gphys 1.2.2.1 → 1.4.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (405) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +8 -17
  3. data/.rspec +2 -0
  4. data/.travis.yml +3 -0
  5. data/ChangeLog +5762 -753
  6. data/LICENSE.txt +30 -18
  7. data/Rakefile +1 -0
  8. data/bin/console +14 -0
  9. data/bin/gpcat +43 -2
  10. data/bin/gpcut +16 -0
  11. data/bin/gpvect +167 -15
  12. data/bin/gpview +254 -51
  13. data/bin/setup +7 -0
  14. data/dim_op.c +1220 -0
  15. data/doc/attribute.html +19 -0
  16. data/doc/attributenetcdf.html +15 -0
  17. data/doc/axis.html +387 -0
  18. data/doc/coordmapping.html +111 -0
  19. data/doc/coordtransform.html +36 -0
  20. data/doc/dclext.html +821 -0
  21. data/doc/derivative/gphys-derivative.html +100 -0
  22. data/doc/derivative/index.html +21 -0
  23. data/doc/derivative/index.rd +14 -0
  24. data/doc/derivative/math-doc/document.pdf +0 -0
  25. data/doc/derivative/math-doc/document.tex +158 -0
  26. data/doc/derivative/math-doc/document/document.css +30 -0
  27. data/doc/derivative/math-doc/document/document.html +57 -0
  28. data/doc/derivative/math-doc/document/images.aux +1 -0
  29. data/doc/derivative/math-doc/document/images.log +385 -0
  30. data/doc/derivative/math-doc/document/images.pl +186 -0
  31. data/doc/derivative/math-doc/document/images.tex +364 -0
  32. data/doc/derivative/math-doc/document/img1.png +0 -0
  33. data/doc/derivative/math-doc/document/img10.png +0 -0
  34. data/doc/derivative/math-doc/document/img11.png +0 -0
  35. data/doc/derivative/math-doc/document/img12.png +0 -0
  36. data/doc/derivative/math-doc/document/img13.png +0 -0
  37. data/doc/derivative/math-doc/document/img14.png +0 -0
  38. data/doc/derivative/math-doc/document/img15.png +0 -0
  39. data/doc/derivative/math-doc/document/img16.png +0 -0
  40. data/doc/derivative/math-doc/document/img17.png +0 -0
  41. data/doc/derivative/math-doc/document/img18.png +0 -0
  42. data/doc/derivative/math-doc/document/img19.png +0 -0
  43. data/doc/derivative/math-doc/document/img2.png +0 -0
  44. data/doc/derivative/math-doc/document/img20.png +0 -0
  45. data/doc/derivative/math-doc/document/img21.png +0 -0
  46. data/doc/derivative/math-doc/document/img22.png +0 -0
  47. data/doc/derivative/math-doc/document/img23.png +0 -0
  48. data/doc/derivative/math-doc/document/img24.png +0 -0
  49. data/doc/derivative/math-doc/document/img25.png +0 -0
  50. data/doc/derivative/math-doc/document/img26.png +0 -0
  51. data/doc/derivative/math-doc/document/img27.png +0 -0
  52. data/doc/derivative/math-doc/document/img28.png +0 -0
  53. data/doc/derivative/math-doc/document/img29.png +0 -0
  54. data/doc/derivative/math-doc/document/img3.png +0 -0
  55. data/doc/derivative/math-doc/document/img30.png +0 -0
  56. data/doc/derivative/math-doc/document/img4.png +0 -0
  57. data/doc/derivative/math-doc/document/img5.png +0 -0
  58. data/doc/derivative/math-doc/document/img6.png +0 -0
  59. data/doc/derivative/math-doc/document/img7.png +0 -0
  60. data/doc/derivative/math-doc/document/img8.png +0 -0
  61. data/doc/derivative/math-doc/document/img9.png +0 -0
  62. data/doc/derivative/math-doc/document/index.html +57 -0
  63. data/doc/derivative/math-doc/document/labels.pl +13 -0
  64. data/doc/derivative/math-doc/document/next.png +0 -0
  65. data/doc/derivative/math-doc/document/next_g.png +0 -0
  66. data/doc/derivative/math-doc/document/node1.html +238 -0
  67. data/doc/derivative/math-doc/document/node2.html +75 -0
  68. data/doc/derivative/math-doc/document/prev.png +0 -0
  69. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  70. data/doc/derivative/math-doc/document/up.png +0 -0
  71. data/doc/derivative/math-doc/document/up_g.png +0 -0
  72. data/doc/derivative/numru-derivative.html +158 -0
  73. data/doc/ep_flux/ep_flux.html +469 -0
  74. data/doc/ep_flux/ggraph_on_merdional_section.html +71 -0
  75. data/doc/ep_flux/index.html +31 -0
  76. data/doc/ep_flux/index.rd +24 -0
  77. data/doc/ep_flux/math-doc/document.pdf +0 -0
  78. data/doc/ep_flux/math-doc/document.tex +2018 -0
  79. data/doc/ep_flux/math-doc/document/WARNINGS +1 -0
  80. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  81. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  82. data/doc/ep_flux/math-doc/document/document.css +30 -0
  83. data/doc/ep_flux/math-doc/document/document.html +101 -0
  84. data/doc/ep_flux/math-doc/document/images.aux +1 -0
  85. data/doc/ep_flux/math-doc/document/images.log +1375 -0
  86. data/doc/ep_flux/math-doc/document/images.pl +1328 -0
  87. data/doc/ep_flux/math-doc/document/images.tex +1471 -0
  88. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  89. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  90. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  91. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  92. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  93. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  94. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  95. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  96. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  97. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  98. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  99. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  100. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  101. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  102. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  103. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  104. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  105. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  106. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  107. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  108. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  109. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  110. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  111. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  112. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  113. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  288. data/doc/ep_flux/math-doc/document/index.html +101 -0
  289. data/doc/ep_flux/math-doc/document/internals.pl +258 -0
  290. data/doc/ep_flux/math-doc/document/labels.pl +265 -0
  291. data/doc/ep_flux/math-doc/document/next.png +0 -0
  292. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  293. data/doc/ep_flux/math-doc/document/node1.html +104 -0
  294. data/doc/ep_flux/math-doc/document/node10.html +164 -0
  295. data/doc/ep_flux/math-doc/document/node11.html +86 -0
  296. data/doc/ep_flux/math-doc/document/node12.html +166 -0
  297. data/doc/ep_flux/math-doc/document/node13.html +897 -0
  298. data/doc/ep_flux/math-doc/document/node14.html +1065 -0
  299. data/doc/ep_flux/math-doc/document/node15.html +72 -0
  300. data/doc/ep_flux/math-doc/document/node16.html +81 -0
  301. data/doc/ep_flux/math-doc/document/node2.html +82 -0
  302. data/doc/ep_flux/math-doc/document/node3.html +91 -0
  303. data/doc/ep_flux/math-doc/document/node4.html +149 -0
  304. data/doc/ep_flux/math-doc/document/node5.html +330 -0
  305. data/doc/ep_flux/math-doc/document/node6.html +99 -0
  306. data/doc/ep_flux/math-doc/document/node7.html +98 -0
  307. data/doc/ep_flux/math-doc/document/node8.html +83 -0
  308. data/doc/ep_flux/math-doc/document/node9.html +140 -0
  309. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  310. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  311. data/doc/ep_flux/math-doc/document/up.png +0 -0
  312. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  313. data/doc/gdir.html +412 -0
  314. data/doc/gdir_client.html +16 -0
  315. data/doc/gdir_connect_ftp-like.html +61 -0
  316. data/doc/gdir_server.html +45 -0
  317. data/doc/ggraph.html +1119 -0
  318. data/doc/gpcat.html +45 -0
  319. data/doc/gpcut.html +47 -0
  320. data/doc/gphys.html +624 -0
  321. data/doc/gphys_fft.html +324 -0
  322. data/doc/gphys_grads_io.html +69 -0
  323. data/doc/gphys_grib_io.html +82 -0
  324. data/doc/gphys_io.html +183 -0
  325. data/doc/gphys_io_common.html +18 -0
  326. data/doc/gphys_netcdf_io.html +283 -0
  327. data/doc/gplist.html +24 -0
  328. data/doc/gpmath.html +52 -0
  329. data/doc/gpmaxmin.html +32 -0
  330. data/doc/gpprint.html +35 -0
  331. data/doc/gpview.html +349 -0
  332. data/doc/grads2nc_with_gphys.html +21 -0
  333. data/doc/grads_gridded.html +307 -0
  334. data/doc/grib.html +149 -0
  335. data/doc/grid.html +224 -0
  336. data/doc/index.html +145 -0
  337. data/doc/index.rd +138 -0
  338. data/doc/netcdf_convention.html +136 -0
  339. data/doc/unumeric.html +176 -0
  340. data/doc/update +69 -0
  341. data/doc/update_rdoc +8 -0
  342. data/doc/varray.html +299 -0
  343. data/doc/varraycomposite.html +67 -0
  344. data/ext_init.c +1 -0
  345. data/extconf.rb +16 -6
  346. data/gphys.gemspec +33 -26
  347. data/interpo.c +1 -1
  348. data/lib/numru/dclext.rb +718 -546
  349. data/lib/numru/derivative.rb +2 -0
  350. data/lib/numru/ganalysis.rb +38 -0
  351. data/lib/numru/ganalysis/beta_plane.rb +103 -0
  352. data/lib/numru/ganalysis/eof.rb +3 -2
  353. data/lib/numru/ganalysis/fitting.rb +559 -0
  354. data/lib/numru/ganalysis/histogram.rb +36 -19
  355. data/lib/numru/ganalysis/log_p.rb +130 -0
  356. data/lib/numru/ganalysis/met.rb +396 -2
  357. data/lib/numru/ganalysis/met_z.rb +300 -0
  358. data/lib/numru/ganalysis/planet.rb +17 -7
  359. data/lib/numru/ganalysis/qg.rb +685 -0
  360. data/lib/numru/ganalysis/sigma_coord.rb +90 -0
  361. data/lib/numru/gdir.rb +2 -1
  362. data/lib/numru/ggraph.rb +204 -60
  363. data/lib/numru/ggraph_on_merdional_section.rb +1 -1
  364. data/lib/numru/gphys.rb +6 -0
  365. data/lib/numru/gphys/assoccoords.rb +18 -3
  366. data/lib/numru/gphys/axis.rb +209 -8
  367. data/lib/numru/gphys/derivative.rb +11 -0
  368. data/lib/numru/gphys/gphys.rb +539 -48
  369. data/lib/numru/gphys/gphys_dim_op.rb +331 -0
  370. data/lib/numru/gphys/gphys_fft.rb +48 -2
  371. data/lib/numru/gphys/gphys_io.rb +241 -13
  372. data/lib/numru/gphys/gphys_netcdf_io.rb +77 -39
  373. data/lib/numru/gphys/gphys_nusdas_io.rb +3 -0
  374. data/lib/numru/gphys/grib.rb +133 -54
  375. data/lib/numru/gphys/grib_params.rb +26 -3
  376. data/lib/numru/gphys/grid.rb +75 -34
  377. data/lib/numru/gphys/interpolate.rb +24 -10
  378. data/lib/numru/gphys/mdstorage.rb +160 -0
  379. data/lib/numru/gphys/netcdf_convention.rb +4 -2
  380. data/lib/numru/gphys/subsetmapping.rb +0 -1
  381. data/lib/numru/gphys/unumeric.rb +50 -5
  382. data/lib/numru/gphys/varray.rb +15 -30
  383. data/lib/numru/gphys/varraycomposite.rb +107 -24
  384. data/lib/numru/gphys/varraynetcdf.rb +9 -3
  385. data/lib/numru/gphys/version.rb +5 -0
  386. data/sample/druby_cli1.rb +2 -0
  387. data/sample/druby_cli2.rb +0 -6
  388. data/sample/druby_serv2.rb +0 -13
  389. data/spec/gphys_spec.rb +11 -0
  390. data/spec/spec_helper.rb +2 -0
  391. data/test/test_assoccoords.rb +102 -0
  392. data/test/test_axis.rb +61 -0
  393. data/test/test_fitting.rb +116 -0
  394. data/test/test_gphys.rb +20 -0
  395. data/test/test_met_z.rb +96 -0
  396. data/test/test_sigma_coord.rb +50 -0
  397. data/{test → test_old}/eof_slp.rb +0 -0
  398. data/{test → test_old}/mltbit.dat +0 -0
  399. data/{test → test_old}/test_ep_flux.rb +0 -0
  400. data/{test → test_old}/test_multibitIO.rb +0 -0
  401. metadata +530 -191
  402. data/README.md +0 -29
  403. data/lib/gphys.rb +0 -2
  404. data/lib/numru/dclext_datetime_ax.rb +0 -220
  405. data/lib/version.rb +0 -3
@@ -0,0 +1,1471 @@
1
+ \batchmode
2
+
3
+
4
+ \documentclass[a4j,12pt,openbib]{jreport}
5
+ \RequirePackage{ifthen}
6
+
7
+
8
+
9
+ \usepackage{ascmac}
10
+ \usepackage{tabularx}
11
+ \usepackage{graphicx}
12
+ \usepackage{amssymb}
13
+ \usepackage{amsmath}
14
+ \usepackage{Dennou6}
15
+ \pagestyle{Dmyheadings}
16
+
17
+ \Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
18
+ \Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
19
+ \Dfile{}
20
+
21
+ \setcounter{section}{0}
22
+ \setcounter{equation}{0}
23
+ \setcounter{page}{1}
24
+ \setcounter{figure}{0}
25
+ \setcounter{footnote}{0}
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+ \Dparskip
36
+ \Dnoparindent
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+ \usepackage[dvips]{color}
45
+
46
+
47
+ \pagecolor[gray]{.7}
48
+
49
+ \usepackage[]{inputenc}
50
+
51
+
52
+
53
+ \makeatletter
54
+
55
+ \makeatletter
56
+ \count@=\the\catcode`\_ \catcode`\_=8
57
+ \newenvironment{tex2html_wrap}{}{}%
58
+ \catcode`\<=12\catcode`\_=\count@
59
+ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
60
+ \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
61
+ \expandafter\renewcommand\csname #1\endcsname}%
62
+ \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
63
+ \let\newedcommand\renewedcommand
64
+ \let\renewedenvironment\newedenvironment
65
+ \makeatother
66
+ \let\mathon=$
67
+ \let\mathoff=$
68
+ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
69
+ \newbox\sizebox
70
+ \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
71
+ \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
72
+ \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
73
+ \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
74
+ \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
75
+ \setlength{\textwidth}{349pt}
76
+ \newwrite\lthtmlwrite
77
+ \makeatletter
78
+ \let\realnormalsize=\normalsize
79
+ \global\topskip=2sp
80
+ \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
81
+ \def\@float{\let\@savefreelist\@freelist\real@float}
82
+ \def\liih@math{\ifmmode$\else\bad@math\fi}
83
+ \def\end@float{\realend@float\global\let\@freelist\@savefreelist}
84
+ \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
85
+ \let\@largefloatcheck=\relax
86
+ \let\if@boxedmulticols=\iftrue
87
+ \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
88
+ \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
89
+ \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
90
+ \def\phantompar{\csname par\endcsname}\normalsize}%
91
+ \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
92
+ \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
93
+ \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
94
+ \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
95
+ \let\ifinner=\iffalse \let\)\liih@math }%
96
+ \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
97
+ \expandafter\box\next\egroup}%
98
+ \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
99
+ \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
100
+ :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
101
+ \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
102
+ \lthtmlmathtype{#1}\lthtmlvboxmathA}%
103
+ \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
104
+ \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
105
+ \let\@savefreelist\@freelist \lthtmlhboxmathB}%
106
+ \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
107
+ \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
108
+ \global\let\@freelist\@savefreelist}%
109
+ \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
110
+ \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
111
+ \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
112
+ \lthtmldisplayA{#1}\let\@eqnnum\relax}%
113
+ \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
114
+ \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
115
+ \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
116
+ \vrule height1.5ex width0pt }%
117
+ \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
118
+ \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
119
+ \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
120
+ \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
121
+ \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
122
+ \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
123
+ \newcommand\lthtmlindisplaymathZ{\egroup %
124
+ \centerinlinemath\lthtmllogmath\lthtmlsetmath}
125
+ \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
126
+ \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
127
+ \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
128
+ \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
129
+ \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
130
+ \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
131
+ \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
132
+ \def\centerinlinemath{%
133
+ \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
134
+ \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
135
+ \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
136
+
137
+ \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
138
+ \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
139
+ \else\expandafter\vss\fi}%
140
+ \providecommand{\selectlanguage}[1]{}%
141
+ \makeatletter \tracingstats = 1
142
+ \providecommand{\Eta}{\textrm{H}}
143
+ \providecommand{\Mu}{\textrm{M}}
144
+ \providecommand{\Alpha}{\textrm{A}}
145
+ \providecommand{\Iota}{\textrm{J}}
146
+ \providecommand{\Nu}{\textrm{N}}
147
+ \providecommand{\Omicron}{\textrm{O}}
148
+ \providecommand{\omicron}{\textrm{o}}
149
+ \providecommand{\Chi}{\textrm{X}}
150
+ \providecommand{\Beta}{\textrm{B}}
151
+ \providecommand{\Kappa}{\textrm{K}}
152
+ \providecommand{\Tau}{\textrm{T}}
153
+ \providecommand{\Epsilon}{\textrm{E}}
154
+ \providecommand{\Zeta}{\textrm{Z}}
155
+ \providecommand{\Rho}{\textrm{R}}
156
+
157
+
158
+ \begin{document}
159
+ \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
160
+ \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
161
+ \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
162
+ \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
163
+ \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
164
+ \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
165
+ \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
166
+ \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
167
+ \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
168
+ \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
169
+ \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
170
+ \makeatletter
171
+ \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
172
+ \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
173
+ \lthtmltypeout{}%
174
+ \makeatother
175
+ \setcounter{page}{1}
176
+ \onecolumn
177
+
178
+ % !!! IMAGES START HERE !!!
