gphys 1.2.2.1 → 1.4.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +8 -17
- data/.rspec +2 -0
- data/.travis.yml +3 -0
- data/ChangeLog +5762 -753
- data/LICENSE.txt +30 -18
- data/Rakefile +1 -0
- data/bin/console +14 -0
- data/bin/gpcat +43 -2
- data/bin/gpcut +16 -0
- data/bin/gpvect +167 -15
- data/bin/gpview +254 -51
- data/bin/setup +7 -0
- data/dim_op.c +1220 -0
- data/doc/attribute.html +19 -0
- data/doc/attributenetcdf.html +15 -0
- data/doc/axis.html +387 -0
- data/doc/coordmapping.html +111 -0
- data/doc/coordtransform.html +36 -0
- data/doc/dclext.html +821 -0
- data/doc/derivative/gphys-derivative.html +100 -0
- data/doc/derivative/index.html +21 -0
- data/doc/derivative/index.rd +14 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +158 -0
- data/doc/derivative/math-doc/document/document.css +30 -0
- data/doc/derivative/math-doc/document/document.html +57 -0
- data/doc/derivative/math-doc/document/images.aux +1 -0
- data/doc/derivative/math-doc/document/images.log +385 -0
- data/doc/derivative/math-doc/document/images.pl +186 -0
- data/doc/derivative/math-doc/document/images.tex +364 -0
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +57 -0
- data/doc/derivative/math-doc/document/labels.pl +13 -0
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +238 -0
- data/doc/derivative/math-doc/document/node2.html +75 -0
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/numru-derivative.html +158 -0
- data/doc/ep_flux/ep_flux.html +469 -0
- data/doc/ep_flux/ggraph_on_merdional_section.html +71 -0
- data/doc/ep_flux/index.html +31 -0
- data/doc/ep_flux/index.rd +24 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +2018 -0
- data/doc/ep_flux/math-doc/document/WARNINGS +1 -0
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +30 -0
- data/doc/ep_flux/math-doc/document/document.html +101 -0
- data/doc/ep_flux/math-doc/document/images.aux +1 -0
- data/doc/ep_flux/math-doc/document/images.log +1375 -0
- data/doc/ep_flux/math-doc/document/images.pl +1328 -0
- data/doc/ep_flux/math-doc/document/images.tex +1471 -0
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +101 -0
- data/doc/ep_flux/math-doc/document/internals.pl +258 -0
- data/doc/ep_flux/math-doc/document/labels.pl +265 -0
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +104 -0
- data/doc/ep_flux/math-doc/document/node10.html +164 -0
- data/doc/ep_flux/math-doc/document/node11.html +86 -0
- data/doc/ep_flux/math-doc/document/node12.html +166 -0
- data/doc/ep_flux/math-doc/document/node13.html +897 -0
- data/doc/ep_flux/math-doc/document/node14.html +1065 -0
- data/doc/ep_flux/math-doc/document/node15.html +72 -0
- data/doc/ep_flux/math-doc/document/node16.html +81 -0
- data/doc/ep_flux/math-doc/document/node2.html +82 -0
- data/doc/ep_flux/math-doc/document/node3.html +91 -0
- data/doc/ep_flux/math-doc/document/node4.html +149 -0
- data/doc/ep_flux/math-doc/document/node5.html +330 -0
- data/doc/ep_flux/math-doc/document/node6.html +99 -0
- data/doc/ep_flux/math-doc/document/node7.html +98 -0
- data/doc/ep_flux/math-doc/document/node8.html +83 -0
- data/doc/ep_flux/math-doc/document/node9.html +140 -0
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/gdir.html +412 -0
- data/doc/gdir_client.html +16 -0
- data/doc/gdir_connect_ftp-like.html +61 -0
- data/doc/gdir_server.html +45 -0
- data/doc/ggraph.html +1119 -0
- data/doc/gpcat.html +45 -0
- data/doc/gpcut.html +47 -0
- data/doc/gphys.html +624 -0
- data/doc/gphys_fft.html +324 -0
- data/doc/gphys_grads_io.html +69 -0
- data/doc/gphys_grib_io.html +82 -0
- data/doc/gphys_io.html +183 -0
- data/doc/gphys_io_common.html +18 -0
- data/doc/gphys_netcdf_io.html +283 -0
- data/doc/gplist.html +24 -0
- data/doc/gpmath.html +52 -0
- data/doc/gpmaxmin.html +32 -0
- data/doc/gpprint.html +35 -0
- data/doc/gpview.html +349 -0
- data/doc/grads2nc_with_gphys.html +21 -0
- data/doc/grads_gridded.html +307 -0
- data/doc/grib.html +149 -0
- data/doc/grid.html +224 -0
- data/doc/index.html +145 -0
- data/doc/index.rd +138 -0
- data/doc/netcdf_convention.html +136 -0
- data/doc/unumeric.html +176 -0
- data/doc/update +69 -0
- data/doc/update_rdoc +8 -0
- data/doc/varray.html +299 -0
- data/doc/varraycomposite.html +67 -0
- data/ext_init.c +1 -0
- data/extconf.rb +16 -6
- data/gphys.gemspec +33 -26
- data/interpo.c +1 -1
- data/lib/numru/dclext.rb +718 -546
- data/lib/numru/derivative.rb +2 -0
- data/lib/numru/ganalysis.rb +38 -0
- data/lib/numru/ganalysis/beta_plane.rb +103 -0
- data/lib/numru/ganalysis/eof.rb +3 -2
- data/lib/numru/ganalysis/fitting.rb +559 -0
- data/lib/numru/ganalysis/histogram.rb +36 -19
- data/lib/numru/ganalysis/log_p.rb +130 -0
- data/lib/numru/ganalysis/met.rb +396 -2
- data/lib/numru/ganalysis/met_z.rb +300 -0
- data/lib/numru/ganalysis/planet.rb +17 -7
- data/lib/numru/ganalysis/qg.rb +685 -0
- data/lib/numru/ganalysis/sigma_coord.rb +90 -0
- data/lib/numru/gdir.rb +2 -1
- data/lib/numru/ggraph.rb +204 -60
- data/lib/numru/ggraph_on_merdional_section.rb +1 -1
- data/lib/numru/gphys.rb +6 -0
- data/lib/numru/gphys/assoccoords.rb +18 -3
- data/lib/numru/gphys/axis.rb +209 -8
- data/lib/numru/gphys/derivative.rb +11 -0
- data/lib/numru/gphys/gphys.rb +539 -48
- data/lib/numru/gphys/gphys_dim_op.rb +331 -0
- data/lib/numru/gphys/gphys_fft.rb +48 -2
- data/lib/numru/gphys/gphys_io.rb +241 -13
- data/lib/numru/gphys/gphys_netcdf_io.rb +77 -39
- data/lib/numru/gphys/gphys_nusdas_io.rb +3 -0
- data/lib/numru/gphys/grib.rb +133 -54
- data/lib/numru/gphys/grib_params.rb +26 -3
- data/lib/numru/gphys/grid.rb +75 -34
- data/lib/numru/gphys/interpolate.rb +24 -10
- data/lib/numru/gphys/mdstorage.rb +160 -0
- data/lib/numru/gphys/netcdf_convention.rb +4 -2
- data/lib/numru/gphys/subsetmapping.rb +0 -1
- data/lib/numru/gphys/unumeric.rb +50 -5
- data/lib/numru/gphys/varray.rb +15 -30
- data/lib/numru/gphys/varraycomposite.rb +107 -24
- data/lib/numru/gphys/varraynetcdf.rb +9 -3
- data/lib/numru/gphys/version.rb +5 -0
- data/sample/druby_cli1.rb +2 -0
- data/sample/druby_cli2.rb +0 -6
- data/sample/druby_serv2.rb +0 -13
- data/spec/gphys_spec.rb +11 -0
- data/spec/spec_helper.rb +2 -0
- data/test/test_assoccoords.rb +102 -0
- data/test/test_axis.rb +61 -0
- data/test/test_fitting.rb +116 -0
- data/test/test_gphys.rb +20 -0
- data/test/test_met_z.rb +96 -0
- data/test/test_sigma_coord.rb +50 -0
- data/{test → test_old}/eof_slp.rb +0 -0
- data/{test → test_old}/mltbit.dat +0 -0
- data/{test → test_old}/test_ep_flux.rb +0 -0
- data/{test → test_old}/test_multibitIO.rb +0 -0
- metadata +530 -191
- data/README.md +0 -29
- data/lib/gphys.rb +0 -2
- data/lib/numru/dclext_datetime_ax.rb +0 -220
- data/lib/version.rb +0 -3
@@ -0,0 +1,1065 @@
|
|
1
|
+
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
+
|
3
|
+
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
+
patched version by: Kenshi Muto, Debian Project.
