gphys 1.2.2.1 → 1.4.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +8 -17
- data/.rspec +2 -0
- data/.travis.yml +3 -0
- data/ChangeLog +5762 -753
- data/LICENSE.txt +30 -18
- data/Rakefile +1 -0
- data/bin/console +14 -0
- data/bin/gpcat +43 -2
- data/bin/gpcut +16 -0
- data/bin/gpvect +167 -15
- data/bin/gpview +254 -51
- data/bin/setup +7 -0
- data/dim_op.c +1220 -0
- data/doc/attribute.html +19 -0
- data/doc/attributenetcdf.html +15 -0
- data/doc/axis.html +387 -0
- data/doc/coordmapping.html +111 -0
- data/doc/coordtransform.html +36 -0
- data/doc/dclext.html +821 -0
- data/doc/derivative/gphys-derivative.html +100 -0
- data/doc/derivative/index.html +21 -0
- data/doc/derivative/index.rd +14 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +158 -0
- data/doc/derivative/math-doc/document/document.css +30 -0
- data/doc/derivative/math-doc/document/document.html +57 -0
- data/doc/derivative/math-doc/document/images.aux +1 -0
- data/doc/derivative/math-doc/document/images.log +385 -0
- data/doc/derivative/math-doc/document/images.pl +186 -0
- data/doc/derivative/math-doc/document/images.tex +364 -0
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +57 -0
- data/doc/derivative/math-doc/document/labels.pl +13 -0
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +238 -0
- data/doc/derivative/math-doc/document/node2.html +75 -0
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/numru-derivative.html +158 -0
- data/doc/ep_flux/ep_flux.html +469 -0
- data/doc/ep_flux/ggraph_on_merdional_section.html +71 -0
- data/doc/ep_flux/index.html +31 -0
- data/doc/ep_flux/index.rd +24 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +2018 -0
- data/doc/ep_flux/math-doc/document/WARNINGS +1 -0
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +30 -0
- data/doc/ep_flux/math-doc/document/document.html +101 -0
- data/doc/ep_flux/math-doc/document/images.aux +1 -0
- data/doc/ep_flux/math-doc/document/images.log +1375 -0
- data/doc/ep_flux/math-doc/document/images.pl +1328 -0
- data/doc/ep_flux/math-doc/document/images.tex +1471 -0
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +101 -0
- data/doc/ep_flux/math-doc/document/internals.pl +258 -0
- data/doc/ep_flux/math-doc/document/labels.pl +265 -0
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +104 -0
- data/doc/ep_flux/math-doc/document/node10.html +164 -0
- data/doc/ep_flux/math-doc/document/node11.html +86 -0
- data/doc/ep_flux/math-doc/document/node12.html +166 -0
- data/doc/ep_flux/math-doc/document/node13.html +897 -0
- data/doc/ep_flux/math-doc/document/node14.html +1065 -0
- data/doc/ep_flux/math-doc/document/node15.html +72 -0
- data/doc/ep_flux/math-doc/document/node16.html +81 -0
- data/doc/ep_flux/math-doc/document/node2.html +82 -0
- data/doc/ep_flux/math-doc/document/node3.html +91 -0
- data/doc/ep_flux/math-doc/document/node4.html +149 -0
- data/doc/ep_flux/math-doc/document/node5.html +330 -0
- data/doc/ep_flux/math-doc/document/node6.html +99 -0
- data/doc/ep_flux/math-doc/document/node7.html +98 -0
- data/doc/ep_flux/math-doc/document/node8.html +83 -0
- data/doc/ep_flux/math-doc/document/node9.html +140 -0
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/gdir.html +412 -0
- data/doc/gdir_client.html +16 -0
- data/doc/gdir_connect_ftp-like.html +61 -0
- data/doc/gdir_server.html +45 -0
- data/doc/ggraph.html +1119 -0
- data/doc/gpcat.html +45 -0
- data/doc/gpcut.html +47 -0
- data/doc/gphys.html +624 -0
- data/doc/gphys_fft.html +324 -0
- data/doc/gphys_grads_io.html +69 -0
- data/doc/gphys_grib_io.html +82 -0
- data/doc/gphys_io.html +183 -0
- data/doc/gphys_io_common.html +18 -0
- data/doc/gphys_netcdf_io.html +283 -0
- data/doc/gplist.html +24 -0
- data/doc/gpmath.html +52 -0
- data/doc/gpmaxmin.html +32 -0
- data/doc/gpprint.html +35 -0
- data/doc/gpview.html +349 -0
- data/doc/grads2nc_with_gphys.html +21 -0
- data/doc/grads_gridded.html +307 -0
- data/doc/grib.html +149 -0
- data/doc/grid.html +224 -0
- data/doc/index.html +145 -0
- data/doc/index.rd +138 -0
- data/doc/netcdf_convention.html +136 -0
- data/doc/unumeric.html +176 -0
- data/doc/update +69 -0
- data/doc/update_rdoc +8 -0
- data/doc/varray.html +299 -0
- data/doc/varraycomposite.html +67 -0
- data/ext_init.c +1 -0
- data/extconf.rb +16 -6
- data/gphys.gemspec +33 -26
- data/interpo.c +1 -1
- data/lib/numru/dclext.rb +718 -546
- data/lib/numru/derivative.rb +2 -0
- data/lib/numru/ganalysis.rb +38 -0
- data/lib/numru/ganalysis/beta_plane.rb +103 -0
- data/lib/numru/ganalysis/eof.rb +3 -2
- data/lib/numru/ganalysis/fitting.rb +559 -0
- data/lib/numru/ganalysis/histogram.rb +36 -19
- data/lib/numru/ganalysis/log_p.rb +130 -0
- data/lib/numru/ganalysis/met.rb +396 -2
- data/lib/numru/ganalysis/met_z.rb +300 -0
- data/lib/numru/ganalysis/planet.rb +17 -7
- data/lib/numru/ganalysis/qg.rb +685 -0
- data/lib/numru/ganalysis/sigma_coord.rb +90 -0
- data/lib/numru/gdir.rb +2 -1
- data/lib/numru/ggraph.rb +204 -60
- data/lib/numru/ggraph_on_merdional_section.rb +1 -1
- data/lib/numru/gphys.rb +6 -0
- data/lib/numru/gphys/assoccoords.rb +18 -3
- data/lib/numru/gphys/axis.rb +209 -8
- data/lib/numru/gphys/derivative.rb +11 -0
- data/lib/numru/gphys/gphys.rb +539 -48
- data/lib/numru/gphys/gphys_dim_op.rb +331 -0
- data/lib/numru/gphys/gphys_fft.rb +48 -2
- data/lib/numru/gphys/gphys_io.rb +241 -13
- data/lib/numru/gphys/gphys_netcdf_io.rb +77 -39
- data/lib/numru/gphys/gphys_nusdas_io.rb +3 -0
- data/lib/numru/gphys/grib.rb +133 -54
- data/lib/numru/gphys/grib_params.rb +26 -3
- data/lib/numru/gphys/grid.rb +75 -34
- data/lib/numru/gphys/interpolate.rb +24 -10
- data/lib/numru/gphys/mdstorage.rb +160 -0
- data/lib/numru/gphys/netcdf_convention.rb +4 -2
- data/lib/numru/gphys/subsetmapping.rb +0 -1
- data/lib/numru/gphys/unumeric.rb +50 -5
- data/lib/numru/gphys/varray.rb +15 -30
- data/lib/numru/gphys/varraycomposite.rb +107 -24
- data/lib/numru/gphys/varraynetcdf.rb +9 -3
- data/lib/numru/gphys/version.rb +5 -0
- data/sample/druby_cli1.rb +2 -0
- data/sample/druby_cli2.rb +0 -6
- data/sample/druby_serv2.rb +0 -13
- data/spec/gphys_spec.rb +11 -0
- data/spec/spec_helper.rb +2 -0
- data/test/test_assoccoords.rb +102 -0
- data/test/test_axis.rb +61 -0
- data/test/test_fitting.rb +116 -0
- data/test/test_gphys.rb +20 -0
- data/test/test_met_z.rb +96 -0
- data/test/test_sigma_coord.rb +50 -0
- data/{test → test_old}/eof_slp.rb +0 -0
- data/{test → test_old}/mltbit.dat +0 -0
- data/{test → test_old}/test_ep_flux.rb +0 -0
- data/{test → test_old}/test_multibitIO.rb +0 -0
- metadata +530 -191
- data/README.md +0 -29
- data/lib/gphys.rb +0 -2
- data/lib/numru/dclext_datetime_ax.rb +0 -220
- data/lib/version.rb +0 -3
@@ -0,0 +1,1471 @@
|
|
1
|
+
\batchmode
|
2
|
+
|
3
|
+
|
4
|
+
\documentclass[a4j,12pt,openbib]{jreport}
|
5
|
+
\RequirePackage{ifthen}
|
6
|
+
|
7
|
+
|
8
|
+
|
9
|
+
\usepackage{ascmac}
|
10
|
+
\usepackage{tabularx}
|
11
|
+
\usepackage{graphicx}
|
12
|
+
\usepackage{amssymb}
|
13
|
+
\usepackage{amsmath}
|
14
|
+
\usepackage{Dennou6}
|
15
|
+
\pagestyle{Dmyheadings}
|
16
|
+
|
17
|
+
\Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
|
18
|
+
\Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
|
19
|
+
\Dfile{}
|
20
|
+
|
21
|
+
\setcounter{section}{0}
|
22
|
+
\setcounter{equation}{0}
|
23
|
+
\setcounter{page}{1}
|
24
|
+
\setcounter{figure}{0}
|
25
|
+
\setcounter{footnote}{0}
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
\Dparskip
|
36
|
+
\Dnoparindent
|
37
|
+
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
|
42
|
+
|
43
|
+
|
44
|
+
\usepackage[dvips]{color}
|
45
|
+
|
46
|
+
|
47
|
+
\pagecolor[gray]{.7}
|
48
|
+
|
49
|
+
\usepackage[]{inputenc}
|
50
|
+
|
51
|
+
|
52
|
+
|
53
|
+
\makeatletter
|
54
|
+
|
55
|
+
\makeatletter
|
56
|
+
\count@=\the\catcode`\_ \catcode`\_=8
|
57
|
+
\newenvironment{tex2html_wrap}{}{}%
|
58
|
+
\catcode`\<=12\catcode`\_=\count@
|
59
|
+
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
|
60
|
+
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
|
61
|
+
\expandafter\renewcommand\csname #1\endcsname}%
|
62
|
+
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
|
63
|
+
\let\newedcommand\renewedcommand
|
64
|
+
\let\renewedenvironment\newedenvironment
|
65
|
+
\makeatother
|
66
|
+
\let\mathon=$
|
67
|
+
\let\mathoff=$
|
68
|
+
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
|
69
|
+
\newbox\sizebox
|
70
|
+
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
|
71
|
+
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
|
72
|
+
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
|
73
|
+
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
|
74
|
+
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
|
75
|
+
\setlength{\textwidth}{349pt}
|
76
|
+
\newwrite\lthtmlwrite
|
77
|
+
\makeatletter
|
78
|
+
\let\realnormalsize=\normalsize
|
79
|
+
\global\topskip=2sp
|
80
|
+
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
|
81
|
+
\def\@float{\let\@savefreelist\@freelist\real@float}
|
82
|
+
\def\liih@math{\ifmmode$\else\bad@math\fi}
|
83
|
+
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
|
84
|
+
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
|
85
|
+
\let\@largefloatcheck=\relax
|
86
|
+
\let\if@boxedmulticols=\iftrue
|
87
|
+
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
|
88
|
+
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
|
89
|
+
\parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
|
90
|
+
\def\phantompar{\csname par\endcsname}\normalsize}%
|
91
|
+
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
|
92
|
+
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
|
93
|
+
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
|
94
|
+
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
|
95
|
+
\let\ifinner=\iffalse \let\)\liih@math }%
|
96
|
+
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
|
97
|
+
\expandafter\box\next\egroup}%
|
98
|
+
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
|
99
|
+
\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
|
100
|
+
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
|
101
|
+
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
|
102
|
+
\lthtmlmathtype{#1}\lthtmlvboxmathA}%
|
103
|
+
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
|
104
|
+
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
|
105
|
+
\let\@savefreelist\@freelist \lthtmlhboxmathB}%
|
106
|
+
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
|
107
|
+
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
|
108
|
+
\global\let\@freelist\@savefreelist}%
|
109
|
+
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
|
110
|
+
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
|
111
|
+
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
|
112
|
+
\lthtmldisplayA{#1}\let\@eqnnum\relax}%
|
113
|
+
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
|
114
|
+
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
|
115
|
+
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
|
116
|
+
\vrule height1.5ex width0pt }%
|
117
|
+
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
|
118
|
+
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
|
119
|
+
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
120
|
+
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
|
121
|
+
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
122
|
+
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
|
123
|
+
\newcommand\lthtmlindisplaymathZ{\egroup %
|
124
|
+
\centerinlinemath\lthtmllogmath\lthtmlsetmath}
|
125
|
+
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
|
126
|
+
\kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
|
127
|
+
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
128
|
+
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
|
129
|
+
\kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
|
130
|
+
\ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
|
131
|
+
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
132
|
+
\def\centerinlinemath{%
|
133
|
+
\dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
|
134
|
+
\advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
|
135
|
+
\dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
|
136
|
+
|
137
|
+
\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
|
138
|
+
\ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
|
139
|
+
\else\expandafter\vss\fi}%
|
140
|
+
\providecommand{\selectlanguage}[1]{}%
|
141
|
+
\makeatletter \tracingstats = 1
|
142
|
+
\providecommand{\Eta}{\textrm{H}}
|
143
|
+
\providecommand{\Mu}{\textrm{M}}
|
144
|
+
\providecommand{\Alpha}{\textrm{A}}
|
145
|
+
\providecommand{\Iota}{\textrm{J}}
|
146
|
+
\providecommand{\Nu}{\textrm{N}}
|
147
|
+
\providecommand{\Omicron}{\textrm{O}}
|
148
|
+
\providecommand{\omicron}{\textrm{o}}
|
149
|
+
\providecommand{\Chi}{\textrm{X}}
|
150
|
+
\providecommand{\Beta}{\textrm{B}}
|
151
|
+
\providecommand{\Kappa}{\textrm{K}}
|
152
|
+
\providecommand{\Tau}{\textrm{T}}
|
153
|
+
\providecommand{\Epsilon}{\textrm{E}}
|
154
|
+
\providecommand{\Zeta}{\textrm{Z}}
|
155
|
+
\providecommand{\Rho}{\textrm{R}}
|
156
|
+
|
157
|
+
|
158
|
+
\begin{document}
|
159
|
+
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
|
160
|
+
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
|
161
|
+
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
|
162
|
+
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
|
163
|
+
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
|
164
|
+
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
|
165
|
+
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
|
166
|
+
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
|
167
|
+
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
|
168
|
+
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
|
169
|
+
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
|
170
|
+
\makeatletter
|
171
|
+
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
|
172
|
+
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
|
173
|
+
\lthtmltypeout{}%
|
174
|
+
\makeatother
|
175
|
+
\setcounter{page}{1}
|
176
|
+
\onecolumn
|
177
|
+
|
178
|
+
% !!! IMAGES START HERE !!!