179
+
180
+ \setcounter{section}{0}
181
+ \setcounter{equation}{0}
182
+ \setcounter{figure}{0}
183
+ \setcounter{footnote}{0}
184
+ \stepcounter{chapter}
185
+ \stepcounter{chapter}
186
+ \stepcounter{section}
187
+ {\newpage\clearpage
188
+ \lthtmlinlinemathA{tex2html_wrap_inline3164}%
189
+ $ \lambda$%
190
+ \lthtmlinlinemathZ
191
+ \lthtmlcheckvsize\clearpage}
192
+
193
+ {\newpage\clearpage
194
+ \lthtmlinlinemathA{tex2html_wrap_inline3166}%
195
+ $ \phi$%
196
+ \lthtmlinlinemathZ
197
+ \lthtmlcheckvsize\clearpage}
198
+
199
+ {\newpage\clearpage
200
+ \lthtmlinlinemathA{tex2html_wrap_inline3168}%
201
+ $ z^*$%
202
+ \lthtmlinlinemathZ
203
+ \lthtmlcheckvsize\clearpage}
204
+
205
+ {\newpage\clearpage
206
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3171}%
207
+ $\displaystyle z^*$%
208
+ \lthtmlindisplaymathZ
209
+ \lthtmlcheckvsize\clearpage}
210
+
211
+ {\newpage\clearpage
212
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3173}%
213
+ $\displaystyle =$%
214
+ \lthtmlindisplaymathZ
215
+ \lthtmlcheckvsize\clearpage}
216
+
217
+ {\newpage\clearpage
218
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3175}%
219
+ $\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$%
220
+ \lthtmlindisplaymathZ
221
+ \lthtmlcheckvsize\clearpage}
222
+
223
+ {\newpage\clearpage
224
+ \lthtmlinlinemathA{tex2html_wrap_inline3177}%
225
+ $ H$%
226
+ \lthtmlinlinemathZ
227
+ \lthtmlcheckvsize\clearpage}
228
+
229
+ {\newpage\clearpage
230
+ \lthtmlinlinemathA{tex2html_wrap_inline3179}%
231
+ $ R_{d}$%
232
+ \lthtmlinlinemathZ
233
+ \lthtmlcheckvsize\clearpage}
234
+
235
+ {\newpage\clearpage
236
+ \lthtmlinlinemathA{tex2html_wrap_inline3181}%
237
+ $ R$%
238
+ \lthtmlinlinemathZ
239
+ \lthtmlcheckvsize\clearpage}
240
+
241
+ {\newpage\clearpage
242
+ \lthtmlinlinemathA{tex2html_wrap_inline3183}%
243
+ $ w$%
244
+ \lthtmlinlinemathZ
245
+ \lthtmlcheckvsize\clearpage}
246
+
247
+ {\newpage\clearpage
248
+ \lthtmlinlinemathA{tex2html_wrap_inline3185}%
249
+ $ R_{d} = R/w$%
250
+ \lthtmlinlinemathZ
251
+ \lthtmlcheckvsize\clearpage}
252
+
253
+ {\newpage\clearpage
254
+ \lthtmlinlinemathA{tex2html_wrap_inline3187}%
255
+ $ T_s$%
256
+ \lthtmlinlinemathZ
257
+ \lthtmlcheckvsize\clearpage}
258
+
259
+ {\newpage\clearpage
260
+ \lthtmlinlinemathA{tex2html_wrap_inline3189}%
261
+ $ g_0$%
262
+ \lthtmlinlinemathZ
263
+ \lthtmlcheckvsize\clearpage}
264
+
265
+ {\newpage\clearpage
266
+ \lthtmlinlinemathA{tex2html_wrap_inline3191}%
267
+ $ p$%
268
+ \lthtmlinlinemathZ
269
+ \lthtmlcheckvsize\clearpage}
270
+
271
+ {\newpage\clearpage
272
+ \lthtmlinlinemathA{tex2html_wrap_inline3193}%
273
+ $ p_s$%
274
+ \lthtmlinlinemathZ
275
+ \lthtmlcheckvsize\clearpage}
276
+
277
+ \stepcounter{section}
278
+ {\newpage\clearpage
279
+ \lthtmlinlinemathA{tex2html_wrap_inline3200}%
280
+ $ \rho_s$%
281
+ \lthtmlinlinemathZ
282
+ \lthtmlcheckvsize\clearpage}
283
+
284
+ {\newpage\clearpage
285
+ \setcounter{equation}{1}
286
+ \lthtmldisplayA{subequations3202}%
287
+ \begin{subequations}\begin{align}
288
  \hat{F}_\phi &\equiv \sigma
1
289
  \cos \phi \left(
2
290
  \DP{\overline{u}}{z^*}
3
291
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
4
292
  \right), \\
5
293
  \hat{F}_{z^*} &\equiv \sigma
6
294
  \cos \phi \left(
7
295
  \left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
8
296
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
9
297
  \right)
10
298
  \end{align}\end{subequations}%
299
+ \lthtmldisplayZ
300
+ \lthtmlcheckvsize\clearpage}
301
+
302
+ {\newpage\clearpage
303
+ \lthtmlinlinemathA{tex2html_wrap_inline3204}%
304
+ $ \hat{F}_\phi$%
305
+ \lthtmlinlinemathZ
306
+ \lthtmlcheckvsize\clearpage}
307
+
308
+ {\newpage\clearpage
309
+ \lthtmlinlinemathA{tex2html_wrap_inline3206}%
310
+ $ \hat{F}_{z^*}$%
311
+ \lthtmlinlinemathZ
312
+ \lthtmlcheckvsize\clearpage}
313
+
314
+ {\newpage\clearpage
315
+ \lthtmlinlinemathA{tex2html_wrap_inline3212}%
316
+ $ \overline{\bullet}$%
317
+ \lthtmlinlinemathZ
318
+ \lthtmlcheckvsize\clearpage}
319
+
320
+ {\newpage\clearpage
321
+ \lthtmlinlinemathA{tex2html_wrap_inline3214}%
322
+ $ \bullet'$%
323
+ \lthtmlinlinemathZ
324
+ \lthtmlcheckvsize\clearpage}
325
+
326
+ {\newpage\clearpage
327
+ \lthtmlinlinemathA{tex2html_wrap_inline3216}%
328
+ $ u, v, w$%
329
+ \lthtmlinlinemathZ
330
+ \lthtmlcheckvsize\clearpage}
331
+
332
+ {\newpage\clearpage
333
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3219}%
334
+ $\displaystyle (u, v, w)$%
335
+ \lthtmlindisplaymathZ
336
+ \lthtmlcheckvsize\clearpage}
337
+
338
+ {\newpage\clearpage
339
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3221}%
340
+ $\displaystyle \equiv$%
341
+ \lthtmlindisplaymathZ
342
+ \lthtmlcheckvsize\clearpage}
343
+
344
+ {\newpage\clearpage
345
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3223}%
346
+ $\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$%
347
+ \lthtmlindisplaymathZ
348
+ \lthtmlcheckvsize\clearpage}
349
+
350
+ {\newpage\clearpage
351
+ \lthtmlinlinemathA{tex2html_wrap_inline3225}%
352
+ $ \theta$%
353
+ \lthtmlinlinemathZ
354
+ \lthtmlcheckvsize\clearpage}
355
+
356
+ {\newpage\clearpage
357
+ \lthtmlinlinemathA{tex2html_wrap_inline3227}%
358
+ $ a$%
359
+ \lthtmlinlinemathZ
360
+ \lthtmlcheckvsize\clearpage}
361
+
362
+ {\newpage\clearpage
363
+ \lthtmlinlinemathA{tex2html_wrap_inline3229}%
364
+ $ \sigma$%
365
+ \lthtmlinlinemathZ
366
+ \lthtmlcheckvsize\clearpage}
367
+
368
+ {\newpage\clearpage
369
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3230}%
370
+ $\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$%
371
+ \lthtmlindisplaymathZ
372
+ \lthtmlcheckvsize\clearpage}
373
+
374
+ {\newpage\clearpage
375
+ \lthtmlinlinemathA{tex2html_wrap_inline3232}%
376
+ $ \rho_0$%
377
+ \lthtmlinlinemathZ
378
+ \lthtmlcheckvsize\clearpage}
379
+
380
+ {\newpage\clearpage
381
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3235}%
382
+ $\displaystyle \rho_0(z^*)$%
383
+ \lthtmlindisplaymathZ
384
+ \lthtmlcheckvsize\clearpage}
385
+
386
+ {\newpage\clearpage
387
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3239}%
388
+ $\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$%
389
+ \lthtmlindisplaymathZ
390
+ \lthtmlcheckvsize\clearpage}
391
+
392
+ {\newpage\clearpage
393
+ \lthtmlinlinemathA{tex2html_wrap_inline3241}%
394
+ $ f$%
395
+ \lthtmlinlinemathZ
396
+ \lthtmlcheckvsize\clearpage}
397
+
398
+ {\newpage\clearpage
399
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3244}%
400
+ $\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$%
401
+ \lthtmlindisplaymathZ
402
+ \lthtmlcheckvsize\clearpage}
403
+
404
+ {\newpage\clearpage
405
+ \lthtmlinlinemathA{tex2html_wrap_inline3246}%
406
+ $ \Omega$%
407
+ \lthtmlinlinemathZ
408
+ \lthtmlcheckvsize\clearpage}
409
+
410
+ {\newpage\clearpage
411
+ \lthtmlinlinemathA{tex2html_wrap_inline3248}%
412
+ $ T_{rot}$%
413
+ \lthtmlinlinemathZ
414
+ \lthtmlcheckvsize\clearpage}
415
+
416
+ {\newpage\clearpage
417
+ \setcounter{equation}{4}
418
+ \lthtmldisplayA{subequations3252}%
419
+ \setcounter{equation}{3}
420
+ \begin{subequations}\begin{align}
11
421
  {F_\phi} =& \rho_0 a
12
422
  \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
13
423
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
14
424
  {F_z^*} =& \rho_0 a
15
425
  \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
16
426
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
17
427
  \end{align}\end{subequations}%
428
+ \lthtmldisplayZ
429
+ \lthtmlcheckvsize\clearpage}
430
+
431
+ {\newpage\clearpage
432
+ \lthtmlinlinemathA{tex2html_wrap_inline3254}%
433
+ $ F_\phi$%
434
+ \lthtmlinlinemathZ
435
+ \lthtmlcheckvsize\clearpage}
436
+
437
+ {\newpage\clearpage
438
+ \lthtmlinlinemathA{tex2html_wrap_inline3256}%
439
+ $ F_{z^*}$%
440
+ \lthtmlinlinemathZ
441
+ \lthtmlcheckvsize\clearpage}
442
+
443
+ {\newpage\clearpage
444
+ \lthtmlinlinemathA{tex2html_wrap_inline3262}%
445
+ $ F_y, F_z^*$%
446
+ \lthtmlinlinemathZ
447
+ \lthtmlcheckvsize\clearpage}
448
+
449
+ {\newpage\clearpage
450
+ \lthtmlinlinemathA{tex2html_wrap_inline3264}%
451
+ $ \hat{F_y}, \hat{F_z^*}$%
452
+ \lthtmlinlinemathZ
453
+ \lthtmlcheckvsize\clearpage}
454
+
455
+ {\newpage\clearpage
456
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3265}%
457
+ $\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$%
458
+ \lthtmlindisplaymathZ
459
+ \lthtmlcheckvsize\clearpage}
460
+
461
+ \stepcounter{section}
462
+ {\newpage\clearpage
463
+ \lthtmlinlinemathA{tex2html_wrap_inline3270}%
464
+ $ (0, \overline{v}^*, \overline{w}^*)$%
465
+ \lthtmlinlinemathZ
466
+ \lthtmlcheckvsize\clearpage}
467
+
468
+ {\newpage\clearpage
469
+ \setcounter{equation}{6}
470
+ \lthtmldisplayA{subequations3272}%
471
+ \setcounter{equation}{5}
472
+ \begin{subequations}\begin{align}
18
473
  \overline{v}^* &\equiv \overline{v}
19
474
  - \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
20
475
  {\DP{\overline{\theta}}{z^*}}\right)\\
21
476
  &= \overline{v}
22
477
  - \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
23
478
  {\DP{\overline{\theta}}{z^*}}\right)\\
24
479
  \overline{w}^* &\equiv \overline{w}
25
480
  + \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
26
481
  {\DP{\overline{\theta}}{z^*}}\right)
27
482
  \end{align}\end{subequations}%
483
+ \lthtmldisplayZ
484
+ \lthtmlcheckvsize\clearpage}
485
+
486
+ \stepcounter{section}
487
+ {\newpage\clearpage
488
+ \lthtmlinlinemathA{tex2html_wrap_inline3277}%
489
+ $ u$%
490
+ \lthtmlinlinemathZ
491
+ \lthtmlcheckvsize\clearpage}
492
+
493
+ {\newpage\clearpage
494
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3280}%
495
+ $\displaystyle \DP{\overline{u}}{t}
496
+ + \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
497
+ + \overline{w}^*\DP{\overline{u}}{z^*}
498
+ - \overline{X} =
499
+ \Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$%
500
+ \lthtmlindisplaymathZ
501
+ \lthtmlcheckvsize\clearpage}
502
+
503
+ \stepcounter{section}
504
+ {\newpage\clearpage
505
+ \lthtmlinlinemathA{tex2html_wrap_inline3285}%
506
+ $ \Dvect{F}$%
507
+ \lthtmlinlinemathZ
508
+ \lthtmlcheckvsize\clearpage}
509
+
510
+ {\newpage\clearpage
511
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3286}%
512
+ $\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
28
513
  + \DP{F_{z^{*}}}{z^*}$%
514
+ \lthtmlindisplaymathZ
515
+ \lthtmlcheckvsize\clearpage}
516
+
517
+ \stepcounter{section}
518
+ {\newpage\clearpage
519
+ \lthtmlinlinemathA{tex2html_wrap_inline3291}%
520
+ $ \Psi^*$%
521
+ \lthtmlinlinemathZ
522
+ \lthtmlcheckvsize\clearpage}
523
+
524
+ {\newpage\clearpage
525
+ \setcounter{equation}{9}
526
+ \lthtmldisplayA{subequations3293}%
527
+ \setcounter{equation}{8}
528
+ \begin{subequations}\begin{align}
29
529
  \sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
30
530
  \sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
31
531
  \end{align}\end{subequations}%
532
+ \lthtmldisplayZ
533
+ \lthtmlcheckvsize\clearpage}
534
+
535
+ {\newpage\clearpage
536
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3300}%
537
+ $\displaystyle \DP{}{z^*}\Psi^*$%
538
+ \lthtmlindisplaymathZ
539
+ \lthtmlcheckvsize\clearpage}
540
+
541
+ {\newpage\clearpage
542
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3301}%
543
+ $\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$%
544
+ \lthtmlindisplaymathZ
545
+ \lthtmlcheckvsize\clearpage}
546
+
547
+ {\newpage\clearpage
548
+ \lthtmlinlinemathA{tex2html_wrap_inline3303}%
549
+ $ p=0$%
550
+ \lthtmlinlinemathZ
551
+ \lthtmlcheckvsize\clearpage}
552
+
553
+ {\newpage\clearpage
554
+ \lthtmlinlinemathA{tex2html_wrap_inline3305}%