|
5
|
+
LaTeX2HTML 2K.1beta (1.48),
|
6
|
+
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
+
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
+
* with significant contributions from:
|
9
|
+
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
+
<HTML>
|
11
|
+
<HEAD>
|
12
|
+
<TITLE>$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
|
13
|
+
<META NAME="description" CONTENT="$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B">
|
14
|
+
<META NAME="keywords" CONTENT="document">
|
15
|
+
<META NAME="resource-type" CONTENT="document">
|
16
|
+
<META NAME="distribution" CONTENT="global">
|
17
|
+
|
18
|
+
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
+
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
+
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
+
|
22
|
+
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
+
|
24
|
+
<LINK REL="previous" HREF="node13.html">
|
25
|
+
<LINK REL="up" HREF="node11.html">
|
26
|
+
<LINK REL="next" HREF="node15.html">
|
27
|
+
</HEAD>
|
28
|
+
|
29
|
+
<BODY >
|
30
|
+
<!--Navigation Panel-->
|
31
|
+
<A NAME="tex2html206"
|
32
|
+
HREF="node15.html">
|
33
|
+
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
34
|
+
<A NAME="tex2html202"
|
35
|
+
HREF="node11.html">
|
36
|
+
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
37
|
+
<A NAME="tex2html198"
|
38
|
+
HREF="node13.html">
|
39
|
+
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
40
|
+
<A NAME="tex2html204"
|
41
|
+
HREF="node1.html">
|
42
|
+
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
43
|
+
<BR>
|
44
|
+
<B> :</B> <A NAME="tex2html207"
|
45
|
+
HREF="node15.html">$B;29MJ88%(B</A>
|
46
|
+
<B> :</B> <A NAME="tex2html203"
|
47
|
+
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
48
|
+
<B> :</B> <A NAME="tex2html199"
|
49
|
+
HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
|
50
|
+
  <B> <A NAME="tex2html205"
|
51
|
+
HREF="node1.html">$BL\<!(B</A></B>
|
52
|
+
<BR>
|
53
|
+
<BR>
|
54
|
+
<!--End of Navigation Panel-->
|
55
|
+
|
56
|
+
<H1><A NAME="SECTION004300000000000000000">
|
57
|
+
$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
|
58
|
+
</H1>
|
59
|
+
|
60
|
+
(<A HREF="node13.html#eq:new_euler_mean_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r(B EP $B%U%i%C%/%9(B, $B;D:9=[4D$rMQ$$$F=q$-D>$9(B.
|
61
|
+
EP $B%U%i%C%/%9(B, $B;D:9=[4D$O0J2<$N$h$&$KDj5A$9$k(B.
|
62
|
+
|
63
|
+
<DIV ALIGN="CENTER"><A NAME="eq:residual_v_app"></A><A NAME="eq:residual_w_app"></A><!-- MATH
|
64
|
+
\begin{subequations}
|
65
|
+
\begin{align}
|
66
|
+
\overline{v}^*
|
67
|
+
& =
|
68
|
+
\overline{v}
|
69
|
+
- \Dinv{\rho_0} \DP{}{z^*}
|
70
|
+
\left( \rho_0
|
71
|
+
\frac{\overline{v'\theta'}}
|
72
|
+
{\overline{\DP{\theta}{z^*}}}
|
73
|
+
\right)
|
74
|
+
\\
|
75
|
+
\overline{w}^*
|
76
|
+
& = \overline{w}
|
77
|
+
+ \Dinv{a \cos\phi}
|
78
|
+
\DP{}{\phi}
|
79
|
+
\left( \cos \phi
|
80
|
+
\frac{\overline{v'\theta'}}
|
81
|
+
{\overline{\DP{\theta}{z^*}}}
|
82
|
+
\right)
|
83
|
+
\end{align}
|
84
|
+
|
85
|
+
\end{subequations}
|
86
|
+
-->
|
87
|
+
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
88
|
+
<TR VALIGN="MIDDLE">
|
89
|
+
<TD NOWRAP ALIGN="CENTER"><IMG
|
90
|
+
WIDTH="555" HEIGHT="129" ALIGN="BOTTOM" BORDER="0"
|
91
|
+
SRC="img124.png"
|
92
|
+
ALT="\begin{subequations}\begin{align}
|
93
|
\overline{v}^*
|
1
94
|
& =
|
2
95
|
\overline{v}
|
3
96
|
- \Dinv{...
|
97
|
+
...\theta'}}
|
4
98
|
{\overline{\DP{\theta}{z^*}}}
|
5
99
|
\right)
|
6
100
|
\end{align}\end{subequations}"></TD></TR>
|
101
|
+
</TABLE></DIV>
|
102
|
+
<BR CLEAR="ALL">
|
103
|
+
|
104
|
+
<BR>
|
105
|
+
<DIV ALIGN="CENTER">
|
106
|
+
<!-- MATH
|
107
|
+
\begin{eqnarray*}
|
108
|
+
{F_\phi} &=& \rho_0 a
|
109
|
+
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
110
|
+
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
111
|
+
\overline{u'v'}\right) \\
|
112
|
+
{F_z^*} &=& \rho_0 a
|
113
|
+
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
114
|
+
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
115
|
+
\overline{u'w'}\right)
|
116
|
+
|
117
|
+
\end{eqnarray*}
|
118
|
+
-->
|
119
|
+
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
120
|
+
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
121
|
+
WIDTH="26" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
122
|
+
SRC="img125.png"
|
123
|
+
ALT="$\displaystyle {F_\phi}$"></TD>
|
124
|
+
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
125
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
126
|
+
SRC="img5.png"
|
127
|
+
ALT="$\displaystyle =$"></TD>
|
128
|
+
<TD ALIGN="LEFT" NOWRAP><IMG
|
129
|
+
WIDTH="225" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
130
|
+
SRC="img126.png"
|
131
|
+
ALT="$\displaystyle \rho_0 a
|
132
|
+
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
133
|
+
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
134
|
+
\overline{u'v'}\right)$"></TD>
|
135
|
+
<TD WIDTH=10 ALIGN="RIGHT">
|
136
|
+
</TD></TR>
|
137
|
+
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
138
|
+
WIDTH="27" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
|
139
|
+
SRC="img127.png"
|
140
|
+
ALT="$\displaystyle {F_z^*}$"></TD>
|
141
|
+
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
142
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
143
|
+
SRC="img5.png"
|
144
|
+
ALT="$\displaystyle =$"></TD>
|
145
|
+
<TD ALIGN="LEFT" NOWRAP><IMG
|
146
|
+
WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
147
|
+
SRC="img128.png"
|
148
|
+
ALT="$\displaystyle \rho_0 a
|
149
|
+
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \p...
|
150
|
+
...rac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
151
|
+
\overline{u'w'}\right)$"></TD>
|
152
|
+
<TD WIDTH=10 ALIGN="RIGHT">
|
153
|
+
</TD></TR>
|
154
|
+
</TABLE></DIV>
|
155
|
+
<BR CLEAR="ALL"><P></P>
|
156
|
+
|
157
|
+
<BR>
|
158
|
+
<BR>
|
159
|
+
|
160
|
+
$B$^$:O"B3$N<0$r=q$-49$($k(B.
|
161
|
+
(<A HREF="node13.html#eq:new_euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
162
|
+
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
163
|
+
<P></P>
|
164
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
165
|
+
<TR VALIGN="MIDDLE">
|
166
|
+
<TD> </TD>
|
167
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
168
|
+
WIDTH="362" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
169
|
+
SRC="img129.png"
|
170
|
+
ALT="$\displaystyle \Dinv{a \cos \phi}
|
7
171
|
\DP{}{\phi}\left[
|
8
172
|
\left\{
|
9
173
|
\overline{v}^*
|
174
|
+
...v'\theta'}}
|
10
175
|
{\overline{\DP{\theta}{z^*}}}
|
11
176
|
\right)
|
12
177
|
\right\}
|
13
178
|
\cos\phi \right]$"></TD>
|
179
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
180
|
+
</TD></TR>
|
181
|
+
<TR VALIGN="MIDDLE">
|
182
|
+
<TD> </TD>
|
183
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
184
|
+
WIDTH="458" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
185
|
+
SRC="img130.png"
|
186
|
+
ALT="$\displaystyle \qquad
|
14
187
|
+ \Dinv{\rho_0}
|
15
188
|
\DP{}{z^*}
|
16
189
|
\left[ \rho_0
|
17
190
|
\left\{
|
18
191
|
\o...
|
192
|
+
...ne{v'\theta'}}
|
19
193
|
{\overline{\DP{\theta}{z^*}}}
|
20
194
|
\right)
|
21
195
|
\right\}
|
22
196
|
\right]
|
23
197
|
= 0,$"></TD>
|
198
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
199
|
+
</TD></TR>
|
200
|
+
<TR VALIGN="MIDDLE">
|
201
|
+
<TD> </TD>
|
202
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
203
|
+
WIDTH="298" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
204
|
+
SRC="img131.png"
|
205
|
+
ALT="$\displaystyle \Dinv{a \cos \phi}
|
24
206
|
\DP{}{\phi}
|
25
207
|
\left(
|
26
208
|
\overline{v}^* \cos\phi
|
27
209
|
\right)
|
28
210
|
+ \Dinv{\rho_0}
|
29
211
|
\DP{}{z^*}
|
30
212
|
\left( \rho_0 \overline{w}^* \right)$"></TD>
|
213
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
214
|
+
</TD></TR>
|
215
|
+
<TR VALIGN="MIDDLE">
|
216
|
+
<TD> </TD>
|
217
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
218
|
+
WIDTH="704" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
219
|
+
SRC="img132.png"
|
220
|
+
ALT="$\displaystyle \qquad
|
31
221
|
+ \Dinv{a \cos \phi}
|
32
222
|
\DP{}{\phi}
|
33
223
|
\left\{
|
34
224
|
\Dinv{\rho_0...