|
179
|
+
|
180
|
+
\setcounter{section}{0}
|
181
|
+
\setcounter{equation}{0}
|
182
|
+
\setcounter{figure}{0}
|
183
|
+
\setcounter{footnote}{0}
|
184
|
+
\stepcounter{chapter}
|
185
|
+
\stepcounter{chapter}
|
186
|
+
\stepcounter{section}
|
187
|
+
{\newpage\clearpage
|
188
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3164}%
|
189
|
+
$ \lambda$%
|
190
|
+
\lthtmlinlinemathZ
|
191
|
+
\lthtmlcheckvsize\clearpage}
|
192
|
+
|
193
|
+
{\newpage\clearpage
|
194
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3166}%
|
195
|
+
$ \phi$%
|
196
|
+
\lthtmlinlinemathZ
|
197
|
+
\lthtmlcheckvsize\clearpage}
|
198
|
+
|
199
|
+
{\newpage\clearpage
|
200
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3168}%
|
201
|
+
$ z^*$%
|
202
|
+
\lthtmlinlinemathZ
|
203
|
+
\lthtmlcheckvsize\clearpage}
|
204
|
+
|
205
|
+
{\newpage\clearpage
|
206
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3171}%
|
207
|
+
$\displaystyle z^*$%
|
208
|
+
\lthtmlindisplaymathZ
|
209
|
+
\lthtmlcheckvsize\clearpage}
|
210
|
+
|
211
|
+
{\newpage\clearpage
|
212
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3173}%
|
213
|
+
$\displaystyle =$%
|
214
|
+
\lthtmlindisplaymathZ
|
215
|
+
\lthtmlcheckvsize\clearpage}
|
216
|
+
|
217
|
+
{\newpage\clearpage
|
218
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3175}%
|
219
|
+
$\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$%
|
220
|
+
\lthtmlindisplaymathZ
|
221
|
+
\lthtmlcheckvsize\clearpage}
|
222
|
+
|
223
|
+
{\newpage\clearpage
|
224
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3177}%
|
225
|
+
$ H$%
|
226
|
+
\lthtmlinlinemathZ
|
227
|
+
\lthtmlcheckvsize\clearpage}
|
228
|
+
|
229
|
+
{\newpage\clearpage
|
230
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3179}%
|
231
|
+
$ R_{d}$%
|
232
|
+
\lthtmlinlinemathZ
|
233
|
+
\lthtmlcheckvsize\clearpage}
|
234
|
+
|
235
|
+
{\newpage\clearpage
|
236
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3181}%
|
237
|
+
$ R$%
|
238
|
+
\lthtmlinlinemathZ
|
239
|
+
\lthtmlcheckvsize\clearpage}
|
240
|
+
|
241
|
+
{\newpage\clearpage
|
242
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3183}%
|
243
|
+
$ w$%
|
244
|
+
\lthtmlinlinemathZ
|
245
|
+
\lthtmlcheckvsize\clearpage}
|
246
|
+
|
247
|
+
{\newpage\clearpage
|
248
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3185}%
|
249
|
+
$ R_{d} = R/w$%
|
250
|
+
\lthtmlinlinemathZ
|
251
|
+
\lthtmlcheckvsize\clearpage}
|
252
|
+
|
253
|
+
{\newpage\clearpage
|
254
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3187}%
|
255
|
+
$ T_s$%
|
256
|
+
\lthtmlinlinemathZ
|
257
|
+
\lthtmlcheckvsize\clearpage}
|
258
|
+
|
259
|
+
{\newpage\clearpage
|
260
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3189}%
|
261
|
+
$ g_0$%
|
262
|
+
\lthtmlinlinemathZ
|
263
|
+
\lthtmlcheckvsize\clearpage}
|
264
|
+
|
265
|
+
{\newpage\clearpage
|
266
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3191}%
|
267
|
+
$ p$%
|
268
|
+
\lthtmlinlinemathZ
|
269
|
+
\lthtmlcheckvsize\clearpage}
|
270
|
+
|
271
|
+
{\newpage\clearpage
|
272
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3193}%
|
273
|
+
$ p_s$%
|
274
|
+
\lthtmlinlinemathZ
|
275
|
+
\lthtmlcheckvsize\clearpage}
|
276
|
+
|
277
|
+
\stepcounter{section}
|
278
|
+
{\newpage\clearpage
|
279
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3200}%
|
280
|
+
$ \rho_s$%
|
281
|
+
\lthtmlinlinemathZ
|
282
|
+
\lthtmlcheckvsize\clearpage}
|
283
|
+
|
284
|
+
{\newpage\clearpage
|
285
|
+
\setcounter{equation}{1}
|
286
|
+
\lthtmldisplayA{subequations3202}%
|
287
|
+
\begin{subequations}\begin{align}
|
288
|
\hat{F}_\phi &\equiv \sigma
|
1
289
|
\cos \phi \left(
|
2
290
|
\DP{\overline{u}}{z^*}
|
3
291
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
|
4
292
|
\right), \\
|
5
293
|
\hat{F}_{z^*} &\equiv \sigma
|
6
294
|
\cos \phi \left(
|
7
295
|
\left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
|
8
296
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
|
9
297
|
\right)
|
10
298
|
\end{align}\end{subequations}%
|
299
|
+
\lthtmldisplayZ
|
300
|
+
\lthtmlcheckvsize\clearpage}
|
301
|
+
|
302
|
+
{\newpage\clearpage
|
303
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3204}%
|
304
|
+
$ \hat{F}_\phi$%
|
305
|
+
\lthtmlinlinemathZ
|
306
|
+
\lthtmlcheckvsize\clearpage}
|
307
|
+
|
308
|
+
{\newpage\clearpage
|
309
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3206}%
|
310
|
+
$ \hat{F}_{z^*}$%
|
311
|
+
\lthtmlinlinemathZ
|
312
|
+
\lthtmlcheckvsize\clearpage}
|
313
|
+
|
314
|
+
{\newpage\clearpage
|
315
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3212}%
|
316
|
+
$ \overline{\bullet}$%
|
317
|
+
\lthtmlinlinemathZ
|
318
|
+
\lthtmlcheckvsize\clearpage}
|
319
|
+
|
320
|
+
{\newpage\clearpage
|
321
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3214}%
|
322
|
+
$ \bullet'$%
|
323
|
+
\lthtmlinlinemathZ
|
324
|
+
\lthtmlcheckvsize\clearpage}
|
325
|
+
|
326
|
+
{\newpage\clearpage
|
327
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3216}%
|
328
|
+
$ u, v, w$%
|
329
|
+
\lthtmlinlinemathZ
|
330
|
+
\lthtmlcheckvsize\clearpage}
|
331
|
+
|
332
|
+
{\newpage\clearpage
|
333
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3219}%
|
334
|
+
$\displaystyle (u, v, w)$%
|
335
|
+
\lthtmlindisplaymathZ
|
336
|
+
\lthtmlcheckvsize\clearpage}
|
337
|
+
|
338
|
+
{\newpage\clearpage
|
339
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3221}%
|
340
|
+
$\displaystyle \equiv$%
|
341
|
+
\lthtmlindisplaymathZ
|
342
|
+
\lthtmlcheckvsize\clearpage}
|
343
|
+
|
344
|
+
{\newpage\clearpage
|
345
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3223}%
|
346
|
+
$\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$%
|
347
|
+
\lthtmlindisplaymathZ
|
348
|
+
\lthtmlcheckvsize\clearpage}
|
349
|
+
|
350
|
+
{\newpage\clearpage
|
351
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3225}%
|
352
|
+
$ \theta$%
|
353
|
+
\lthtmlinlinemathZ
|
354
|
+
\lthtmlcheckvsize\clearpage}
|
355
|
+
|
356
|
+
{\newpage\clearpage
|
357
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3227}%
|
358
|
+
$ a$%
|
359
|
+
\lthtmlinlinemathZ
|
360
|
+
\lthtmlcheckvsize\clearpage}
|
361
|
+
|
362
|
+
{\newpage\clearpage
|
363
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3229}%
|
364
|
+
$ \sigma$%
|
365
|
+
\lthtmlinlinemathZ
|
366
|
+
\lthtmlcheckvsize\clearpage}
|
367
|
+
|
368
|
+
{\newpage\clearpage
|
369
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3230}%
|
370
|
+
$\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$%
|
371
|
+
\lthtmlindisplaymathZ
|
372
|
+
\lthtmlcheckvsize\clearpage}
|
373
|
+
|
374
|
+
{\newpage\clearpage
|
375
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3232}%
|
376
|
+
$ \rho_0$%
|
377
|
+
\lthtmlinlinemathZ
|
378
|
+
\lthtmlcheckvsize\clearpage}
|
379
|
+
|
380
|
+
{\newpage\clearpage
|
381
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3235}%
|
382
|
+
$\displaystyle \rho_0(z^*)$%
|
383
|
+
\lthtmlindisplaymathZ
|
384
|
+
\lthtmlcheckvsize\clearpage}
|
385
|
+
|
386
|
+
{\newpage\clearpage
|
387
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3239}%
|
388
|
+
$\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$%
|
389
|
+
\lthtmlindisplaymathZ
|
390
|
+
\lthtmlcheckvsize\clearpage}
|
391
|
+
|
392
|
+
{\newpage\clearpage
|
393
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3241}%
|
394
|
+
$ f$%
|
395
|
+
\lthtmlinlinemathZ
|
396
|
+
\lthtmlcheckvsize\clearpage}
|
397
|
+
|
398
|
+
{\newpage\clearpage
|
399
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3244}%
|
400
|
+
$\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$%
|
401
|
+
\lthtmlindisplaymathZ
|
402
|
+
\lthtmlcheckvsize\clearpage}
|
403
|
+
|
404
|
+
{\newpage\clearpage
|
405
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3246}%
|
406
|
+
$ \Omega$%
|
407
|
+
\lthtmlinlinemathZ
|
408
|
+
\lthtmlcheckvsize\clearpage}
|
409
|
+
|
410
|
+
{\newpage\clearpage
|
411
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3248}%
|
412
|
+
$ T_{rot}$%
|
413
|
+
\lthtmlinlinemathZ
|
414
|
+
\lthtmlcheckvsize\clearpage}
|
415
|
+
|
416
|
+
{\newpage\clearpage
|
417
|
+
\setcounter{equation}{4}
|
418
|
+
\lthtmldisplayA{subequations3252}%
|
419
|
+
\setcounter{equation}{3}
|
420
|
+
\begin{subequations}\begin{align}
|
11
421
|
{F_\phi} =& \rho_0 a
|
12
422
|
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
13
423
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
|
14
424
|
{F_z^*} =& \rho_0 a
|
15
425
|
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
16
426
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
|
17
427
|
\end{align}\end{subequations}%
|
428
|
+
\lthtmldisplayZ
|
429
|
+
\lthtmlcheckvsize\clearpage}
|
430
|
+
|
431
|
+
{\newpage\clearpage
|
432
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3254}%
|
433
|
+
$ F_\phi$%
|
434
|
+
\lthtmlinlinemathZ
|
435
|
+
\lthtmlcheckvsize\clearpage}
|
436
|
+
|
437
|
+
{\newpage\clearpage
|
438
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3256}%
|
439
|
+
$ F_{z^*}$%
|
440
|
+
\lthtmlinlinemathZ
|
441
|
+
\lthtmlcheckvsize\clearpage}
|
442
|
+
|
443
|
+
{\newpage\clearpage
|
444
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3262}%
|
445
|
+
$ F_y, F_z^*$%
|
446
|
+
\lthtmlinlinemathZ
|
447
|
+
\lthtmlcheckvsize\clearpage}
|
448
|
+
|
449
|
+
{\newpage\clearpage
|
450
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3264}%
|
451
|
+
$ \hat{F_y}, \hat{F_z^*}$%
|
452
|
+
\lthtmlinlinemathZ
|
453
|
+
\lthtmlcheckvsize\clearpage}
|
454
|
+
|
455
|
+
{\newpage\clearpage
|
456
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3265}%
|
457
|
+
$\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$%
|
458
|
+
\lthtmlindisplaymathZ
|
459
|
+
\lthtmlcheckvsize\clearpage}
|
460
|
+
|
461
|
+
\stepcounter{section}
|
462
|
+
{\newpage\clearpage
|
463
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3270}%
|
464
|
+
$ (0, \overline{v}^*, \overline{w}^*)$%
|
465
|
+
\lthtmlinlinemathZ
|
466
|
+
\lthtmlcheckvsize\clearpage}
|
467
|
+
|
468
|
+
{\newpage\clearpage
|
469
|
+
\setcounter{equation}{6}
|
470
|
+
\lthtmldisplayA{subequations3272}%
|
471
|
+
\setcounter{equation}{5}
|
472
|
+
\begin{subequations}\begin{align}
|
18
473
|
\overline{v}^* &\equiv \overline{v}
|
19
474
|
- \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
|
20
475
|
{\DP{\overline{\theta}}{z^*}}\right)\\
|
21
476
|
&= \overline{v}
|
22
477
|
- \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
|
23
478
|
{\DP{\overline{\theta}}{z^*}}\right)\\
|
24
479
|
\overline{w}^* &\equiv \overline{w}
|
25
480
|
+ \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
|
26
481
|
{\DP{\overline{\theta}}{z^*}}\right)
|
27
482
|
\end{align}\end{subequations}%
|
483
|
+
\lthtmldisplayZ
|
484
|
+
\lthtmlcheckvsize\clearpage}
|
485
|
+
|
486
|
+
\stepcounter{section}
|
487
|
+
{\newpage\clearpage
|
488
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3277}%
|
489
|
+
$ u$%
|
490
|
+
\lthtmlinlinemathZ
|
491
|
+
\lthtmlcheckvsize\clearpage}
|
492
|
+
|
493
|
+
{\newpage\clearpage
|
494
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3280}%
|
495
|
+
$\displaystyle \DP{\overline{u}}{t}
|
496
|
+
+ \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
|
497
|
+
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
498
|
+
- \overline{X} =
|
499
|
+
\Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$%
|
500
|
+
\lthtmlindisplaymathZ
|
501
|
+
\lthtmlcheckvsize\clearpage}
|
502
|
+
|
503
|
+
\stepcounter{section}
|
504
|
+
{\newpage\clearpage
|
505
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3285}%
|
506
|
+
$ \Dvect{F}$%
|
507
|
+
\lthtmlinlinemathZ
|
508
|
+
\lthtmlcheckvsize\clearpage}
|
509
|
+
|
510
|
+
{\newpage\clearpage
|
511
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3286}%
|
512
|
+
$\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
|
28
513
|
+ \DP{F_{z^{*}}}{z^*}$%
|
514
|
+
\lthtmlindisplaymathZ
|
515
|
+
\lthtmlcheckvsize\clearpage}
|
516
|
+
|
517
|
+
\stepcounter{section}
|
518
|
+
{\newpage\clearpage
|
519
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3291}%
|
520
|
+
$ \Psi^*$%
|
521
|
+
\lthtmlinlinemathZ
|
522
|
+
\lthtmlcheckvsize\clearpage}
|
523
|
+
|
524
|
+
{\newpage\clearpage
|
525
|
+
\setcounter{equation}{9}
|
526
|
+
\lthtmldisplayA{subequations3293}%
|
527
|
+
\setcounter{equation}{8}
|
528
|
+
\begin{subequations}\begin{align}
|
29
529
|
\sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
|
30
530
|
\sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
|
31
531
|
\end{align}\end{subequations}%
|
532
|
+
\lthtmldisplayZ
|
533
|
+
\lthtmlcheckvsize\clearpage}
|
534
|
+
|
535
|
+
{\newpage\clearpage
|
536
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3300}%
|
537
|
+
$\displaystyle \DP{}{z^*}\Psi^*$%
|
538
|
+
\lthtmlindisplaymathZ
