
+
$key = q/O(t^3);MSF=1.6;LFS=12;AAT/;
|
162
|
+
$cached_env_img{$key} = q|<IMG
|
163
|
+
WIDTH="48" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
164
|
+
SRC="|."$dir".q|img19.png"
|
165
|
+
ALT="$ O(t^3)$">|;
|
166
|
+
|
167
|
+
$key = q/displaystyleequivf(x_i);MSF=1.6;LFS=12;AAT/;
|
168
|
+
$cached_env_img{$key} = q|<IMG
|
169
|
+
WIDTH="67" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
170
|
+
SRC="|."$dir".q|img4.png"
|
171
|
+
ALT="$\displaystyle \equiv f(x_i)$">|;
|
172
|
+
|
173
|
+
$key = q/f'';MSF=1.6;LFS=12;AAT/;
|
174
|
+
$cached_env_img{$key} = q|<IMG
|
175
|
+
WIDTH="24" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
|
176
|
+
SRC="|."$dir".q|img21.png"
|
177
|
+
ALT="$ f''$">|;
|
178
|
+
|
179
|
+
$key = q/displaystyles;MSF=1.6;LFS=12;AAT/;
|
180
|
+
$cached_env_img{$key} = q|<IMG
|
181
|
+
WIDTH="14" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
182
|
+
SRC="|."$dir".q|img7.png"
|
183
|
+
ALT="$\displaystyle s$">|;
|
184
|
+
|
185
|
+
1;
|
186
|
+
|
@@ -0,0 +1,364 @@
|
|
1
|
+
\batchmode
|
2
|
+
|
3
|
+
\documentclass[a4j,12pt,openbib]{jarticle}
|
4
|
+
\RequirePackage{ifthen}
|
5
|
+
|
6
|
+
|
7
|
+
|
8
|
+
\usepackage{ascmac}
|
9
|
+
\usepackage{tabularx}
|
10
|
+
\usepackage{graphicx}
|
11
|
+
\usepackage{amssymb}
|
12
|
+
\usepackage{amsmath}
|
13
|
+
\usepackage{Dennou6}
|
14
|
+
\pagestyle{Dmyheadings}
|
15
|
+
|
16
|
+
\Dtitle{NumRu::Derivative}
|
17
|
+
|
18
|
+
\setcounter{section}{0}
|
19
|
+
\setcounter{equation}{0}
|
20
|
+
\setcounter{page}{1}
|
21
|
+
\setcounter{figure}{0}
|
22
|
+
\setcounter{footnote}{0}
|
23
|
+
|
24
|
+
|
25
|
+
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
\Dparskip
|
34
|
+
\Dparindent
|
35
|
+
|
36
|
+
|
37
|
+
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
|
42
|
+
\usepackage[dvips]{color}
|
43
|
+
|
44
|
+
|
45
|
+
\pagecolor[gray]{.7}
|
46
|
+
|
47
|
+
\usepackage[]{inputenc}
|
48
|
+
|
49
|
+
|
50
|
+
|
51
|
+
\makeatletter
|
52
|
+
|
53
|
+
\makeatletter
|
54
|
+
\count@=\the\catcode`\_ \catcode`\_=8
|
55
|
+
\newenvironment{tex2html_wrap}{}{}%
|
56
|
+
\catcode`\<=12\catcode`\_=\count@
|
57
|
+
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
|
58
|
+
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
|
59
|
+
\expandafter\renewcommand\csname #1\endcsname}%
|
60
|
+
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
|
61
|
+
\let\newedcommand\renewedcommand
|
62
|
+
\let\renewedenvironment\newedenvironment
|
63
|
+
\makeatother
|
64
|
+
\let\mathon=$
|
65
|
+
\let\mathoff=$
|
66
|
+
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
|
67
|
+
\newbox\sizebox
|
68
|
+
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
|
69
|
+
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
|
70
|
+
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
|
71
|
+
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
|
72
|
+
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
|
73
|
+
\setlength{\textwidth}{349pt}
|
74
|
+
\newwrite\lthtmlwrite
|
75
|
+
\makeatletter
|
76
|
+
\let\realnormalsize=\normalsize
|
77
|
+
\global\topskip=2sp
|
78
|
+
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
|
79
|
+
\def\@float{\let\@savefreelist\@freelist\real@float}
|
80
|
+
\def\liih@math{\ifmmode$\else\bad@math\fi}
|
81
|
+
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
|
82
|
+
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
|
83
|
+
\let\@largefloatcheck=\relax
|
84
|
+
\let\if@boxedmulticols=\iftrue
|
85
|
+
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
|
86
|
+
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
|
87
|
+
\parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
|
88
|
+
\def\phantompar{\csname par\endcsname}\normalsize}%
|
89
|
+
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
|
90
|
+
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
|
91
|
+
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
|
92
|
+
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
|
93
|
+
\let\ifinner=\iffalse \let\)\liih@math }%
|
94
|
+
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
|
95
|
+
\expandafter\box\next\egroup}%
|
96
|
+
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