|
225
|
+
...c{\overline{v'\theta'}}
|
35
226
|
{\overline{\DP{\theta}{z^*}}}
|
36
227
|
\right)
|
37
228
|
\right\}
|
38
229
|
= 0.$"></TD>
|
230
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
231
|
+
</TD></TR>
|
232
|
+
</TABLE></DIV>
|
233
|
+
<BR CLEAR="ALL"><P></P>
|
234
|
+
$B$3$NBh;09`$HBh;M9`$@$1$r<h$j=P$9$H(B
|
235
|
+
<P></P>
|
236
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
237
|
+
<TR VALIGN="MIDDLE">
|
238
|
+
<TD> </TD>
|
239
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
240
|
+
WIDTH="648" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
241
|
+
SRC="img133.png"
|
242
|
+
ALT="$\displaystyle \qquad
|
39
243
|
\Dinv{a \cos \phi}
|
40
244
|
\DP{}{\phi}
|
41
245
|
\left\{
|
42
246
|
\Dinv{\rho_0}...
|
247
|
+
...
|
43
248
|
\frac{\overline{v'\theta'}}
|
44
249
|
{\overline{\DP{\theta}{z^*}}}
|
45
250
|
\right)
|
46
251
|
\right\}$"></TD>
|
252
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
253
|
+
</TD></TR>
|
254
|
+
<TR VALIGN="MIDDLE">
|
255
|
+
<TD> </TD>
|
256
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
257
|
+
WIDTH="597" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
258
|
+
SRC="img134.png"
|
259
|
+
ALT="$\displaystyle =
|
47
260
|
\Dinv{a \cos \phi}
|
48
261
|
\left[
|
49
262
|
\DP{}{\phi}
|
50
263
|
\left\{
|
51
264
|
\Dinv{\rho...
|
265
|
+
...overline{v'\theta'}}
|
52
266
|
{\overline{\DP{\theta}{z^*}}}
|
53
267
|
\right)
|
54
268
|
\right\}
|
55
269
|
\right]$"></TD>
|
270
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
271
|
+
</TD></TR>
|
272
|
+
<TR VALIGN="MIDDLE">
|
273
|
+
<TD> </TD>
|
274
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
275
|
+
WIDTH="601" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
276
|
+
SRC="img135.png"
|
277
|
+
ALT="$\displaystyle =
|
56
278
|
\Dinv{a \cos \phi}
|
57
279
|
\left[
|
58
280
|
\Dinv{\rho_0}
|
59
281
|
\DP{}{\phi}
|
60
282
|
\left...
|
283
|
+
...overline{v'\theta'}}
|
61
284
|
{\overline{\DP{\theta}{z^*}}}
|
62
285
|
\right)
|
63
286
|
\right\}
|
64
287
|
\right]$"></TD>
|
288
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
289
|
+
</TD></TR>
|
290
|
+
<TR VALIGN="MIDDLE">
|
291
|
+
<TD> </TD>
|
292
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
293
|
+
WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
294
|
+
SRC="img136.png"
|
295
|
+
ALT="$\displaystyle = 0.$"></TD>
|
296
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
297
|
+
</TD></TR>
|
298
|
+
</TABLE></DIV>
|
299
|
+
<BR CLEAR="ALL"><P></P>
|
300
|
+
$B$7$?$,$C$F(B, $BO"B3$N<0$O0J2<$N$h$&$K$J$k(B.
|
301
|
+
<BR>
|
302
|
+
<DIV ALIGN="CENTER">
|
303
|
+
<!-- MATH
|
304
|
+
\begin{eqnarray}
|
305
|
+
\Dinv{a \cos \phi}
|
306
|
+
\DP{}{\phi}
|
307
|
+
\left(
|
308
|
+
\overline{v}^* \cos\phi
|
309
|
+
\right)
|
310
|
+
+ \Dinv{\rho_0}
|
311
|
+
\DP{}{z^*}
|
312
|
+
\left( \rho_0 \overline{w}^* \right) = 0.
|
313
|
+
\end{eqnarray}
|
314
|
+
-->
|
315
|
+
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
316
|
+
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
317
|
+
WIDTH="338" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
318
|
+
SRC="img137.png"
|
319
|
+
ALT="$\displaystyle \Dinv{a \cos \phi}
|
320
|
+
\DP{}{\phi}
|
321
|
+
\left(
|
322
|
+
\overline{v}^* \cos\phi
|
323
|
+
\right)
|
324
|
+
+ \Dinv{\rho_0}
|
325
|
+
\DP{}{z^*}
|
326
|
+
\left( \rho_0 \overline{w}^* \right) = 0.$"></TD>
|
327
|
+
<TD> </TD>
|
328
|
+
<TD> </TD>
|
329
|
+
<TD WIDTH=10 ALIGN="RIGHT">
|
330
|
+
(A.14)</TD></TR>
|
331
|
+
</TABLE></DIV>
|
332
|
+
<BR CLEAR="ALL"><P></P>
|
333
|
+
|
334
|
+
<BR>
|
335
|
+
<BR>
|
336
|
+
|
337
|
+
$B<!$K(B <IMG
|
338
|
+
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
339
|
+
SRC="img45.png"
|
340
|
+
ALT="$ u$"> $B$N<0$r=q$-49$($k(B.
|
341
|
+
(<A HREF="node13.html#eq:new_euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
342
|
+
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
343
|
+
<P></P>
|
344
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
345
|
+
<TR VALIGN="MIDDLE">
|
346
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
347
|
+
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
348
|
+
SRC="img88.png"
|
349
|
+
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
350
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
351
|
+
WIDTH="574" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
352
|
+
SRC="img138.png"
|
353
|
+
ALT="$\displaystyle + \Dinv{a}
|
65
354
|
\left[
|
66
355
|
\overline{v}^*
|
67
356
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
357
|
+
...eta'}}
|
68
358
|
{\overline{\DP{\theta}{z^*}}}
|
69
359
|
\right)
|
70
360
|
\right]
|
71
361
|
\DP{\overline{u}}{z^*}$"></TD>
|
362
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
363
|
+
</TD></TR>
|
364
|
+
<TR VALIGN="MIDDLE">
|
365
|
+
<TD> </TD>
|
366
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
367
|
+
WIDTH="627" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
368
|
+
SRC="img139.png"
|
369
|
+
ALT="$\displaystyle \qquad \qquad
|
72
370
|
- f
|
73
371
|
\left[
|
74
372
|
\overline{v}^*
|
75
373
|
+ \Dinv{\rho_0} \D...
|
374
|
+
...ne{v'\theta'}}
|
76
375
|
{\overline{\DP{\theta}{z^*}}}
|
77
376
|
\right)
|
78
377
|
\right]
|
79
378
|
- \overline{X}$"></TD>
|
379
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
380
|
+
</TD></TR>
|
381
|
+
<TR VALIGN="MIDDLE">
|
382
|
+
<TD> </TD>
|
383
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
384
|
+
WIDTH="408" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
385
|
+
SRC="img140.png"
|
386
|
+
ALT="$\displaystyle \qquad
|
80
387
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
81
388
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$"></TD>
|
389
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
390
|
+
</TD></TR>
|
391
|
+
<TR VALIGN="MIDDLE">
|
392
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
393
|
+
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
394
|
+
SRC="img88.png"
|
395
|
+
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
396
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
397
|
+
WIDTH="339" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
398
|
+
SRC="img141.png"
|
399
|
+
ALT="$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
|
82
400
|
+ \overline{w...
|
401
|
+
...ine{v}^*
|
83
402
|
- \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
|
84
403
|
- \overline{X}$"></TD>
|
404
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
405
|
+
</TD></TR>
|
406
|
+
<TR VALIGN="MIDDLE">
|
407
|
+
<TD> </TD>
|
408
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
409
|
+
WIDTH="507" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
410
|
+
SRC="img142.png"
|
411
|
+
ALT="$\displaystyle \qquad
|
85
412
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^...
|
413
|
+
...line{v'\theta'}}
|
86
414
|
{\overline{\DP{\theta}{z^*}}}
|
87
415
|
\right) \DP{\overline{u}}{z^*}$"></TD>
|
416
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
417
|
+
</TD></TR>
|
418
|
+
<TR VALIGN="MIDDLE">
|
419
|
+
<TD> </TD>
|
420
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
421
|
+
WIDTH="384" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
422
|
+
SRC="img143.png"
|
423
|
+
ALT="$\displaystyle \qquad \qquad
|
88
424
|
+ f \Dinv{\rho_0} \DP{}{z^*}
|
89
425
|
\left( \rho_0
|
90
426
|
\fra...
|
427
|
+
...\DP{\theta}{z^*}}}
|
91
428
|
\right)
|
92
429
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$"></TD>
|
430
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
431
|
+
</TD></TR>
|
432
|
+
<TR VALIGN="MIDDLE">
|
433
|
+
<TD> </TD>
|
434
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
435
|
+
WIDTH="493" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
436
|
+
SRC="img144.png"
|
437
|
+
ALT="$\displaystyle \qquad \qquad
|
93
438
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
94
439
|
\left( \rho_0
|
95
440
|
\fra...