|
539
|
+
\lthtmlcheckvsize\clearpage}
|
540
|
+
|
541
|
+
{\newpage\clearpage
|
542
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3301}%
|
543
|
+
$\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$%
|
544
|
+
\lthtmlindisplaymathZ
|
545
|
+
\lthtmlcheckvsize\clearpage}
|
546
|
+
|
547
|
+
{\newpage\clearpage
|
548
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3303}%
|
549
|
+
$ p=0$%
|
550
|
+
\lthtmlinlinemathZ
|
551
|
+
\lthtmlcheckvsize\clearpage}
|
552
|
+
|
553
|
+
{\newpage\clearpage
|
554
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3305}%
|
555
|
+
$ \Psi^* = 0$%
|
556
|
+
\lthtmlinlinemathZ
|
557
|
+
\lthtmlcheckvsize\clearpage}
|
558
|
+
|
559
|
+
{\newpage\clearpage
|
560
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3306}%
|
561
|
+
$\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$%
|
562
|
+
\lthtmlindisplaymathZ
|
563
|
+
\lthtmlcheckvsize\clearpage}
|
564
|
+
|
565
|
+
\stepcounter{section}
|
566
|
+
{\newpage\clearpage
|
567
|
+
\setcounter{equation}{12}
|
568
|
+
\lthtmldisplayA{subequations3311}%
|
569
|
+
\setcounter{equation}{11}
|
570
|
+
\begin{subequations}\begin{align}
|
32
571
|
z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
|
33
572
|
p &= p_{00} \exp \left( -\frac{z^*}{H} \right)
|
34
573
|
\end{align}\end{subequations}%
|
574
|
+
\lthtmldisplayZ
|
575
|
+
\lthtmlcheckvsize\clearpage}
|
576
|
+
|
577
|
+
{\newpage\clearpage
|
578
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3315}%
|
579
|
+
$ p_{00}$%
|
580
|
+
\lthtmlinlinemathZ
|
581
|
+
\lthtmlcheckvsize\clearpage}
|
582
|
+
|
583
|
+
{\newpage\clearpage
|
584
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3321}%
|
585
|
+
$ T$%
|
586
|
+
\lthtmlinlinemathZ
|
587
|
+
\lthtmlcheckvsize\clearpage}
|
588
|
+
|
589
|
+
{\newpage\clearpage
|
590
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3323}%
|
591
|
+
$ \omega \equiv Dp/Dt$%
|
592
|
+
\lthtmlinlinemathZ
|
593
|
+
\lthtmlcheckvsize\clearpage}
|
594
|
+
|
595
|
+
{\newpage\clearpage
|
596
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3329}%
|
597
|
+
$ w, \theta$%
|
598
|
+
\lthtmlinlinemathZ
|
599
|
+
\lthtmlcheckvsize\clearpage}
|
600
|
+
|
601
|
+
{\newpage\clearpage
|
602
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3330}%
|
603
|
+
$\displaystyle w$%
|
604
|
+
\lthtmlindisplaymathZ
|
605
|
+
\lthtmlcheckvsize\clearpage}
|
606
|
+
|
607
|
+
{\newpage\clearpage
|
608
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3331}%
|
609
|
+
$\displaystyle = -\omega H / p$%
|
610
|
+
\lthtmlindisplaymathZ
|
611
|
+
\lthtmlcheckvsize\clearpage}
|
612
|
+
|
613
|
+
{\newpage\clearpage
|
614
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3332}%
|
615
|
+
$\displaystyle \theta$%
|
616
|
+
\lthtmlindisplaymathZ
|
617
|
+
\lthtmlcheckvsize\clearpage}
|
618
|
+
|
619
|
+
{\newpage\clearpage
|
620
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3333}%
|
621
|
+
$\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$%
|
622
|
+
\lthtmlindisplaymathZ
|
623
|
+
\lthtmlcheckvsize\clearpage}
|
624
|
+
|
625
|
+
{\newpage\clearpage
|
626
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3337}%
|
627
|
+
$ C_p$%
|
628
|
+
\lthtmlinlinemathZ
|
629
|
+
\lthtmlcheckvsize\clearpage}
|
630
|
+
|
631
|
+
\appendix
|
632
|
+
\stepcounter{chapter}
|
633
|
+
\stepcounter{section}
|
634
|
+
{\newpage\clearpage
|
635
|
+
\setcounter{equation}{0}
|
636
|
+
\lthtmldisplayA{subequations3343}%
|
637
|
+
\setcounter{equation}{-1}
|
638
|
+
\begin{subequations}\begin{align}
|
35
639
|
\DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
|
36
640
|
+ \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
|
37
641
|
\DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
|
38
642
|
+ \Dinv{a}\DP{\Phi}{\phi} = Y,
|
39
643
|
\end{align}
|
40
644
|
|
41
645
|
\begin{align}
|
42
646
|
\DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
|
43
647
|
\end{align}
|
44
648
|
|
45
649
|
\begin{align}
|
46
650
|
\Dinv{a\cos\phi} &
|
47
651
|
\left[
|
48
652
|
\DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
|
49
653
|
\right]
|
50
654
|
+ \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
|
51
655
|
= 0,
|
52
656
|
\end{align}
|
53
657
|
|
54
658
|
\begin{align}
|
55
659
|
\DD{\theta}{t} &= Q,
|
56
660
|
\end{align}\end{subequations}%
|
661
|
+
\lthtmldisplayZ
|
662
|
+
\lthtmlcheckvsize\clearpage}
|
663
|
+
|
664
|
+
{\newpage\clearpage
|
665
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3345}%
|
666
|
+
$ \Phi$%
|
667
|
+
\lthtmlinlinemathZ
|
668
|
+
\lthtmlcheckvsize\clearpage}
|
669
|
+
|
670
|
+
{\newpage\clearpage
|
671
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3347}%
|
672
|
+
$ X, Y$%
|
673
|
+
\lthtmlinlinemathZ
|
674
|
+
\lthtmlcheckvsize\clearpage}
|
675
|
+
|
676
|
+
{\newpage\clearpage
|
677
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3353}%
|
678
|
+
$ \kappa=R_{d}/c_p$%
|
679
|
+
\lthtmlinlinemathZ
|
680
|
+
\lthtmlcheckvsize\clearpage}
|
681
|
+
|
682
|
+
{\newpage\clearpage
|
683
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3355}%
|
684
|
+
$ c_p$%
|
685
|
+
\lthtmlinlinemathZ
|
686
|
+
\lthtmlcheckvsize\clearpage}
|
687
|
+
|
688
|
+
{\newpage\clearpage
|
689
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3357}%
|
690
|
+
$ Q$%
|
691
|
+
\lthtmlinlinemathZ
|
692
|
+
\lthtmlcheckvsize\clearpage}
|
693
|
+
|
694
|
+
{\newpage\clearpage
|
695
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3360}%
|
696
|
+
$\displaystyle Q$%
|
697
|
+
\lthtmlindisplaymathZ
|
698
|
+
\lthtmlcheckvsize\clearpage}
|
699
|
+
|
700
|
+
{\newpage\clearpage
|
701
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3364}%
|
702
|
+
$\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$%
|
703
|
+
\lthtmlindisplaymathZ
|
704
|
+
\lthtmlcheckvsize\clearpage}
|
705
|
+
|
706
|
+
{\newpage\clearpage
|
707
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3366}%
|
708
|
+
$ J$%
|
709
|
+
\lthtmlinlinemathZ
|
710
|
+
\lthtmlcheckvsize\clearpage}
|
711
|
+
|
712
|
+
\stepcounter{section}
|
713
|
+
{\newpage\clearpage
|
714
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3371}%
|
715
|
+
$ A$%
|
716
|
+
\lthtmlinlinemathZ
|
717
|
+
\lthtmlcheckvsize\clearpage}
|
718
|
+
|
719
|
+
{\newpage\clearpage
|
720
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3373}%
|
721
|
+
$ \phi, z^*, t$%
|
722
|
+
\lthtmlinlinemathZ
|
723
|
+
\lthtmlcheckvsize\clearpage}
|
724
|
+
|
725
|
+
{\newpage\clearpage
|
726
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3376}%
|
727
|
+
$\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$%
|
728
|
+
\lthtmlindisplaymathZ
|
729
|
+
\lthtmlcheckvsize\clearpage}
|
730
|
+
|
731
|
+
{\newpage\clearpage
|
732
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3378}%
|
733
|
+
$ A'$%
|
734
|
+
\lthtmlinlinemathZ
|
735
|
+
\lthtmlcheckvsize\clearpage}
|
736
|
+
|
737
|
+
{\newpage\clearpage
|
738
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3381}%
|
739
|
+
$\displaystyle A' = A - \overline{A}$%
|
740
|
+
\lthtmlindisplaymathZ
|
741
|
+
\lthtmlcheckvsize\clearpage}
|
742
|
+
|
743
|
+
{\newpage\clearpage
|
744
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3383}%
|
745
|
+
$ \overline{A'}=0$%
|
746
|
+
\lthtmlinlinemathZ
|
747
|
+
\lthtmlcheckvsize\clearpage}
|
748
|
+
|
749
|
+
{\newpage\clearpage
|
750
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3385}%
|
751
|
+
$ \partial \overline{A}/\partial\lambda = 0$%
|
752
|
+
\lthtmlinlinemathZ
|
753
|
+
\lthtmlcheckvsize\clearpage}
|
754
|
+
|
755
|
+
{\newpage\clearpage
|
756
|
+
\setcounter{equation}{3}
|
757
|
+
\lthtmldisplayA{subequations3387}%
|
758
|
+
\setcounter{equation}{2}
|
759
|
+
\begin{subequations}\begin{align}
|
57
760
|
& \DP{}{t}(\overline{u} + u')
|
58
761
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
|
59
762
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
|
60
763
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\
|
61
764
|
& \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
|
62
765
|
+ \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
|
63
766
|
& \DP{}{t}(\overline{v} + v')
|
64
767
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
|
65
768
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
|
66
769
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
|
67
770
|
& \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
|
68
771
|
+ \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
|
69
772
|
Y',
|
70
773
|
\\
|
71
774
|
& \DP{}{z^*}(\overline{\Phi} + \Phi')
|
72
775
|
= \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
|
73
776
|
& \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
|
74
777
|
+ \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
|
75
778
|
+ \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
|
76
779
|
& \DP{}{t}(\overline{\theta} + \theta')
|
77
780
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
|
78
781
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
|
79
782
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
|
80
783
|
& \qquad = \overline{Q} + Q'
|
81
784
|
\end{align}\end{subequations}%
|
785
|
+
\lthtmldisplayZ
|
786
|
+
\lthtmlcheckvsize\clearpage}
|
787
|
+
|
788
|
+
{\newpage\clearpage
|
789
|
+
\setcounter{equation}{4}
|
790
|
+
\lthtmldisplayA{subequations3389}%
|
791
|
+
\setcounter{equation}{3}
|
792
|
+
\begin{subequations}\begin{align}
|
82
793
|
& \DP{\overline{u}}{t}
|
83
794
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
84
795
|
+ \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
|
85
796
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
86
797
|
- f\overline{v}
|
87
798
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
88
799
|
+ \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
|
89
800
|
- \overline{X}
|
90
801
|
\\
|
91
802
|
& \qquad
|
92
803
|
= - \DP{u'}{t}
|
93
804
|
- \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
|
94
805
|
- \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
95
806
|
- \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
|
96
807
|
& \qquad \qquad
|
97
808
|
- \frac{\overline{v}}{a}\DP{u'}{\phi}
|
98
809
|
- \frac{v'}{a}\DP{\overline{u}}{\phi}
|
99
810
|
- \frac{v'}{a}\DP{u'}{\phi}
|
100
811
|
- \overline{w}\DP{u'}{z^*}
|
101
812
|
- w'\DP{\overline{u}}{z^*}
|
102
813
|
- w'\DP{u'}{z^*}
|
103
814
|
+ fv'\notag\\
|
104
815
|
& \qquad \qquad
|
105
816
|
+ \frac{\tan\phi}{a} \overline{u} v'
|
106
817
|
+ \frac{\tan\phi}{a} u' \overline{v}
|
107
818
|
+ \frac{\tan\phi}{a} u'v'
|
108
819
|
- \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
|
109
820
|
+ X',\\
|
110
821
|
& \DP{\overline{v}}{t}
|
111
822
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
112
823
|
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
113
824
|
+ \overline{w}\DP{\overline{v}}{z^*}
|
114
825
|
+ f\overline{u}
|
115
826
|
+ \frac{\tan\phi}{a}(\overline{u})^2
|
116
827
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
117
828
|
- \overline{Y}
|
118
829
|
\notag\\
|
119
830
|
& \qquad
|
120
831
|
= - \DP{v'}{t}
|
121
832
|
- \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
|
122
833
|
- \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
123
834
|
- \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
|
124
835
|
& \qquad \qquad
|
125
836
|
- \frac{\overline{v}}{a}\DP{v'}{\phi}
|
126
837
|
- \frac{v'}{a}\DP{\overline{v}}{\phi}
|
127
838
|
- \frac{v'}{a}\DP{v'}{\phi}
|
128
839
|
- \overline{w}\DP{v'}{z^*}
|
129
840
|
- w'\DP{\overline{v}}{z^*}
|
130
841
|
- w'\DP{v'}{z^*}
|
131
842
|
- fu'\notag\\
|
132
843
|
& \qquad \qquad
|
133
844
|
- 2\frac{\tan\phi}{a}\overline{u}u'
|
134
845
|
- \frac{\tan\phi}{a}(u')^2
|
135
846
|
- \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
|
136
847
|
+ Y',\\
|
137
848
|
& \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
138
849
|
= - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
|
139
850
|
& \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
|
140
851
|
+ \DP{}{\phi}(\overline{v}\cos\phi)\right]
|
141
852
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
142
853
|
\notag\\
|
143
854
|
& \qquad
|
144
855
|
= - \Dinv{a\cos\phi}\left[
|
145
856
|
\DP{u'}{\lambda}
|
146
857
|
+ \DP{}{\phi}(v'\cos\phi)
|
147
858
|
\right]
|
148
859
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
|
149
860
|
& \DP{\overline{\theta}}{t}
|
150
861
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
151
862
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
152
863
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
153
864
|
- \overline{Q}
|
154
865
|
\notag\\
|
155
866
|
& \qquad
|
156
867
|
= - \DP{\theta'}{t}
|
157
868
|
- \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
|
158
869
|
- \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
159
870
|