|
97
|
+
\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
|
98
|
+
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
|
99
|
+
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
|
100
|
+
\lthtmlmathtype{#1}\lthtmlvboxmathA}%
|
101
|
+
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
|
102
|
+
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
|
103
|
+
\let\@savefreelist\@freelist \lthtmlhboxmathB}%
|
104
|
+
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
|
105
|
+
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
|
106
|
+
\global\let\@freelist\@savefreelist}%
|
107
|
+
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
|
108
|
+
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
|
109
|
+
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
|
110
|
+
\lthtmldisplayA{#1}\let\@eqnnum\relax}%
|
111
|
+
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
|
112
|
+
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
|
113
|
+
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
|
114
|
+
\vrule height1.5ex width0pt }%
|
115
|
+
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
|
116
|
+
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
|
117
|
+
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
118
|
+
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
|
119
|
+
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
120
|
+
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
|
121
|
+
\newcommand\lthtmlindisplaymathZ{\egroup %
|
122
|
+
\centerinlinemath\lthtmllogmath\lthtmlsetmath}
|
123
|
+
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
|
124
|
+
\kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
|
125
|
+
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
126
|
+
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
|
127
|
+
\kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
|
128
|
+
\ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
|
129
|
+
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
130
|
+
\def\centerinlinemath{%
|
131
|
+
\dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
|
132
|
+
\advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
|
133
|
+
\dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
|
134
|
+
|
135
|
+
\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
|
136
|
+
\ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
|
137
|
+
\else\expandafter\vss\fi}%
|
138
|
+
\providecommand{\selectlanguage}[1]{}%
|
139
|
+
\makeatletter \tracingstats = 1
|
140
|
+
\providecommand{\Eta}{\textrm{H}}
|
141
|
+
\providecommand{\Mu}{\textrm{M}}
|
142
|
+
\providecommand{\Alpha}{\textrm{A}}
|
143
|
+
\providecommand{\Iota}{\textrm{J}}
|
144
|
+
\providecommand{\Nu}{\textrm{N}}
|
145
|
+
\providecommand{\Omicron}{\textrm{O}}
|
146
|
+
\providecommand{\omicron}{\textrm{o}}
|
147
|
+
\providecommand{\Chi}{\textrm{X}}
|
148
|
+
\providecommand{\Beta}{\textrm{B}}
|
149
|
+
\providecommand{\Kappa}{\textrm{K}}
|
150
|
+
\providecommand{\Tau}{\textrm{T}}
|
151
|
+
\providecommand{\Epsilon}{\textrm{E}}
|
152
|
+
\providecommand{\Zeta}{\textrm{Z}}
|
153
|
+
\providecommand{\Rho}{\textrm{R}}
|
154
|
+
|
155
|
+
|
156
|
+
\begin{document}
|
157
|
+
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
|
158
|
+
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
|
159
|
+
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
|
160
|
+
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
|
161
|
+
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
|
162
|
+
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
|
163
|
+
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
|
164
|
+
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
|
165
|
+
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
|
166
|
+
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
|
167
|
+
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
|
168
|
+
\makeatletter
|
169
|
+
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
|
170
|
+
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
|
171
|
+
\lthtmltypeout{}%
|
172
|
+
\makeatother
|
173
|
+
\setcounter{page}{1}
|
174
|
+
\onecolumn
|
175
|
+
|
176
|
+
% !!! IMAGES START HERE !!!