555
+ $ \Psi^* = 0$%
556
+ \lthtmlinlinemathZ
557
+ \lthtmlcheckvsize\clearpage}
558
+
559
+ {\newpage\clearpage
560
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3306}%
561
+ $\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$%
562
+ \lthtmlindisplaymathZ
563
+ \lthtmlcheckvsize\clearpage}
564
+
565
+ \stepcounter{section}
566
+ {\newpage\clearpage
567
+ \setcounter{equation}{12}
568
+ \lthtmldisplayA{subequations3311}%
569
+ \setcounter{equation}{11}
570
+ \begin{subequations}\begin{align}
32
571
  z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
33
572
  p &= p_{00} \exp \left( -\frac{z^*}{H} \right)
34
573
  \end{align}\end{subequations}%
574
+ \lthtmldisplayZ
575
+ \lthtmlcheckvsize\clearpage}
576
+
577
+ {\newpage\clearpage
578
+ \lthtmlinlinemathA{tex2html_wrap_inline3315}%
579
+ $ p_{00}$%
580
+ \lthtmlinlinemathZ
581
+ \lthtmlcheckvsize\clearpage}
582
+
583
+ {\newpage\clearpage
584
+ \lthtmlinlinemathA{tex2html_wrap_inline3321}%
585
+ $ T$%
586
+ \lthtmlinlinemathZ
587
+ \lthtmlcheckvsize\clearpage}
588
+
589
+ {\newpage\clearpage
590
+ \lthtmlinlinemathA{tex2html_wrap_inline3323}%
591
+ $ \omega \equiv Dp/Dt$%
592
+ \lthtmlinlinemathZ
593
+ \lthtmlcheckvsize\clearpage}
594
+
595
+ {\newpage\clearpage
596
+ \lthtmlinlinemathA{tex2html_wrap_inline3329}%
597
+ $ w, \theta$%
598
+ \lthtmlinlinemathZ
599
+ \lthtmlcheckvsize\clearpage}
600
+
601
+ {\newpage\clearpage
602
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3330}%
603
+ $\displaystyle w$%
604
+ \lthtmlindisplaymathZ
605
+ \lthtmlcheckvsize\clearpage}
606
+
607
+ {\newpage\clearpage
608
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3331}%
609
+ $\displaystyle = -\omega H / p$%
610
+ \lthtmlindisplaymathZ
611
+ \lthtmlcheckvsize\clearpage}
612
+
613
+ {\newpage\clearpage
614
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3332}%
615
+ $\displaystyle \theta$%
616
+ \lthtmlindisplaymathZ
617
+ \lthtmlcheckvsize\clearpage}
618
+
619
+ {\newpage\clearpage
620
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3333}%
621
+ $\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$%
622
+ \lthtmlindisplaymathZ
623
+ \lthtmlcheckvsize\clearpage}
624
+
625
+ {\newpage\clearpage
626
+ \lthtmlinlinemathA{tex2html_wrap_inline3337}%
627
+ $ C_p$%
628
+ \lthtmlinlinemathZ
629
+ \lthtmlcheckvsize\clearpage}
630
+
631
+ \appendix
632
+ \stepcounter{chapter}
633
+ \stepcounter{section}
634
+ {\newpage\clearpage
635
+ \setcounter{equation}{0}
636
+ \lthtmldisplayA{subequations3343}%
637
+ \setcounter{equation}{-1}
638
+ \begin{subequations}\begin{align}
35
639
  \DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
36
640
  + \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
37
641
  \DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
38
642
  + \Dinv{a}\DP{\Phi}{\phi} = Y,
39
643
  \end{align}
40
644
 
41
645
  \begin{align}
42
646
  \DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
43
647
  \end{align}
44
648
 
45
649
  \begin{align}
46
650
  \Dinv{a\cos\phi} &
47
651
  \left[
48
652
  \DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
49
653
  \right]
50
654
  + \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
51
655
  = 0,
52
656
  \end{align}
53
657
 
54
658
  \begin{align}
55
659
  \DD{\theta}{t} &= Q,
56
660
  \end{align}\end{subequations}%
661
+ \lthtmldisplayZ
662
+ \lthtmlcheckvsize\clearpage}
663
+
664
+ {\newpage\clearpage
665
+ \lthtmlinlinemathA{tex2html_wrap_inline3345}%
666
+ $ \Phi$%
667
+ \lthtmlinlinemathZ
668
+ \lthtmlcheckvsize\clearpage}
669
+
670
+ {\newpage\clearpage
671
+ \lthtmlinlinemathA{tex2html_wrap_inline3347}%
672
+ $ X, Y$%
673
+ \lthtmlinlinemathZ
674
+ \lthtmlcheckvsize\clearpage}
675
+
676
+ {\newpage\clearpage
677
+ \lthtmlinlinemathA{tex2html_wrap_inline3353}%
678
+ $ \kappa=R_{d}/c_p$%
679
+ \lthtmlinlinemathZ
680
+ \lthtmlcheckvsize\clearpage}
681
+
682
+ {\newpage\clearpage
683
+ \lthtmlinlinemathA{tex2html_wrap_inline3355}%
684
+ $ c_p$%
685
+ \lthtmlinlinemathZ
686
+ \lthtmlcheckvsize\clearpage}
687
+
688
+ {\newpage\clearpage
689
+ \lthtmlinlinemathA{tex2html_wrap_inline3357}%
690
+ $ Q$%
691
+ \lthtmlinlinemathZ
692
+ \lthtmlcheckvsize\clearpage}
693
+
694
+ {\newpage\clearpage
695
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3360}%
696
+ $\displaystyle Q$%
697
+ \lthtmlindisplaymathZ
698
+ \lthtmlcheckvsize\clearpage}
699
+
700
+ {\newpage\clearpage
701
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3364}%
702
+ $\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$%
703
+ \lthtmlindisplaymathZ
704
+ \lthtmlcheckvsize\clearpage}
705
+
706
+ {\newpage\clearpage
707
+ \lthtmlinlinemathA{tex2html_wrap_inline3366}%
708
+ $ J$%
709
+ \lthtmlinlinemathZ
710
+ \lthtmlcheckvsize\clearpage}
711
+
712
+ \stepcounter{section}
713
+ {\newpage\clearpage
714
+ \lthtmlinlinemathA{tex2html_wrap_inline3371}%
715
+ $ A$%
716
+ \lthtmlinlinemathZ
717
+ \lthtmlcheckvsize\clearpage}
718
+
719
+ {\newpage\clearpage
720
+ \lthtmlinlinemathA{tex2html_wrap_inline3373}%
721
+ $ \phi, z^*, t$%
722
+ \lthtmlinlinemathZ
723
+ \lthtmlcheckvsize\clearpage}
724
+
725
+ {\newpage\clearpage
726
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3376}%
727
+ $\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$%
728
+ \lthtmlindisplaymathZ
729
+ \lthtmlcheckvsize\clearpage}
730
+
731
+ {\newpage\clearpage
732
+ \lthtmlinlinemathA{tex2html_wrap_inline3378}%
733
+ $ A'$%
734
+ \lthtmlinlinemathZ
735
+ \lthtmlcheckvsize\clearpage}
736
+
737
+ {\newpage\clearpage
738
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3381}%
739
+ $\displaystyle A' = A - \overline{A}$%
740
+ \lthtmlindisplaymathZ
741
+ \lthtmlcheckvsize\clearpage}
742
+
743
+ {\newpage\clearpage
744
+ \lthtmlinlinemathA{tex2html_wrap_inline3383}%
745
+ $ \overline{A'}=0$%
746
+ \lthtmlinlinemathZ
747
+ \lthtmlcheckvsize\clearpage}
748
+
749
+ {\newpage\clearpage
750
+ \lthtmlinlinemathA{tex2html_wrap_inline3385}%
751
+ $ \partial \overline{A}/\partial\lambda = 0$%
752
+ \lthtmlinlinemathZ
753
+ \lthtmlcheckvsize\clearpage}
754
+
755
+ {\newpage\clearpage
756
+ \setcounter{equation}{3}
757
+ \lthtmldisplayA{subequations3387}%
758
+ \setcounter{equation}{2}
759
+ \begin{subequations}\begin{align}
57
760
  & \DP{}{t}(\overline{u} + u')
58
761
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
59
762
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
60
763
  + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\
61
764
  & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
62
765
  + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
63
766
  & \DP{}{t}(\overline{v} + v')
64
767
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
65
768
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
66
769
  + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
67
770
  & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
68
771
  + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
69
772
  Y',
70
773
  \\
71
774
  & \DP{}{z^*}(\overline{\Phi} + \Phi')
72
775
  = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
73
776
  & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
74
777
  + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
75
778
  + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
76
779
  & \DP{}{t}(\overline{\theta} + \theta')
77
780
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
78
781
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
79
782
  + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
80
783
  & \qquad = \overline{Q} + Q'
81
784
  \end{align}\end{subequations}%
785
+ \lthtmldisplayZ
786
+ \lthtmlcheckvsize\clearpage}
787
+
788
+ {\newpage\clearpage
789
+ \setcounter{equation}{4}
790
+ \lthtmldisplayA{subequations3389}%
791
+ \setcounter{equation}{3}
792
+ \begin{subequations}\begin{align}
82
793
  & \DP{\overline{u}}{t}
83
794
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
84
795
  + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
85
796
  + \overline{w}\DP{\overline{u}}{z^*}
86
797
  - f\overline{v}
87
798
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
88
799
  + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
89
800
  - \overline{X}
90
801
  \\
91
802
  & \qquad
92
803
  = - \DP{u'}{t}
93
804
  - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
94
805
  - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
95
806
  - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
96
807
  & \qquad \qquad
97
808
  - \frac{\overline{v}}{a}\DP{u'}{\phi}
98
809
  - \frac{v'}{a}\DP{\overline{u}}{\phi}
99
810
  - \frac{v'}{a}\DP{u'}{\phi}
100
811
  - \overline{w}\DP{u'}{z^*}
101
812
  - w'\DP{\overline{u}}{z^*}
102
813
  - w'\DP{u'}{z^*}
103
814
  + fv'\notag\\
104
815
  & \qquad \qquad
105
816
  + \frac{\tan\phi}{a} \overline{u} v'
106
817
  + \frac{\tan\phi}{a} u' \overline{v}
107
818
  + \frac{\tan\phi}{a} u'v'
108
819
  - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
109
820
  + X',\\
110
821
  & \DP{\overline{v}}{t}
111
822
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
112
823
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
113
824
  + \overline{w}\DP{\overline{v}}{z^*}
114
825
  + f\overline{u}
115
826
  + \frac{\tan\phi}{a}(\overline{u})^2
116
827
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
117
828
  - \overline{Y}
118
829
  \notag\\
119
830
  & \qquad
120
831
  = - \DP{v'}{t}
121
832
  - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
122
833
  - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
123
834
  - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
124
835
  & \qquad \qquad
125
836
  - \frac{\overline{v}}{a}\DP{v'}{\phi}
126
837
  - \frac{v'}{a}\DP{\overline{v}}{\phi}
127
838
  - \frac{v'}{a}\DP{v'}{\phi}
128
839
  - \overline{w}\DP{v'}{z^*}
129
840
  - w'\DP{\overline{v}}{z^*}
130
841
  - w'\DP{v'}{z^*}
131
842
  - fu'\notag\\
132
843
  & \qquad \qquad
133
844
  - 2\frac{\tan\phi}{a}\overline{u}u'
134
845
  - \frac{\tan\phi}{a}(u')^2
135
846
  - \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
136
847
  + Y',\\
137
848
  & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
138
849
  = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
139
850
  & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
140
851
  + \DP{}{\phi}(\overline{v}\cos\phi)\right]
141
852
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
142
853
  \notag\\
143
854
  & \qquad
144
855
  = - \Dinv{a\cos\phi}\left[
145
856
  \DP{u'}{\lambda}
146
857
  + \DP{}{\phi}(v'\cos\phi)
147
858
  \right]
148
859
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
149
860
  & \DP{\overline{\theta}}{t}
150
861
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
151
862
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
152
863
  + \overline{w}\DP{\overline{\theta}}{z^*}
153
864
  - \overline{Q}
154
865
  \notag\\
155
866
  & \qquad
156
867
  = - \DP{\theta'}{t}
157
868
  - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
158
869
  - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
159
870
  - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
160
871
  \notag \\
161
872
  & \qquad \qquad
162
873
  - \frac{\overline{v}}{a}\DP{\theta'}{\phi}
163
874
  - \frac{v'}{a}\DP{\overline{\theta}}{\phi}
164
875
  - \frac{v'}{a}\DP{\theta'}{\phi}
165
876
  - \overline{w}\DP{\theta'}{z^*}
166
877
  - w'\DP{\overline{\theta}}{z^*}
167
878
  - w'\DP{\theta'}{z^*}
168
879
  + Q'
169
880
  \end{align}\end{subequations}%
881
+ \lthtmldisplayZ
882
+ \lthtmlcheckvsize\clearpage}
883
+
884
+ {\newpage\clearpage
885
+ \setcounter{equation}{5}
886
+ \lthtmldisplayA{subequations3391}%
887