- \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
|
160
871
|
\notag \\
|
161
872
|
& \qquad \qquad
|
162
873
|
- \frac{\overline{v}}{a}\DP{\theta'}{\phi}
|
163
874
|
- \frac{v'}{a}\DP{\overline{\theta}}{\phi}
|
164
875
|
- \frac{v'}{a}\DP{\theta'}{\phi}
|
165
876
|
- \overline{w}\DP{\theta'}{z^*}
|
166
877
|
- w'\DP{\overline{\theta}}{z^*}
|
167
878
|
- w'\DP{\theta'}{z^*}
|
168
879
|
+ Q'
|
169
880
|
\end{align}\end{subequations}%
|
881
|
+
\lthtmldisplayZ
|
882
|
+
\lthtmlcheckvsize\clearpage}
|
883
|
+
|
884
|
+
{\newpage\clearpage
|
885
|
+
\setcounter{equation}{5}
|
886
|
+
\lthtmldisplayA{subequations3391}%
|
887
|
+
\setcounter{equation}{4}
|
888
|
+
\begin{subequations}\begin{align}
|
170
889
|
& \DP{\overline{u}}{t}
|
171
890
|
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
172
891
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
173
892
|
- f\overline{v}
|
174
893
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
175
894
|
- \overline{X}
|
176
895
|
\\
|
177
896
|
& \qquad
|
178
897
|
= - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
|
179
898
|
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
180
899
|
- \overline{w'\DP{u'}{z^*}}
|
181
900
|
+ \frac{\tan\phi}{a}\overline{u'v'},\\
|
182
901
|
& \DP{\overline{v}}{t}
|
183
902
|
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
184
903
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
185
904
|
+ f \overline{u}
|
186
905
|
+ \frac{\tan \phi}{a} (\overline{u})^2
|
187
906
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
188
907
|
- \overline{Y}
|
189
908
|
\notag\\
|
190
909
|
& \qquad
|
191
910
|
= - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
|
192
911
|
- \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
|
193
912
|
- \overline{w'\DP{v'}{z^*}}
|
194
913
|
- \frac{\tan \phi}{a} \overline{u'^2},\\
|
195
914
|
& \DP{\overline{\Phi}}{z^*}
|
196
915
|
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
|
197
916
|
& \Dinv{a\cos\phi}
|
198
917
|
\left[
|
199
918
|
\DP{}{\phi}(\overline{v}\cos\phi)
|
200
919
|
\right]
|
201
920
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
202
921
|
= 0,\\
|
203
922
|
& \DP{\overline{\theta}}{t}
|
204
923
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
205
924
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
206
925
|
- \overline{Q} =
|
207
926
|
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
208
927
|
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
209
928
|
- \overline{w'\DP{\theta'}{z^*}}
|
210
929
|
\end{align}\end{subequations}%
|
930
|
+
\lthtmldisplayZ
|
931
|
+
\lthtmlcheckvsize\clearpage}
|
932
|
+
|
933
|
+
{\newpage\clearpage
|
934
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3394}%
|
935
|
+
$\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
|
936
|
+
+ \DP{}{\phi}(v'\cos\phi)\right]
|
937
|
+
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
|
938
|
+
= 0$%
|
939
|
+
\lthtmlindisplaymathZ
|
940
|
+
\lthtmlcheckvsize\clearpage}
|
941
|
+
|
942
|
+
{\newpage\clearpage
|
943
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3396}%
|
944
|
+
$ u'$%
|
945
|
+
\lthtmlinlinemathZ
|
946
|
+
\lthtmlcheckvsize\clearpage}
|
947
|
+
|
948
|
+
{\newpage\clearpage
|
949
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3399}%
|
950
|
+
$\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
|
951
|
+
+ \Dinv{a} \overline{ u' \DP{v'}{\phi} }
|
952
|
+
- \frac{\tan \phi}{a} \overline{ u' v' }
|
953
|
+
+ \overline{ u' \DP{w'}{z^*} }
|
954
|
+
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
|
955
|
+
= 0$%
|
956
|
+
\lthtmlindisplaymathZ
|
957
|
+
\lthtmlcheckvsize\clearpage}
|
958
|
+
|
959
|
+
{\newpage\clearpage
|
960
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3400}%
|
961
|
+
$\displaystyle \DP{\overline{u}}{t}$%
|
962
|
+
\lthtmlindisplaymathZ
|
963
|
+
\lthtmlcheckvsize\clearpage}
|
964
|
+
|
965
|
+
{\newpage\clearpage
|
966
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3401}%
|
967
|
+
$\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
211
968
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
212
969
|
- f\overline{v}
|
213
970
|
- \frac{\tan\phi}{a}\overline{u}\overline{v}
|
214
971
|
- \overline{X} \notag$%
|
972
|
+
\lthtmlindisplaymathZ
|
973
|
+
\lthtmlcheckvsize\clearpage}
|
974
|
+
|
975
|
+
{\newpage\clearpage
|
976
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3402}%
|
977
|
+
$\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
|
215
978
|
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
216
979
|
- \overline{w'\DP{u'}{z^*}}
|
217
980
|
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
218
981
|
+ \frac{2\tan\phi}{a}\overline{u'v'}
|
219
982
|
- \overline{u'\DP{w'}{z^*}}
|
220
983
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
|
984
|
+
\lthtmlindisplaymathZ
|
985
|
+
\lthtmlcheckvsize\clearpage}
|
986
|
+
|
987
|
+
{\newpage\clearpage
|
988
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3403}%
|
989
|
+
$\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$%
|
990
|
+
\lthtmlindisplaymathZ
|
991
|
+
\lthtmlcheckvsize\clearpage}
|
992
|
+
|
993
|
+
{\newpage\clearpage
|
994
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3404}%
|
995
|
+
$\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
|
221
996
|
= 0,$%
|
997
|
+
\lthtmlindisplaymathZ
|
998
|
+
\lthtmlcheckvsize\clearpage}
|
999
|
+
|
1000
|
+
{\newpage\clearpage
|
1001
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3405}%
|
1002
|
+
$\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
222
1003
|
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
223
1004
|
+ \frac{2\tan\phi}{a}\overline{u'v'}$%
|
1005
|
+
\lthtmlindisplaymathZ
|
1006
|
+
\lthtmlcheckvsize\clearpage}
|
1007
|
+
|
1008
|
+
{\newpage\clearpage
|
1009
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3406}%
|
1010
|
+
$\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$%
|
1011
|
+
\lthtmlindisplaymathZ
|
1012
|
+
\lthtmlcheckvsize\clearpage}
|
1013
|
+
|
1014
|
+
{\newpage\clearpage
|
1015
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3407}%
|
1016
|
+
$\displaystyle - \overline{w'\DP{u'}{z^*}}
|
224
1017
|
- \overline{u'\DP{w'}{z^*}}
|
225
1018
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
|
1019
|
+
\lthtmlindisplaymathZ
|
1020
|
+
\lthtmlcheckvsize\clearpage}
|
1021
|
+
|
1022
|
+
{\newpage\clearpage
|
1023
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3408}%
|
1024
|
+
$\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
|
1025
|
+
\lthtmlindisplaymathZ
|
1026
|
+
\lthtmlcheckvsize\clearpage}
|
1027
|
+
|
1028
|
+
{\newpage\clearpage
|
1029
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3409}%
|
1030
|
+
$\displaystyle \DP{\overline{u}}{t}
|
226
1031
|
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
227
1032
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
228
1033
|
- f\overline{v}
|
229
1034
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
230
1035
|
- \overline{X}
|
231
1036
|
\notag$%
|
1037
|
+
\lthtmlindisplaymathZ
|
1038
|
+
\lthtmlcheckvsize\clearpage}
|
1039
|
+
|
1040
|
+
{\newpage\clearpage
|
1041
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3410}%
|
1042
|
+
$\displaystyle \qquad
|
232
1043
|
= - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
|
233
1044
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
|
1045
|
+
\lthtmlindisplaymathZ
|
1046
|
+
\lthtmlcheckvsize\clearpage}
|
1047
|
+
|
1048
|
+
{\newpage\clearpage
|
1049
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3412}%
|
1050
|
+
$ v'$%
|
1051
|
+
\lthtmlinlinemathZ
|
1052
|
+
\lthtmlcheckvsize\clearpage}
|
1053
|
+
|
1054
|
+
{\newpage\clearpage
|
1055
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3415}%
|
1056
|
+
$\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
|
1057
|
+
+ \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1058
|
+
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
1059
|
+
+ \overline{ v' \DP{w'}{z^*} }
|
1060
|
+
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
1061
|
+
= 0$%
|
1062
|
+
\lthtmlindisplaymathZ
|
1063
|
+
\lthtmlcheckvsize\clearpage}
|
1064
|
+
|
1065
|
+
{\newpage\clearpage
|
1066
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3416}%
|
1067
|
+
$\displaystyle \DP{\overline{v}}{t}
|
234
1068
|
+ \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
235
1069
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
236
1070
|
+ f \overline{u}
|
237
1071
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
238
1072
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
239
1073
|
- \overline{Y}
|
240
1074
|
\notag$%
|
1075
|
+
\lthtmlindisplaymathZ
|
1076
|
+
\lthtmlcheckvsize\clearpage}
|
1077
|
+
|
1078
|
+
{\newpage\clearpage
|
1079
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3417}%
|
1080
|
+
$\displaystyle \qquad
|
241
1081
|
= - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
242
1082
|
- \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
|
243
1083
|
- \overline{w'\DP{v'}{z^*}}
|
244
1084
|
- \frac{\tan\phi}{a} \overline{u'^2}
|
245
1085
|
\notag$%
|
1086
|
+
\lthtmlindisplaymathZ
|
1087
|
+
\lthtmlcheckvsize\clearpage}
|
1088
|
+
|
1089
|
+
{\newpage\clearpage
|
1090
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3418}%
|
1091
|
+
$\displaystyle \qquad \qquad
|
246
1092
|
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
|
247
1093
|
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
248
1094
|
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
249
1095
|
- \overline{ v' \DP{w'}{z^*} }
|
250
1096
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
|
1097
|
+
\lthtmlindisplaymathZ
|
1098
|
+
\lthtmlcheckvsize\clearpage}
|
1099
|
+
|
1100
|
+
{\newpage\clearpage
|
1101
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3421}%
|
1102
|
+
$\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
1103
|
+
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$%
|
1104
|
+
\lthtmlindisplaymathZ
|
1105
|
+
\lthtmlcheckvsize\clearpage}
|
1106
|
+
|
1107
|
+
{\newpage\clearpage
|
1108
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3425}%
|
1109
|
+
$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
|
1110
|
+
= 0,$%
|
1111
|
+
\lthtmlindisplaymathZ
|
1112
|
+
\lthtmlcheckvsize\clearpage}
|
1113
|
+
|
1114
|
+
{\newpage\clearpage
|
1115
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3427}%
|
1116
|
+
$\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1117
|
+
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1118
|
+
+ \frac{\tan \phi}{a} \overline{ v'^2 }$%
|
1119
|
+
\lthtmlindisplaymathZ
|
1120
|
+
\lthtmlcheckvsize\clearpage}
|
1121
|
+
|
1122
|
+
{\newpage\clearpage
|
1123
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3431}%
|
1124
|
+
$\displaystyle - \Dinv{a \cos \phi}
|
1125
|
+
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$%
|
1126
|
+
\lthtmlindisplaymathZ
|
1127
|
+
\lthtmlcheckvsize\clearpage}
|
1128
|
+
|
1129
|
+
{\newpage\clearpage
|
1130
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3433}%
|
1131
|
+
$\displaystyle - \overline{w'\DP{v'}{z^*}}
|
1132
|
+
- \overline{ v' \DP{w'}{z^*} }
|
1133
|
+
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
|
1134
|
+
\lthtmlindisplaymathZ
|
1135
|
+
\lthtmlcheckvsize\clearpage}
|
1136
|
+
|
1137
|
+
{\newpage\clearpage
|
1138
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3437}%
|
1139
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
|
1140
|
+
\lthtmlindisplaymathZ
|
1141
|
+
\lthtmlcheckvsize\clearpage}
|
1142
|
+
|
1143
|
+
{\newpage\clearpage
|
1144
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3439}%
|
1145
|
+
$\displaystyle \qquad
|
251
1146
|
= - \Dinv{a \cos \phi}
|
252
1147
|
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
|
253
1148
|
- \frac{\tan\phi}{a} \overline{u'^2}
|
254
1149
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
|
1150
|
+
\lthtmlindisplaymathZ
|
1151
|
+
\lthtmlcheckvsize\clearpage}
|
1152
|
+
|
1153
|
+
{\newpage\clearpage
|
1154
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3441}%
|
1155
|
+
$ \theta'$%
|
1156
|
+
\lthtmlinlinemathZ
|
1157
|
+
\lthtmlcheckvsize\clearpage}
|
1158
|
+
|
1159
|
+
{\newpage\clearpage
|
1160
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3444}%
|
1161
|
+
$\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
1162
|
+
+ \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
1163
|
+
- \frac{\tan \phi}{a} \overline{ \theta' v' }
|
1164
|
+
+ \overline{ \theta' \DP{w'}{z^*} }
|
1165
|
+
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
1166
|
+
= 0$%
|
1167
|
+
\lthtmlindisplaymathZ
|
1168
|
+
\lthtmlcheckvsize\clearpage}
|
1169
|
+
|
1170
|
+
{\newpage\clearpage
|
1171
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3445}%
|
1172
|
+
$\displaystyle \DP{\overline{\theta}}{t}