|
177
|
+
|
178
|
+
\setcounter{section}{0}
|
179
|
+
\setcounter{equation}{0}
|
180
|
+
\setcounter{figure}{0}
|
181
|
+
\setcounter{footnote}{0}
|
182
|
+
\stepcounter{section}
|
183
|
+
{\newpage\clearpage
|
184
|
+
\lthtmlinlinemathA{tex2html_wrap_inline126}%
|
185
|
+
$ f(x)$%
|
186
|
+
\lthtmlinlinemathZ
|
187
|
+
\lthtmlcheckvsize\clearpage}
|
188
|
+
|
189
|
+
{\newpage\clearpage
|
190
|
+
\lthtmlinlinemathA{tex2html_wrap_inline128}%
|
191
|
+
$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$%
|
192
|
+
\lthtmlinlinemathZ
|
193
|
+
\lthtmlcheckvsize\clearpage}
|
194
|
+
|
195
|
+
{\newpage\clearpage
|
196
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay131}%
|
197
|
+
$\displaystyle f_i$%
|
198
|
+
\lthtmlindisplaymathZ
|
199
|
+
\lthtmlcheckvsize\clearpage}
|
200
|
+
|
201
|
+
{\newpage\clearpage
|
202
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay132}%
|
203
|
+
$\displaystyle \equiv f(x_i)$%
|
204
|
+
\lthtmlindisplaymathZ
|
205
|
+
\lthtmlcheckvsize\clearpage}
|
206
|
+
|
207
|
+
{\newpage\clearpage
|
208
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay135}%
|
209
|
+
$\displaystyle t$%
|
210
|
+
\lthtmlindisplaymathZ
|
211
|
+
\lthtmlcheckvsize\clearpage}
|
212
|
+
|
213
|
+
{\newpage\clearpage
|
214
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay136}%
|
215
|
+
$\displaystyle \equiv (x_{i+1} - x_{i})$%
|
216
|
+
\lthtmlindisplaymathZ
|
217
|
+
\lthtmlcheckvsize\clearpage}
|
218
|
+
|
219
|
+
{\newpage\clearpage
|
220
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay139}%
|
221
|
+
$\displaystyle s$%
|
222
|
+
\lthtmlindisplaymathZ
|
223
|
+
\lthtmlcheckvsize\clearpage}
|
224
|
+
|
225
|
+
{\newpage\clearpage
|
226
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay140}%
|
227
|
+
$\displaystyle \equiv (x_{i} - x_{i-1})$%
|
228
|
+
\lthtmlindisplaymathZ
|
229
|
+
\lthtmlcheckvsize\clearpage}
|
230
|
+
|
231
|
+
{\newpage\clearpage
|
232
|
+
\lthtmlinlinemathA{tex2html_wrap_inline142}%
|
233
|
+
$ s$%
|
234
|
+
\lthtmlinlinemathZ
|
235
|
+
\lthtmlcheckvsize\clearpage}
|
236
|
+
|
237
|
+
{\newpage\clearpage
|
238
|
+
\lthtmlinlinemathA{tex2html_wrap_inline144}%
|
239
|
+
$ t$%
|
240
|
+
\lthtmlinlinemathZ
|
241
|
+
\lthtmlcheckvsize\clearpage}
|
242
|
+
|
243
|
+
{\newpage\clearpage
|
244
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay149}%
|
245
|
+
$\displaystyle f(x_{i+1}) - f(x_{i})$%
|
246
|
+
\lthtmlindisplaymathZ
|
247
|
+
\lthtmlcheckvsize\clearpage}
|
248
|
+
|
249
|
+
{\newpage\clearpage
|
250
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay150}%
|
251
|
+
$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$%
|
252
|
+
\lthtmlindisplaymathZ
|
253
|
+
\lthtmlcheckvsize\clearpage}
|
254
|
+
|
255
|
+
{\newpage\clearpage
|
256
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay153}%
|
257
|
+
$\displaystyle f(x_{i-1}) - f(x_{i})$%
|
258
|
+
\lthtmlindisplaymathZ
|
259
|
+
\lthtmlcheckvsize\clearpage}
|
260
|
+
|
261
|
+
{\newpage\clearpage
|
262
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay154}%
|
263
|
+
$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$%
|
264
|
+
\lthtmlindisplaymathZ
|
265
|
+
\lthtmlcheckvsize\clearpage}
|
266
|
+
|
267
|
+
{\newpage\clearpage
|
268
|
+
\lthtmlinlinemathA{tex2html_wrap_inline156}%