+ \setcounter{equation}{4}
888
+ \begin{subequations}\begin{align}
170
889
  & \DP{\overline{u}}{t}
171
890
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
172
891
  + \overline{w}\DP{\overline{u}}{z^*}
173
892
  - f\overline{v}
174
893
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
175
894
  - \overline{X}
176
895
  \\
177
896
  & \qquad
178
897
  = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
179
898
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
180
899
  - \overline{w'\DP{u'}{z^*}}
181
900
  + \frac{\tan\phi}{a}\overline{u'v'},\\
182
901
  & \DP{\overline{v}}{t}
183
902
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
184
903
  + \overline{w} \DP{\overline{v}}{z^*}
185
904
  + f \overline{u}
186
905
  + \frac{\tan \phi}{a} (\overline{u})^2
187
906
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
188
907
  - \overline{Y}
189
908
  \notag\\
190
909
  & \qquad
191
910
  = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
192
911
  - \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
193
912
  - \overline{w'\DP{v'}{z^*}}
194
913
  - \frac{\tan \phi}{a} \overline{u'^2},\\
195
914
  & \DP{\overline{\Phi}}{z^*}
196
915
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
197
916
  & \Dinv{a\cos\phi}
198
917
  \left[
199
918
  \DP{}{\phi}(\overline{v}\cos\phi)
200
919
  \right]
201
920
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
202
921
  = 0,\\
203
922
  & \DP{\overline{\theta}}{t}
204
923
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
205
924
  + \overline{w}\DP{\overline{\theta}}{z^*}
206
925
  - \overline{Q} =
207
926
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
208
927
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
209
928
  - \overline{w'\DP{\theta'}{z^*}}
210
929
  \end{align}\end{subequations}%
930
+ \lthtmldisplayZ
931
+ \lthtmlcheckvsize\clearpage}
932
+
933
+ {\newpage\clearpage
934
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3394}%
935
+ $\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
936
+ + \DP{}{\phi}(v'\cos\phi)\right]
937
+ + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
938
+ = 0$%
939
+ \lthtmlindisplaymathZ
940
+ \lthtmlcheckvsize\clearpage}
941
+
942
+ {\newpage\clearpage
943
+ \lthtmlinlinemathA{tex2html_wrap_inline3396}%
944
+ $ u'$%
945
+ \lthtmlinlinemathZ
946
+ \lthtmlcheckvsize\clearpage}
947
+
948
+ {\newpage\clearpage
949
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3399}%
950
+ $\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
951
+ + \Dinv{a} \overline{ u' \DP{v'}{\phi} }
952
+ - \frac{\tan \phi}{a} \overline{ u' v' }
953
+ + \overline{ u' \DP{w'}{z^*} }
954
+ + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
955
+ = 0$%
956
+ \lthtmlindisplaymathZ
957
+ \lthtmlcheckvsize\clearpage}
958
+
959
+ {\newpage\clearpage
960
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3400}%
961
+ $\displaystyle \DP{\overline{u}}{t}$%
962
+ \lthtmlindisplaymathZ
963
+ \lthtmlcheckvsize\clearpage}
964
+
965
+ {\newpage\clearpage
966
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3401}%
967
+ $\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
211
968
  + \overline{w}\DP{\overline{u}}{z^*}
212
969
  - f\overline{v}
213
970
  - \frac{\tan\phi}{a}\overline{u}\overline{v}
214
971
  - \overline{X} \notag$%
972
+ \lthtmlindisplaymathZ
973
+ \lthtmlcheckvsize\clearpage}
974
+
975
+ {\newpage\clearpage
976
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3402}%
977
+ $\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
215
978
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
216
979
  - \overline{w'\DP{u'}{z^*}}
217
980
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
218
981
  + \frac{2\tan\phi}{a}\overline{u'v'}
219
982
  - \overline{u'\DP{w'}{z^*}}
220
983
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
984
+ \lthtmlindisplaymathZ
985
+ \lthtmlcheckvsize\clearpage}
986
+
987
+ {\newpage\clearpage
988
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3403}%
989
+ $\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$%
990
+ \lthtmlindisplaymathZ
991
+ \lthtmlcheckvsize\clearpage}
992
+
993
+ {\newpage\clearpage
994
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3404}%
995
+ $\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
221
996
  = 0,$%
997
+ \lthtmlindisplaymathZ
998
+ \lthtmlcheckvsize\clearpage}
999
+
1000
+ {\newpage\clearpage
1001
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3405}%
1002
+ $\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
222
1003
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
223
1004
  + \frac{2\tan\phi}{a}\overline{u'v'}$%
1005
+ \lthtmlindisplaymathZ
1006
+ \lthtmlcheckvsize\clearpage}
1007
+
1008
+ {\newpage\clearpage
1009
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3406}%
1010
+ $\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$%
1011
+ \lthtmlindisplaymathZ
1012
+ \lthtmlcheckvsize\clearpage}
1013
+
1014
+ {\newpage\clearpage
1015
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3407}%
1016
+ $\displaystyle - \overline{w'\DP{u'}{z^*}}
224
1017
  - \overline{u'\DP{w'}{z^*}}
225
1018
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
1019
+ \lthtmlindisplaymathZ
1020
+ \lthtmlcheckvsize\clearpage}
1021
+
1022
+ {\newpage\clearpage
1023
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3408}%
1024
+ $\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1025
+ \lthtmlindisplaymathZ
1026
+ \lthtmlcheckvsize\clearpage}
1027
+
1028
+ {\newpage\clearpage
1029
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3409}%
1030
+ $\displaystyle \DP{\overline{u}}{t}
226
1031
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
227
1032
  + \overline{w}\DP{\overline{u}}{z^*}
228
1033
  - f\overline{v}
229
1034
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
230
1035
  - \overline{X}
231
1036
  \notag$%
1037
+ \lthtmlindisplaymathZ
1038
+ \lthtmlcheckvsize\clearpage}
1039
+
1040
+ {\newpage\clearpage
1041
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3410}%
1042
+ $\displaystyle \qquad
232
1043
  = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
233
1044
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1045
+ \lthtmlindisplaymathZ
1046
+ \lthtmlcheckvsize\clearpage}
1047
+
1048
+ {\newpage\clearpage
1049
+ \lthtmlinlinemathA{tex2html_wrap_inline3412}%
1050
+ $ v'$%
1051
+ \lthtmlinlinemathZ
1052
+ \lthtmlcheckvsize\clearpage}
1053
+
1054
+ {\newpage\clearpage
1055
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3415}%
1056
+ $\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
1057
+ + \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1058
+ + \frac{\tan \phi}{a} \overline{ v'^2 }
1059
+ + \overline{ v' \DP{w'}{z^*} }
1060
+ + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
1061
+ = 0$%
1062
+ \lthtmlindisplaymathZ
1063
+ \lthtmlcheckvsize\clearpage}
1064
+
1065
+ {\newpage\clearpage
1066
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3416}%
1067
+ $\displaystyle \DP{\overline{v}}{t}
234
1068
  + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
235
1069
  + \overline{w} \DP{\overline{v}}{z^*}
236
1070
  + f \overline{u}
237
1071
  + \frac{\tan\phi}{a} (\overline{u})^2
238
1072
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
239
1073
  - \overline{Y}
240
1074
  \notag$%
1075
+ \lthtmlindisplaymathZ
1076
+ \lthtmlcheckvsize\clearpage}
1077
+
1078
+ {\newpage\clearpage
1079
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3417}%
1080
+ $\displaystyle \qquad
241
1081
  = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
242
1082
  - \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
243
1083
  - \overline{w'\DP{v'}{z^*}}
244
1084
  - \frac{\tan\phi}{a} \overline{u'^2}
245
1085
  \notag$%
1086
+ \lthtmlindisplaymathZ
1087
+ \lthtmlcheckvsize\clearpage}
1088
+
1089
+ {\newpage\clearpage
1090
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3418}%
1091
+ $\displaystyle \qquad \qquad
246
1092
  - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
247
1093
  - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
248
1094
  + \frac{\tan \phi}{a} \overline{ v'^2 }
249
1095
  - \overline{ v' \DP{w'}{z^*} }
250
1096
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1097
+ \lthtmlindisplaymathZ
1098
+ \lthtmlcheckvsize\clearpage}
1099
+
1100
+ {\newpage\clearpage
1101
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3421}%
1102
+ $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
1103
+ - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$%
1104
+ \lthtmlindisplaymathZ
1105
+ \lthtmlcheckvsize\clearpage}
1106
+
1107
+ {\newpage\clearpage
1108
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3425}%
1109
+ $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
1110
+ = 0,$%
1111
+ \lthtmlindisplaymathZ
1112
+ \lthtmlcheckvsize\clearpage}
1113
+
1114
+ {\newpage\clearpage
1115
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3427}%
1116
+ $\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1117
+ - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1118
+ + \frac{\tan \phi}{a} \overline{ v'^2 }$%
1119
+ \lthtmlindisplaymathZ
1120
+ \lthtmlcheckvsize\clearpage}
1121
+
1122
+ {\newpage\clearpage
1123
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3431}%
1124
+ $\displaystyle - \Dinv{a \cos \phi}
1125
+ \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$%
1126
+ \lthtmlindisplaymathZ
1127
+ \lthtmlcheckvsize\clearpage}
1128
+
1129
+ {\newpage\clearpage
1130
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3433}%
1131
+ $\displaystyle - \overline{w'\DP{v'}{z^*}}
1132
+ - \overline{ v' \DP{w'}{z^*} }
1133
+ - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1134
+ \lthtmlindisplaymathZ
1135
+ \lthtmlcheckvsize\clearpage}
1136
+
1137
+ {\newpage\clearpage
1138
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3437}%
1139
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1140
+ \lthtmlindisplaymathZ
1141
+ \lthtmlcheckvsize\clearpage}
1142
+
1143
+ {\newpage\clearpage
1144
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3439}%
1145
+ $\displaystyle \qquad
251
1146
  = - \Dinv{a \cos \phi}
252
1147
  \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
253
1148
  - \frac{\tan\phi}{a} \overline{u'^2}
254
1149
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1150
+ \lthtmlindisplaymathZ
1151
+ \lthtmlcheckvsize\clearpage}
1152
+
1153
+ {\newpage\clearpage
1154
+ \lthtmlinlinemathA{tex2html_wrap_inline3441}%
1155
+ $ \theta'$%
1156
+ \lthtmlinlinemathZ
1157
+ \lthtmlcheckvsize\clearpage}
1158
+
1159
+ {\newpage\clearpage
1160
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3444}%
1161
+ $\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
1162
+ + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1163
+ - \frac{\tan \phi}{a} \overline{ \theta' v' }
1164
+ + \overline{ \theta' \DP{w'}{z^*} }
1165
+ + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
1166
+ = 0$%
1167
+ \lthtmlindisplaymathZ
1168
+ \lthtmlcheckvsize\clearpage}
1169
+
1170
+ {\newpage\clearpage
1171
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3445}%
1172
+ $\displaystyle \DP{\overline{\theta}}{t}
255
1173
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
256
1174
  + \overline{w}\DP{\overline{\theta}}{z^*}
257
1175
  - \overline{Q}
258
1176
  \notag$%
1177
+ \lthtmlindisplaymathZ
1178
+ \lthtmlcheckvsize\clearpage}
1179
+
1180
+ {\newpage\clearpage
1181
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3446}%
1182
+ $\displaystyle \qquad =
259
1183
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
260
1184
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
261
1185