|
255
1173
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
256
1174
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
257
1175
|
- \overline{Q}
|
258
1176
|
\notag$%
|
1177
|
+
\lthtmlindisplaymathZ
|
1178
|
+
\lthtmlcheckvsize\clearpage}
|
1179
|
+
|
1180
|
+
{\newpage\clearpage
|
1181
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3446}%
|
1182
|
+
$\displaystyle \qquad =
|
259
1183
|
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
260
1184
|
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
261
1185
|
- \overline{w'\DP{\theta'}{z^*}}
|
262
1186
|
\notag$%
|
1187
|
+
\lthtmlindisplaymathZ
|
1188
|
+
\lthtmlcheckvsize\clearpage}
|
1189
|
+
|
1190
|
+
{\newpage\clearpage
|
1191
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3447}%
|
1192
|
+
$\displaystyle \qquad \qquad
|
263
1193
|
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
264
1194
|
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
265
1195
|
+ \frac{\tan \phi}{a} \overline{ \theta' v' }
|
266
1196
|
- \overline{ \theta' \DP{w'}{z^*} }
|
267
1197
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
|
1198
|
+
\lthtmlindisplaymathZ
|
1199
|
+
\lthtmlcheckvsize\clearpage}
|
1200
|
+
|
1201
|
+
{\newpage\clearpage
|
1202
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3450}%
|
1203
|
+
$\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
|
1204
|
+
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$%
|
1205
|
+
\lthtmlindisplaymathZ
|
1206
|
+
\lthtmlcheckvsize\clearpage}
|
1207
|
+
|
1208
|
+
{\newpage\clearpage
|
1209
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3454}%
|
1210
|
+
$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
|
1211
|
+
= 0,$%
|
1212
|
+
\lthtmlindisplaymathZ
|
1213
|
+
\lthtmlcheckvsize\clearpage}
|
1214
|
+
|
1215
|
+
{\newpage\clearpage
|
1216
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3456}%
|
1217
|
+
$\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
|
1218
|
+
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
1219
|
+
+ \frac{\tan \phi}{a} \overline{ \theta' v' }$%
|
1220
|
+
\lthtmlindisplaymathZ
|
1221
|
+
\lthtmlcheckvsize\clearpage}
|
1222
|
+
|
1223
|
+
{\newpage\clearpage
|
1224
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3460}%
|
1225
|
+
$\displaystyle - \Dinv{a \cos \phi}
|
1226
|
+
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$%
|
1227
|
+
\lthtmlindisplaymathZ
|
1228
|
+
\lthtmlcheckvsize\clearpage}
|
1229
|
+
|
1230
|
+
{\newpage\clearpage
|
1231
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3462}%
|
1232
|
+
$\displaystyle - \overline{w'\DP{\theta'}{z^*}}
|
1233
|
+
- \overline{ \theta' \DP{w'}{z^*} }
|
1234
|
+
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
|
1235
|
+
\lthtmlindisplaymathZ
|
1236
|
+
\lthtmlcheckvsize\clearpage}
|
1237
|
+
|
1238
|
+
{\newpage\clearpage
|
1239
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3466}%
|
1240
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
|
1241
|
+
\lthtmlindisplaymathZ
|
1242
|
+
\lthtmlcheckvsize\clearpage}
|
1243
|
+
|
1244
|
+
{\newpage\clearpage
|
1245
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3467}%
|
1246
|
+
$\displaystyle \DP{\overline{\theta}}{t}
|
268
1247
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
269
1248
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
270
1249
|
- \overline{Q}
|
271
1250
|
= - \Dinv{a \cos \phi}
|
272
1251
|
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
|
273
1252
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
|
1253
|
+
\lthtmlindisplaymathZ
|
1254
|
+
\lthtmlcheckvsize\clearpage}
|
1255
|
+
|
1256
|
+
{\newpage\clearpage
|
1257
|
+
\setcounter{equation}{11}
|
1258
|
+
\lthtmldisplayA{subequations3469}%
|
1259
|
+
\setcounter{equation}{10}
|
1260
|
+
\begin{subequations}\begin{align}
|
274
1261
|
\DP{\overline{u}}{t}
|
275
1262
|
& + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
|
276
1263
|
+ \overline{w} \DP{\overline{u}}{z^*}
|
277
1264
|
- f\overline{v}
|
278
1265
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
279
1266
|
- \overline{X}
|
280
1267
|
\\
|
281
1268
|
& \qquad
|
282
1269
|
= - \Dinv{a\cos^2\phi}
|
283
1270
|
\DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
284
1271
|
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
|
285
1272
|
\DP{\overline{v}}{t}
|
286
1273
|
& + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
287
1274
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
288
1275
|
+ f \overline{u}
|
289
1276
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
290
1277
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
291
1278
|
- \overline{Y}
|
292
1279
|
\notag\\
|
293
1280
|
& \qquad
|
294
1281
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
295
1282
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
296
1283
|
- \overline{u'^2}\frac{\tan\phi}{a},
|
297
1284
|
\end{align}
|
298
1285
|
\begin{align}
|
299
1286
|
\DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
|
300
1287
|
\end{align}
|
301
1288
|
\begin{align}
|
302
1289
|
\Dinv{a\cos\phi}&
|
303
1290
|
\DP{}{\phi}(\overline{v}\cos\phi)
|
304
1291
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
305
1292
|
= 0,
|
306
1293
|
\end{align}
|
307
1294
|
\begin{align}
|
308
1295
|
\DP{\overline{\theta}}{t}
|
309
1296
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
310
1297
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
311
1298
|
- \overline{Q} =
|
312
1299
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
313
1300
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
|
314
1301
|
\end{align}\end{subequations}%
|
1302
|
+
\lthtmldisplayZ
|
1303
|
+
\lthtmlcheckvsize\clearpage}
|
1304
|
+
|
1305
|
+
\stepcounter{section}
|
1306
|
+
{\newpage\clearpage
|
1307
|
+
\setcounter{equation}{12}
|
1308
|
+
\lthtmldisplayA{subequations3474}%
|
1309
|
+
\setcounter{equation}{11}
|
1310
|
+
\begin{subequations}\begin{align}
|
315
1311
|
\overline{v}^*
|
316
1312
|
& =
|
317
1313
|
\overline{v}
|
318
1314
|
- \Dinv{\rho_0} \DP{}{z^*}
|
319
1315
|
\left( \rho_0
|
320
1316
|
\frac{\overline{v'\theta'}}
|
321
1317
|
{\overline{\DP{\theta}{z^*}}}
|
322
1318
|
\right)
|
323
1319
|
\\
|
324
1320
|
\overline{w}^*
|
325
1321
|
& = \overline{w}
|
326
1322
|
+ \Dinv{a \cos\phi}
|
327
1323
|
\DP{}{\phi}
|
328
1324
|
\left( \cos \phi
|
329
1325
|
\frac{\overline{v'\theta'}}
|
330
1326
|
{\overline{\DP{\theta}{z^*}}}
|
331
1327
|
\right)
|
332
1328
|
\end{align}\end{subequations}%
|
1329
|
+
\lthtmldisplayZ
|
1330
|
+
\lthtmlcheckvsize\clearpage}
|
1331
|
+
|
1332
|
+
{\newpage\clearpage
|
1333
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3477}%
|
1334
|
+
$\displaystyle {F_\phi}$%
|
1335
|
+
\lthtmlindisplaymathZ
|
1336
|
+
\lthtmlcheckvsize\clearpage}
|
1337
|
+
|
1338
|
+
{\newpage\clearpage
|
1339
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3481}%
|
1340
|
+
$\displaystyle \rho_0 a
|
1341
|
+
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
1342
|
+
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
1343
|
+
\overline{u'v'}\right)$%
|
1344
|
+
\lthtmlindisplaymathZ
|
1345
|
+
\lthtmlcheckvsize\clearpage}
|
1346
|
+
|
1347
|
+
{\newpage\clearpage
|
1348
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3483}%
|
1349
|
+
$\displaystyle {F_z^*}$%
|
1350
|
+
\lthtmlindisplaymathZ
|
1351
|
+
\lthtmlcheckvsize\clearpage}
|
1352
|
+
|
1353
|
+
{\newpage\clearpage
|
1354
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3487}%
|
1355
|
+
$\displaystyle \rho_0 a
|
1356
|
+
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
1357
|
+
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
1358
|
+
\overline{u'w'}\right)$%
|
1359
|
+
\lthtmlindisplaymathZ
|
1360
|
+
\lthtmlcheckvsize\clearpage}
|
1361
|
+
|
1362
|
+
{\newpage\clearpage
|
1363
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3488}%
|
1364
|
+
$\displaystyle \Dinv{a \cos \phi}
|
333
1365
|
\DP{}{\phi}\left[
|
334
1366
|
\left\{
|
335
1367
|
\overline{v}^*
|
336
1368
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
337
1369
|
\left( \rho_0
|
338
1370
|
\frac{\overline{v'\theta'}}
|
339
1371
|
{\overline{\DP{\theta}{z^*}}}
|
340
1372
|
\right)
|
341
1373
|
\right\}
|
342
1374
|
\cos\phi \right]$%
|
1375
|
+
\lthtmlindisplaymathZ
|
1376
|
+
\lthtmlcheckvsize\clearpage}
|
1377
|
+
|
1378
|
+
{\newpage\clearpage
|
1379
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3489}%
|
1380
|
+
$\displaystyle \qquad
|
343
1381
|
+ \Dinv{\rho_0}
|
344
1382
|
\DP{}{z^*}
|
345
1383
|
\left[ \rho_0
|
346
1384
|
\left\{
|
347
1385
|
\overline{w}^*
|
348
1386
|
- \Dinv{a \cos\phi}
|
349
1387
|
\DP{}{\phi}
|
350
1388
|
\left( \cos \phi
|
351
1389
|
\frac{\overline{v'\theta'}}
|
352
1390
|
{\overline{\DP{\theta}{z^*}}}
|
353
1391
|
\right)
|
354
1392
|
\right\}
|
355
1393
|
\right]
|
356
1394
|
= 0,$%
|
1395
|
+
\lthtmlindisplaymathZ
|
1396
|
+
\lthtmlcheckvsize\clearpage}
|
1397
|
+
|
1398
|
+
{\newpage\clearpage
|
1399
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3490}%
|
1400
|
+
$\displaystyle \Dinv{a \cos \phi}
|
357
1401
|
\DP{}{\phi}
|
358
1402
|
\left(
|
359
1403
|
\overline{v}^* \cos\phi
|
360
1404
|
\right)
|
361
1405
|
+ \Dinv{\rho_0}
|
362
1406
|
\DP{}{z^*}
|
363
1407
|
\left( \rho_0 \overline{w}^* \right)$%
|
1408
|
+
\lthtmlindisplaymathZ
|
1409
|
+
\lthtmlcheckvsize\clearpage}
|
1410
|
+
|
1411
|
+
{\newpage\clearpage
|
1412
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3491}%
|
1413
|
+
$\displaystyle \qquad
|
364
1414
|
+ \Dinv{a \cos \phi}
|
365
1415
|
\DP{}{\phi}
|
366
1416
|
\left\{
|
367
1417
|
\Dinv{\rho_0} \DP{}{z^*}
|
368
1418
|
\left( \rho_0
|
369
1419
|
\frac{\overline{v'\theta'}}
|
370
1420
|
{\overline{\DP{\theta}{z^*}}}
|
371
1421
|
\right) \cos\phi
|
372
1422
|
\right\}
|
373
1423
|
- \Dinv{\rho_0}
|
374
1424
|
\DP{}{z^*}
|
375
1425
|
\left\{
|
376
1426
|
\rho_0 \Dinv{a \cos\phi}
|
377
1427
|
\DP{}{\phi}
|
378
1428
|
\left( \cos \phi
|
379
1429
|
\frac{\overline{v'\theta'}}
|
380
1430
|
{\overline{\DP{\theta}{z^*}}}
|
381
1431
|
\right)
|
382
1432
|
\right\}
|
383
1433
|
= 0.$%
|
1434
|
+
\lthtmlindisplaymathZ
|
1435
|
+
\lthtmlcheckvsize\clearpage}
|
1436
|
+
|
1437
|
+
{\newpage\clearpage
|
1438
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3492}%
|
1439
|
+
$\displaystyle \qquad
|
384
1440
|
\Dinv{a \cos \phi}
|
385
1441
|
\DP{}{\phi}
|
386
1442
|
\left\{
|
387
1443
|
\Dinv{\rho_0} \DP{}{z^*}
|
388
1444
|
\left( \rho_0
|
389
1445
|
\frac{\overline{v'\theta'}}
|
390
1446
|
{\overline{\DP{\theta}{z^*}}}
|
391
1447
|
\right) \cos\phi
|
392
1448
|
\right\}
|
393
1449
|
- \Dinv{\rho_0}
|
394
1450
|
\DP{}{z^*}
|
395
1451
|
\left\{
|
396
1452
|
\rho_0 \Dinv{a \cos\phi}
|
397
1453
|
\DP{}{\phi}
|
398
1454
|
\left( \cos \phi
|
399
1455
|
\frac{\overline{v'\theta'}}
|
400
1456
|
{\overline{\DP{\theta}{z^*}}}
|
401
1457
|
\right)
|
402
1458
|
\right\}$%
|
1459
|
+
\lthtmlindisplaymathZ
|
1460
|
+
\lthtmlcheckvsize\clearpage}
|
1461
|
+
|
1462
|
+
{\newpage\clearpage
|
1463
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3493}%
|
1464
|
+
$\displaystyle =
|
403
1465
|
\Dinv{a \cos \phi}
|
404
1466
|
\left[
|
405
1467
|
\DP{}{\phi}
|
406
1468
|
\left\{
|
407
1469
|
\Dinv{\rho_0} \DP{}{z^*}
|
408
1470
|
\left( \rho_0
|
409
1471
|
\frac{\overline{v'\theta'}}
|
410
1472
|
{\overline{\DP{\theta}{z^*}}}
|
411
1473
|
\right) \cos\phi
|
412
1474
|
\right\}
|
413
1475
|
- \Dinv{\rho_0}
|
414
1476
|
\DP{}{z^*}
|
415
1477
|
\left\{
|
416
1478
|
\rho_0
|
417
1479
|
\DP{}{\phi}
|
418
1480
|
\left( \cos \phi
|
419
1481
|
\frac{\overline{v'\theta'}}
|
420
1482
|
{\overline{\DP{\theta}{z^*}}}
|
421
1483
|
\right)
|
422
1484
|
\right\}
|
423
1485
|
\right]$%
|
1486
|
+
\lthtmlindisplaymathZ
|
1487
|
+
\lthtmlcheckvsize\clearpage}
|
1488
|
+
|
1489
|
+
{\newpage\clearpage
|
1490
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3494}%
|
1491
|
+
$\displaystyle =
|
424
1492
|
\Dinv{a \cos \phi}
|
425
1493
|
\left[
|
426
1494
|
\Dinv{\rho_0}
|
427
1495
|
\DP{}{\phi}
|
428
1496
|
\left\{
|
429
1497
|
\DP{}{z^*}
|
430
1498
|
\left( \rho_0
|
431
1499
|
\frac{\overline{v'\theta'}}
|
432
1500
|
{\overline{\DP{\theta}{z^*}}}
|
433
1501
|
\cos\phi
|
434
1502
|
\right)
|
435
1503
|
\right\}
|
436
1504
|
- \Dinv{\rho_0}
|
437
1505
|
\DP{}{z^*}
|
438
1506
|
\left\{
|
439
1507
|
\DP{}{\phi}
|
440
1508
|
\left(\rho_0 \cos \phi
|
441
1509
|
\frac{\overline{v'\theta'}}
|
442
1510
|
{\overline{\DP{\theta}{z^*}}}
|
443
1511
|
\right)
|
444
1512
|
\right\}
|
445
1513
|
\right]$%
|
1514
|
+
\lthtmlindisplaymathZ
|
1515
|
+
\lthtmlcheckvsize\clearpage}
|
1516
|
+
|
1517
|
+
{\newpage\clearpage
|
1518
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3495}%
|
1519
|
+
$\displaystyle = 0.$%
|
1520
|
+
\lthtmlindisplaymathZ
|
1521
|
+
\lthtmlcheckvsize\clearpage}
|
1522
|
+
|
1523
|
+
{\newpage\clearpage