|
441
|
+
...( \rho_0
|
96
442
|
\frac{\overline{v'\theta'}}
|
97
443
|
{\overline{\DP{\theta}{z^*}}}
|
98
444
|
\right),$"></TD>
|
445
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
446
|
+
</TD></TR>
|
447
|
+
<TR VALIGN="MIDDLE">
|
448
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
449
|
+
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
450
|
+
SRC="img88.png"
|
451
|
+
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
452
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
453
|
+
WIDTH="342" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
454
|
+
SRC="img145.png"
|
455
|
+
ALT="$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
99
456
|
\left( \overli...
|
457
|
+
...)
|
100
458
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
101
459
|
- f \overline{v}^*
|
102
460
|
- \overline{X}$"></TD>
|
461
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
462
|
+
</TD></TR>
|
463
|
+
<TR VALIGN="MIDDLE">
|
464
|
+
<TD> </TD>
|
465
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
466
|
+
WIDTH="559" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
467
|
+
SRC="img146.png"
|
468
|
+
ALT="$\displaystyle \qquad
|
103
469
|
= - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
104
470
|
\DP{}{\phi} (\rho_0 a...
|
471
|
+
...line{v'\theta'}}
|
105
472
|
{\overline{\DP{\theta}{z^*}}}
|
106
473
|
\right) \DP{\overline{u}}{z^*}$"></TD>
|
474
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
475
|
+
</TD></TR>
|
476
|
+
<TR VALIGN="MIDDLE">
|
477
|
+
<TD> </TD>
|
478
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
479
|
+
WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
480
|
+
SRC="img147.png"
|
481
|
+
ALT="$\displaystyle \qquad \qquad
|
107
482
|
+ \frac{1}{\rho_0 a \cos \phi}
|
108
483
|
\DP{}{z^*}
|
109
484
|
\left...
|
485
|
+
... \frac{1}{\rho_0 a \cos \phi}
|
110
486
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
|
487
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
488
|
+
</TD></TR>
|
489
|
+
<TR VALIGN="MIDDLE">
|
490
|
+
<TD> </TD>
|
491
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
492
|
+
WIDTH="485" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
493
|
+
SRC="img148.png"
|
494
|
+
ALT="$\displaystyle \qquad \qquad
|
111
495
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
112
496
|
\left( \rho_0
|
113
497
|
\fra...
|
498
|
+
...t( \rho_0
|
114
499
|
\frac{\overline{v'\theta'}}
|
115
500
|
{\overline{\DP{\theta}{z^*}}}
|
116
501
|
\right)$"></TD>
|
502
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
503
|
+
<A NAME="eq:tem-u-tochuu">(A.15)</A></TD></TR>
|
504
|
+
</TABLE></DIV>
|
505
|
+
<BR CLEAR="ALL"><P></P>
|
506
|
+
(<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$N1&JU$r0J2<$N$h$&$KJQ7A$9$k(B.
|
507
|
+
<P></P>
|
508
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
509
|
+
<TR VALIGN="MIDDLE">
|
510
|
+
<TD> </TD>
|
511
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
512
|
+
WIDTH="594" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
513
|
+
SRC="img149.png"
|
514
|
+
ALT="$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
117
515
|
\DP{}{\phi} (\rho_0 a \overline...
|
516
|
+
...\cos \phi
|
118
517
|
\frac{\overline{v'\theta'}}
|
119
518
|
{\overline{\DP{\theta}{z^*}}}
|
120
519
|
\right)$"></TD>
|
520
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
521
|
+
</TD></TR>
|
522
|
+
<TR VALIGN="MIDDLE">
|
523
|
+
<TD> </TD>
|
524
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
525
|
+
WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
526
|
+
SRC="img147.png"
|
527
|
+
ALT="$\displaystyle \qquad \qquad
|
121
528
|
+ \frac{1}{\rho_0 a \cos \phi}
|
122
529
|
\DP{}{z^*}
|
123
530
|
\left...
|
531
|
+
... \frac{1}{\rho_0 a \cos \phi}
|
124
532
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
|
533
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
534
|
+
</TD></TR>
|
535
|
+
<TR VALIGN="MIDDLE">
|
536
|
+
<TD> </TD>
|
537
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
538
|
+
WIDTH="460" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
539
|
+
SRC="img150.png"
|
540
|
+
ALT="$\displaystyle \qquad \qquad
|
125
541
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
126
542
|
\left( \rho_0
|
127
543
|
\fra...
|
544
|
+
...rline{\DP{\theta}{z^*}}}
|
128
545
|
\DP{}{z^*}
|
129
546
|
\left(
|
130
547
|
\DP{\overline{u}}{\phi}
|
131
548
|
\right)$"></TD>
|
549
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
550
|
+
</TD></TR>
|
551
|
+
<TR VALIGN="MIDDLE">
|
552
|
+
<TD> </TD>
|
553
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
554
|
+
WIDTH="443" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
555
|
+
SRC="img151.png"
|
556
|
+
ALT="$\displaystyle \qquad \qquad
|
132
557
|
+ \frac{\tan \phi}{\rho_0 a}
|
133
558
|
\DP{}{z^*}
|
134
559
|
\left( \...
|
560
|
+
...eta'}}
|
135
561
|
{\overline{\DP{\theta}{z^*}}}
|
136
562
|
\DP{}{z^*}
|
137
563
|
\left( \overline{u}
|
138
564
|
\right)$"></TD>
|
565
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
566
|
+
</TD></TR>
|
567
|
+
<TR VALIGN="MIDDLE">
|
568
|
+
<TD> </TD>
|
569
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
570
|
+
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
571
|
+
SRC="img152.png"
|
572
|
+
ALT="$\displaystyle =
|
139
573
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
140
574
|
\left[
|
141
575
|
- \DP{}{\phi} (\rho_0 ...
|
576
|
+
...
|
142
577
|
\frac{\overline{v'\theta'}}
|
143
578
|
{\overline{\DP{\theta}{z^*}}}
|
144
579
|
\right)
|
145
580
|
\right]$"></TD>
|
581
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
582
|
+
</TD></TR>
|
583
|
+
<TR VALIGN="MIDDLE">
|
584
|
+
<TD> </TD>
|
585
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
586
|
+
WIDTH="377" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
587
|
+
SRC="img153.png"
|
588
|
+
ALT="$\displaystyle \qquad
|
146
589
|
+ \Dinv{\rho_0 a}
|
147
590
|
\rho_0
|
148
591
|
\frac{\overline{v'\theta'}}
|
592
|
+
...ac{\overline{v'\theta'}}
|
149
593
|
{\overline{\DP{\theta}{z^*}}}
|
150
594
|
\DP{\overline{u}}{z^*}$"></TD>
|
595
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
596
|
+
</TD></TR>
|
597
|
+
<TR VALIGN="MIDDLE">
|
598
|
+
<TD> </TD>
|
599
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
600
|
+
WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
601
|
+
SRC="img154.png"
|
602
|
+
ALT="$\displaystyle \qquad
|
151
603
|
+ \frac{1}{\rho_0 a \cos \phi}
|
152
604
|
\DP{}{z^*}
|
153
605
|
\left[
|
154
606
|
\lef...
|
607
|
+
...line{\DP{\theta}{z^*}}}
|
155
608
|
\right)
|
156
609
|
- \rho_0 a \cos \phi \overline{w'u'}
|
157
610
|
\right]$"></TD>
|
611
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
612
|
+
</TD></TR>
|
613
|
+
<TR VALIGN="MIDDLE">
|
614
|
+
<TD> </TD>
|
615
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
616
|
+
WIDTH="423" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
617
|
+
SRC="img155.png"
|
618
|
+
ALT="$\displaystyle \qquad
|
158
619
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
159
620
|
\left( \rho_0
|
160
621
|
\frac{\over...
|
622
|
+
...u} \rho_0
|
161
623
|
\frac{\overline{v'\theta'}}
|
162
624
|
{\overline{\DP{\theta}{z^*}}}
|
163
625
|
\right)$"></TD>
|
626
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
627
|
+
</TD></TR>
|
628
|
+
<TR VALIGN="MIDDLE">
|
629
|
+
<TD> </TD>
|
630
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
631
|
+
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
632
|
+
SRC="img152.png"
|
633
|
+
ALT="$\displaystyle =
|
164
634
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
165
635
|
\left[
|
166
636
|
- \DP{}{\phi} (\rho_0 ...
|
637
|
+
...
|
167
638
|
\frac{\overline{v'\theta'}}
|
168
639
|
{\overline{\DP{\theta}{z^*}}}
|
169
640
|
\right)
|
170
641
|
\right]$"></TD>
|
642
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
643
|
+
</TD></TR>
|
644
|
+
<TR VALIGN="MIDDLE">
|
645
|
+
<TD> </TD>
|
646
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
647
|
+
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
648
|
+
SRC="img156.png"
|
649
|
+
ALT="$\displaystyle \qquad
|
171
650
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
172
651
|
\left[
|
173
652
|
\rho_0 a \cos^2...