  - \overline{w'\DP{\theta'}{z^*}}
262
1186
  \notag$%
1187
+ \lthtmlindisplaymathZ
1188
+ \lthtmlcheckvsize\clearpage}
1189
+
1190
+ {\newpage\clearpage
1191
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3447}%
1192
+ $\displaystyle \qquad \qquad
263
1193
  - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
264
1194
  - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
265
1195
  + \frac{\tan \phi}{a} \overline{ \theta' v' }
266
1196
  - \overline{ \theta' \DP{w'}{z^*} }
267
1197
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1198
+ \lthtmlindisplaymathZ
1199
+ \lthtmlcheckvsize\clearpage}
1200
+
1201
+ {\newpage\clearpage
1202
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3450}%
1203
+ $\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
1204
+ - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$%
1205
+ \lthtmlindisplaymathZ
1206
+ \lthtmlcheckvsize\clearpage}
1207
+
1208
+ {\newpage\clearpage
1209
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3454}%
1210
+ $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
1211
+ = 0,$%
1212
+ \lthtmlindisplaymathZ
1213
+ \lthtmlcheckvsize\clearpage}
1214
+
1215
+ {\newpage\clearpage
1216
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3456}%
1217
+ $\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
1218
+ - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1219
+ + \frac{\tan \phi}{a} \overline{ \theta' v' }$%
1220
+ \lthtmlindisplaymathZ
1221
+ \lthtmlcheckvsize\clearpage}
1222
+
1223
+ {\newpage\clearpage
1224
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3460}%
1225
+ $\displaystyle - \Dinv{a \cos \phi}
1226
+ \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$%
1227
+ \lthtmlindisplaymathZ
1228
+ \lthtmlcheckvsize\clearpage}
1229
+
1230
+ {\newpage\clearpage
1231
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3462}%
1232
+ $\displaystyle - \overline{w'\DP{\theta'}{z^*}}
1233
+ - \overline{ \theta' \DP{w'}{z^*} }
1234
+ - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1235
+ \lthtmlindisplaymathZ
1236
+ \lthtmlcheckvsize\clearpage}
1237
+
1238
+ {\newpage\clearpage
1239
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3466}%
1240
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1241
+ \lthtmlindisplaymathZ
1242
+ \lthtmlcheckvsize\clearpage}
1243
+
1244
+ {\newpage\clearpage
1245
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3467}%
1246
+ $\displaystyle \DP{\overline{\theta}}{t}
268
1247
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
269
1248
  + \overline{w}\DP{\overline{\theta}}{z^*}
270
1249
  - \overline{Q}
271
1250
  = - \Dinv{a \cos \phi}
272
1251
  \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
273
1252
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1253
+ \lthtmlindisplaymathZ
1254
+ \lthtmlcheckvsize\clearpage}
1255
+
1256
+ {\newpage\clearpage
1257
+ \setcounter{equation}{11}
1258
+ \lthtmldisplayA{subequations3469}%
1259
+ \setcounter{equation}{10}
1260
+ \begin{subequations}\begin{align}
274
1261
  \DP{\overline{u}}{t}
275
1262
  & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
276
1263
  + \overline{w} \DP{\overline{u}}{z^*}
277
1264
  - f\overline{v}
278
1265
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
279
1266
  - \overline{X}
280
1267
  \\
281
1268
  & \qquad
282
1269
  = - \Dinv{a\cos^2\phi}
283
1270
  \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
284
1271
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
285
1272
  \DP{\overline{v}}{t}
286
1273
  & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
287
1274
  + \overline{w} \DP{\overline{v}}{z^*}
288
1275
  + f \overline{u}
289
1276
  + \frac{\tan\phi}{a} (\overline{u})^2
290
1277
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
291
1278
  - \overline{Y}
292
1279
  \notag\\
293
1280
  & \qquad
294
1281
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
295
1282
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
296
1283
  - \overline{u'^2}\frac{\tan\phi}{a},
297
1284
  \end{align}
298
1285
  \begin{align}
299
1286
  \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
300
1287
  \end{align}
301
1288
  \begin{align}
302
1289
  \Dinv{a\cos\phi}&
303
1290
  \DP{}{\phi}(\overline{v}\cos\phi)
304
1291
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
305
1292
  = 0,
306
1293
  \end{align}
307
1294
  \begin{align}
308
1295
  \DP{\overline{\theta}}{t}
309
1296
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
310
1297
  + \overline{w}\DP{\overline{\theta}}{z^*}
311
1298
  - \overline{Q} =
312
1299
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
313
1300
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
314
1301
  \end{align}\end{subequations}%
1302
+ \lthtmldisplayZ
1303
+ \lthtmlcheckvsize\clearpage}
1304
+
1305
+ \stepcounter{section}
1306
+ {\newpage\clearpage
1307
+ \setcounter{equation}{12}
1308
+ \lthtmldisplayA{subequations3474}%
1309
+ \setcounter{equation}{11}
1310
+ \begin{subequations}\begin{align}
315
1311
  \overline{v}^*
316
1312
  & =
317
1313
  \overline{v}
318
1314
  - \Dinv{\rho_0} \DP{}{z^*}
319
1315
  \left( \rho_0
320
1316
  \frac{\overline{v'\theta'}}
321
1317
  {\overline{\DP{\theta}{z^*}}}
322
1318
  \right)
323
1319
  \\
324
1320
  \overline{w}^*
325
1321
  & = \overline{w}
326
1322
  + \Dinv{a \cos\phi}
327
1323
  \DP{}{\phi}
328
1324
  \left( \cos \phi
329
1325
  \frac{\overline{v'\theta'}}
330
1326
  {\overline{\DP{\theta}{z^*}}}
331
1327
  \right)
332
1328
  \end{align}\end{subequations}%
1329
+ \lthtmldisplayZ
1330
+ \lthtmlcheckvsize\clearpage}
1331
+
1332
+ {\newpage\clearpage
1333
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3477}%
1334
+ $\displaystyle {F_\phi}$%
1335
+ \lthtmlindisplaymathZ
1336
+ \lthtmlcheckvsize\clearpage}
1337
+
1338
+ {\newpage\clearpage
1339
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3481}%
1340
+ $\displaystyle \rho_0 a
1341
+ \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
1342
+ \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1343
+ \overline{u'v'}\right)$%
1344
+ \lthtmlindisplaymathZ
1345
+ \lthtmlcheckvsize\clearpage}
1346
+
1347
+ {\newpage\clearpage
1348
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3483}%
1349
+ $\displaystyle {F_z^*}$%
1350
+ \lthtmlindisplaymathZ
1351
+ \lthtmlcheckvsize\clearpage}
1352
+
1353
+ {\newpage\clearpage
1354
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3487}%
1355
+ $\displaystyle \rho_0 a
1356
+ \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
1357
+ \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1358
+ \overline{u'w'}\right)$%
1359
+ \lthtmlindisplaymathZ
1360
+ \lthtmlcheckvsize\clearpage}
1361
+
1362
+ {\newpage\clearpage
1363
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3488}%
1364
+ $\displaystyle \Dinv{a \cos \phi}
333
1365
  \DP{}{\phi}\left[
334
1366
  \left\{
335
1367
  \overline{v}^*
336
1368
  + \Dinv{\rho_0} \DP{}{z^*}
337
1369
  \left( \rho_0
338
1370
  \frac{\overline{v'\theta'}}
339
1371
  {\overline{\DP{\theta}{z^*}}}
340
1372
  \right)
341
1373
  \right\}
342
1374
  \cos\phi \right]$%
1375
+ \lthtmlindisplaymathZ
1376
+ \lthtmlcheckvsize\clearpage}
1377
+
1378
+ {\newpage\clearpage
1379
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3489}%
1380
+ $\displaystyle \qquad
343
1381
  + \Dinv{\rho_0}
344
1382
  \DP{}{z^*}
345
1383
  \left[ \rho_0
346
1384
  \left\{
347
1385
  \overline{w}^*
348
1386
  - \Dinv{a \cos\phi}
349
1387
  \DP{}{\phi}
350
1388
  \left( \cos \phi
351
1389
  \frac{\overline{v'\theta'}}
352
1390
  {\overline{\DP{\theta}{z^*}}}
353
1391
  \right)
354
1392
  \right\}
355
1393
  \right]
356
1394
  = 0,$%
1395
+ \lthtmlindisplaymathZ
1396
+ \lthtmlcheckvsize\clearpage}
1397
+
1398
+ {\newpage\clearpage
1399
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3490}%
1400
+ $\displaystyle \Dinv{a \cos \phi}
357
1401
  \DP{}{\phi}
358
1402
  \left(
359
1403
  \overline{v}^* \cos\phi
360
1404
  \right)
361
1405
  + \Dinv{\rho_0}
362
1406
  \DP{}{z^*}
363
1407
  \left( \rho_0 \overline{w}^* \right)$%
1408
+ \lthtmlindisplaymathZ
1409
+ \lthtmlcheckvsize\clearpage}
1410
+
1411
+ {\newpage\clearpage
1412
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3491}%
1413
+ $\displaystyle \qquad
364
1414
  + \Dinv{a \cos \phi}
365
1415
  \DP{}{\phi}
366
1416
  \left\{
367
1417
  \Dinv{\rho_0} \DP{}{z^*}
368
1418
  \left( \rho_0
369
1419
  \frac{\overline{v'\theta'}}
370
1420
  {\overline{\DP{\theta}{z^*}}}
371
1421
  \right) \cos\phi
372
1422
  \right\}
373
1423
  - \Dinv{\rho_0}
374
1424
  \DP{}{z^*}
375
1425
  \left\{
376
1426
  \rho_0 \Dinv{a \cos\phi}
377
1427
  \DP{}{\phi}
378
1428
  \left( \cos \phi
379
1429
  \frac{\overline{v'\theta'}}
380
1430
  {\overline{\DP{\theta}{z^*}}}
381
1431
  \right)
382
1432
  \right\}
383
1433
  = 0.$%
1434
+ \lthtmlindisplaymathZ
1435
+ \lthtmlcheckvsize\clearpage}
1436
+
1437
+ {\newpage\clearpage
1438
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3492}%
1439
+ $\displaystyle \qquad
384
1440
  \Dinv{a \cos \phi}
385
1441
  \DP{}{\phi}
386
1442
  \left\{
387
1443
  \Dinv{\rho_0} \DP{}{z^*}
388
1444
  \left( \rho_0
389
1445
  \frac{\overline{v'\theta'}}
390
1446
  {\overline{\DP{\theta}{z^*}}}
391
1447
  \right) \cos\phi
392
1448
  \right\}
393
1449
  - \Dinv{\rho_0}
394
1450
  \DP{}{z^*}
395
1451
  \left\{
396
1452
  \rho_0 \Dinv{a \cos\phi}
397
1453
  \DP{}{\phi}
398
1454
  \left( \cos \phi
399
1455
  \frac{\overline{v'\theta'}}
400
1456
  {\overline{\DP{\theta}{z^*}}}
401
1457
  \right)
402
1458
  \right\}$%
1459
+ \lthtmlindisplaymathZ
1460
+ \lthtmlcheckvsize\clearpage}
1461
+
1462
+ {\newpage\clearpage
1463
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3493}%
1464
+ $\displaystyle =
403
1465
  \Dinv{a \cos \phi}
404
1466
  \left[
405
1467
  \DP{}{\phi}
406
1468
  \left\{
407
1469
  \Dinv{\rho_0} \DP{}{z^*}
408
1470
  \left( \rho_0
409
1471
  \frac{\overline{v'\theta'}}
410
1472
  {\overline{\DP{\theta}{z^*}}}
411
1473
  \right) \cos\phi
412
1474
  \right\}
413
1475
  - \Dinv{\rho_0}
414
1476
  \DP{}{z^*}
415
1477
  \left\{
416
1478
  \rho_0
417
1479
  \DP{}{\phi}
418
1480
  \left( \cos \phi
419
1481
  \frac{\overline{v'\theta'}}
420
1482
  {\overline{\DP{\theta}{z^*}}}
421
1483
  \right)
422
1484
  \right\}
423
1485
  \right]$%
1486
+ \lthtmlindisplaymathZ
1487
+ \lthtmlcheckvsize\clearpage}
1488
+
1489
+ {\newpage\clearpage
1490
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3494}%
1491
+ $\displaystyle =
424
1492
  \Dinv{a \cos \phi}
425
1493
  \left[
426
1494
  \Dinv{\rho_0}
427
1495
  \DP{}{\phi}
428
1496
  \left\{
429
1497
  \DP{}{z^*}
430
1498
  \left( \rho_0
431
1499
  \frac{\overline{v'\theta'}}
432
1500
  {\overline{\DP{\theta}{z^*}}}
433
1501
  \cos\phi
434
1502
  \right)
435
1503
  \right\}
436
1504
  - \Dinv{\rho_0}
437
1505
  \DP{}{z^*}
438
1506
  \left\{
439
1507
  \DP{}{\phi}
440
1508
  \left(\rho_0 \cos \phi
441
1509
  \frac{\overline{v'\theta'}}
442
1510
  {\overline{\DP{\theta}{z^*}}}
443
1511
  \right)
444
1512
  \right\}
445
1513
  \right]$%
1514
+ \lthtmlindisplaymathZ
1515
+ \lthtmlcheckvsize\clearpage}
1516
+
1517
+ {\newpage\clearpage
1518
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3495}%
1519
+ $\displaystyle = 0.$%
1520
+ \lthtmlindisplaymathZ
1521
+ \lthtmlcheckvsize\clearpage}
1522
+
1523
+ {\newpage\clearpage
1524
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3498}%
1525
+ $\displaystyle \Dinv{a \cos \phi}
1526
+ \DP{}{\phi}
1527
+ \left(
1528
+ \overline{v}^* \cos\phi
1529
+ \right)
1530
+ + \Dinv{\rho_0}
1531
+ \DP{}{z^*}
1532
+ \left( \rho_0 \overline{w}^* \right) = 0.$%
1533
+ \lthtmlindisplaymathZ
1534
+ \lthtmlcheckvsize\clearpage}