|
1524
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3498}%
|
1525
|
+
$\displaystyle \Dinv{a \cos \phi}
|
1526
|
+
\DP{}{\phi}
|
1527
|
+
\left(
|
1528
|
+
\overline{v}^* \cos\phi
|
1529
|
+
\right)
|
1530
|
+
+ \Dinv{\rho_0}
|
1531
|
+
\DP{}{z^*}
|
1532
|
+
\left( \rho_0 \overline{w}^* \right) = 0.$%
|
1533
|
+
\lthtmlindisplaymathZ
|
1534
|
+
\lthtmlcheckvsize\clearpage}
|
1535
|
+
|
1536
|
+
{\newpage\clearpage
|
1537
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3502}%
|
1538
|
+
$\displaystyle + \Dinv{a}
|
446
1539
|
\left[
|
447
1540
|
\overline{v}^*
|
448
1541
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
449
1542
|
\left( \rho_0
|
450
1543
|
\frac{\overline{v'\theta'}}
|
451
1544
|
{\overline{\DP{\theta}{z^*}}}
|
452
1545
|
\right)
|
453
1546
|
\right]
|
454
1547
|
\DP{\overline{u}}{\phi}
|
455
1548
|
+ \left[
|
456
1549
|
\overline{w}^*
|
457
1550
|
- \Dinv{a \cos\phi}
|
458
1551
|
\DP{}{\phi}
|
459
1552
|
\left( \cos \phi
|
460
1553
|
\frac{\overline{v'\theta'}}
|
461
1554
|
{\overline{\DP{\theta}{z^*}}}
|
462
1555
|
\right)
|
463
1556
|
\right]
|
464
1557
|
\DP{\overline{u}}{z^*}$%
|
1558
|
+
\lthtmlindisplaymathZ
|
1559
|
+
\lthtmlcheckvsize\clearpage}
|
1560
|
+
|
1561
|
+
{\newpage\clearpage
|
1562
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3503}%
|
1563
|
+
$\displaystyle \qquad \qquad
|
465
1564
|
- f
|
466
1565
|
\left[
|
467
1566
|
\overline{v}^*
|
468
1567
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
469
1568
|
\left( \rho_0
|
470
1569
|
\frac{\overline{v'\theta'}}
|
471
1570
|
{\overline{\DP{\theta}{z^*}}}
|
472
1571
|
\right)
|
473
1572
|
\right]
|
474
1573
|
- \frac{\tan \phi}{a} \overline{u}
|
475
1574
|
\left[
|
476
1575
|
\overline{v}^*
|
477
1576
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
478
1577
|
\left( \rho_0
|
479
1578
|
\frac{\overline{v'\theta'}}
|
480
1579
|
{\overline{\DP{\theta}{z^*}}}
|
481
1580
|
\right)
|
482
1581
|
\right]
|
483
1582
|
- \overline{X}$%
|
1583
|
+
\lthtmlindisplaymathZ
|
1584
|
+
\lthtmlcheckvsize\clearpage}
|
1585
|
+
|
1586
|
+
{\newpage\clearpage
|
1587
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3504}%
|
1588
|
+
$\displaystyle \qquad
|
484
1589
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
485
1590
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$%
|
1591
|
+
\lthtmlindisplaymathZ
|
1592
|
+
\lthtmlcheckvsize\clearpage}
|
1593
|
+
|
1594
|
+
{\newpage\clearpage
|
1595
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3506}%
|
1596
|
+
$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
|
486
1597
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
487
1598
|
- f \overline{v}^*
|
488
1599
|
- \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
|
489
1600
|
- \overline{X}$%
|
1601
|
+
\lthtmlindisplaymathZ
|
1602
|
+
\lthtmlcheckvsize\clearpage}
|
1603
|
+
|
1604
|
+
{\newpage\clearpage
|
1605
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3507}%
|
1606
|
+
$\displaystyle \qquad
|
490
1607
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
491
1608
|
+ \Dinv{a \cos\phi}
|
492
1609
|
\DP{}{\phi}
|
493
1610
|
\left( \cos \phi
|
494
1611
|
\frac{\overline{v'\theta'}}
|
495
1612
|
{\overline{\DP{\theta}{z^*}}}
|
496
1613
|
\right) \DP{\overline{u}}{z^*}$%
|
1614
|
+
\lthtmlindisplaymathZ
|
1615
|
+
\lthtmlcheckvsize\clearpage}
|
1616
|
+
|
1617
|
+
{\newpage\clearpage
|
1618
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3508}%
|
1619
|
+
$\displaystyle \qquad \qquad
|
497
1620
|
+ f \Dinv{\rho_0} \DP{}{z^*}
|
498
1621
|
\left( \rho_0
|
499
1622
|
\frac{\overline{v'\theta'}}
|
500
1623
|
{\overline{\DP{\theta}{z^*}}}
|
501
1624
|
\right)
|
502
1625
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$%
|
1626
|
+
\lthtmlindisplaymathZ
|
1627
|
+
\lthtmlcheckvsize\clearpage}
|
1628
|
+
|
1629
|
+
{\newpage\clearpage
|
1630
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3509}%
|
1631
|
+
$\displaystyle \qquad \qquad
|
503
1632
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
504
1633
|
\left( \rho_0
|
505
1634
|
\frac{\overline{v'\theta'}}
|
506
1635
|
{\overline{\DP{\theta}{z^*}}}
|
507
1636
|
\right)
|
508
1637
|
\DP{\overline{u}}{\phi}
|
509
1638
|
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
510
1639
|
\left( \rho_0
|
511
1640
|
\frac{\overline{v'\theta'}}
|
512
1641
|
{\overline{\DP{\theta}{z^*}}}
|
513
1642
|
\right),$%
|
1643
|
+
\lthtmlindisplaymathZ
|
1644
|
+
\lthtmlcheckvsize\clearpage}
|
1645
|
+
|
1646
|
+
{\newpage\clearpage
|
1647
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3511}%
|
1648
|
+
$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
514
1649
|
\left( \overline{u} \cos \phi \right)
|
515
1650
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
516
1651
|
- f \overline{v}^*
|
517
1652
|
- \overline{X}$%
|
1653
|
+
\lthtmlindisplaymathZ
|
1654
|
+
\lthtmlcheckvsize\clearpage}
|
1655
|
+
|
1656
|
+
{\newpage\clearpage
|
1657
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3512}%
|
1658
|
+
$\displaystyle \qquad
|
518
1659
|
= - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
519
1660
|
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
520
1661
|
+ \Dinv{a \cos\phi}
|
521
1662
|
\DP{}{\phi}
|
522
1663
|
\left( \cos \phi
|
523
1664
|
\frac{\overline{v'\theta'}}
|
524
1665
|
{\overline{\DP{\theta}{z^*}}}
|
525
1666
|
\right) \DP{\overline{u}}{z^*}$%
|
1667
|
+
\lthtmlindisplaymathZ
|
1668
|
+
\lthtmlcheckvsize\clearpage}
|
1669
|
+
|
1670
|
+
{\newpage\clearpage
|
1671
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3513}%
|
1672
|
+
$\displaystyle \qquad \qquad
|
526
1673
|
+ \frac{1}{\rho_0 a \cos \phi}
|
527
1674
|
\DP{}{z^*}
|
528
1675
|
\left( f \rho_0 a \cos \phi
|
529
1676
|
\frac{\overline{v'\theta'}}
|
530
1677
|
{\overline{\DP{\theta}{z^*}}}
|
531
1678
|
\right)
|
532
1679
|
- \frac{1}{\rho_0 a \cos \phi}
|
533
1680
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$%
|
1681
|
+
\lthtmlindisplaymathZ
|
1682
|
+
\lthtmlcheckvsize\clearpage}
|
1683
|
+
|
1684
|
+
{\newpage\clearpage
|
1685
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3514}%
|
1686
|
+
$\displaystyle \qquad \qquad
|
534
1687
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
535
1688
|
\left( \rho_0
|
536
1689
|
\frac{\overline{v'\theta'}}
|
537
1690
|
{\overline{\DP{\theta}{z^*}}}
|
538
1691
|
\right)
|
539
1692
|
\DP{\overline{u}}{\phi}
|
540
1693
|
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
541
1694
|
\left( \rho_0
|
542
1695
|
\frac{\overline{v'\theta'}}
|
543
1696
|
{\overline{\DP{\theta}{z^*}}}
|
544
1697
|
\right)$%
|
1698
|
+
\lthtmlindisplaymathZ
|
1699
|
+
\lthtmlcheckvsize\clearpage}
|
1700
|
+
|
1701
|
+
{\newpage\clearpage
|
1702
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3515}%
|
1703
|
+
$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
545
1704
|
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
546
1705
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
547
1706
|
\rho_0 a \cos \phi
|
548
1707
|
\DP{\overline{u}}{z^*}
|
549
1708
|
\DP{}{\phi}
|
550
1709
|
\left( \cos \phi
|
551
1710
|
\frac{\overline{v'\theta'}}
|
552
1711
|
{\overline{\DP{\theta}{z^*}}}
|
553
1712
|
\right)$%
|
1713
|
+
\lthtmlindisplaymathZ
|
1714
|
+
\lthtmlcheckvsize\clearpage}
|
1715
|
+
|
1716
|
+
{\newpage\clearpage
|
1717
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3517}%
|
1718
|
+
$\displaystyle \qquad \qquad
|
554
1719
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
555
1720
|
\left( \rho_0
|
556
1721
|
\frac{\overline{v'\theta'}}
|
557
1722
|
{\overline{\DP{\theta}{z^*}}}
|
558
1723
|
\DP{\overline{u}}{\phi}
|
559
1724
|
\right)
|
560
1725
|
+ \Dinv{\rho_0 a}
|
561
1726
|
\rho_0
|
562
1727
|
\frac{\overline{v'\theta'}}
|
563
1728
|
{\overline{\DP{\theta}{z^*}}}
|
564
1729
|
\DP{}{z^*}
|
565
1730
|
\left(
|
566
1731
|
\DP{\overline{u}}{\phi}
|
567
1732
|
\right)$%
|
1733
|
+
\lthtmlindisplaymathZ
|
1734
|
+
\lthtmlcheckvsize\clearpage}
|
1735
|
+
|
1736
|
+
{\newpage\clearpage
|
1737
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3518}%
|
1738
|
+
$\displaystyle \qquad \qquad
|
568
1739
|
+ \frac{\tan \phi}{\rho_0 a}
|
569
1740
|
\DP{}{z^*}
|
570
1741
|
\left( \overline{u} \rho_0
|
571
1742
|
\frac{\overline{v'\theta'}}
|
572
1743
|
{\overline{\DP{\theta}{z^*}}}
|
573
1744
|
\right)
|
574
1745
|
- \frac{\tan \phi}{\rho_0 a}
|
575
1746
|
\rho_0
|
576
1747
|
\frac{\overline{v'\theta'}}
|
577
1748
|
{\overline{\DP{\theta}{z^*}}}
|
578
1749
|
\DP{}{z^*}
|
579
1750
|
\left( \overline{u}
|
580
1751
|
\right)$%
|
1752
|
+
\lthtmlindisplaymathZ
|
1753
|
+
\lthtmlcheckvsize\clearpage}
|
1754
|
+
|
1755
|
+
{\newpage\clearpage
|
1756
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3519}%
|
1757
|
+
$\displaystyle =
|
581
1758
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
582
1759
|
\left[
|
583
1760
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
584
1761
|
+ \rho_0 a \cos \phi
|
585
1762
|
\DP{\overline{u}}{z^*}
|
586
1763
|
\DP{}{\phi}
|
587
1764
|
\left( \cos \phi
|
588
1765
|
\frac{\overline{v'\theta'}}
|
589
1766
|
{\overline{\DP{\theta}{z^*}}}
|
590
1767
|
\right)
|
591
1768
|
\right]$%
|
1769
|
+
\lthtmlindisplaymathZ
|
1770
|
+
\lthtmlcheckvsize\clearpage}
|
1771
|
+
|
1772
|
+
{\newpage\clearpage
|
1773
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3520}%
|
1774
|
+
$\displaystyle \qquad
|
592
1775
|
+ \Dinv{\rho_0 a}
|
593
1776
|
\rho_0
|
594
1777
|
\frac{\overline{v'\theta'}}
|
595
1778
|
{\overline{\DP{\theta}{z^*}}}
|
596
1779
|
\DP{}{z^*}
|
597
1780
|
\left(
|
598
1781
|
\DP{\overline{u}}{\phi}
|
599
1782
|
\right)
|
600
1783
|
- \frac{\tan \phi}{\rho_0 a}
|
601
1784
|
\rho_0
|
602
1785
|
\frac{\overline{v'\theta'}}
|
603
1786
|
{\overline{\DP{\theta}{z^*}}}
|
604
1787
|
\DP{\overline{u}}{z^*}$%
|
1788
|
+
\lthtmlindisplaymathZ
|
1789
|
+
\lthtmlcheckvsize\clearpage}
|
1790
|
+
|
1791
|
+
{\newpage\clearpage
|
1792
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3521}%
|
1793
|
+
$\displaystyle \qquad
|
605
1794
|
+ \frac{1}{\rho_0 a \cos \phi}
|
606
1795
|
\DP{}{z^*}
|
607
1796
|
\left[
|
608
1797
|
\left( f \rho_0 a \cos \phi
|
609
1798
|
\frac{\overline{v'\theta'}}
|
610
1799
|
{\overline{\DP{\theta}{z^*}}}
|
611
1800
|
\right)
|
612
1801
|
- \rho_0 a \cos \phi \overline{w'u'}
|
613
1802
|
\right]$%
|
1803
|
+
\lthtmlindisplaymathZ
|
1804
|
+
\lthtmlcheckvsize\clearpage}
|
1805
|
+
|
1806
|
+
{\newpage\clearpage
|
1807
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3522}%
|
1808
|
+
$\displaystyle \qquad
|
614
1809
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
615
1810
|
\left( \rho_0
|
616
1811
|
\frac{\overline{v'\theta'}}
|
617
1812
|
{\overline{\DP{\theta}{z^*}}}
|
618
1813
|
\DP{\overline{u}}{\phi}
|
619
1814
|
\right)
|
620
1815
|
+ \frac{\tan \phi}{\rho_0 a}
|
621
1816
|
\DP{}{z^*}
|
622
1817
|
\left( \overline{u} \rho_0
|
623
1818
|
\frac{\overline{v'\theta'}}
|
624
1819
|
{\overline{\DP{\theta}{z^*}}}
|
625
1820
|
\right)$%
|
1821
|
+
\lthtmlindisplaymathZ
|
1822
|
+
\lthtmlcheckvsize\clearpage}
|
1823
|
+
|
1824
|
+
{\newpage\clearpage
|
1825
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3524}%
|
1826
|
+
$\displaystyle \qquad
|
626
1827
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
627
1828
|
\left[
|
628
1829
|
\rho_0 a \cos^2 \phi
|
629
1830
|
\frac{\overline{v'\theta'}}
|
630
1831
|
{\overline{\DP{\theta}{z^*}}}
|
631
1832
|
\DP{}{z^*}
|
632
1833
|
\left(
|
633
1834
|
\DP{\overline{u}}{\phi}
|
634
1835
|
\right)
|
635
1836
|
- \rho_0 a \cos^2 \phi \tan \phi
|
636
1837
|
\frac{\overline{v'\theta'}}
|
637
1838
|
{\overline{\DP{\theta}{z^*}}}
|
638
1839
|
\DP{\overline{u}}{z^*}
|
639
1840
|
\right]$%
|
1841
|
+
\lthtmlindisplaymathZ
|
1842
|
+
\lthtmlcheckvsize\clearpage}
|
1843
|
+
|
1844
|
+
{\newpage\clearpage
|
1845
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3526}%
|
1846
|
+
$\displaystyle \qquad
|
640
1847
|
+ \Dinv{\rho_0 a \cos \phi}
|
641
1848
|
\left[
|
642
1849
|
- \cos \phi
|
643
1850
|
\DP{}{z^*}
|
644
1851
|
\left( \rho_0
|
645
1852
|
\frac{\overline{v'\theta'}}
|
646
1853
|
{\overline{\DP{\theta}{z^*}}}
|
647
1854
|
\DP{\overline{u}}{\phi}
|
648
1855
|
\right)
|
649
1856
|
+ \cos \phi \tan \phi
|
650
1857
|
\DP{}{z^*}
|
651
1858
|
\left( \overline{u} \rho_0
|
652
1859
|
\frac{\overline{v'\theta'}}
|
653
1860
|
{\overline{\DP{\theta}{z^*}}}
|
654
1861
|
\right)
|
655
1862
|
\right]$%
|
1863
|
+
\lthtmlindisplaymathZ
|
1864
|
+
\lthtmlcheckvsize\clearpage}
|
1865
|
+
|
1866
|
+
{\newpage\clearpage
|
1867
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3529}%
|
1868
|
+
$\displaystyle \qquad
|
656
1869
|
+ \frac{1}{\rho_0 a \cos \phi}
|
657
1870
|
\DP{}{z^*}
|
658
1871
|
\left[
|
659
1872
|
f \rho_0 a \cos \phi
|
660
1873
|
\frac{\overline{v'\theta'}}
|
661
1874
|
{\overline{\DP{\theta}{z^*}}}