|
653
|
+
...ine{v'\theta'}}
|
174
654
|
{\overline{\DP{\theta}{z^*}}}
|
175
655
|
\DP{\overline{u}}{z^*}
|
176
656
|
\right]$"></TD>
|
657
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
658
|
+
</TD></TR>
|
659
|
+
<TR VALIGN="MIDDLE">
|
660
|
+
<TD> </TD>
|
661
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
662
|
+
WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
663
|
+
SRC="img154.png"
|
664
|
+
ALT="$\displaystyle \qquad
|
177
665
|
+ \frac{1}{\rho_0 a \cos \phi}
|
178
666
|
\DP{}{z^*}
|
179
667
|
\left[
|
180
668
|
\lef...
|
669
|
+
...line{\DP{\theta}{z^*}}}
|
181
670
|
\right)
|
182
671
|
- \rho_0 a \cos \phi \overline{w'u'}
|
183
672
|
\right]$"></TD>
|
673
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
674
|
+
</TD></TR>
|
675
|
+
<TR VALIGN="MIDDLE">
|
676
|
+
<TD> </TD>
|
677
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
678
|
+
WIDTH="580" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
679
|
+
SRC="img157.png"
|
680
|
+
ALT="$\displaystyle \qquad
|
184
681
|
+ \Dinv{\rho_0 a \cos \phi}
|
185
682
|
\left[
|
186
683
|
- \cos \phi
|
187
684
|
\DP{}{...
|
685
|
+
...
|
188
686
|
\frac{\overline{v'\theta'}}
|
189
687
|
{\overline{\DP{\theta}{z^*}}}
|
190
688
|
\right)
|
191
689
|
\right]$"></TD>
|
690
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
691
|
+
</TD></TR>
|
692
|
+
<TR VALIGN="MIDDLE">
|
693
|
+
<TD> </TD>
|
694
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
695
|
+
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
696
|
+
SRC="img152.png"
|
697
|
+
ALT="$\displaystyle =
|
192
698
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
193
699
|
\left[
|
194
700
|
- \DP{}{\phi} (\rho_0 ...
|
701
|
+
...
|
195
702
|
\frac{\overline{v'\theta'}}
|
196
703
|
{\overline{\DP{\theta}{z^*}}}
|
197
704
|
\right)
|
198
705
|
\right]$"></TD>
|
706
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
707
|
+
</TD></TR>
|
708
|
+
<TR VALIGN="MIDDLE">
|
709
|
+
<TD> </TD>
|
710
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
711
|
+
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
712
|
+
SRC="img156.png"
|
713
|
+
ALT="$\displaystyle \qquad
|
199
714
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
200
715
|
\left[
|
201
716
|
\rho_0 a \cos^2...
|
717
|
+
...ine{v'\theta'}}
|
202
718
|
{\overline{\DP{\theta}{z^*}}}
|
203
719
|
\DP{\overline{u}}{z^*}
|
204
720
|
\right]$"></TD>
|
721
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
722
|
+
</TD></TR>
|
723
|
+
<TR VALIGN="MIDDLE">
|
724
|
+
<TD> </TD>
|
725
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
726
|
+
WIDTH="427" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
727
|
+
SRC="img158.png"
|
728
|
+
ALT="$\displaystyle \qquad
|
205
729
|
+ \frac{1}{\rho_0 a \cos \phi}
|
206
730
|
\DP{}{z^*}
|
207
731
|
\left[
|
208
732
|
f \r...
|
733
|
+
...}
|
209
734
|
{\overline{\DP{\theta}{z^*}}}
|
210
735
|
- \rho_0 a \cos \phi \overline{w'u'}
|
211
736
|
\right]$"></TD>
|
737
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
738
|
+
</TD></TR>
|
739
|
+
<TR VALIGN="MIDDLE">
|
740
|
+
<TD> </TD>
|
741
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
742
|
+
WIDTH="441" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
743
|
+
SRC="img159.png"
|
744
|
+
ALT="$\displaystyle \qquad
|
212
745
|
+ \Dinv{\rho_0 a \cos \phi}
|
213
746
|
\DP{}{z^*}
|
214
747
|
\left[
|
215
748
|
- \rho_...
|
749
|
+
...u} \rho_0
|
216
750
|
\frac{\overline{v'\theta'}}
|
217
751
|
{\overline{\DP{\theta}{z^*}}}
|
218
752
|
\right]$"></TD>
|
753
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
754
|
+
<A NAME="eq:tem-u-uhen">(A.16)</A></TD></TR>
|
755
|
+
</TABLE></DIV>
|
756
|
+
<BR CLEAR="ALL"><P></P>
|
757
|
+
(<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh0l9`$HBhFs9`$@$1<h$j=P$9$H(B
|
758
|
+
<P></P>
|
759
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
760
|
+
<TR VALIGN="MIDDLE">
|
761
|
+
<TD> </TD>
|
762
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
763
|
+
WIDTH="537" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
764
|
+
SRC="img160.png"
|
765
|
+
ALT="$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
|
219
766
|
\left[
|
220
767
|
- \DP{}{\phi} (\rho_0 a \...
|
768
|
+
...
|
221
769
|
\frac{\overline{v'\theta'}}
|
222
770
|
{\overline{\DP{\theta}{z^*}}}
|
223
771
|
\right)
|
224
772
|
\right]$"></TD>
|
773
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
774
|
+
</TD></TR>
|
775
|
+
<TR VALIGN="MIDDLE">
|
776
|
+
<TD> </TD>
|
777
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
778
|
+
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
779
|
+
SRC="img156.png"
|
780
|
+
ALT="$\displaystyle \qquad
|
225
781
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
226
782
|
\left[
|
227
783
|
\rho_0 a \cos^2...
|
784
|
+
...ine{v'\theta'}}
|
228
785
|
{\overline{\DP{\theta}{z^*}}}
|
229
786
|
\DP{\overline{u}}{z^*}
|
230
787
|
\right]$"></TD>
|
788
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
789
|
+
</TD></TR>
|
790
|
+
<TR VALIGN="MIDDLE">
|
791
|
+
<TD> </TD>
|
792
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
793
|
+
WIDTH="299" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
|
794
|
+
SRC="img161.png"
|
795
|
+
ALT="$\displaystyle =
|
231
796
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
232
797
|
\left[
|
233
798
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
234
799
|
\right]$"></TD>
|
800
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
801
|
+
</TD></TR>
|
802
|
+
<TR VALIGN="MIDDLE">
|
803
|
+
<TD> </TD>
|
804
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
805
|
+
WIDTH="587" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
806
|
+
SRC="img162.png"
|
807
|
+
ALT="$\displaystyle \qquad
|
235
808
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
236
809
|
\left[
|
237
810
|
\rho_0 a \cos^2...
|
811
|
+
...
|
238
812
|
\frac{\overline{v'\theta'}}
|
239
813
|
{\overline{\DP{\theta}{z^*}}}
|
240
814
|
\right)
|
241
815
|
\right]$"></TD>
|
816
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
817
|
+
</TD></TR>
|
818
|
+
<TR VALIGN="MIDDLE">
|
819
|
+
<TD> </TD>
|
820
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
821
|
+
WIDTH="630" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
822
|
+
SRC="img163.png"
|
823
|
+
ALT="$\displaystyle =
|
242
824
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
243
825
|
\left[
|
244
826
|
- \DP{}{\phi} (\rho_0 ...
|
827
|
+
...ta'}}
|
245
828
|
{\overline{\DP{\theta}{z^*}}}
|
246
829
|
\DP{\overline{u}}{z^*}
|
247
830
|
\right)
|
248
831
|
\right]$"></TD>
|
832
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
833
|
+
</TD></TR>
|
834
|
+
<TR VALIGN="MIDDLE">
|
835
|
+
<TD> </TD>
|
836
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
837
|
+
WIDTH="451" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
838
|
+
SRC="img164.png"
|
839
|
+
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
249
840
|
\DP{}{\phi}
|
250
841
|
\left[
|
251
842
|
- \rho_0 a...
|
843
|
+
...ine{v'\theta'}}
|
252
844
|
{\overline{\DP{\theta}{z^*}}}
|
253
845
|
\DP{\overline{u}}{z^*}
|
254
846
|
\right]$"></TD>
|
847
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
848
|
+
</TD></TR>
|
849
|
+
<TR VALIGN="MIDDLE">
|
850
|
+
<TD> </TD>
|
851
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
852
|
+
WIDTH="393" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
853
|
+
SRC="img165.png"
|
854
|
+
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
255
855
|
\DP{}{\phi}
|
256
856
|
\left[
|
257
857
|
\rho_0 a \...