1535
+
1536
+ {\newpage\clearpage
1537
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3502}%
1538
+ $\displaystyle + \Dinv{a}
446
1539
  \left[
447
1540
  \overline{v}^*
448
1541
  + \Dinv{\rho_0} \DP{}{z^*}
449
1542
  \left( \rho_0
450
1543
  \frac{\overline{v'\theta'}}
451
1544
  {\overline{\DP{\theta}{z^*}}}
452
1545
  \right)
453
1546
  \right]
454
1547
  \DP{\overline{u}}{\phi}
455
1548
  + \left[
456
1549
  \overline{w}^*
457
1550
  - \Dinv{a \cos\phi}
458
1551
  \DP{}{\phi}
459
1552
  \left( \cos \phi
460
1553
  \frac{\overline{v'\theta'}}
461
1554
  {\overline{\DP{\theta}{z^*}}}
462
1555
  \right)
463
1556
  \right]
464
1557
  \DP{\overline{u}}{z^*}$%
1558
+ \lthtmlindisplaymathZ
1559
+ \lthtmlcheckvsize\clearpage}
1560
+
1561
+ {\newpage\clearpage
1562
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3503}%
1563
+ $\displaystyle \qquad \qquad
465
1564
  - f
466
1565
  \left[
467
1566
  \overline{v}^*
468
1567
  + \Dinv{\rho_0} \DP{}{z^*}
469
1568
  \left( \rho_0
470
1569
  \frac{\overline{v'\theta'}}
471
1570
  {\overline{\DP{\theta}{z^*}}}
472
1571
  \right)
473
1572
  \right]
474
1573
  - \frac{\tan \phi}{a} \overline{u}
475
1574
  \left[
476
1575
  \overline{v}^*
477
1576
  + \Dinv{\rho_0} \DP{}{z^*}
478
1577
  \left( \rho_0
479
1578
  \frac{\overline{v'\theta'}}
480
1579
  {\overline{\DP{\theta}{z^*}}}
481
1580
  \right)
482
1581
  \right]
483
1582
  - \overline{X}$%
1583
+ \lthtmlindisplaymathZ
1584
+ \lthtmlcheckvsize\clearpage}
1585
+
1586
+ {\newpage\clearpage
1587
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3504}%
1588
+ $\displaystyle \qquad
484
1589
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
485
1590
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$%
1591
+ \lthtmlindisplaymathZ
1592
+ \lthtmlcheckvsize\clearpage}
1593
+
1594
+ {\newpage\clearpage
1595
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3506}%
1596
+ $\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
486
1597
  + \overline{w}^* \DP{\overline{u}}{z^*}
487
1598
  - f \overline{v}^*
488
1599
  - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
489
1600
  - \overline{X}$%
1601
+ \lthtmlindisplaymathZ
1602
+ \lthtmlcheckvsize\clearpage}
1603
+
1604
+ {\newpage\clearpage
1605
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3507}%
1606
+ $\displaystyle \qquad
490
1607
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
491
1608
  + \Dinv{a \cos\phi}
492
1609
  \DP{}{\phi}
493
1610
  \left( \cos \phi
494
1611
  \frac{\overline{v'\theta'}}
495
1612
  {\overline{\DP{\theta}{z^*}}}
496
1613
  \right) \DP{\overline{u}}{z^*}$%
1614
+ \lthtmlindisplaymathZ
1615
+ \lthtmlcheckvsize\clearpage}
1616
+
1617
+ {\newpage\clearpage
1618
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3508}%
1619
+ $\displaystyle \qquad \qquad
497
1620
  + f \Dinv{\rho_0} \DP{}{z^*}
498
1621
  \left( \rho_0
499
1622
  \frac{\overline{v'\theta'}}
500
1623
  {\overline{\DP{\theta}{z^*}}}
501
1624
  \right)
502
1625
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$%
1626
+ \lthtmlindisplaymathZ
1627
+ \lthtmlcheckvsize\clearpage}
1628
+
1629
+ {\newpage\clearpage
1630
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3509}%
1631
+ $\displaystyle \qquad \qquad
503
1632
  - \Dinv{\rho_0 a} \DP{}{z^*}
504
1633
  \left( \rho_0
505
1634
  \frac{\overline{v'\theta'}}
506
1635
  {\overline{\DP{\theta}{z^*}}}
507
1636
  \right)
508
1637
  \DP{\overline{u}}{\phi}
509
1638
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
510
1639
  \left( \rho_0
511
1640
  \frac{\overline{v'\theta'}}
512
1641
  {\overline{\DP{\theta}{z^*}}}
513
1642
  \right),$%
1643
+ \lthtmlindisplaymathZ
1644
+ \lthtmlcheckvsize\clearpage}
1645
+
1646
+ {\newpage\clearpage
1647
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3511}%
1648
+ $\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
514
1649
  \left( \overline{u} \cos \phi \right)
515
1650
  + \overline{w}^* \DP{\overline{u}}{z^*}
516
1651
  - f \overline{v}^*
517
1652
  - \overline{X}$%
1653
+ \lthtmlindisplaymathZ
1654
+ \lthtmlcheckvsize\clearpage}
1655
+
1656
+ {\newpage\clearpage
1657
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3512}%
1658
+ $\displaystyle \qquad
518
1659
  = - \Dinv{\rho_0 a^2 \cos^2 \phi}
519
1660
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
520
1661
  + \Dinv{a \cos\phi}
521
1662
  \DP{}{\phi}
522
1663
  \left( \cos \phi
523
1664
  \frac{\overline{v'\theta'}}
524
1665
  {\overline{\DP{\theta}{z^*}}}
525
1666
  \right) \DP{\overline{u}}{z^*}$%
1667
+ \lthtmlindisplaymathZ
1668
+ \lthtmlcheckvsize\clearpage}
1669
+
1670
+ {\newpage\clearpage
1671
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3513}%
1672
+ $\displaystyle \qquad \qquad
526
1673
  + \frac{1}{\rho_0 a \cos \phi}
527
1674
  \DP{}{z^*}
528
1675
  \left( f \rho_0 a \cos \phi
529
1676
  \frac{\overline{v'\theta'}}
530
1677
  {\overline{\DP{\theta}{z^*}}}
531
1678
  \right)
532
1679
  - \frac{1}{\rho_0 a \cos \phi}
533
1680
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$%
1681
+ \lthtmlindisplaymathZ
1682
+ \lthtmlcheckvsize\clearpage}
1683
+
1684
+ {\newpage\clearpage
1685
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3514}%
1686
+ $\displaystyle \qquad \qquad
534
1687
  - \Dinv{\rho_0 a} \DP{}{z^*}
535
1688
  \left( \rho_0
536
1689
  \frac{\overline{v'\theta'}}
537
1690
  {\overline{\DP{\theta}{z^*}}}
538
1691
  \right)
539
1692
  \DP{\overline{u}}{\phi}
540
1693
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
541
1694
  \left( \rho_0
542
1695
  \frac{\overline{v'\theta'}}
543
1696
  {\overline{\DP{\theta}{z^*}}}
544
1697
  \right)$%
1698
+ \lthtmlindisplaymathZ
1699
+ \lthtmlcheckvsize\clearpage}
1700
+
1701
+ {\newpage\clearpage
1702
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3515}%
1703
+ $\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
545
1704
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
546
1705
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
547
1706
  \rho_0 a \cos \phi
548
1707
  \DP{\overline{u}}{z^*}
549
1708
  \DP{}{\phi}
550
1709
  \left( \cos \phi
551
1710
  \frac{\overline{v'\theta'}}
552
1711
  {\overline{\DP{\theta}{z^*}}}
553
1712
  \right)$%
1713
+ \lthtmlindisplaymathZ
1714
+ \lthtmlcheckvsize\clearpage}
1715
+
1716
+ {\newpage\clearpage
1717
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3517}%
1718
+ $\displaystyle \qquad \qquad
554
1719
  - \Dinv{\rho_0 a} \DP{}{z^*}
555
1720
  \left( \rho_0
556
1721
  \frac{\overline{v'\theta'}}
557
1722
  {\overline{\DP{\theta}{z^*}}}
558
1723
  \DP{\overline{u}}{\phi}
559
1724
  \right)
560
1725
  + \Dinv{\rho_0 a}
561
1726
  \rho_0
562
1727
  \frac{\overline{v'\theta'}}
563
1728
  {\overline{\DP{\theta}{z^*}}}
564
1729
  \DP{}{z^*}
565
1730
  \left(
566
1731
  \DP{\overline{u}}{\phi}
567
1732
  \right)$%
1733
+ \lthtmlindisplaymathZ
1734
+ \lthtmlcheckvsize\clearpage}
1735
+
1736
+ {\newpage\clearpage
1737
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3518}%
1738
+ $\displaystyle \qquad \qquad
568
1739
  + \frac{\tan \phi}{\rho_0 a}
569
1740
  \DP{}{z^*}
570
1741
  \left( \overline{u} \rho_0
571
1742
  \frac{\overline{v'\theta'}}
572
1743
  {\overline{\DP{\theta}{z^*}}}
573
1744
  \right)
574
1745
  - \frac{\tan \phi}{\rho_0 a}
575
1746
  \rho_0
576
1747
  \frac{\overline{v'\theta'}}
577
1748
  {\overline{\DP{\theta}{z^*}}}
578
1749
  \DP{}{z^*}
579
1750
  \left( \overline{u}
580
1751
  \right)$%
1752
+ \lthtmlindisplaymathZ
1753
+ \lthtmlcheckvsize\clearpage}
1754
+
1755
+ {\newpage\clearpage
1756
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3519}%
1757
+ $\displaystyle =
581
1758
  \Dinv{\rho_0 a^2 \cos^2 \phi}
582
1759
  \left[
583
1760
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
584
1761
  + \rho_0 a \cos \phi
585
1762
  \DP{\overline{u}}{z^*}
586
1763
  \DP{}{\phi}
587
1764
  \left( \cos \phi
588
1765
  \frac{\overline{v'\theta'}}
589
1766
  {\overline{\DP{\theta}{z^*}}}
590
1767
  \right)
591
1768
  \right]$%
1769
+ \lthtmlindisplaymathZ
1770
+ \lthtmlcheckvsize\clearpage}
1771
+
1772
+ {\newpage\clearpage
1773
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3520}%
1774
+ $\displaystyle \qquad
592
1775
  + \Dinv{\rho_0 a}
593
1776
  \rho_0
594
1777
  \frac{\overline{v'\theta'}}
595
1778
  {\overline{\DP{\theta}{z^*}}}
596
1779
  \DP{}{z^*}
597
1780
  \left(
598
1781
  \DP{\overline{u}}{\phi}
599
1782
  \right)
600
1783
  - \frac{\tan \phi}{\rho_0 a}
601
1784
  \rho_0
602
1785
  \frac{\overline{v'\theta'}}
603
1786
  {\overline{\DP{\theta}{z^*}}}
604
1787
  \DP{\overline{u}}{z^*}$%
1788
+ \lthtmlindisplaymathZ
1789
+ \lthtmlcheckvsize\clearpage}
1790
+
1791
+ {\newpage\clearpage
1792
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3521}%
1793
+ $\displaystyle \qquad
605
1794
  + \frac{1}{\rho_0 a \cos \phi}
606
1795
  \DP{}{z^*}
607
1796
  \left[
608
1797
  \left( f \rho_0 a \cos \phi
609
1798
  \frac{\overline{v'\theta'}}
610
1799
  {\overline{\DP{\theta}{z^*}}}
611
1800
  \right)
612
1801
  - \rho_0 a \cos \phi \overline{w'u'}
613
1802
  \right]$%
1803
+ \lthtmlindisplaymathZ
1804
+ \lthtmlcheckvsize\clearpage}
1805
+
1806
+ {\newpage\clearpage
1807
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3522}%
1808
+ $\displaystyle \qquad
614
1809
  - \Dinv{\rho_0 a} \DP{}{z^*}
615
1810
  \left( \rho_0
616
1811
  \frac{\overline{v'\theta'}}
617
1812
  {\overline{\DP{\theta}{z^*}}}
618
1813
  \DP{\overline{u}}{\phi}
619
1814
  \right)
620
1815
  + \frac{\tan \phi}{\rho_0 a}
621
1816
  \DP{}{z^*}
622
1817
  \left( \overline{u} \rho_0
623
1818
  \frac{\overline{v'\theta'}}
624
1819
  {\overline{\DP{\theta}{z^*}}}
625
1820
  \right)$%
1821
+ \lthtmlindisplaymathZ
1822
+ \lthtmlcheckvsize\clearpage}
1823
+
1824
+ {\newpage\clearpage
1825
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3524}%
1826
+ $\displaystyle \qquad
626
1827
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
627
1828
  \left[
628
1829
  \rho_0 a \cos^2 \phi
629
1830
  \frac{\overline{v'\theta'}}
630
1831
  {\overline{\DP{\theta}{z^*}}}
631
1832
  \DP{}{z^*}
632
1833
  \left(
633
1834
  \DP{\overline{u}}{\phi}
634
1835
  \right)
635
1836
  - \rho_0 a \cos^2 \phi \tan \phi
636
1837
  \frac{\overline{v'\theta'}}
637
1838
  {\overline{\DP{\theta}{z^*}}}
638
1839
  \DP{\overline{u}}{z^*}
639
1840
  \right]$%
1841
+ \lthtmlindisplaymathZ
1842
+ \lthtmlcheckvsize\clearpage}
1843
+
1844
+ {\newpage\clearpage
1845
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3526}%
1846
+ $\displaystyle \qquad
640
1847
  + \Dinv{\rho_0 a \cos \phi}
641
1848
  \left[
642
1849
  - \cos \phi
643
1850
  \DP{}{z^*}
644
1851
  \left( \rho_0
645
1852
  \frac{\overline{v'\theta'}}
646
1853
  {\overline{\DP{\theta}{z^*}}}
647
1854
  \DP{\overline{u}}{\phi}
648
1855
  \right)
649
1856
  + \cos \phi \tan \phi
650
1857
  \DP{}{z^*}
651
1858
  \left( \overline{u} \rho_0
652
1859
  \frac{\overline{v'\theta'}}
653
1860
  {\overline{\DP{\theta}{z^*}}}
654
1861
  \right)
655
1862
  \right]$%
1863
+ \lthtmlindisplaymathZ
1864
+ \lthtmlcheckvsize\clearpage}
1865
+
1866
+ {\newpage\clearpage
1867
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3529}%
1868
+ $\displaystyle \qquad
656
1869
  + \frac{1}{\rho_0 a \cos \phi}
657
1870
  \DP{}{z^*}
658
1871
  \left[
659
1872
  f \rho_0 a \cos \phi
660
1873
  \frac{\overline{v'\theta'}}
661
1874
  {\overline{\DP{\theta}{z^*}}}
662
1875
  - \rho_0 a \cos \phi \overline{w'u'}
663
1876
  \right]$%
1877
+ \lthtmlindisplaymathZ
1878
+ \lthtmlcheckvsize\clearpage}
1879
+
1880
+ {\newpage\clearpage
1881
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3530}%
1882
+ $\displaystyle \qquad
664
1883