|
662
1875
|
- \rho_0 a \cos \phi \overline{w'u'}
|
663
1876
|
\right]$%
|
1877
|
+
\lthtmlindisplaymathZ
|
1878
|
+
\lthtmlcheckvsize\clearpage}
|
1879
|
+
|
1880
|
+
{\newpage\clearpage
|
1881
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3530}%
|
1882
|
+
$\displaystyle \qquad
|
664
1883
|
+ \Dinv{\rho_0 a \cos \phi}
|
665
1884
|
\DP{}{z^*}
|
666
1885
|
\left[
|
667
1886
|
- \rho_0 \cos \phi
|
668
1887
|
\frac{\overline{v'\theta'}}
|
669
1888
|
{\overline{\DP{\theta}{z^*}}}
|
670
1889
|
\DP{\overline{u}}{\phi}
|
671
1890
|
+ \sin \phi \overline{u} \rho_0
|
672
1891
|
\frac{\overline{v'\theta'}}
|
673
1892
|
{\overline{\DP{\theta}{z^*}}}
|
674
1893
|
\right]$%
|
1894
|
+
\lthtmlindisplaymathZ
|
1895
|
+
\lthtmlcheckvsize\clearpage}
|
1896
|
+
|
1897
|
+
{\newpage\clearpage
|
1898
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3531}%
|
1899
|
+
$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
|
675
1900
|
\left[
|
676
1901
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
677
1902
|
+ \rho_0 a \cos \phi
|
678
1903
|
\DP{\overline{u}}{z^*}
|
679
1904
|
\DP{}{\phi}
|
680
1905
|
\left( \cos \phi
|
681
1906
|
\frac{\overline{v'\theta'}}
|
682
1907
|
{\overline{\DP{\theta}{z^*}}}
|
683
1908
|
\right)
|
684
1909
|
\right]$%
|
1910
|
+
\lthtmlindisplaymathZ
|
1911
|
+
\lthtmlcheckvsize\clearpage}
|
1912
|
+
|
1913
|
+
{\newpage\clearpage
|
1914
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3533}%
|
1915
|
+
$\displaystyle =
|
685
1916
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
686
1917
|
\left[
|
687
1918
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
688
1919
|
\right]$%
|
1920
|
+
\lthtmlindisplaymathZ
|
1921
|
+
\lthtmlcheckvsize\clearpage}
|
1922
|
+
|
1923
|
+
{\newpage\clearpage
|
1924
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3534}%
|
1925
|
+
$\displaystyle \qquad
|
689
1926
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
690
1927
|
\left[
|
691
1928
|
\rho_0 a \cos^2 \phi
|
692
1929
|
\frac{\overline{v'\theta'}}
|
693
1930
|
{\overline{\DP{\theta}{z^*}}}
|
694
1931
|
\DP{}{\phi}
|
695
1932
|
\left(
|
696
1933
|
\DP{\overline{u}}{z^*}
|
697
1934
|
\right)
|
698
1935
|
+ \DP{\overline{u}}{z^*}
|
699
1936
|
\DP{}{\phi}
|
700
1937
|
\left(\rho_0 a \cos^2 \phi
|
701
1938
|
\frac{\overline{v'\theta'}}
|
702
1939
|
{\overline{\DP{\theta}{z^*}}}
|
703
1940
|
\right)
|
704
1941
|
\right]$%
|
1942
|
+
\lthtmlindisplaymathZ
|
1943
|
+
\lthtmlcheckvsize\clearpage}
|
1944
|
+
|
1945
|
+
{\newpage\clearpage
|
1946
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3535}%
|
1947
|
+
$\displaystyle =
|
705
1948
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
706
1949
|
\left[
|
707
1950
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
708
1951
|
\right]
|
709
1952
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
710
1953
|
\left[
|
711
1954
|
\DP{}{\phi}
|
712
1955
|
\left(\rho_0 a \cos^2 \phi
|
713
1956
|
\frac{\overline{v'\theta'}}
|
714
1957
|
{\overline{\DP{\theta}{z^*}}}
|
715
1958
|
\DP{\overline{u}}{z^*}
|
716
1959
|
\right)
|
717
1960
|
\right]$%
|
1961
|
+
\lthtmlindisplaymathZ
|
1962
|
+
\lthtmlcheckvsize\clearpage}
|
1963
|
+
|
1964
|
+
{\newpage\clearpage
|
1965
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3536}%
|
1966
|
+
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
718
1967
|
\DP{}{\phi}
|
719
1968
|
\left[
|
720
1969
|
- \rho_0 a \overline{v'u'} \cos^2 \phi
|
721
1970
|
+ \rho_0 a \cos^2 \phi
|
722
1971
|
\frac{\overline{v'\theta'}}
|
723
1972
|
{\overline{\DP{\theta}{z^*}}}
|
724
1973
|
\DP{\overline{u}}{z^*}
|
725
1974
|
\right]$%
|
1975
|
+
\lthtmlindisplaymathZ
|
1976
|
+
\lthtmlcheckvsize\clearpage}
|
1977
|
+
|
1978
|
+
{\newpage\clearpage
|
1979
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3537}%
|
1980
|
+
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
726
1981
|
\DP{}{\phi}
|
727
1982
|
\left[
|
728
1983
|
\rho_0 a \cos^2 \phi
|
729
1984
|
\left\{
|
730
1985
|
\DP{\overline{u}}{z^*}
|
731
1986
|
\frac{\overline{v'\theta'}}
|
732
1987
|
{\overline{\DP{\theta}{z^*}}}
|
733
1988
|
- \overline{v'u'}
|
734
1989
|
\right\}
|
735
1990
|
\right]$%
|
1991
|
+
\lthtmlindisplaymathZ
|
1992
|
+
\lthtmlcheckvsize\clearpage}
|
1993
|
+
|
1994
|
+
{\newpage\clearpage
|
1995
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3538}%
|
1996
|
+
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
736
1997
|
\DP{}{\phi}
|
737
1998
|
\left(
|
738
1999
|
\cos \phi F^{*}_{\phi}
|
739
2000
|
\right)$%
|
2001
|
+
\lthtmlindisplaymathZ
|
2002
|
+
\lthtmlcheckvsize\clearpage}
|
2003
|
+
|
2004
|
+
{\newpage\clearpage
|
2005
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3539}%
|
2006
|
+
$\displaystyle \frac{1}{\rho_0 a \cos \phi}
|
740
2007
|
\DP{}{z^*}
|
741
2008
|
\left[
|
742
2009
|
f \rho_0 a \cos \phi
|
743
2010
|
\frac{\overline{v'\theta'}}
|
744
2011
|
{\overline{\DP{\theta}{z^*}}}
|
745
2012
|
- \rho_0 a \cos \phi \overline{w'u'}
|
746
2013
|
\right]
|
747
2014
|
+ \Dinv{\rho_0 a \cos \phi}
|
748
2015
|
\DP{}{z^*}
|
749
2016
|
\left[
|
750
2017
|
- \rho_0 \cos \phi
|
751
2018
|
\frac{\overline{v'\theta'}}
|
752
2019
|
{\overline{\DP{\theta}{z^*}}}
|
753
2020
|
\DP{\overline{u}}{\phi}
|
754
2021
|
+ \sin \phi \overline{u} \rho_0
|
755
2022
|
\frac{\overline{v'\theta'}}
|
756
2023
|
{\overline{\DP{\theta}{z^*}}}
|
757
2024
|
\right]$%
|
2025
|
+
\lthtmlindisplaymathZ
|
2026
|
+
\lthtmlcheckvsize\clearpage}
|
2027
|
+
|
2028
|
+
{\newpage\clearpage
|
2029
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3540}%
|
2030
|
+
$\displaystyle =
|
758
2031
|
\frac{1}{\rho_0 a \cos \phi}
|
759
2032
|
\DP{}{z^*}
|
760
2033
|
\left[
|
761
2034
|
\rho_0 a \cos \phi
|
762
2035
|
\left\{
|
763
2036
|
f \frac{\overline{v'\theta'}}
|
764
2037
|
{\overline{\DP{\theta}{z^*}}}
|
765
2038
|
- \overline{w'u'}
|
766
2039
|
- \frac{\overline{v'\theta'}}
|
767
2040
|
{a \overline{\DP{\theta}{z^*}}}
|
768
2041
|
\DP{\overline{u}}{\phi}
|
769
2042
|
+ \sin \phi \overline{u}
|
770
2043
|
\frac{\overline{v'\theta'}}
|
771
2044
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
772
2045
|
\right\}
|
773
2046
|
\right]$%
|
2047
|
+
\lthtmlindisplaymathZ
|
2048
|
+
\lthtmlcheckvsize\clearpage}
|
2049
|
+
|
2050
|
+
{\newpage\clearpage
|
2051
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3541}%
|
2052
|
+
$\displaystyle =
|
774
2053
|
\frac{1}{\rho_0 a \cos \phi}
|
775
2054
|
\DP{}{z^*}
|
776
2055
|
\left[
|
777
2056
|
\rho_0 a \cos \phi
|
778
2057
|
\left\{
|
779
2058
|
f \frac{\overline{v'\theta'}}
|
780
2059
|
{\overline{\DP{\theta}{z^*}}}
|
781
2060
|
- \left(
|
782
2061
|
\cos \phi
|
783
2062
|
\DP{\overline{u}}{\phi}
|
784
2063
|
- \sin \phi \overline{u}
|
785
2064
|
\right)
|
786
2065
|
\frac{\overline{v'\theta'}}
|
787
2066
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
788
2067
|
- \overline{w'u'}
|
789
2068
|
\right\}
|
790
2069
|
\right]$%
|
2070
|
+
\lthtmlindisplaymathZ
|
2071
|
+
\lthtmlcheckvsize\clearpage}
|
2072
|
+
|
2073
|
+
{\newpage\clearpage
|
2074
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3543}%
|
2075
|
+
$\displaystyle =
|
791
2076
|
\frac{1}{\rho_0 a \cos \phi}
|
792
2077
|
\DP{}{z^*}
|
793
2078
|
\left[
|
794
2079
|
\rho_0 a \cos \phi
|
795
2080
|
\left\{
|
796
2081
|
\left( f
|
797
2082
|
- \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
|
798
2083
|
{a \cos \phi}
|
799
2084
|
\right)
|
800
2085
|
\frac{\overline{v'\theta'}}
|
801
2086
|
{\overline{\DP{\theta}{z^*}}}
|
802
2087
|
- \overline{w'u'}
|
803
2088
|
\right\}
|
804
2089
|
\right]$%
|
2090
|
+
\lthtmlindisplaymathZ
|
2091
|
+
\lthtmlcheckvsize\clearpage}
|
2092
|
+
|
2093
|
+
{\newpage\clearpage
|
2094
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3544}%
|
2095
|
+
$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
|
805
2096
|
\DP{F^{*}_{z}}{z^*}$%
|
2097
|
+
\lthtmlindisplaymathZ
|
2098
|
+
\lthtmlcheckvsize\clearpage}
|
2099
|
+
|
2100
|
+
{\newpage\clearpage
|
2101
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3545}%
|
2102
|
+
$\displaystyle \DP{\overline{u}}{t}
|
806
2103
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
807
2104
|
\left( \overline{u} \cos \phi \right)
|
808
2105
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
809
2106
|
- f \overline{v}^*
|
810
2107
|
- \overline{X}
|
811
2108
|
= \Dinv{\rho_0 a^2 \cos^2 \phi}
|
812
2109
|
\DP{}{\phi}
|
813
2110
|
\left(
|
814
2111
|
\cos \phi F^{*}_{\phi}
|
815
2112
|
\right)
|
816
2113
|
+ \frac{1}{\rho_0 a \cos \phi}
|
817
2114
|
\DP{F^{*}_{z}}{z^*},
|
818
2115
|
\nonumber$%
|
2116
|
+
\lthtmlindisplaymathZ
|
2117
|
+
\lthtmlcheckvsize\clearpage}
|
2118
|
+
|
2119
|
+
{\newpage\clearpage
|
2120
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3546}%
|
2121
|
+
$\displaystyle \DP{\overline{u}}{t}
|
819
2122
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
820
2123
|
\left( \overline{u} \cos \phi \right)
|
821
2124
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
822
2125
|
- f \overline{v}^*
|
823
2126
|
- \overline{X}
|
824
2127
|
= \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$%
|
2128
|
+
\lthtmlindisplaymathZ
|
2129
|
+
\lthtmlcheckvsize\clearpage}
|
2130
|
+
|
2131
|
+
{\newpage\clearpage
|
2132
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3547}%
|
2133
|
+
$\displaystyle \Ddiv{\Dvect{F}}
|
825
2134
|
= \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$%
|
2135
|
+
\lthtmlindisplaymathZ
|
2136
|
+
\lthtmlcheckvsize\clearpage}
|
2137
|
+
|
2138
|
+
{\newpage\clearpage
|
2139
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3548}%
|
2140
|
+
$\displaystyle \DP{\overline{\theta}}{t}
|
826
2141
|
+ \frac{1}{a}
|
827
2142
|
\left[
|
828
2143
|
\overline{v}^*
|
829
2144
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
830
2145
|
\left( \rho_0
|
831
2146
|
\frac{\overline{v'\theta'}}
|
832
2147
|
{\overline{\DP{\theta}{z^*}}}
|
833
2148
|
\right)
|
834
2149
|
\right]
|
835
2150
|
\DP{\overline{\theta}}{\phi}
|
836
2151
|
+ \left[
|
837
2152
|
\overline{w}^*
|
838
2153
|
- \Dinv{a \cos\phi}
|
839
2154
|
\DP{}{\phi}
|
840
2155
|
\left( \cos \phi
|
841
2156
|
\frac{\overline{v'\theta'}}
|
842
2157
|
{\overline{\DP{\theta}{z^*}}}
|
843
2158
|
\right)
|
844
2159
|
\right]
|
845
2160
|
\DP{\overline{\theta}}{z^*}
|
846
2161
|
- \overline{Q}$%
|
2162
|
+
\lthtmlindisplaymathZ
|
2163
|
+
\lthtmlcheckvsize\clearpage}
|
2164
|
+
|
2165
|
+
{\newpage\clearpage
|
2166
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3549}%
|
2167
|
+
$\displaystyle \qquad
|
847
2168
|
=
|
848
2169
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
849
2170
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$%
|
2171
|
+
\lthtmlindisplaymathZ
|
2172
|
+
\lthtmlcheckvsize\clearpage}
|
2173
|
+
|
2174
|
+
{\newpage\clearpage
|
2175
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3550}%
|
2176
|
+
$\displaystyle \DP{\overline{\theta}}{t}
|
850
2177
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
851
2178
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
852
2179
|
- \overline{Q}$%
|
2180
|
+
\lthtmlindisplaymathZ
|
2181
|
+
\lthtmlcheckvsize\clearpage}
|
2182
|
+
|
2183
|
+
{\newpage\clearpage
|
2184
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3551}%
|
2185
|
+
$\displaystyle \qquad
|
853
2186
|
= - \Dinv{\rho_0 a} \DP{}{z^*}
|
854
2187
|
\left( \rho_0
|
855
2188
|
\frac{\overline{v'\theta'}}
|
856
2189
|
{\overline{\DP{\theta}{z^*}}}
|
857
2190
|
\right) \DP{\overline{\theta}}{\phi}
|
858
2191
|
+ \Dinv{a \cos\phi}
|
859
2192
|
\DP{}{\phi}
|
860
2193
|
\left( \cos \phi
|
861
2194
|
\frac{\overline{v'\theta'}}
|
862
2195
|
{\overline{\DP{\theta}{z^*}}}
|
863
2196
|
\right) \DP{\overline{\theta}}{z^*}$%
|
2197
|
+
\lthtmlindisplaymathZ
|
2198
|
+
\lthtmlcheckvsize\clearpage}
|
2199
|
+
|
2200
|
+
{\newpage\clearpage
|
2201
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3552}%
|
2202
|
+
$\displaystyle \qquad \qquad
|
864
2203
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
865
2204
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2205
|
+
\lthtmlindisplaymathZ
|
2206
|
+
\lthtmlcheckvsize\clearpage}
|
2207
|
+
|
2208
|
+
{\newpage\clearpage
|
2209
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3553}%
|
2210
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
866
2211
|
\left( \rho_0
|
867
2212
|
\frac{\overline{v'\theta'}}
|
868
2213
|
{a \overline{\DP{\theta}{z^*}}}
|
869
2214
|
\right) \DP{\overline{\theta}}{\phi}
|
870
2215
|
+ \Dinv{a \cos\phi}
|
871
2216
|
\DP{}{\phi}
|
872
2217
|
\left( \cos \phi
|
873
2218
|
\frac{\overline{v'\theta'}}
|
874
2219
|
{\overline{\DP{\theta}{z^*}}}
|
875
2220
|
\right) \DP{\overline{\theta}}{z^*}$%
|
2221
|
+
\lthtmlindisplaymathZ
|
2222
|
+
\lthtmlcheckvsize\clearpage}
|
2223
|
+
|
2224
|
+
{\newpage\clearpage
|
2225