|
858
|
+
...'\theta'}}
|
258
859
|
{\overline{\DP{\theta}{z^*}}}
|
259
860
|
- \overline{v'u'}
|
260
861
|
\right\}
|
261
862
|
\right]$"></TD>
|
863
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
864
|
+
</TD></TR>
|
865
|
+
<TR VALIGN="MIDDLE">
|
866
|
+
<TD> </TD>
|
867
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
868
|
+
WIDTH="222" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
869
|
+
SRC="img166.png"
|
870
|
+
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
262
871
|
\DP{}{\phi}
|
263
872
|
\left(
|
264
873
|
\cos \phi F^{*}_{\phi}
|
265
874
|
\right)$"></TD>
|
875
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
876
|
+
</TD></TR>
|
877
|
+
</TABLE></DIV>
|
878
|
+
<BR CLEAR="ALL"><P></P>
|
879
|
+
(<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh;09`$HBh;M9`$@$1<h$j=P$9$H(B
|
880
|
+
<P></P>
|
881
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
882
|
+
<TR VALIGN="MIDDLE">
|
883
|
+
<TD> </TD>
|
884
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
885
|
+
WIDTH="775" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
886
|
+
SRC="img167.png"
|
887
|
+
ALT="$\displaystyle \frac{1}{\rho_0 a \cos \phi}
|
266
888
|
\DP{}{z^*}
|
267
889
|
\left[
|
268
890
|
f \rho_0 a \co...
|
891
|
+
...u} \rho_0
|
269
892
|
\frac{\overline{v'\theta'}}
|
270
893
|
{\overline{\DP{\theta}{z^*}}}
|
271
894
|
\right]$"></TD>
|
895
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
896
|
+
</TD></TR>
|
897
|
+
<TR VALIGN="MIDDLE">
|
898
|
+
<TD> </TD>
|
899
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
900
|
+
WIDTH="595" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
901
|
+
SRC="img168.png"
|
902
|
+
ALT="$\displaystyle =
|
272
903
|
\frac{1}{\rho_0 a \cos \phi}
|
273
904
|
\DP{}{z^*}
|
274
905
|
\left[
|
275
906
|
\rho_0 a \...
|
907
|
+
...rline{v'\theta'}}
|
276
908
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
277
909
|
\right\}
|
278
910
|
\right]$"></TD>
|
911
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
912
|
+
</TD></TR>
|
913
|
+
<TR VALIGN="MIDDLE">
|
914
|
+
<TD> </TD>
|
915
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
916
|
+
WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
917
|
+
SRC="img169.png"
|
918
|
+
ALT="$\displaystyle =
|
279
919
|
\frac{1}{\rho_0 a \cos \phi}
|
280
920
|
\DP{}{z^*}
|
281
921
|
\left[
|
282
922
|
\rho_0 a \...
|
923
|
+
...{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
283
924
|
- \overline{w'u'}
|
284
925
|
\right\}
|
285
926
|
\right]$"></TD>
|
927
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
928
|
+
</TD></TR>
|
929
|
+
<TR VALIGN="MIDDLE">
|
930
|
+
<TD> </TD>
|
931
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
932
|
+
WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
933
|
+
SRC="img169.png"
|
934
|
+
ALT="$\displaystyle =
|
286
935
|
\frac{1}{\rho_0 a \cos \phi}
|
287
936
|
\DP{}{z^*}
|
288
937
|
\left[
|
289
938
|
\rho_0 a \...
|
939
|
+
...{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
290
940
|
- \overline{w'u'}
|
291
941
|
\right\}
|
292
942
|
\right]$"></TD>
|
943
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
944
|
+
</TD></TR>
|
945
|
+
<TR VALIGN="MIDDLE">
|
946
|
+
<TD> </TD>
|
947
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
948
|
+
WIDTH="481" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
|
949
|
+
SRC="img170.png"
|
950
|
+
ALT="$\displaystyle =
|
293
951
|
\frac{1}{\rho_0 a \cos \phi}
|
294
952
|
\DP{}{z^*}
|
295
953
|
\left[
|
296
954
|
\rho_0 a \...
|
955
|
+
...'\theta'}}
|
297
956
|
{\overline{\DP{\theta}{z^*}}}
|
298
957
|
- \overline{w'u'}
|
299
958
|
\right\}
|
300
959
|
\right]$"></TD>
|
960
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
961
|
+
</TD></TR>
|
962
|
+
<TR VALIGN="MIDDLE">
|
963
|
+
<TD> </TD>
|
964
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
965
|
+
WIDTH="136" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
966
|
+
SRC="img171.png"
|
967
|
+
ALT="$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
|
301
968
|
\DP{F^{*}_{z}}{z^*}$"></TD>
|
969
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
970
|
+
</TD></TR>
|
971
|
+
</TABLE></DIV>
|
972
|
+
<BR CLEAR="ALL"><P></P>
|
973
|
+
$B0J>e$h$j(B, (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$O<!$N$h$&$K$J$k(B.
|
974
|
+
<P></P>
|
975
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
976
|
+
<TR VALIGN="MIDDLE">
|
977
|
+
<TD> </TD>
|
978
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
979
|
+
WIDTH="736" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
|
980
|
+
SRC="img172.png"
|
981
|
+
ALT="$\displaystyle \DP{\overline{u}}{t}
|
302
982
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
|
983
|
+
...hi}
|
303
984
|
\right)
|
304
985
|
+ \frac{1}{\rho_0 a \cos \phi}
|
305
986
|
\DP{F^{*}_{z}}{z^*},
|
306
987
|
\nonumber$"></TD>
|
988
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
989
|
+
</TD></TR>
|
990
|
+
<TR VALIGN="MIDDLE">
|
991
|
+
<TD> </TD>
|
992
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
993
|
+
WIDTH="518" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
994
|
+
SRC="img173.png"
|
995
|
+
ALT="$\displaystyle \DP{\overline{u}}{t}
|
307
996
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
|
997
|
+
...\overline{v}^*
|
308
998
|
- \overline{X}
|
309
999
|
= \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$"></TD>
|
1000
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1001
|
+
</TD></TR>
|
1002
|
+
</TABLE></DIV>
|
1003
|
+
<BR CLEAR="ALL"><P></P>
|
1004
|
+
$B$3$3$G(B, $B;R8aLLFb$NH/;6$r0J2<$N$h$&$KI=$7$?(B.
|
1005
|
+
<P></P>
|
1006
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1007
|
+
<TR VALIGN="MIDDLE">
|
1008
|
+
<TD NOWRAP ALIGN="CENTER"><IMG
|
1009
|
+
WIDTH="279" HEIGHT="62" ALIGN="MIDDLE" BORDER="0"
|
1010
|
+
SRC="img174.png"
|
1011
|
+
ALT="$\displaystyle \Ddiv{\Dvect{F}}
|
310
1012
|
= \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$"></TD>
|
1013
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1014
|
+
(A.17)</TD></TR>
|
1015
|
+
</TABLE></DIV>
|
1016
|
+
<BR CLEAR="ALL"><P></P>
|
1017
|
+
|
1018
|
+
<BR>
|
1019
|
+
<BR>
|
1020
|
+
|
1021
|
+
$B<!$KG.NO3X$N<0$r=q$-49$($k(B.
|
1022
|
+
(<A HREF="node13.html#eq:new_euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
1023
|
+
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
1024
|
+
<P></P>
|
1025
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1026
|
+
<TR VALIGN="MIDDLE">
|
1027
|
+
<TD> </TD>
|
1028
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1029
|
+
WIDTH="647" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1030
|
+
SRC="img175.png"
|
1031
|
+
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
311
1032
|
+ \frac{1}{a}
|
312
1033
|
\left[
|
313
1034
|
\overline{v}^...
|
1035
|
+
...P{\theta}{z^*}}}
|
314
1036
|
\right)
|
315
1037
|
\right]
|
316
1038
|
\DP{\overline{\theta}}{z^*}
|
317
1039
|
- \overline{Q}$"></TD>
|
1040
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1041
|
+
</TD></TR>
|
1042
|
+
<TR VALIGN="MIDDLE">
|
1043
|
+
<TD> </TD>
|
1044
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1045
|
+
WIDTH="390" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1046
|
+
SRC="img176.png"
|
1047
|
+
ALT="$\displaystyle \qquad
|
318
1048
|
=
|
319
1049
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
320
1050
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$"></TD>
|
1051
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1052
|
+
</TD></TR>
|
1053
|
+
<TR VALIGN="MIDDLE">
|
1054
|
+
<TD> </TD>
|
1055
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1056
|
+
WIDTH="215" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1057
|
+
SRC="img177.png"
|
1058
|
+
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
321
1059
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
322
1060
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
323
1061
|
- \overline{Q}$"></TD>
|
1062
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1063
|
+
</TD></TR>
|
1064
|
+
<TR VALIGN="MIDDLE">
|
1065
|
+
<TD> </TD>
|
1066
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1067
|
+
WIDTH="498" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1068
|
+
SRC="img178.png"
|
1069
|
+
ALT="$\displaystyle \qquad
|
324
1070
|
= - \Dinv{\rho_0 a} \DP{}{z^*}
|
325
1071
|
\left( \rho_0
|
326
1072
|
\frac{\o...
|
1073
|
+
...v'\theta'}}
|
327
1074
|
{\overline{\DP{\theta}{z^*}}}
|
328
1075
|
\right) \DP{\overline{\theta}}{z^*}$"></TD>
|
1076
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1077
|
+
</TD></TR>
|
1078
|
+
<TR VALIGN="MIDDLE">
|
1079
|
+
<TD> </TD>
|
1080
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1081
|
+
WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1082
|
+
SRC="img179.png"
|
1083
|
+
ALT="$\displaystyle \qquad \qquad
|
329
1084
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
330
1085
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1086
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1087
|
+
</TD></TR>
|
1088
|
+
</TABLE></DIV>
|
1089
|
+
<BR CLEAR="ALL"><P></P>
|
1090
|
+
$B$H$J$k(B.