  + \Dinv{\rho_0 a \cos \phi}
665
1884
  \DP{}{z^*}
666
1885
  \left[
667
1886
  - \rho_0 \cos \phi
668
1887
  \frac{\overline{v'\theta'}}
669
1888
  {\overline{\DP{\theta}{z^*}}}
670
1889
  \DP{\overline{u}}{\phi}
671
1890
  + \sin \phi \overline{u} \rho_0
672
1891
  \frac{\overline{v'\theta'}}
673
1892
  {\overline{\DP{\theta}{z^*}}}
674
1893
  \right]$%
1894
+ \lthtmlindisplaymathZ
1895
+ \lthtmlcheckvsize\clearpage}
1896
+
1897
+ {\newpage\clearpage
1898
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3531}%
1899
+ $\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
675
1900
  \left[
676
1901
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
677
1902
  + \rho_0 a \cos \phi
678
1903
  \DP{\overline{u}}{z^*}
679
1904
  \DP{}{\phi}
680
1905
  \left( \cos \phi
681
1906
  \frac{\overline{v'\theta'}}
682
1907
  {\overline{\DP{\theta}{z^*}}}
683
1908
  \right)
684
1909
  \right]$%
1910
+ \lthtmlindisplaymathZ
1911
+ \lthtmlcheckvsize\clearpage}
1912
+
1913
+ {\newpage\clearpage
1914
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3533}%
1915
+ $\displaystyle =
685
1916
  \Dinv{\rho_0 a^2 \cos^2 \phi}
686
1917
  \left[
687
1918
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
688
1919
  \right]$%
1920
+ \lthtmlindisplaymathZ
1921
+ \lthtmlcheckvsize\clearpage}
1922
+
1923
+ {\newpage\clearpage
1924
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3534}%
1925
+ $\displaystyle \qquad
689
1926
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
690
1927
  \left[
691
1928
  \rho_0 a \cos^2 \phi
692
1929
  \frac{\overline{v'\theta'}}
693
1930
  {\overline{\DP{\theta}{z^*}}}
694
1931
  \DP{}{\phi}
695
1932
  \left(
696
1933
  \DP{\overline{u}}{z^*}
697
1934
  \right)
698
1935
  + \DP{\overline{u}}{z^*}
699
1936
  \DP{}{\phi}
700
1937
  \left(\rho_0 a \cos^2 \phi
701
1938
  \frac{\overline{v'\theta'}}
702
1939
  {\overline{\DP{\theta}{z^*}}}
703
1940
  \right)
704
1941
  \right]$%
1942
+ \lthtmlindisplaymathZ
1943
+ \lthtmlcheckvsize\clearpage}
1944
+
1945
+ {\newpage\clearpage
1946
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3535}%
1947
+ $\displaystyle =
705
1948
  \Dinv{\rho_0 a^2 \cos^2 \phi}
706
1949
  \left[
707
1950
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
708
1951
  \right]
709
1952
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
710
1953
  \left[
711
1954
  \DP{}{\phi}
712
1955
  \left(\rho_0 a \cos^2 \phi
713
1956
  \frac{\overline{v'\theta'}}
714
1957
  {\overline{\DP{\theta}{z^*}}}
715
1958
  \DP{\overline{u}}{z^*}
716
1959
  \right)
717
1960
  \right]$%
1961
+ \lthtmlindisplaymathZ
1962
+ \lthtmlcheckvsize\clearpage}
1963
+
1964
+ {\newpage\clearpage
1965
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3536}%
1966
+ $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
718
1967
  \DP{}{\phi}
719
1968
  \left[
720
1969
  - \rho_0 a \overline{v'u'} \cos^2 \phi
721
1970
  + \rho_0 a \cos^2 \phi
722
1971
  \frac{\overline{v'\theta'}}
723
1972
  {\overline{\DP{\theta}{z^*}}}
724
1973
  \DP{\overline{u}}{z^*}
725
1974
  \right]$%
1975
+ \lthtmlindisplaymathZ
1976
+ \lthtmlcheckvsize\clearpage}
1977
+
1978
+ {\newpage\clearpage
1979
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3537}%
1980
+ $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
726
1981
  \DP{}{\phi}
727
1982
  \left[
728
1983
  \rho_0 a \cos^2 \phi
729
1984
  \left\{
730
1985
  \DP{\overline{u}}{z^*}
731
1986
  \frac{\overline{v'\theta'}}
732
1987
  {\overline{\DP{\theta}{z^*}}}
733
1988
  - \overline{v'u'}
734
1989
  \right\}
735
1990
  \right]$%
1991
+ \lthtmlindisplaymathZ
1992
+ \lthtmlcheckvsize\clearpage}
1993
+
1994
+ {\newpage\clearpage
1995
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3538}%
1996
+ $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
736
1997
  \DP{}{\phi}
737
1998
  \left(
738
1999
  \cos \phi F^{*}_{\phi}
739
2000
  \right)$%
2001
+ \lthtmlindisplaymathZ
2002
+ \lthtmlcheckvsize\clearpage}
2003
+
2004
+ {\newpage\clearpage
2005
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3539}%
2006
+ $\displaystyle \frac{1}{\rho_0 a \cos \phi}
740
2007
  \DP{}{z^*}
741
2008
  \left[
742
2009
  f \rho_0 a \cos \phi
743
2010
  \frac{\overline{v'\theta'}}
744
2011
  {\overline{\DP{\theta}{z^*}}}
745
2012
  - \rho_0 a \cos \phi \overline{w'u'}
746
2013
  \right]
747
2014
  + \Dinv{\rho_0 a \cos \phi}
748
2015
  \DP{}{z^*}
749
2016
  \left[
750
2017
  - \rho_0 \cos \phi
751
2018
  \frac{\overline{v'\theta'}}
752
2019
  {\overline{\DP{\theta}{z^*}}}
753
2020
  \DP{\overline{u}}{\phi}
754
2021
  + \sin \phi \overline{u} \rho_0
755
2022
  \frac{\overline{v'\theta'}}
756
2023
  {\overline{\DP{\theta}{z^*}}}
757
2024
  \right]$%
2025
+ \lthtmlindisplaymathZ
2026
+ \lthtmlcheckvsize\clearpage}
2027
+
2028
+ {\newpage\clearpage
2029
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3540}%
2030
+ $\displaystyle =
758
2031
  \frac{1}{\rho_0 a \cos \phi}
759
2032
  \DP{}{z^*}
760
2033
  \left[
761
2034
  \rho_0 a \cos \phi
762
2035
  \left\{
763
2036
  f \frac{\overline{v'\theta'}}
764
2037
  {\overline{\DP{\theta}{z^*}}}
765
2038
  - \overline{w'u'}
766
2039
  - \frac{\overline{v'\theta'}}
767
2040
  {a \overline{\DP{\theta}{z^*}}}
768
2041
  \DP{\overline{u}}{\phi}
769
2042
  + \sin \phi \overline{u}
770
2043
  \frac{\overline{v'\theta'}}
771
2044
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
772
2045
  \right\}
773
2046
  \right]$%
2047
+ \lthtmlindisplaymathZ
2048
+ \lthtmlcheckvsize\clearpage}
2049
+
2050
+ {\newpage\clearpage
2051
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3541}%
2052
+ $\displaystyle =
774
2053
  \frac{1}{\rho_0 a \cos \phi}
775
2054
  \DP{}{z^*}
776
2055
  \left[
777
2056
  \rho_0 a \cos \phi
778
2057
  \left\{
779
2058
  f \frac{\overline{v'\theta'}}
780
2059
  {\overline{\DP{\theta}{z^*}}}
781
2060
  - \left(
782
2061
  \cos \phi
783
2062
  \DP{\overline{u}}{\phi}
784
2063
  - \sin \phi \overline{u}
785
2064
  \right)
786
2065
  \frac{\overline{v'\theta'}}
787
2066
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
788
2067
  - \overline{w'u'}
789
2068
  \right\}
790
2069
  \right]$%
2070
+ \lthtmlindisplaymathZ
2071
+ \lthtmlcheckvsize\clearpage}
2072
+
2073
+ {\newpage\clearpage
2074
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3543}%
2075
+ $\displaystyle =
791
2076
  \frac{1}{\rho_0 a \cos \phi}
792
2077
  \DP{}{z^*}
793
2078
  \left[
794
2079
  \rho_0 a \cos \phi
795
2080
  \left\{
796
2081
  \left( f
797
2082
  - \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
798
2083
  {a \cos \phi}
799
2084
  \right)
800
2085
  \frac{\overline{v'\theta'}}
801
2086
  {\overline{\DP{\theta}{z^*}}}
802
2087
  - \overline{w'u'}
803
2088
  \right\}
804
2089
  \right]$%
2090
+ \lthtmlindisplaymathZ
2091
+ \lthtmlcheckvsize\clearpage}
2092
+
2093
+ {\newpage\clearpage
2094
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3544}%
2095
+ $\displaystyle = \frac{1}{\rho_0 a \cos \phi}
805
2096
  \DP{F^{*}_{z}}{z^*}$%
2097
+ \lthtmlindisplaymathZ
2098
+ \lthtmlcheckvsize\clearpage}
2099
+
2100
+ {\newpage\clearpage
2101
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3545}%
2102
+ $\displaystyle \DP{\overline{u}}{t}
806
2103
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
807
2104
  \left( \overline{u} \cos \phi \right)
808
2105
  + \overline{w}^* \DP{\overline{u}}{z^*}
809
2106
  - f \overline{v}^*
810
2107
  - \overline{X}
811
2108
  = \Dinv{\rho_0 a^2 \cos^2 \phi}
812
2109
  \DP{}{\phi}
813
2110
  \left(
814
2111
  \cos \phi F^{*}_{\phi}
815
2112
  \right)
816
2113
  + \frac{1}{\rho_0 a \cos \phi}
817
2114
  \DP{F^{*}_{z}}{z^*},
818
2115
  \nonumber$%
2116
+ \lthtmlindisplaymathZ
2117
+ \lthtmlcheckvsize\clearpage}
2118
+
2119
+ {\newpage\clearpage
2120
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3546}%
2121
+ $\displaystyle \DP{\overline{u}}{t}
819
2122
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
820
2123
  \left( \overline{u} \cos \phi \right)
821
2124
  + \overline{w}^* \DP{\overline{u}}{z^*}
822
2125
  - f \overline{v}^*
823
2126
  - \overline{X}
824
2127
  = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$%
2128
+ \lthtmlindisplaymathZ
2129
+ \lthtmlcheckvsize\clearpage}
2130
+
2131
+ {\newpage\clearpage
2132
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3547}%
2133
+ $\displaystyle \Ddiv{\Dvect{F}}
825
2134
  = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$%
2135
+ \lthtmlindisplaymathZ
2136
+ \lthtmlcheckvsize\clearpage}
2137
+
2138
+ {\newpage\clearpage
2139
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3548}%
2140
+ $\displaystyle \DP{\overline{\theta}}{t}
826
2141
  + \frac{1}{a}
827
2142
  \left[
828
2143
  \overline{v}^*
829
2144
  + \Dinv{\rho_0} \DP{}{z^*}
830
2145
  \left( \rho_0
831
2146
  \frac{\overline{v'\theta'}}
832
2147
  {\overline{\DP{\theta}{z^*}}}
833
2148
  \right)
834
2149
  \right]
835
2150
  \DP{\overline{\theta}}{\phi}
836
2151
  + \left[
837
2152
  \overline{w}^*
838
2153
  - \Dinv{a \cos\phi}
839
2154
  \DP{}{\phi}
840
2155
  \left( \cos \phi
841
2156
  \frac{\overline{v'\theta'}}
842
2157
  {\overline{\DP{\theta}{z^*}}}
843
2158
  \right)
844
2159
  \right]
845
2160
  \DP{\overline{\theta}}{z^*}
846
2161
  - \overline{Q}$%
2162
+ \lthtmlindisplaymathZ
2163
+ \lthtmlcheckvsize\clearpage}
2164
+
2165
+ {\newpage\clearpage
2166
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3549}%
2167
+ $\displaystyle \qquad
847
2168
  =
848
2169
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
849
2170
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$%
2171
+ \lthtmlindisplaymathZ
2172
+ \lthtmlcheckvsize\clearpage}
2173
+
2174
+ {\newpage\clearpage
2175
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3550}%
2176
+ $\displaystyle \DP{\overline{\theta}}{t}
850
2177
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
851
2178
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
852
2179
  - \overline{Q}$%
2180
+ \lthtmlindisplaymathZ
2181
+ \lthtmlcheckvsize\clearpage}
2182
+
2183
+ {\newpage\clearpage
2184
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3551}%
2185
+ $\displaystyle \qquad
853
2186
  = - \Dinv{\rho_0 a} \DP{}{z^*}
854
2187
  \left( \rho_0
855
2188
  \frac{\overline{v'\theta'}}
856
2189
  {\overline{\DP{\theta}{z^*}}}
857
2190
  \right) \DP{\overline{\theta}}{\phi}
858
2191
  + \Dinv{a \cos\phi}
859
2192
  \DP{}{\phi}
860
2193
  \left( \cos \phi
861
2194
  \frac{\overline{v'\theta'}}
862
2195
  {\overline{\DP{\theta}{z^*}}}
863
2196
  \right) \DP{\overline{\theta}}{z^*}$%
2197
+ \lthtmlindisplaymathZ
2198
+ \lthtmlcheckvsize\clearpage}
2199
+
2200
+ {\newpage\clearpage
2201
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3552}%
2202
+ $\displaystyle \qquad \qquad
864
2203
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
865
2204
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2205
+ \lthtmlindisplaymathZ
2206
+ \lthtmlcheckvsize\clearpage}
2207
+
2208
+ {\newpage\clearpage
2209
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3553}%
2210
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
866
2211
  \left( \rho_0
867
2212
  \frac{\overline{v'\theta'}}
868
2213
  {a \overline{\DP{\theta}{z^*}}}
869
2214
  \right) \DP{\overline{\theta}}{\phi}
870
2215
  + \Dinv{a \cos\phi}
871
2216
  \DP{}{\phi}
872
2217
  \left( \cos \phi
873
2218
  \frac{\overline{v'\theta'}}
874
2219
  {\overline{\DP{\theta}{z^*}}}
875
2220
  \right) \DP{\overline{\theta}}{z^*}$%
2221
+ \lthtmlindisplaymathZ
2222
+ \lthtmlcheckvsize\clearpage}
2223
+
2224
+ {\newpage\clearpage
2225
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3554}%
2226
+ $\displaystyle \qquad
876
2227