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3554}%
|
2226
|
+
$\displaystyle \qquad
|
876
2227
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
877
2228
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2229
|
+
\lthtmlindisplaymathZ
|
2230
|
+
\lthtmlcheckvsize\clearpage}
|
2231
|
+
|
2232
|
+
{\newpage\clearpage
|
2233
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3556}%
|
2234
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
878
2235
|
\left( \rho_0
|
879
2236
|
\frac{\overline{v'\theta'}}
|
880
2237
|
{a \overline{\DP{\theta}{z^*}}}
|
881
2238
|
\DP{\overline{\theta}}{\phi}
|
882
2239
|
\right)
|
883
2240
|
+ \frac{\overline{v'\theta'}}
|
884
2241
|
{a \overline{\DP{\theta}{z^*}}}
|
885
2242
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}$%
|
2243
|
+
\lthtmlindisplaymathZ
|
2244
|
+
\lthtmlcheckvsize\clearpage}
|
2245
|
+
|
2246
|
+
{\newpage\clearpage
|
2247
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3557}%
|
2248
|
+
$\displaystyle \qquad
|
886
2249
|
+ \Dinv{a \cos\phi}
|
887
2250
|
\left[
|
888
2251
|
\DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
|
889
2252
|
\frac{1}{\overline{\DP{\theta}{z^*}}}
|
890
2253
|
+ \cos \phi \overline{v'\theta'}
|
891
2254
|
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
892
2255
|
\right] \DP{\overline{\theta}}{z^*}$%
|
2256
|
+
\lthtmlindisplaymathZ
|
2257
|
+
\lthtmlcheckvsize\clearpage}
|
2258
|
+
|
2259
|
+
{\newpage\clearpage
|
2260
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3560}%
|
2261
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
893
2262
|
\left( \rho_0
|
894
2263
|
\frac{\overline{v'\theta'}}
|
895
2264
|
{a \overline{\DP{\theta}{z^*}}}
|
896
2265
|
\DP{\overline{\theta}}{\phi}
|
897
2266
|
\right)
|
898
2267
|
+ \frac{\overline{v'\theta'}}
|
899
2268
|
{a \overline{\DP{\theta}{z^*}}}
|
900
2269
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
901
2270
|
+ \Dinv{a}
|
902
2271
|
\overline{v'\theta'}
|
903
2272
|
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
904
2273
|
\DP{\overline{\theta}}{z^*}
|
905
2274
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2275
|
+
\lthtmlindisplaymathZ
|
2276
|
+
\lthtmlcheckvsize\clearpage}
|
2277
|
+
|
2278
|
+
{\newpage\clearpage
|
2279
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3562}%
|
2280
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
906
2281
|
\left[ \rho_0
|
907
2282
|
\frac{\overline{v'\theta'}}
|
908
2283
|
{a \overline{\DP{\theta}{z^*}}}
|
909
2284
|
\DP{\overline{\theta}}{\phi}
|
910
2285
|
+ \rho_0\overline{w'\theta'}
|
911
2286
|
\right]
|
912
2287
|
+ \frac{\overline{v'\theta'}}{a}
|
913
2288
|
\left[
|
914
2289
|
\frac{1}
|
915
2290
|
{\overline{\DP{\theta}{z^*}}}
|
916
2291
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
917
2292
|
+ \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
918
2293
|
\DP{\overline{\theta}}{z^*}
|
919
2294
|
\right]$%
|
2295
|
+
\lthtmlindisplaymathZ
|
2296
|
+
\lthtmlcheckvsize\clearpage}
|
2297
|
+
|
2298
|
+
{\newpage\clearpage
|
2299
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3564}%
|
2300
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
920
2301
|
\left[ \rho_0
|
921
2302
|
\left(
|
922
2303
|
\frac{\overline{v'\theta'}}
|
923
2304
|
{a \overline{\DP{\theta}{z^*}}}
|
924
2305
|
\DP{\overline{\theta}}{\phi}
|
925
2306
|
+ \overline{w'\theta'}
|
926
2307
|
\right)
|
927
2308
|
\right]
|
928
2309
|
+ \frac{\overline{v'\theta'}}{a}
|
929
2310
|
\DP{}{\phi}
|
930
2311
|
\left(
|
931
2312
|
\frac{ \DP{\overline{\theta}}{z^*} }
|
932
2313
|
{ \overline{\DP{\theta}{z^*}} }
|
933
2314
|
\right)$%
|
2315
|
+
\lthtmlindisplaymathZ
|
2316
|
+
\lthtmlcheckvsize\clearpage}
|
2317
|
+
|
2318
|
+
{\newpage\clearpage
|
2319
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3566}%
|
2320
|
+
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
934
2321
|
\left[ \rho_0
|
935
2322
|
\left(
|
936
2323
|
\frac{\overline{v'\theta'}}
|
937
2324
|
{a \overline{\DP{\theta}{z^*}}}
|
938
2325
|
\DP{\overline{\theta}}{\phi}
|
939
2326
|
+ \overline{w'\theta'}
|
940
2327
|
\right)
|
941
2328
|
\right].$%
|
2329
|
+
\lthtmlindisplaymathZ
|
2330
|
+
\lthtmlcheckvsize\clearpage}
|
2331
|
+
|
2332
|
+
{\newpage\clearpage
|
2333
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3567}%
|
2334
|
+
$\displaystyle \DP{\overline{\theta}}{t}
|
942
2335
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
943
2336
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
944
2337
|
- \overline{Q}
|
945
2338
|
=
|
946
2339
|
- \Dinv{\rho_0} \DP{}{z^*}
|
947
2340
|
\left[ \rho_0
|
948
2341
|
\left(
|
949
2342
|
\frac{\overline{v'\theta'}}
|
950
2343
|
{a \overline{\DP{\theta}{z^*}}}
|
951
2344
|
\DP{\overline{\theta}}{\phi}
|
952
2345
|
+ \overline{w'\theta'}
|
953
2346
|
\right)
|
954
2347
|
\right].$%
|
2348
|
+
\lthtmlindisplaymathZ
|
2349
|
+
\lthtmlcheckvsize\clearpage}
|
2350
|
+
|
2351
|
+
{\newpage\clearpage
|
2352
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3569}%
|
2353
|
+
$ v$%
|
2354
|
+
\lthtmlinlinemathZ
|
2355
|
+
\lthtmlcheckvsize\clearpage}
|
2356
|
+
|
2357
|
+
{\newpage\clearpage
|
2358
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3570}%
|
2359
|
+
$\displaystyle \DP{}{t}
|
955
2360
|
\left[
|
956
2361
|
\overline{v}^*
|
957
2362
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
958
2363
|
\left( \rho_0
|
959
2364
|
\frac{\overline{v'\theta'}}
|
960
2365
|
{\overline{\DP{\theta}{z^*}}}
|
961
2366
|
\right)
|
962
2367
|
\right]
|
963
2368
|
+ \frac{1}{a}
|
964
2369
|
\left[
|
965
2370
|
\overline{v}^*
|
966
2371
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
967
2372
|
\left( \rho_0
|
968
2373
|
\frac{\overline{v'\theta'}}
|
969
2374
|
{\overline{\DP{\theta}{z^*}}}
|
970
2375
|
\right)
|
971
2376
|
\right]
|
972
2377
|
\DP{}{\phi}
|
973
2378
|
\left[
|
974
2379
|
\overline{v}^*
|
975
2380
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
976
2381
|
\left( \rho_0
|
977
2382
|
\frac{\overline{v'\theta'}}
|
978
2383
|
{\overline{\DP{\theta}{z^*}}}
|
979
2384
|
\right)
|
980
2385
|
\right]$%
|
2386
|
+
\lthtmlindisplaymathZ
|
2387
|
+
\lthtmlcheckvsize\clearpage}
|
2388
|
+
|
2389
|
+
{\newpage\clearpage
|
2390
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3571}%
|
2391
|
+
$\displaystyle \qquad \qquad
|
981
2392
|
+ \left[
|
982
2393
|
\overline{w}^*
|
983
2394
|
- \Dinv{a \cos\phi}
|
984
2395
|
\DP{}{\phi}
|
985
2396
|
\left( \cos \phi
|
986
2397
|
\frac{\overline{v'\theta'}}
|
987
2398
|
{\overline{\DP{\theta}{z^*}}}
|
988
2399
|
\right)
|
989
2400
|
\right]
|
990
2401
|
\DP{}{z^*}
|
991
2402
|
\left[
|
992
2403
|
\overline{v}^*
|
993
2404
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
994
2405
|
\left( \rho_0
|
995
2406
|
\frac{\overline{v'\theta'}}
|
996
2407
|
{\overline{\DP{\theta}{z^*}}}
|
997
2408
|
\right)
|
998
2409
|
\right]$%
|
2410
|
+
\lthtmlindisplaymathZ
|
2411
|
+
\lthtmlcheckvsize\clearpage}
|
2412
|
+
|
2413
|
+
{\newpage\clearpage
|
2414
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3572}%
|
2415
|
+
$\displaystyle \qquad \qquad
|
999
2416
|
+ f \overline{u}
|
1000
2417
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1001
2418
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1002
2419
|
- \overline{Y}$%
|
2420
|
+
\lthtmlindisplaymathZ
|
2421
|
+
\lthtmlcheckvsize\clearpage}
|
2422
|
+
|
2423
|
+
{\newpage\clearpage
|
2424
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3573}%
|
2425
|
+
$\displaystyle \qquad
|
1003
2426
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
1004
2427
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
1005
2428
|
- \overline{u'^2}\frac{\tan\phi}{a},$%
|
2429
|
+
\lthtmlindisplaymathZ
|
2430
|
+
\lthtmlcheckvsize\clearpage}
|
2431
|
+
|
2432
|
+
{\newpage\clearpage
|
2433
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3574}%
|
2434
|
+
$\displaystyle f \overline{u}
|
1006
2435
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1007
2436
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}$%
|
2437
|
+
\lthtmlindisplaymathZ
|
2438
|
+
\lthtmlcheckvsize\clearpage}
|
2439
|
+
|
2440
|
+
{\newpage\clearpage
|
2441
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3575}%
|
2442
|
+
$\displaystyle \qquad
|
1008
2443
|
= - \DP{}{t}
|
1009
2444
|
\left[
|
1010
2445
|
\overline{v}^*
|
1011
2446
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1012
2447
|
\left( \rho_0
|
1013
2448
|
\frac{\overline{v'\theta'}}
|
1014
2449
|
{\overline{\DP{\theta}{z^*}}}
|
1015
2450
|
\right)
|
1016
2451
|
\right]
|
1017
2452
|
- \frac{1}{a}
|
1018
2453
|
\left[
|
1019
2454
|
\overline{v}^*
|
1020
2455
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1021
2456
|
\left( \rho_0
|
1022
2457
|
\frac{\overline{v'\theta'}}
|
1023
2458
|
{\overline{\DP{\theta}{z^*}}}
|
1024
2459
|
\right)
|
1025
2460
|
\right]
|
1026
2461
|
\DP{}{\phi}
|
1027
2462
|
\left[
|
1028
2463
|
\overline{v}^*
|
1029
2464
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1030
2465
|
\left( \rho_0
|
1031
2466
|
\frac{\overline{v'\theta'}}
|
1032
2467
|
{\overline{\DP{\theta}{z^*}}}
|
1033
2468
|
\right)
|
1034
2469
|
\right]$%
|
2470
|
+
\lthtmlindisplaymathZ
|
2471
|
+
\lthtmlcheckvsize\clearpage}
|
2472
|
+
|
2473
|
+
{\newpage\clearpage
|
2474
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3576}%
|
2475
|
+
$\displaystyle \qquad \qquad
|
1035
2476
|
- \left[
|
1036
2477
|
\overline{w}^*
|
1037
2478
|
- \Dinv{a \cos\phi}
|
1038
2479
|
\DP{}{\phi}
|
1039
2480
|
\left( \cos \phi
|
1040
2481
|
\frac{\overline{v'\theta'}}
|
1041
2482
|
{\overline{\DP{\theta}{z^*}}}
|
1042
2483
|
\right)
|
1043
2484
|
\right]
|
1044
2485
|
\DP{}{z^*}
|
1045
2486
|
\left[
|
1046
2487
|
\overline{v}^*
|
1047
2488
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1048
2489
|
\left( \rho_0
|
1049
2490
|
\frac{\overline{v'\theta'}}
|
1050
2491
|
{\overline{\DP{\theta}{z^*}}}
|
1051
2492
|
\right)
|
1052
2493
|
\right]$%
|
2494
|
+
\lthtmlindisplaymathZ
|
2495
|
+
\lthtmlcheckvsize\clearpage}
|
2496
|
+
|
2497
|
+
{\newpage\clearpage
|
2498
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3577}%
|
2499
|
+
$\displaystyle \qquad \qquad
|
1053
2500
|
- \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
|
1054
2501
|
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
|
1055
2502
|
- \overline{u'^2} \frac{\tan\phi}{a}
|
1056
2503
|
+ \overline{Y}$%
|
2504
|
+
\lthtmlindisplaymathZ
|
2505
|
+
\lthtmlcheckvsize\clearpage}
|
2506
|
+
|
2507
|
+
{\newpage\clearpage
|
2508
|
+
\lthtmlinlinemathA{tex2html_wrap_inline3579}%
|
2509
|
+
$ G$%
|
2510
|
+
\lthtmlinlinemathZ
|
2511
|
+
\lthtmlcheckvsize\clearpage}
|
2512
|
+
|
2513
|
+
{\newpage\clearpage
|
2514
|
+
\lthtmlinlinemathA{tex2html_wrap_indisplay3582}%
|
2515
|
+
$\displaystyle \overline{u}
|
1057
2516
|
\left( f + \frac{\tan\phi}{a} \overline{u} \right)
|
1058
2517
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1059
2518
|
= G.$%
|
2519
|
+
\lthtmlindisplaymathZ
|
2520
|
+
\lthtmlcheckvsize\clearpage}
|
2521
|
+
|
2522
|
+
{\newpage\clearpage
|
2523
|
+
\setcounter{equation}{17}
|
2524
|
+
\lthtmldisplayA{subequations3584}%
|
2525
|
+
\setcounter{equation}{16}
|
2526
|
+
\begin{subequations}\begin{align}&
|
1060
2527
|
\DP{\overline{u}}{t}
|
1061
2528
|
+ \overline{v}^*
|
1062
2529
|
\left[
|
1063
2530
|
\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
|
1064
2531
|
\right]
|
1065
2532
|
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
1066
2533
|
- \overline{X}
|
1067
2534
|
= \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
|
1068
2535
|
\overline{u}
|
1069
2536
|
\left( f + \overline{u}\frac{\tan\phi}{a} \right)
|
1070
2537
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
1071
2538
|
= G.
|
1072
2539
|
\end{align}
|
1073
2540
|
\begin{align}
|
1074
2541
|
\DP{\overline{\Phi}}{z^*}
|
1075
2542
|
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
1076
2543
|
= 0.
|
1077
2544
|
\end{align}
|
1078
2545
|
\begin{align}
|
1079
2546
|
\Dinv{a\cos\phi}&\left[
|
1080
2547
|
\DP{}{\phi}(\overline{v}^*\cos\phi)\right]
|
1081
2548
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
|
1082
2549
|
= 0.
|
1083
2550
|
\end{align}
|
1084
2551
|
\begin{align}
|
1085
2552
|
\DP{\overline{\theta}}{t}
|
1086
2553
|
+ \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
|
1087
2554
|
+ \overline{w}^*\DP{\overline{\theta}}{z^*}
|
1088
2555
|
- \overline{Q} =
|
1089
2556
|
- \Dinv{\rho_0}\DP{}{z^*}
|
1090
2557
|
\left[\rho_0
|
1091
2558
|
\left(
|
1092
2559
|
\overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
|
1093
2560
|
{a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
|
1094
2561
|
\right)
|
1095
2562
|
\right].
|
1096
2563
|
\end{align}\end{subequations}%
|
2564
|
+
\lthtmldisplayZ
|
2565
|
+
\lthtmlcheckvsize\clearpage}
|
2566
|
+
|
2567
|
+
|
2568
|
+
\end{document}
|