|
1091
|
+
$B$3$N1&JU$r99$KJQ7A$9$k$H(B
|
1092
|
+
<P></P>
|
1093
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1094
|
+
<TR VALIGN="MIDDLE">
|
1095
|
+
<TD> </TD>
|
1096
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1097
|
+
WIDTH="439" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1098
|
+
SRC="img180.png"
|
1099
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
331
1100
|
\left( \rho_0
|
332
1101
|
\frac{\overline{v'\th...
|
1102
|
+
...v'\theta'}}
|
333
1103
|
{\overline{\DP{\theta}{z^*}}}
|
334
1104
|
\right) \DP{\overline{\theta}}{z^*}$"></TD>
|
1105
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1106
|
+
</TD></TR>
|
1107
|
+
<TR VALIGN="MIDDLE">
|
1108
|
+
<TD> </TD>
|
1109
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1110
|
+
WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1111
|
+
SRC="img181.png"
|
1112
|
+
ALT="$\displaystyle \qquad
|
335
1113
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
336
1114
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1115
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1116
|
+
</TD></TR>
|
1117
|
+
<TR VALIGN="MIDDLE">
|
1118
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1119
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1120
|
+
SRC="img5.png"
|
1121
|
+
ALT="$\displaystyle =$"></TD>
|
1122
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1123
|
+
WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1124
|
+
SRC="img182.png"
|
1125
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
337
1126
|
\left( \rho_0
|
338
1127
|
\frac{\overline{v'\th...
|
1128
|
+
...eta'}}
|
339
1129
|
{a \overline{\DP{\theta}{z^*}}}
|
340
1130
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}$"></TD>
|
1131
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1132
|
+
</TD></TR>
|
1133
|
+
<TR VALIGN="MIDDLE">
|
1134
|
+
<TD> </TD>
|
1135
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1136
|
+
WIDTH="520" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1137
|
+
SRC="img183.png"
|
1138
|
+
ALT="$\displaystyle \qquad
|
341
1139
|
+ \Dinv{a \cos\phi}
|
342
1140
|
\left[
|
343
1141
|
\DP{}{\phi} \left( \cos \...
|
1142
|
+
...( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
344
1143
|
\right] \DP{\overline{\theta}}{z^*}$"></TD>
|
1144
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1145
|
+
</TD></TR>
|
1146
|
+
<TR VALIGN="MIDDLE">
|
1147
|
+
<TD> </TD>
|
1148
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1149
|
+
WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1150
|
+
SRC="img181.png"
|
1151
|
+
ALT="$\displaystyle \qquad
|
345
1152
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
346
1153
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1154
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1155
|
+
</TD></TR>
|
1156
|
+
<TR VALIGN="MIDDLE">
|
1157
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1158
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1159
|
+
SRC="img5.png"
|
1160
|
+
ALT="$\displaystyle =$"></TD>
|
1161
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1162
|
+
WIDTH="658" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1163
|
+
SRC="img184.png"
|
1164
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
347
1165
|
\left( \rho_0
|
348
1166
|
\frac{\overline{v'\th...
|
1167
|
+
...{\overline{\theta}}{z^*}
|
349
1168
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1169
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1170
|
+
</TD></TR>
|
1171
|
+
<TR VALIGN="MIDDLE">
|
1172
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1173
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1174
|
+
SRC="img5.png"
|
1175
|
+
ALT="$\displaystyle =$"></TD>
|
1176
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1177
|
+
WIDTH="585" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1178
|
+
SRC="img185.png"
|
1179
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
350
1180
|
\left[ \rho_0
|
351
1181
|
\frac{\overline{v'\th...
|
1182
|
+
... \overline{\DP{\theta}{z^*}} \right)^{-1}
|
352
1183
|
\DP{\overline{\theta}}{z^*}
|
353
1184
|
\right]$"></TD>
|
1185
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1186
|
+
</TD></TR>
|
1187
|
+
<TR VALIGN="MIDDLE">
|
1188
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1189
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1190
|
+
SRC="img5.png"
|
1191
|
+
ALT="$\displaystyle =$"></TD>
|
1192
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1193
|
+
WIDTH="416" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1194
|
+
SRC="img186.png"
|
1195
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
354
1196
|
\left[ \rho_0
|
355
1197
|
\left(
|
356
1198
|
\frac{\overli...
|
1199
|
+
... \frac{ \DP{\overline{\theta}}{z^*} }
|
357
1200
|
{ \overline{\DP{\theta}{z^*}} }
|
358
1201
|
\right)$"></TD>
|
1202
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1203
|
+
</TD></TR>
|
1204
|
+
<TR VALIGN="MIDDLE">
|
1205
|
+
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1206
|
+
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1207
|
+
SRC="img5.png"
|
1208
|
+
ALT="$\displaystyle =$"></TD>
|
1209
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1210
|
+
WIDTH="279" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1211
|
+
SRC="img187.png"
|
1212
|
+
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
359
1213
|
\left[ \rho_0
|
360
1214
|
\left(
|
361
1215
|
\frac{\overli...
|
1216
|
+
...^*}}}
|
362
1217
|
\DP{\overline{\theta}}{\phi}
|
363
1218
|
+ \overline{w'\theta'}
|
364
1219
|
\right)
|
365
1220
|
\right].$"></TD>
|
1221
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1222
|
+
</TD></TR>
|
1223
|
+
</TABLE></DIV>
|
1224
|
+
<BR CLEAR="ALL"><P></P>
|
1225
|
+
$B$3$l$h$j(B, $BG.NO3X$N<0$O0J2<$N$h$&$K$J$k(B.
|
1226
|
+
<P></P>
|
1227
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1228
|
+
<TR VALIGN="MIDDLE">
|
1229
|
+
<TD NOWRAP ALIGN="CENTER"><IMG
|
1230
|
+
WIDTH="515" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1231
|
+
SRC="img188.png"
|
1232
|
+
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
366
1233
|
+ \frac{\overline{v}^*}{a} \DP{\overli...
|
1234
|
+
...^*}}}
|
367
1235
|
\DP{\overline{\theta}}{\phi}
|
368
1236
|
+ \overline{w'\theta'}
|
369
1237
|
\right)
|
370
1238
|
\right].$"></TD>
|
1239
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1240
|
+
</TD></TR>
|
1241
|
+
</TABLE></DIV>
|
1242
|
+
<BR CLEAR="ALL"><P></P>
|
1243
|
+
|
1244
|
+
<BR>
|
1245
|
+
<BR>
|
1246
|
+
|
1247
|
+
$B:G8e$K(B <IMG
|
1248
|
+
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1249
|
+
SRC="img189.png"
|
1250
|
+
ALT="$ v$"> $B$N<0$K$D$$$F9M$($k(B.
|
1251
|
+
(<A HREF="node13.html#eq:new_euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
1252
|
+
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
1253
|
+
<P></P>
|
1254
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1255
|
+
<TR VALIGN="MIDDLE">
|
1256
|
+
<TD> </TD>
|
1257
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1258
|
+
WIDTH="692" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1259
|
+
SRC="img190.png"
|
1260
|
+
ALT="$\displaystyle \DP{}{t}
|
371
1261
|
\left[
|
372
1262
|
\overline{v}^*
|
373
1263
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
374
1264
|
\...
|
1265
|
+
...
|
375
1266
|
\frac{\overline{v'\theta'}}
|
376
1267
|
{\overline{\DP{\theta}{z^*}}}
|
377
1268
|
\right)
|
378
1269
|
\right]$"></TD>
|
1270
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1271
|
+
</TD></TR>
|
1272
|
+
<TR VALIGN="MIDDLE">
|
1273
|
+
<TD> </TD>
|
1274
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1275
|
+
WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1276
|
+
SRC="img191.png"
|
1277
|
+
ALT="$\displaystyle \qquad \qquad
|
379
1278
|
+ \left[
|
380
1279
|
\overline{w}^*
|
381
1280
|
- \Dinv{a \cos\phi}
|
382
1281
|
\...
|
1282
|
+
...
|
383
1283
|
\frac{\overline{v'\theta'}}
|
384
1284
|
{\overline{\DP{\theta}{z^*}}}
|
385
1285
|
\right)
|
386
1286
|
\right]$"></TD>
|
1287
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1288
|
+
</TD></TR>
|
1289
|
+
<TR VALIGN="MIDDLE">
|
1290
|
+
<TD> </TD>
|
1291
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1292
|
+
WIDTH="321" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1293
|
+
SRC="img192.png"
|
1294
|
+
ALT="$\displaystyle \qquad \qquad
|
387
1295
|
+ f \overline{u}
|
388
1296
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
389
1297
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
390
1298
|
- \overline{Y}$"></TD>
|
1299
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1300
|
+
</TD></TR>
|
1301
|
+
<TR VALIGN="MIDDLE">
|
1302
|
+
<TD> </TD>
|
1303
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1304
|
+
WIDTH="474" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1305
|
+
SRC="img193.png"
|
1306
|
+
ALT="$\displaystyle \qquad
|
391
1307
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)...