|
269
|
+
$ f'(x_i), f''(x_i)$%
|
270
|
+
\lthtmlinlinemathZ
|
271
|
+
\lthtmlcheckvsize\clearpage}
|
272
|
+
|
273
|
+
{\newpage\clearpage
|
274
|
+
\lthtmlinlinemathA{tex2html_wrap_inline158}%
|
275
|
+
$ x_i$%
|
276
|
+
\lthtmlinlinemathZ
|
277
|
+
\lthtmlcheckvsize\clearpage}
|
278
|
+
|
279
|
+
{\newpage\clearpage
|
280
|
+
\lthtmlinlinemathA{tex2html_wrap_inline160}%
|
281
|
+
$ f$%
|
282
|
+
\lthtmlinlinemathZ
|
283
|
+
\lthtmlcheckvsize\clearpage}
|
284
|
+
|
285
|
+
{\newpage\clearpage
|
286
|
+
\lthtmlinlinemathA{tex2html_wrap_inline162}%
|
287
|
+
$ x$%
|
288
|
+
\lthtmlinlinemathZ
|
289
|
+
\lthtmlcheckvsize\clearpage}
|
290
|
+
|
291
|
+
{\newpage\clearpage
|
292
|
+
\lthtmlinlinemathA{tex2html_wrap_inline164}%
|
293
|
+
$ O(t^3)$%
|
294
|
+
\lthtmlinlinemathZ
|
295
|
+
\lthtmlcheckvsize\clearpage}
|
296
|
+
|
297
|
+
{\newpage\clearpage
|
298
|
+
\lthtmlinlinemathA{tex2html_wrap_inline166}%
|
299
|
+
$ t^3$%
|
300
|
+
\lthtmlinlinemathZ
|
301
|
+
\lthtmlcheckvsize\clearpage}
|
302
|
+
|
303
|
+
{\newpage\clearpage
|
304
|
+
\lthtmlinlinemathA{tex2html_wrap_inline168}%
|
305
|
+
$ f''$%
|
306
|
+
\lthtmlinlinemathZ
|
307
|
+
\lthtmlcheckvsize\clearpage}
|
308
|
+
|
309
|
+
{\newpage\clearpage
|
310
|
+
\lthtmlinlinemathA{tex2html_wrap_inline170}%
|
311
|
+
$ s^2\times$%
|
312
|
+
\lthtmlinlinemathZ
|
313
|
+
\lthtmlcheckvsize\clearpage}
|
314
|
+
|
315
|
+
{\newpage\clearpage
|
316
|
+
\lthtmlinlinemathA{tex2html_wrap_inline172}%
|
317
|
+
$ t^2\times$%
|
318
|
+
\lthtmlinlinemathZ
|
319
|
+
\lthtmlcheckvsize\clearpage}
|
320
|
+
|
321
|
+
{\newpage\clearpage
|
322
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay175}%
|
323
|
+
$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$%
|
324
|
+
\lthtmlindisplaymathZ
|
325
|
+
\lthtmlcheckvsize\clearpage}
|
326
|
+
|
327
|
+
{\newpage\clearpage
|
328
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay176}%
|
329
|
+
$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$%
|
330
|
+
\lthtmlindisplaymathZ
|
331
|
+
\lthtmlcheckvsize\clearpage}
|
332
|
+
|
333
|
+
{\newpage\clearpage
|
334
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay179}%
|
335
|
+
$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$%
|
336
|
+
\lthtmlindisplaymathZ
|
337
|
+
\lthtmlcheckvsize\clearpage}
|
338
|
+
|
339
|
+
{\newpage\clearpage
|
340
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay180}%
|
341
|
+
$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$%
|
342
|
+
\lthtmlindisplaymathZ
|
343
|
+
\lthtmlcheckvsize\clearpage}
|
344
|
+
|
345
|
+
{\newpage\clearpage
|
346
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay183}%
|
347
|
+
$\displaystyle = O(t^2).$%
|
348
|
+
\lthtmlindisplaymathZ
|
349
|
+
\lthtmlcheckvsize\clearpage}
|
350
|
+
|
351
|
+
{\newpage\clearpage
|
352
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay186}%
|
353
|
+
$\displaystyle f'(x_i)$%
|
354
|
+
\lthtmlindisplaymathZ
|
355
|
+
\lthtmlcheckvsize\clearpage}
|
356
|
+
|
357
|
+
{\newpage\clearpage
|
358
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay187}%
|
359
|
+
$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$%
|
360
|
+
\lthtmlindisplaymathZ
|
361
|
+
\lthtmlcheckvsize\clearpage}
|
362
|
+
|
363
|
+
|
364
|
+
\end{document}
|