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
877
2228
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2229
+ \lthtmlindisplaymathZ
2230
+ \lthtmlcheckvsize\clearpage}
2231
+
2232
+ {\newpage\clearpage
2233
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3556}%
2234
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
878
2235
  \left( \rho_0
879
2236
  \frac{\overline{v'\theta'}}
880
2237
  {a \overline{\DP{\theta}{z^*}}}
881
2238
  \DP{\overline{\theta}}{\phi}
882
2239
  \right)
883
2240
  + \frac{\overline{v'\theta'}}
884
2241
  {a \overline{\DP{\theta}{z^*}}}
885
2242
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}$%
2243
+ \lthtmlindisplaymathZ
2244
+ \lthtmlcheckvsize\clearpage}
2245
+
2246
+ {\newpage\clearpage
2247
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3557}%
2248
+ $\displaystyle \qquad
886
2249
  + \Dinv{a \cos\phi}
887
2250
  \left[
888
2251
  \DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
889
2252
  \frac{1}{\overline{\DP{\theta}{z^*}}}
890
2253
  + \cos \phi \overline{v'\theta'}
891
2254
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
892
2255
  \right] \DP{\overline{\theta}}{z^*}$%
2256
+ \lthtmlindisplaymathZ
2257
+ \lthtmlcheckvsize\clearpage}
2258
+
2259
+ {\newpage\clearpage
2260
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3560}%
2261
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
893
2262
  \left( \rho_0
894
2263
  \frac{\overline{v'\theta'}}
895
2264
  {a \overline{\DP{\theta}{z^*}}}
896
2265
  \DP{\overline{\theta}}{\phi}
897
2266
  \right)
898
2267
  + \frac{\overline{v'\theta'}}
899
2268
  {a \overline{\DP{\theta}{z^*}}}
900
2269
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
901
2270
  + \Dinv{a}
902
2271
  \overline{v'\theta'}
903
2272
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
904
2273
  \DP{\overline{\theta}}{z^*}
905
2274
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2275
+ \lthtmlindisplaymathZ
2276
+ \lthtmlcheckvsize\clearpage}
2277
+
2278
+ {\newpage\clearpage
2279
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3562}%
2280
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
906
2281
  \left[ \rho_0
907
2282
  \frac{\overline{v'\theta'}}
908
2283
  {a \overline{\DP{\theta}{z^*}}}
909
2284
  \DP{\overline{\theta}}{\phi}
910
2285
  + \rho_0\overline{w'\theta'}
911
2286
  \right]
912
2287
  + \frac{\overline{v'\theta'}}{a}
913
2288
  \left[
914
2289
  \frac{1}
915
2290
  {\overline{\DP{\theta}{z^*}}}
916
2291
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
917
2292
  + \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
918
2293
  \DP{\overline{\theta}}{z^*}
919
2294
  \right]$%
2295
+ \lthtmlindisplaymathZ
2296
+ \lthtmlcheckvsize\clearpage}
2297
+
2298
+ {\newpage\clearpage
2299
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3564}%
2300
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
920
2301
  \left[ \rho_0
921
2302
  \left(
922
2303
  \frac{\overline{v'\theta'}}
923
2304
  {a \overline{\DP{\theta}{z^*}}}
924
2305
  \DP{\overline{\theta}}{\phi}
925
2306
  + \overline{w'\theta'}
926
2307
  \right)
927
2308
  \right]
928
2309
  + \frac{\overline{v'\theta'}}{a}
929
2310
  \DP{}{\phi}
930
2311
  \left(
931
2312
  \frac{ \DP{\overline{\theta}}{z^*} }
932
2313
  { \overline{\DP{\theta}{z^*}} }
933
2314
  \right)$%
2315
+ \lthtmlindisplaymathZ
2316
+ \lthtmlcheckvsize\clearpage}
2317
+
2318
+ {\newpage\clearpage
2319
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3566}%
2320
+ $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
934
2321
  \left[ \rho_0
935
2322
  \left(
936
2323
  \frac{\overline{v'\theta'}}
937
2324
  {a \overline{\DP{\theta}{z^*}}}
938
2325
  \DP{\overline{\theta}}{\phi}
939
2326
  + \overline{w'\theta'}
940
2327
  \right)
941
2328
  \right].$%
2329
+ \lthtmlindisplaymathZ
2330
+ \lthtmlcheckvsize\clearpage}
2331
+
2332
+ {\newpage\clearpage
2333
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3567}%
2334
+ $\displaystyle \DP{\overline{\theta}}{t}
942
2335
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
943
2336
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
944
2337
  - \overline{Q}
945
2338
  =
946
2339
  - \Dinv{\rho_0} \DP{}{z^*}
947
2340
  \left[ \rho_0
948
2341
  \left(
949
2342
  \frac{\overline{v'\theta'}}
950
2343
  {a \overline{\DP{\theta}{z^*}}}
951
2344
  \DP{\overline{\theta}}{\phi}
952
2345
  + \overline{w'\theta'}
953
2346
  \right)
954
2347
  \right].$%
2348
+ \lthtmlindisplaymathZ
2349
+ \lthtmlcheckvsize\clearpage}
2350
+
2351
+ {\newpage\clearpage
2352
+ \lthtmlinlinemathA{tex2html_wrap_inline3569}%
2353
+ $ v$%
2354
+ \lthtmlinlinemathZ
2355
+ \lthtmlcheckvsize\clearpage}
2356
+
2357
+ {\newpage\clearpage
2358
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3570}%
2359
+ $\displaystyle \DP{}{t}
955
2360
  \left[
956
2361
  \overline{v}^*
957
2362
  + \Dinv{\rho_0} \DP{}{z^*}
958
2363
  \left( \rho_0
959
2364
  \frac{\overline{v'\theta'}}
960
2365
  {\overline{\DP{\theta}{z^*}}}
961
2366
  \right)
962
2367
  \right]
963
2368
  + \frac{1}{a}
964
2369
  \left[
965
2370
  \overline{v}^*
966
2371
  + \Dinv{\rho_0} \DP{}{z^*}
967
2372
  \left( \rho_0
968
2373
  \frac{\overline{v'\theta'}}
969
2374
  {\overline{\DP{\theta}{z^*}}}
970
2375
  \right)
971
2376
  \right]
972
2377
  \DP{}{\phi}
973
2378
  \left[
974
2379
  \overline{v}^*
975
2380
  + \Dinv{\rho_0} \DP{}{z^*}
976
2381
  \left( \rho_0
977
2382
  \frac{\overline{v'\theta'}}
978
2383
  {\overline{\DP{\theta}{z^*}}}
979
2384
  \right)
980
2385
  \right]$%
2386
+ \lthtmlindisplaymathZ
2387
+ \lthtmlcheckvsize\clearpage}
2388
+
2389
+ {\newpage\clearpage
2390
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3571}%
2391
+ $\displaystyle \qquad \qquad
981
2392
  + \left[
982
2393
  \overline{w}^*
983
2394
  - \Dinv{a \cos\phi}
984
2395
  \DP{}{\phi}
985
2396
  \left( \cos \phi
986
2397
  \frac{\overline{v'\theta'}}
987
2398
  {\overline{\DP{\theta}{z^*}}}
988
2399
  \right)
989
2400
  \right]
990
2401
  \DP{}{z^*}
991
2402
  \left[
992
2403
  \overline{v}^*
993
2404
  + \Dinv{\rho_0} \DP{}{z^*}
994
2405
  \left( \rho_0
995
2406
  \frac{\overline{v'\theta'}}
996
2407
  {\overline{\DP{\theta}{z^*}}}
997
2408
  \right)
998
2409
  \right]$%
2410
+ \lthtmlindisplaymathZ
2411
+ \lthtmlcheckvsize\clearpage}
2412
+
2413
+ {\newpage\clearpage
2414
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3572}%
2415
+ $\displaystyle \qquad \qquad
999
2416
  + f \overline{u}
1000
2417
  + \frac{\tan\phi}{a} (\overline{u})^2
1001
2418
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1002
2419
  - \overline{Y}$%
2420
+ \lthtmlindisplaymathZ
2421
+ \lthtmlcheckvsize\clearpage}
2422
+
2423
+ {\newpage\clearpage
2424
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3573}%
2425
+ $\displaystyle \qquad
1003
2426
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
1004
2427
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1005
2428
  - \overline{u'^2}\frac{\tan\phi}{a},$%
2429
+ \lthtmlindisplaymathZ
2430
+ \lthtmlcheckvsize\clearpage}
2431
+
2432
+ {\newpage\clearpage
2433
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3574}%
2434
+ $\displaystyle f \overline{u}
1006
2435
  + \frac{\tan\phi}{a} (\overline{u})^2
1007
2436
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}$%
2437
+ \lthtmlindisplaymathZ
2438
+ \lthtmlcheckvsize\clearpage}
2439
+
2440
+ {\newpage\clearpage
2441
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3575}%
2442
+ $\displaystyle \qquad
1008
2443
  = - \DP{}{t}
1009
2444
  \left[
1010
2445
  \overline{v}^*
1011
2446
  + \Dinv{\rho_0} \DP{}{z^*}
1012
2447
  \left( \rho_0
1013
2448
  \frac{\overline{v'\theta'}}
1014
2449
  {\overline{\DP{\theta}{z^*}}}
1015
2450
  \right)
1016
2451
  \right]
1017
2452
  - \frac{1}{a}
1018
2453
  \left[
1019
2454
  \overline{v}^*
1020
2455
  + \Dinv{\rho_0} \DP{}{z^*}
1021
2456
  \left( \rho_0
1022
2457
  \frac{\overline{v'\theta'}}
1023
2458
  {\overline{\DP{\theta}{z^*}}}
1024
2459
  \right)
1025
2460
  \right]
1026
2461
  \DP{}{\phi}
1027
2462
  \left[
1028
2463
  \overline{v}^*
1029
2464
  + \Dinv{\rho_0} \DP{}{z^*}
1030
2465
  \left( \rho_0
1031
2466
  \frac{\overline{v'\theta'}}
1032
2467
  {\overline{\DP{\theta}{z^*}}}
1033
2468
  \right)
1034
2469
  \right]$%
2470
+ \lthtmlindisplaymathZ
2471
+ \lthtmlcheckvsize\clearpage}
2472
+
2473
+ {\newpage\clearpage
2474
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3576}%
2475
+ $\displaystyle \qquad \qquad
1035
2476
  - \left[
1036
2477
  \overline{w}^*
1037
2478
  - \Dinv{a \cos\phi}
1038
2479
  \DP{}{\phi}
1039
2480
  \left( \cos \phi
1040
2481
  \frac{\overline{v'\theta'}}
1041
2482
  {\overline{\DP{\theta}{z^*}}}
1042
2483
  \right)
1043
2484
  \right]
1044
2485
  \DP{}{z^*}
1045
2486
  \left[
1046
2487
  \overline{v}^*
1047
2488
  + \Dinv{\rho_0} \DP{}{z^*}
1048
2489
  \left( \rho_0
1049
2490
  \frac{\overline{v'\theta'}}
1050
2491
  {\overline{\DP{\theta}{z^*}}}
1051
2492
  \right)
1052
2493
  \right]$%
2494
+ \lthtmlindisplaymathZ
2495
+ \lthtmlcheckvsize\clearpage}
2496
+
2497
+ {\newpage\clearpage
2498
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3577}%
2499
+ $\displaystyle \qquad \qquad
1053
2500
  - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
1054
2501
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
1055
2502
  - \overline{u'^2} \frac{\tan\phi}{a}
1056
2503
  + \overline{Y}$%
2504
+ \lthtmlindisplaymathZ
2505
+ \lthtmlcheckvsize\clearpage}
2506
+
2507
+ {\newpage\clearpage
2508
+ \lthtmlinlinemathA{tex2html_wrap_inline3579}%
2509
+ $ G$%
2510
+ \lthtmlinlinemathZ
2511
+ \lthtmlcheckvsize\clearpage}
2512
+
2513
+ {\newpage\clearpage
2514
+ \lthtmlinlinemathA{tex2html_wrap_indisplay3582}%
2515
+ $\displaystyle \overline{u}
1057
2516
  \left( f + \frac{\tan\phi}{a} \overline{u} \right)
1058
2517
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1059
2518
  = G.$%
2519
+ \lthtmlindisplaymathZ
2520
+ \lthtmlcheckvsize\clearpage}
2521
+
2522
+ {\newpage\clearpage
2523
+ \setcounter{equation}{17}
2524
+ \lthtmldisplayA{subequations3584}%
2525
+ \setcounter{equation}{16}
2526
+ \begin{subequations}\begin{align}&
1060
2527
  \DP{\overline{u}}{t}
1061
2528
  + \overline{v}^*
1062
2529
  \left[
1063
2530
  \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
1064
2531
  \right]
1065
2532
  + \overline{w}^*\DP{\overline{u}}{z^*}
1066
2533
  - \overline{X}
1067
2534
  = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
1068
2535
  \overline{u}
1069
2536
  \left( f + \overline{u}\frac{\tan\phi}{a} \right)
1070
2537
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
1071
2538
  = G.
1072
2539
  \end{align}
1073
2540
  \begin{align}
1074
2541
  \DP{\overline{\Phi}}{z^*}
1075
2542
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
1076
2543
  = 0.
1077
2544
  \end{align}
1078
2545
  \begin{align}
1079
2546
  \Dinv{a\cos\phi}&\left[
1080
2547
  \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
1081
2548
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
1082
2549
  = 0.
1083
2550
  \end{align}
1084
2551
  \begin{align}
1085
2552
  \DP{\overline{\theta}}{t}
1086
2553
  + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
1087
2554
  + \overline{w}^*\DP{\overline{\theta}}{z^*}
1088
2555
  - \overline{Q} =
1089
2556
  - \Dinv{\rho_0}\DP{}{z^*}
1090
2557
  \left[\rho_0
1091
2558
  \left(
1092
2559
  \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
1093
2560
  {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
1094
2561
  \right)
1095
2562
  \right].
1096
2563
  \end{align}\end{subequations}%
2564
+ \lthtmldisplayZ
2565
+ \lthtmlcheckvsize\clearpage}
2566
+
2567
+
2568
+ \end{document}