|
1308
|
+
...\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
392
1309
|
- \overline{u'^2}\frac{\tan\phi}{a},$"></TD>
|
1310
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1311
|
+
</TD></TR>
|
1312
|
+
<TR VALIGN="MIDDLE">
|
1313
|
+
<TD> </TD>
|
1314
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1315
|
+
WIDTH="193" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1316
|
+
SRC="img194.png"
|
1317
|
+
ALT="$\displaystyle f \overline{u}
|
393
1318
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
394
1319
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}$"></TD>
|
1320
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1321
|
+
</TD></TR>
|
1322
|
+
<TR VALIGN="MIDDLE">
|
1323
|
+
<TD> </TD>
|
1324
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1325
|
+
WIDTH="764" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1326
|
+
SRC="img195.png"
|
1327
|
+
ALT="$\displaystyle \qquad
|
395
1328
|
= - \DP{}{t}
|
396
1329
|
\left[
|
397
1330
|
\overline{v}^*
|
398
1331
|
+ \Dinv{\rho_0} \...
|
1332
|
+
...
|
399
1333
|
\frac{\overline{v'\theta'}}
|
400
1334
|
{\overline{\DP{\theta}{z^*}}}
|
401
1335
|
\right)
|
402
1336
|
\right]$"></TD>
|
1337
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1338
|
+
</TD></TR>
|
1339
|
+
<TR VALIGN="MIDDLE">
|
1340
|
+
<TD> </TD>
|
1341
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1342
|
+
WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1343
|
+
SRC="img196.png"
|
1344
|
+
ALT="$\displaystyle \qquad \qquad
|
403
1345
|
- \left[
|
404
1346
|
\overline{w}^*
|
405
1347
|
- \Dinv{a \cos\phi}
|
406
1348
|
\...
|
1349
|
+
...
|
407
1350
|
\frac{\overline{v'\theta'}}
|
408
1351
|
{\overline{\DP{\theta}{z^*}}}
|
409
1352
|
\right)
|
410
1353
|
\right]$"></TD>
|
1354
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1355
|
+
</TD></TR>
|
1356
|
+
<TR VALIGN="MIDDLE">
|
1357
|
+
<TD> </TD>
|
1358
|
+
<TD NOWRAP ALIGN="LEFT"><IMG
|
1359
|
+
WIDTH="525" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1360
|
+
SRC="img197.png"
|
1361
|
+
ALT="$\displaystyle \qquad \qquad
|
411
1362
|
- \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \co...
|
1363
|
+
...}(\rho_0\overline{v' w'})
|
412
1364
|
- \overline{u'^2} \frac{\tan\phi}{a}
|
413
1365
|
+ \overline{Y}$"></TD>
|
1366
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1367
|
+
</TD></TR>
|
1368
|
+
</TABLE></DIV>
|
1369
|
+
<BR CLEAR="ALL"><P></P>
|
1370
|
+
Andrews <I>et al.</I> (1987) $B$K$h$l$P(B, $B$3$N<0$N1&JU$NNL$O(B
|
1371
|
+
$B:8JU$KHf$Y$l$P>.$5$$(B. $B1&JU$N9`$rA4$F$^$H$a$F(B <IMG
|
1372
|
+
WIDTH="20" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1373
|
+
SRC="img198.png"
|
1374
|
+
ALT="$ G$"> $B$H=q$/$H(B
|
1375
|
+
<IMG
|
1376
|
+
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1377
|
+
SRC="img189.png"
|
1378
|
+
ALT="$ v$"> $B$N<0$O<!$N$h$&$K$J$k(B.
|
1379
|
+
<P></P>
|
1380
|
+
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1381
|
+
<TR VALIGN="MIDDLE">
|
1382
|
+
<TD NOWRAP ALIGN="CENTER"><IMG
|
1383
|
+
WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1384
|
+
SRC="img199.png"
|
1385
|
+
ALT="$\displaystyle \overline{u}
|
414
1386
|
\left( f + \frac{\tan\phi}{a} \overline{u} \right)
|
415
1387
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
416
1388
|
= G.$"></TD>
|
1389
|
+
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1390
|
+
</TD></TR>
|
1391
|
+
</TABLE></DIV>
|
1392
|
+
<BR CLEAR="ALL"><P></P>
|
1393
|
+
|
1394
|
+
<BR>
|
1395
|
+
<BR>
|
1396
|
+
|
1397
|
+
$B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$BJQ7A%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
|
1398
|
+
<TABLE BORDER="1"><TR><TD>
|
1399
|
+
|
1400
|
+
<DIV ALIGN="CENTER"><A NAME="eq:transformed_euler_mean_pe"></A><A NAME="eq:transformed_euler_mean_pe_momentum_x"></A><A NAME="eq:transformed_euler_mean_pe_momentum_y"></A><A NAME="eq:transformed_euler_mean_pe_momentum_z^*"></A><A NAME="eq:transformed_euler_mean_pe_continuity"></A><A NAME="eq:transformed_euler_mean_pe_thermal"></A><!-- MATH
|
1401
|
+
\begin{subequations}
|
1402
|
+
\begin{align}&
|
1403
|
+
\DP{\overline{u}}{t}
|
1404
|
+
+ \overline{v}^*
|
1405
|
+
\left[
|
1406
|
+
\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
|
1407
|
+
\right]
|
1408
|
+
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
1409
|
+
- \overline{X}
|
1410
|
+
= \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
|
1411
|
+
\overline{u}
|
1412
|
+
\left( f + \overline{u}\frac{\tan\phi}{a} \right)
|
1413
|
+
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
1414
|
+
= G.
|
1415
|
+
\end{align}
|
1416
|
+
\begin{align}
|
1417
|
+
\DP{\overline{\Phi}}{z^*}
|
1418
|
+
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
1419
|
+
= 0.
|
1420
|
+
\end{align}
|
1421
|
+
\begin{align}
|
1422
|
+
\Dinv{a\cos\phi}&\left[
|
1423
|
+
\DP{}{\phi}(\overline{v}^*\cos\phi)\right]
|
1424
|
+
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
|
1425
|
+
= 0.
|
1426
|
+
\end{align}
|
1427
|
+
\begin{align}
|
1428
|
+
\DP{\overline{\theta}}{t}
|
1429
|
+
+ \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
|
1430
|
+
+ \overline{w}^*\DP{\overline{\theta}}{z^*}
|
1431
|
+
- \overline{Q} =
|
1432
|
+
- \Dinv{\rho_0}\DP{}{z^*}
|
1433
|
+
\left[\rho_0
|
1434
|
+
\left(
|
1435
|
+
\overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
|
1436
|
+
{a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
|
1437
|
+
\right)
|
1438
|
+
\right].
|
1439
|
+
\end{align}
|
1440
|
+
\end{subequations}
|
1441
|
+
-->
|
1442
|
+
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1443
|
+
<TR VALIGN="MIDDLE">
|
1444
|
+
<TD NOWRAP ALIGN="CENTER"><IMG
|
1445
|
+
WIDTH="555" HEIGHT="316" ALIGN="BOTTOM" BORDER="0"
|
1446
|
+
SRC="img200.png"
|
1447
|
+
ALT="\begin{subequations}\begin{align}&
|
417
1448
|
\DP{\overline{u}}{t}
|
418
1449
|
+ \overline{v}^*
|
419
1450
|
\lef...
|
1451
|
+
...}{z^*}} + \overline{w'\theta'}
|
420
1452
|
\right)
|
421
1453
|
\right].
|
422
1454
|
\end{align}\end{subequations}"></TD></TR>
|
1455
|
+
</TABLE></DIV>
|
1456
|
+
<BR CLEAR="ALL">
|
1457
|
+
</TD></TR></TABLE>
|
1458
|
+
|
1459
|
+
<HR>
|
1460
|
+
<!--Navigation Panel-->
|
1461
|
+
<A NAME="tex2html206"
|
1462
|
+
HREF="node15.html">
|
1463
|
+
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
1464
|
+
<A NAME="tex2html202"
|
1465
|
+
HREF="node11.html">
|
1466
|
+
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
1467
|
+
<A NAME="tex2html198"
|
1468
|
+
HREF="node13.html">
|
1469
|
+
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
1470
|
+
<A NAME="tex2html204"
|
1471
|
+
HREF="node1.html">
|
1472
|
+
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
1473
|
+
<BR>
|
1474
|
+
<B> :</B> <A NAME="tex2html207"
|
1475
|
+
HREF="node15.html">$B;29MJ88%(B</A>
|
1476
|
+
<B> :</B> <A NAME="tex2html203"
|
1477
|
+
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
1478
|
+
<B> :</B> <A NAME="tex2html199"
|
1479
|
+
HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
|
1480
|
+
  <B> <A NAME="tex2html205"
|
1481
|
+
HREF="node1.html">$BL\<!(B</A></B>
|
1482
|
+
<!--End of Navigation Panel-->
|
1483
|
+
<ADDRESS>
|
1484
|
+
Tsukahara Daisuke
|
1485
|
+
$BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
|
1486
|
+
</ADDRESS>
|
1487
|
+
</BODY>
|
1488
|
+
</HTML>
|